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1 Introduction

Many phenomena in science and engineering can be descrteediathematical model.
Such a model describes the relations between the variabtesanstants that are impor-
tant for this problem, like velocities, forces or materiabperties. In many cases, these
relationships are expressed by partial differential eiquat(PDES).

Often it is not possible to obtain an analytical solutiontfeese PDEs. Hence, one has to
compute an approximate numerical solution. To this endutigerlying domain is dis-
cretized using a finite gri€. On this grid, the PDE is discretized using finite differesice
finite elements of finite volumes. This results in a sparsge @inly few entries per row are
different from zero) linear system of equatioas = f.

Multigrid Methods (MG}-© are known to be optimal methods for such kind of linear sys-
tems. Algebraic Multigrid Methods (AMG)! extend the multigrid idea to a purely alge-
braic setting, i.e. the only input they need is the matixThey can be used if a geometric
multigrid hierarchy is not available. This flexibility haspaice: A setup phasehas to
be carried out in which the multigrid hierarchy, i.e., thgwence of grids, transfer opera-
tors and coarse grid operators, is constructed automigtfoain A, before the well-known
multigrid cycle (thesolution phasgcan be started.

For linear systems with millions of unknowns, parallel cartgtion is necessary to speed
up the computation and to be able to store the system in theonyeriVhile the paral-
lelization of geometric multigrid and hence the solutioraph of algebraic multigrid is
straightforward, the algorithms for creating the coarddggin AMG are inherently se-
guential.

Various approaches for the parallelization of this stepehbeen proposed over the
yearg:83 In this paper, we briefly describe the Coarse Grid Classificalgorithnt°, as
well as its extension CGC-ML to very large numbers of process

2 Algebraic multigrid

In this section we give a short review of the algebraic multigAMG) method. We
consider a linear systetdu = f, which comes from a discretization of a PDE on a grid

O ={1,...,N}% with A = (aij)fvjzl being a large sparse real matrix,= (ui)ﬁvzl

“We denote grid points with their respective counting indearny dimension.



andf = (fi)fvzl vectors of lengthV. We assume thad is a symmetric, positive definite
M-matrix or an essentially positive matrix. To be able to eadthis equation using the
multigrid schem®& we need to specify the sequence of coarse grid operatotsansfer
operators?’ andR! = (P")T, the smoothing operatof and the sequence of coarse grids
Q. To this end, in an algebraic multigrid method, we choosersk smoothing scheme
S!, e.g. Gauss—Seidel or Jacobi relaxation. Then, we condtraqyrids{Q'}~ , the
transfer operator§P'}/—,! and the coarse grid operatofd'}~ | in a recursive fashion
depending on the fine grid operatdr= A' only. This construction is carried out in the
so-called setup phase which consists of three steps: thetisel of an appropriate coarse
grid

Q= ol = 0\ P

the construction of a stable prolongation operatgrand the computation of the Galerkin
coarse grid operatad!™! := (PYT A'P!. In the following, we omit the level indek
where possible to simplify the notation.

Essential to many AMG schemes is the notion of a strong coggietween the grid
points and the grid poinj. A grid pointi is calledstrongly coupledo a grid pointj if the
corresponding matrix entry;; is relatively large. In the Ruge—Stiben coarsening (RSC)
algorithn? 1%for instance the coarsening (see Program 1) is based ontthe se

Si={j#i: —a zmgimm}, ST ={j#i:i€S;}, 1)

(typically o« = 0.25) which describe the strong connectivity graph of a ma#ixAlong
these strong couplings, the smooth parts of the error vaylgl For an efficient coarse-
grid correction of these parts, interpolation must alstofethese couplings. This leads to
three criteria for the choice of the coarse grid,

1. Leti € F. Then for eacly € S; holds eitheri € C orS; N (C' N S;) # 0.

2. Foralli € C'andj € S; U ST holds; ¢ C

3. C'is a maximal set satisfying these properties.
In general, it is not possible to fulfill all these criteriaeWhoose to enforce the first one,
as the stability of the interpolation depends on it. The seming process is carried out in

Program 1 AmgPhaselQ, S, ST, C, F)
begin
U—Q; C—0; F«0
for i € O do\; — |ST; od
while max;ep A; # 0 do
1+ argmax;jecyu Aj; (%)
C%CU{i};
for j € ST AU doF — FU{j};
fO_I'k’ESjﬁUCI_O)\;C — A+ 1; od;

od;
fO_rjeSszd_O)\]H)\Jfl, O_d;
od;
F—FuUU;
end

two phases. In the first phase, see Program 1, an indepered€hb$ coarse grid points



Figure 1. Resulting coarse grids for a 5-point discretiratf the Laplace operator constructed by three different
initial choices. The blue points indicate the respectivarse grid points, the red point indicates the first coarse
grid point chosen.

is determined. Observe that we have a degree of freedom waHhmlesing the first coarse
grid pointi (see the line indicated by)). After the first phase is carried out, a second
coarsening phase checks that Criterion 1 is satisfied fopaitsi,j € F of fine grid
points. If the conditionS; N (C'NS;) # 0 is not fulfilled for a certain pair, then one of
these points is added to the set of coarse grid padints

Note that in Program 1 each pointhosen for the coarse grid results in a change of
the weights\; of all points; within two layers around the grid poiat This shows the se-
guential character of this coarsening algorithm, as thgkteipdates propagate throughout
the whole domain during the coarsening loop. Hence, thdlphzation of Ruge—Stiben-
based AMG schemes is not straightforward.

3 Coarse Grid Classification

As can be seen from Figure 1, different choices for the firate®grid point yield different
coarse grids. There is no special advantage of using eitieiobthese coarse grids in
a sequential computation. In parallel computations, h@nethis gives us a degree of
freedom to consistentlgatchthe coarse grids obtained on each processor individually by
the RSC scheme at processor subdomain boundaries. Thivatise is the starting point
for our coarse grid construction algorithm.

The CGC coarsening scheme employsva-stagecoarsening algorithm. First, we
construct multiple coarse grids on each processor dofgimdependently by running
the RSC algorithm multiple times with different initial as& grid points. After the con-
struction of these coarse grids on all processors, we nesld@ot exactly one grid for each
processor domain such that the union of these coarse gritis fo suitable coarse grid for
the whole domain.

For details of the first stage, we refer to Program 2. Notettimthumber of iterations
is bounded by the maximal number of strong coupliff§s over all pointsi € €2,,, which
in turn is bounded by the maximal stencil width. Hence, thenber of constructed grids
ng, per processaop is independent of the number of unknowssand the number of pro-
cessorsP. The later constructed coarse grids may be of inferior tpublit the selection
mechanism described in the following will avoid them.

We now have obtainedg, valid coarse grids{C(pM}?ﬁ’{ on each processgr. To de-
termine which grid to choose on each processor, we consirdirected, weighted graph
G = (V, E) whose vertices represent the candidate coarse grids,

Vp = {C(p),i}izl,...,ngp; V= Ug):lvp'



Program 2 CGC(S, ST, ng, {C; 11, {Fi}1%))

for j «— 1to|Q[doX; — |ST]; od;
Co +— 0; Amax < argmaxgeq A\g;
do
U—Q\ U<t Cis
if maxgey Ax < Amax then break; fi;
it —it+1; Fyy — 0; Cy — 0;
do
J < argmaxgeu Ak;
if A; = 0then break; fi;
Ci — Ciy U{j}h Aj < 05
for k € SjT N U do
Fip « Fir U{k}; A\ < 0;
fori € S NUdo A — X\ + 1; od;

od;
fClkZGSjﬂU@)\k — A\ — 1; od;
od;
od
ng «— it;
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Figure 2. Discretization of the Laplace operator using dimifferences. The left figure shows the candidate
coarse grids indicated by different colors, the right figsiiews the CGC graph.

The set of edge&’ consists of all pairgv,u), v € V,,, u € V; such thaty € S, is a
neighboring processor of

Ep = {UQESP UUEVP, ueVy ('U, 'LL)}, E = U;:—):lE}h
wheresS, is defined as the set of processg@mgith pointsj which strongly influence points
1 0N processop, i.e.
Sy={q#p: F eV, jeQ,: jeS}

To each edge = (v,u) we assign a weight(e) which measures the quality of the
composed coarse gridifandu are chosen to be part of itFigure 2 shows an example of
the candidate coarse grids and the respective graph. Aétdieawe constructed the gragh
of admissible local grids, we can use it to choose a partioaarse grid for each processor
such that the union of these local grids automatically megdait subdomain boundaries.



Program 3 AmgCGCChooséV, H,C)
begin
C—0;U—V;
forveddor, — ‘Hv|+|H1T‘§ od;
for p € {1,..., P} do
if Ay =0 forallveV,
thenC — {v | arbitrary v}; U — U\ Vp; fi;

od;

while U/ # 0
do
V «— arg maxXyey A\w;
C—CU{v}; U—U\Vpsuchthat v € Vp; Amax «— MaXyeir Aw;
fO_I"LU (S (HU UHE) ﬂ]/{d_O)\u; — Amax + 1? 0_d§

od;

end

To this end, we transfer the whole graph onto a single proce€dn this processor, we
choose exactly one nodg from each subsét, C V' with the following scheme: We first
define heavy edges,

Hy == Uges, {w [y(v,w) = rrg;(’y(v,u)}, andH! .= {w|v € H,}.
ucVq

that indicate which candidate coarse grids can be fittedtbeke coarse grid represented
by v € V,. We then employ Program 3 to create the global coarse grigs frecedure
takes up toP steps, one for each processor domain, see Program 3 folsdetsier
running the algorithm, we transfer the choigee C N'V,, back to processaqy.

4 Multilevel Coarse Grid Classification

The main advantage of CGC over other parallel AMG is that tivestructed coarse grids
are very close to those a sequential AMG would produce. Hewsdfie original CGC
has one major drawback: The graph representing the caedidatse grids needs to be
transferred to a single processor. For large numbers ofegsors P £ 1000) this leads
to large communication costs as well as a significant rur-fion the coarse grid selection
algorithm AmgCGCChoose.

To overcome this issue, we have developed the CGC-ML algarivhich carries out the
coarse grid selection procedure in a recursive, multilevahner. We construct the graph
G = (V, E) as described in the last section. In addition, we assign ghwép each vertex
which denotes the number of processor subdomains covertbe loparse grid represented
by this vertex. Naturally, this weight is initialized with

We donottransfer the whole graph onto a single processor. Insteagraceed as follows:

1. We agglomerate the graph on a subset of the processoFsgsee 3(b). Hence, a part
of the edges (in this case, the vertical edges) do not crespribcessor boundaries
any more.

2. We can now employ heavy matchingn the inner edges of each processor subdo-
main, see Figure 3(c). Note that all edge weights are negativin fact the selected
edge is the one with the smallest absolute weight.



0

oo
piRL

il

1
1

1 =g

(c) heavy edge match-
ing

o

2 ka o
(d) collapsing vertices (e) second agglomera- () final collapsed
and edges tion step graph

Figure 3. Graph clustering process. The graph is consttumtehe CGC algorithm to a 5-point finite-difference
discretization of the Laplace operator, distributed amfmg processors (cp. Figure 2(a)). The numbers in the
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Figure 4. CGC-ML refinement process.

3. We collapse the matched vertices and merge the edge eet§igure 3(d). Each
vertex now represents a candidate coarse grid on an uniomoégsor subdomains.
Accordingly, we update the vertex weights. The edge setdi gartexu is the union
of the edge sets of the verticesw that were collapsed inte: E, «— E, U E,,.
However, we never create an edge between two vertices whfesent candidate
coarse grids on the same processor subdomain. If two edgeobapsed into the
same edge, we add their edge weights.

4. We proceed matching and collapsing the graph. If no furtieching is possible, we
again agglomerate the graph on a smaller subset of prose¢sae are already on a
single processor, we stop, see Figure 3(e) — 3(f).

We have now obtained a small set of vertices on a single psoceblow, we choose one
vertexwu such that it covers a maximal number of processor subdoraaithsnark it, see
Figure 4(a). Then, we mark the verticeandw that were collapsed inte. We recursively
proceed refining this choice until we have reached the algjraph, see 4(b) — 4(c). Now,
on each processor subdomain, the candidate coarse grasesped by the marked vertex
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Figure 6. Number of iterations (left) and overall timingglit) for the model problem

is selected as coarse grid for this processor subdomain arbtain a coarse grid for the
global discretization domain as depicted in Figure 4(d).

During this refinement process, we must ensure that onexismearked per processor
subdomain on each level of the graph hierarchy. In consemgyéehis will guarantee that
after finishing the refinement, we have selected one caredidatrse grid on each processor
subdomain. In our implementation, we proceed as followseakth step in the refinement
process where more processors are involved as in the peesiep (i.e. a processor ag-
glomeration was performed in the matching phase), we déteriha vertex is marked on
eachprocessor. If this is not the case, we mark the vertex thaoist tneavily coupled to
the marked vertices on neighboring processors.

Hence, oreachlevel of the AMG multilevel hierarchy, we employ a multi-khgraph
coarsening algorithm.

5 Numerical Results

In this section, we present first numerical results obtaorethe JUBL supercomputer. In
particular, we employ AMG as a preconditioner for the coajieggradient method and we
compare the CGC-ML algorithm with the original CGC algomittas well as the HMIS
parallel coarsening algorithin

We consider an model problem in three spatial  dimensions,

S
V- (aVu)=f (2) n
on [0, 1] with Dirichlet boundary conditions. The diffusion o1/ 1| 1000 |1 0.01
coefficienta depends orfz, y, ) as depicted in Figure 5. We
employ a 7-point finite difference scheme to discretize tlodp ot L o3

lem on31 x 31 x 31 points per processor subdomain.

As strength threshold in (1), we set= 0.25. We omit the sec-  Figure 5. Values of the dif-
ond coarsening pass of the RSC scheme as we use AMG as pfision coefficient for Eq. 2
conditioner only. Furthermore, we use the modified clasgitarpolation, see Ref. 7. On
each level of the multigrid hierarchy, we employ a hybrid &x$eidel/Jacobi smoother.
We start the iterations with a zero initial vectay. The iteration is stopped if the residual



rie = f — Au;y; drops belowl0~® measured in th&-norm.

In Figure 6 we give the plots of the number of iterations anerall run-time for the consid-
ered parallel AMG schemes. From these plots we see that tii:@Galgorithm achieves
robust preconditioning for this problem up to thousandsrotpssors. In contrast, the it-
eration numbers for HMIS coarsening increase significaatigt the algorithm does not
converge withinl000 steps for more thahl12 processors. We see an increase of the total
wall time requirements beyorid24 processors which is caused by the slower communica-
tion between the racks. However, The CGC-ML algorithm shawgnificantly improved
scale-up behavior compared with the original CGC algorithm
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