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Abstract We consider the problem of approximating the regression function from noisy vector-
valued data by an online learning algorithm using an appropriate reproducing kernel Hilbert
space (RKHS) as prior. In an online algorithm, i.i.d. samples become available one by one
by a random process and are successively processed to build approximations to the regres-
sion function. We are interested in the asymptotic performance of such online approximation
algorithms and show that the expected squared error in the RKHS norm can be bounded by
C2(m+ 1)−s/(2+s), where m is the current number of processed data, the parameter 0 < s ≤ 1
expresses an additional smoothness assumption on the regression function and the constant C
depends on the variance of the input noise, the smoothness of the regression function and further
parameters of the algorithm.

Keywords vector-valued kernel regression · online algorithms · convergence rates · reproducing
kernel Hilbert spaces
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1 Introduction

In this paper, we deal with the problem of learning the regression function from noisy vector-
valued data using an appropriate RKHS as prior. For the relevant background on the theory
of kernel methods, see [4, 5, 12, 13, 15] and specifically [2, 3, 11] in the vector-valued case.
Our emphasis is on obtaining estimates for the expectation of the squared error norm in the
RKHS H of approximations to the regression function which are built in an incremental way
by so-called online algorithms. The setting we use is as follows: Let be given N ≤ ∞ samples
(ωm,ym) ∈ Ω ×Y , m = 0, . . . ,N − 1, of an input-output process ω → y, which are i.i.d. with
respect to a (generally unknown) probability measure µ defined on Ω ×Y . For simplicity, let
Ω be a compact metric space, Y a separable Hilbert space, and µ a Borel measure. What we
are looking for is a regression function fµ : Ω → Y which, in some sense, optimally represents
the underlying input-output process. We deal with algorithms for least-squares regression which
aim at finding approximations to the solution

fµ(ω) = E(y|ω) ∈ L2
ρ(Ω ,Y )
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of the minimization problem

E(∥ f (ω)− y∥2
Y ) =

∫
Ω×Y

∥ f (ω)− y∥2
Y dµ(ω,y) 7−→ min (1)

for f ∈ L2
ρ(Ω ,Y ) from the samples (ωm,ym),m = 0, . . . ,N − 1, where ρ(ω) is the marginal

probability measure generated by µ(ω,y) on Ω . On a theoretical level, for the minimization
problem (1) to be meaningful, one needs1

E(∥y∥2
Y ) =

∫
Ω×Y

∥y∥2
Y dµ(ω,y) =

∫
Ω

E(∥y∥2
Y |ω)dρ(ω)< ∞.

Since solving the discretized least-squares problem

1
N

N−1

∑
m=0

∥ f (ωm)− ym∥2
Y 7−→ min (2)

for f ∈ L2
ρ(Ω ,Y ) is an ill-posed problem which does not make sense without further regulariza-

tion, it is customary to add a prior assumption f ∈ H, where H ⊂ L2
ρ(Ω ,Y ) is a set of functions

f : Ω → Y such that point evaluations ω → f (ω) are well-defined. Staying within the Hilbert
space setting, candidates for H are vector-valued RKHS which we will introduce in the next
section by means of a feature map, i.e. a family of bounded linear operators which map into a
separable Hilbert space V . Under standard assumptions, the RKHS H and V are isometric.

Starting from an inital guess f (0) ∈ H, the online algorithms we consider build a sequence
of successive approximations f (m) ∈ H, where f (m+1) is a linear combination of the previous
approximation f (m) and a term involving the residual ym− f (m)(ωm) with respect to the currently
processed sample (ωm,ym). More precisely, the update formula can be written in the form

f (m+1)(ω) = αm( f (m)(ω)+µmK(ω,ωm)(ym − f (m)(ωm))), m = 0,1, . . . ,N −1, (3)

where K(ω,θ) : Y →Y , ω,θ ∈Ω , is the operator kernel of the RKHS determined by the feature
map. The isometry of H and V allows us to rewrite (3) as iteration in V which is convenient for
our subsequent analysis, see Section 2 for the details. Our main result, namely Theorem 1,
concerns a sharp estimate for the expected squared error E(∥ fµ − f (m)∥2

H) in the RKHS norm
which in this generality seems to be new. It holds under standard assumptions on the feature
map, the parameters αm,µm in (3) and the smoothness s of fµ ∈ H measured in a scale of
smoothness spaces associated with the underlying covariance operator Pρ . Moreover, it exhibits
the optimal error decay rate s/(s + 2). Our approach is an extension of earlier work [8] on
Schwarz iterative methods in the noiseless case, where ym = fµ(ωm).

The remainder of this paper is organized as follows: In Section 2 we introduce vector-valued
RKHS, define Pρ and the associated scale of smoothness spaces V s

Pρ
. This sets the stage for the

specification of our online learning algorithms in V , allows for their subsequent analysis, and
enables us to formulate our main convergence result, namely Theorem 1. In Section 3 we review
related results from the literature and compare them to our new result. In Section 4 we then
provide the detailed proof of Theorem 1. In Section 5 we give further remarks on Theorem 1,
discuss the advantages and limitations of our approach and consider a simple special case of
learning an element u of a Hilbert space V from noisy measurements of its coefficients with
respect to a complete orthonormal system (CONS) in V .

1 To obtain quantitative convergence results, stronger conditions on the random variable y such as uniform
boundedness µ-a.e. are often imposed in the literature, we will not do this here.
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2 Setting and main result

Let us first introduce our approach to vector-valued RKHS H of functions f : Ω →Y , where Y is
a separable Hilbert space. To this end, note that such a RKHS H can be implicitly introduced by
a family R = {Rω}ω∈Ω of bounded linear operators Rω : Y →V ), where V is another separable
Hilbert space (we will silently assume that V is infinite-dimensional). More precisely, under the
condition ⋂

ω∈Ω

ker(R∗
ω) = {0}, (4)

the space H consists of maps of the form

fv(ω) := R∗
ω v, ω ∈ Ω ,

and
∥ fv∥H := ∥v∥V , v ∈V.

Thus, H and V are isometric which allows us to easily switch between H and V in the sequel.
In the literature, the map ω → Rω (or sometimes ω → R∗

ω ) is called feature map defining the
RKHS H.

To simplify our further considerations, we will assume that

Rω v ∈C(Ω ,Y ) ∀v ∈V. (5)

This condition is the continuity of the operator family R in the strong operator topology and
ensures Bochner integrability of functions from Ω into Y and V , respectively, appearing in the
formulas below. Due to the assumed compactness of Ω , it also implies

∥Rω∥2
Y→V ≤ Λ < ∞, (6)

with some Λ < ∞. Another consequence is that the operator kernel

K(ω,θ) := R∗
ω Rθ : Y → Y, ω,θ ∈ Ω ,

associated with the vector-valued RKHS H is a Mercer kernel. The condition (6) is equivalent
to the uniform boundedness

∥K(ω,θ)∥Y ≤ Λ , ω,θ ∈ Ω , (7)

of the operator kernel K. Moreover, (6) is equivalent to the uniform boundedness of the operator
family

Pω := Rω R∗
ω : V →V, ω ∈ Ω ,

in V , i.e.,
∥Pω∥V ≤ Λ , ω ∈ Ω . (8)

For fixed V and R satisfying the above properties, instead of (1) one now seeks u ∈V such
that fu(ω) = R∗

ω u ∈ H is the minimizer of the problem2

J(v) := E(∥ fv − y∥2
Y ) =

∫
Ω×Y

∥R∗
ω v− y∥2

Y dµ(ω,y) 7−→ min . (9)

The solution u of this quadratic minimization problem on V , if it exists, must satisfy the neces-
sary condition

E((R∗
ω u− y,R∗

ω w)Y ) = E((Pω u−Rω y,w)V ) = 0 ∀ w ∈V.

2 The symbol E denotes expectations of random variables with respect to the underlying probability space
which may vary from formula to formula but should be clear from the context.
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This condition is equivalent to the linear operator equation

Pρ u = E(Rω y), Pρ := E(Pω) = E(Rω R∗
ω), (10)

in V . The operator Pρ : V → V defined in (10), which plays the role of a covariance operator,
is bounded and symmetric positive definite. The boundedness of Pρ : V →V , together with the
estimate

∥Pρ∥V ≤ Λ ,

follows from (6). The spectrum of Pρ is contained in [0,Λ ] and we have ker(Pρ) = {0} due to
(4). Moreover, we will assume that Pρ is compact. A sufficient condition, which is often satisfied
in applications, is the trace class property for Pρ which in particular holds if the operators Rω ,
ω ∈ Ω , have uniformly bounded finite rank.

Note here that the assumptions on Ω and R can be weakened, see for instance [2], and that
the compactness of Pρ is only used as technical simplification. In particular, the latter allows
us to define the scale of smoothness spaces V s

Pρ
, s ∈ R, generated by Pρ using the complete

orthonormal system (CONS) Ψ := {ψk} of eigenvectors of Pρ and associated eigenvalues λ1 ≥
λ2 ≥ . . . > 0 with limit 0 in V as follows: V s

Pρ
is the completion of span(Ψ) with respect to the

norm

∥∑
k

ckψk∥V s
Pρ

=

(
∑
k

λ
−s
k c2

k

)1/2

,

which is well defined on span(Ψ) for any s. These spaces will appear in the investigation below.
For our convergence analysis in V , we make another simplifying assumption, namely that

fµ = fu, where u ∈V is the unique minimizer for (9). (11)

In particular, this means that E(Rω y) ∈ ran(Pρ) and that (10) holds.3

For a given prior RKHS H induced by the operator family R with associated space V and
for given samples (ωm,ym), m = 0, . . . ,N − 1, with finite N, the standard regularization of the
ill-posed problem (2) is to find the minimizer uN ∈V of the minimization problem

JN(v) :=
1
N

N−1

∑
m=0

∥R∗
ωm v− ym∥2

Y +κN∥v∥2
V 7−→ min (12)

on V , where κN > 0 is a suitable regularization parameter. To compare with (2) or (9), recall
that fv(ωm) = R∗

ωm v are the function values of a function in H. Using the representer theorem
for Mercer kernels [11], this problem leads to a linear system with a typically dense and ill-
conditioned N ×N matrix. There is a huge body of literature, especially in the scalar-valued
case Y = R, devoted to setting up, analyzing and solving this problem for fixed N.

We focus here on online learning algorithms for finding approximations to the regression
function fµ = fu and are interested in their asymptotic performance, i.e., we assume that N is not
fixed (set formally N = ∞) and that the i.i.d. samples (ωm,ym) become available one by one by
a random process, m = 0,1, . . .. The task of an online algorithm, now viewed as approximation
process in V , is then to recover u ∈V satisfying (11) from this stream of samples.

To this end, we define the noise term

εω := y− fu(ω) = y−R∗
ω u, ω ∈ Ω ,

3 If E(Rω y) ̸∈ ran(Pρ ) then the usual alternative is to study estimates for the squared error ∥ fv − fW ∥2
L2

ρ (Ω ,Y )

between fv ∈ H (obtained by an approximation process to fµ from within H) and the L2
ρ (Ω ,Y ) orthoprojection

fW of fµ onto W , where W is the closure of H in L2
ρ (Ω ,Y ). Since our main result in this section is about norm

convergence to u in V or, equivalently, to fu in H, we will not pursue this option.
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which is a Y -valued random variable on Ω ×Y (to keep the notation short, the depencence on y
is not explicitly shown). Since fu(ω) = fµ(ω) by (11), we have E(εω |ω) = 0 for any ω ∈ Ω .
Moreover, the noise variance

σ
2 := E(∥εω∥2

Y ) = E(∥y− fµ∥2
Y ) (13)

with respect to fu ∈ H is finite since E(∥y∥2
Y )< ∞ was assumed in the first place. The value of

σ characterizes the average size of the noise y− fµ(ω) on Ω measured in the Y norm.
We consider online algorithms of the standard form

u(m+1) = αm(u(m)+µmRωm(ym −R∗
ωm u(m))), m = 0,1, . . . , (14)

where, at each step, the used sample (ωm,ym) is i.i.d. drawn according to the probability measure
µ and, consequently, ωm is i.i.d. drawn according to the marginal probability measure ρ on
Ω . Traditionally, the parameters αm and µm are called regularization parameter and step-size
parameter (or learning rate), respectively. As to be expected, after applying R∗

ω to both sides in
(14) and setting

f (m)(ω) := fu(m)(ω) = R∗
ω u(m), ω ∈ Ω ,

we arrive at the online algorithm (3) in H.
The online algorithm (14) is a particular instance of a randomized Schwarz approximation

method associated with R. Its noiseless version, where ym = R∗
ωm u, was studied in [8]. Our goal

is to derive convergence results for the expected squared error E(∥u− u(m)∥2
V ), m = 1,2, . . .,

which corresponds to convergence estimates in the RKHS H. As to be expected, such estimates
will once more require additional smoothness assumptions on u in the form u ∈ V s

Pρ
with 0 <

s ≤ 1. However, in contrast to the noiseless case [8], they also include a dependence on the
noise variance σ2 in addition to the dependence on the initial error ∥e(0)∥2. The prize to pay
for convergence is a certain decay of the step-sizes µm → 0 which is typical for stochastic
approximation algorithms. More precisely, throughout the remainder of this paper, we set

αm =
m+1
m+2

, µm =
A

(m+1)t , m = 0,1, . . . , (15)

where the parameters 1/2 < t < 1 and 0 < A ≤ (2Λ)−1 will be properly fixed later on. In the
language of learning algorithms, this is a so-called regularized online algorithm, compared to
unregularized online algorithms with αm = 1. Our main result is as follows:

Theorem 1 Let Y,V be separable Hilbert spaces, Ω be a compact metric space, µ be a Borel
probability measure on Ω ×Y , and ρ the marginal Borel probability measure on Ω induced by
µ . Assume that

E(∥y∥2
Y ) =

∫
Ω×Y

∥y∥2
Y dµ < ∞.

For the operator family R = {Rω}ω∈Ω , we require the conditions (4-6). We further assume that
the operator Pρ = E(Rω R∗

ω) is compact. Finally, we assume (11) and that u ∈ V s
Pρ

for some
0 < s ≤ 1.

Consider the online learning algorithm (14), where u(0) ∈ V is arbitrary, the parameters
αm,µm are given by (15) with t = ts := (1+s)/(2+s) and A = 1/(2Λ) and the random samples
(ωm,ym), m = 0,1, . . . ,N ≤ ∞, are i.i.d. with respect to µ . Then the expected squared error
E(∥u−u(m)∥2

V ) in V satisfies

E(∥ fµ − f (m)∥2
H) = E(∥u−u(m)∥2

V )≤C2(m+1)−s/(2+s), m = 1,2, . . . ,N, (16)

where f (m) = fu(m) , C2 = 2∥e(0)∥2
V +2∥u∥2

V +8Λ s∥u∥2
V s

Pρ

+σ2/Λ and the noise variance σ2 is

defined in (13).



6 M. Griebel, P. Oswald

In this generality, Theorem 1 has not yet appeared in the literature, at least to our knowledge.
Its proof is carried out in Section 4. For the parameter range 0 < s ≤ 1, the exponent −s/(2+ s)
in the right-hand side of (16) is best possible under the general conditions stated in Theorem 1.
Estimates of the form (16) also hold for arbitrary values 1/2 < t < 1 and 0 < A ≤ 1/(2Λ)
admissible in (15), albeit with non-optimal exponents depending on t and different constants C
varying with t and A. Note that estimates for

E(∥ fu − fu(m)∥2
L2

ρ (Ω ,Y )) = E(∥P1/2
ρ e(m)∥2

V ) = E((Pρ e(m),e(m))V )

with respect to the weaker L2
ρ(Ω ,Y ) norm are of great interest but cannot be obtained within

our framework. We will comment on these issues in the concluding Section 5.
There is a huge amount of literature devoted to the convergence theory of various versions of

the algorithm (14), especially for the scalar-valued case Y =R. In particular, (14) is often consid-
ered in the so-called finite horizon case, where N < ∞ is fixed and the step-sizes µm are chosen
in dependence on N such that expectations such as E(∥u− u(N)∥2

V ) or E(∥ fu − fu(N)∥2
L2

ρ (Ω ,Y )
),

respectively, are optimized for the final approximation u(N). We provide a brief discussion of
known results in the next section.

3 Results related to Theorem 1

Given the vast number of publications on convergence rates for learning algorithms, we will only
present a selection of results concentrating on the RKHS setting and online algorithms similar
to (14). The results we cite are often stated and proved for the scalar-valued case Y = R, even
though some authors claim that their methods extend to the case of an arbitrary separable Hilbert
space Y with minor changes. One of the first papers on the vector-valued case is [1], where the
authors provide upper bounds in probability for the L2

ρ(Ω ,Y ) error of fuN if N → ∞ and κN → 0,
where uN is the solution of (12). These bounds depend in a specific way on the smoothness of
u∈V s

Pρ
, 0≤ s≤ 1, and on the spectral properties of Pρ . Note that in [1] and in many other papers

stronger assumptions on the compactness of Pρ compared to our assumptions are made and that
bounds in probability do not automatically imply bounds in expectation. Moreover, the error
measured in the L2

ρ(Ω ,Y ) norm is with respect to fuN and not with respect to approximations
such as fu(m) , m ≤ N, which are produced by a particular algorithm comparable with (14).

In [14], the authors provide estimates in probability for an algorithm similar to (14) for the
scalar-valued case Y = R. They treat both, convergence in L2

ρ(Ω ,R) and H norms. There, the
main additional assumption needed for the application of certain results from martingale theory
is that, for some constant Mρ < ∞, the random variable y satisfies

|y| ≤ Mρ

a.e. on the support of ρ . If u(0) = 0 (as assumed in [14]) then this assumption implies bounds
for ∥e(0)∥V = ∥u∥V and σ with constants depending on Mρ . Up to the specification of constants
and using the notation of the present paper, the convergence result for the H norm stated in [14,
Theorem B] reads as follows: Consider the online algorithm (14) with starting value u(0) = 0
and parameters

αm =
m+m0 −1

m+m0
, αmµm =

A
(m+m0)(s+1)/(s+2) , m = 0,1, . . . ,

for some (large enough) m0 and suitable A. Then, if u ∈V s
Pρ

for some 0 < s ≤ 2, we have

P
(
∥u−u(m)∥2

V ≤ C
(m+m0)s/(s+2)

)
≥ 1−δ , 0 < δ < 1, m = 0,1, . . . ,
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for some constant C = C(Mρ ,∥u∥V s
Pρ
,m0,s,Λ , log(2/δ )) < ∞. Here, V = H is an RKHS of

functions u : Ω → R generated by some scalar-valued Mercer kernel K : Ω ×Ω → R and Λ =
maxω∈Ω K(ω,ω). The associated maps Rω are given by Rω y = yK(ω, ·), y ∈ R. Consequently,
R∗

ω u = u(ω), ω ∈ Ω , corresponds to function evaluation. Thus, for 0 < s ≤ 1, we get the same
rate as in our Theorem 1 which, however, deals with the expectation of the squared error in
V = H in the more general vector-valued case. What our rather elementary method does not
deliver is a result for the case 1 < s ≤ 2 and for L2

ρ(Ω ,Y ) convergence. For the latter situation,
[14, Theorem C] gives the better estimate

P
(
∥u−u(m)∥2

L2
ρ (Ω ,R) ≤

C̄
(m+m0)(s+1)/(s+2)

)
≥ 1−δ , 0 < δ < 1, m = 0,1, . . . ,

under the same assumptions but with a different constant

C̄ = C̄(Mρ ,∥u∥V s
Pρ
,m0,s,Λ , log(2/δ ))< ∞.

This is almost matching the lower estimates for kernel learning derived in [1] for classes of
instances, where the spectrum of Pρ exhibits a prescribed decay of the form λk ≍ k−b for some
b > 1. Note that, for Mercer kernels, the operator

Pρ : u ∈ H 7−→ (Pρ u)(·) =
∫

Ω

K(·,θ)u(θ)dρ(θ)

is trace class whereas in our Theorem 1 no stronger decay of eigenvalues is assumed.
Estimates in expectation that are close to our result have also been obtained for slightly

different settings. For example, in [16] both, the so-called regularized (αm < 1) and the un-
regularized online algorithm (αm = 1) were analyzed in the scalar-valued case Y = R under
assumptions similar to ours for L2

ρ(Ω ,R) and V = H convergence. We only quote the result for
convergence in the RKHS V = H. It concerns the so-called finite horizon case of the unregular-
ized online algorithm (14) with αm = 1, where one fixes N < ∞, chooses a constant step-size
µm = µ , m = 0, . . . ,N−1, which depends on N, stops the iteration at m = N and asks for a good
estimate of the expectation of E(∥u− u(N)∥2

V ) for the final iterate only. Up to the specification
of constants, Theorem 6 in [16] states that, under the condition u ∈V s

Pρ
, s > 0, one can achieve

the bound
E(∥u−u(N)∥2

V ) = O(N−s/(s+2)), N → ∞,

if one sets µN = cN−(s+1)/(s+2) with a properly adjusted value of c. Note that s > 0 is arbitrary
with the exponent approaching −1, if the smoothness parameter s tends to ∞, while our result
does not provide improvements for s > 1. The drawback of the finite horizon case is that the
estimate concerns only a fixed iterate u(N) with an N which needs to be decided on beforehand.
In some sense, this can be viewed as building an approximation to the solution uN of (12) with
κN = µN from a single pass over the N i.i.d. samples (ωm,ym), m = 0, . . . ,N −1.

In recent years, attention has shifted to obtaining refined rates when Pρ possesses faster
eigenvalue decay, usually expressed by the property that Pβ

ρ is trace class for some β < 1 or by
the slightly weaker assumption

λk = O(k−1/β ), k → ∞, (17)

on the eigenvalues of the covariance operator Pρ . Bounds involving knowledge about β < 1
are sometimes called capacity dependent, our bounds in Theorem 1 as well as the cited re-
sults from [14, 16] are thus capacity independent. Capacity dependent convergence rates for
the expected squared error for the online algorithm (14) have been obtained, among others,
in [6,7,9,10], again in the scalar-valued case Y =R and with various parameter settings in (14),
including unregularized and finite horizon versions. In [7], rates for E(∥u− ū(m)∥2

L2
ρ (Ω ,R)) have

been established, where

ū(m) =
1

m+1

m

∑
k=0

u(k), m = 0,1, . . . , (18)
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is the sequence of averages associated with the sequence u(m), m = 0,1, . . ., obtained by the
unregularized iteration (14) with αm = 1 and u(0) = 0. That averaging has a similar effect as
regularization with αm = (m+ 1)/(m+ 2) in (14) considered in Theorem 1 can be guessed if
one observes that

ū(m+1) =
m+1
m+2

ū(m)+
1

m+2
u(m+1),

where u(m+1) = u(m)+ µm(ym −Rωm u(m)), and compares with (14). To illustrate the influence
of β , we formulate the following bound, which is a consequence of [7, Corollary 3]: Under
an additional technical assumptions on the noise term εω , if the condition (17) holds for some
0 < β < 1 and u ∈V s

Pρ
, s >−1, then for suitable choices for the learning rates µm, we have

E(∥u− ū(m)∥2
L2

ρ (Ω ,R)) =


O((m+1)−(s+1)), −1 < s <−β ,

O((m+1)−(s+1)/(s+1+β )), −β < s < 1−β ,

O((m+1)−(1−β/2)), 1−β < s.

Thus, stronger eigenvalue decay generally implies stronger asymptotic error decay in the L2
ρ(Ω ,R)

norm. In [6, Section 6], similar rates are obtained in the finite horizon setting for both, the above
averaged iterates ū(N) and for u(N) produced by a two-step extension of the one-step iteration
(14).

In addition to L2
ρ(Ω ,R) convergence results, the paper [10] also provides a capacity depen-

dent convergence estimate in the RKHS norm for the unregularized algorithm (14) with param-
eters αm = 1 and µm = c(m+1)−1/2. Under the boundedness assumption |y| ≤ Mρ , Theorem 2
in [10] implies that

E(∥u−u(m)∥2
V ) = O((m+1)−min(s,1−β )/2) log2(m+1)), m = 1,2, . . . ,

if u ∈V s
Pρ

for some s > 0, Pβ

ρ is trace class for some 0 < β < 1, and c is properly adjusted.
Finally, the scalar-valued least-squares regression problem with Y = R and RKHS prior

space H can also be cast as linear regression problem in V = H. This has been done in [6, 9].
More abstractly, given a µ-distributed random variable (ξω ,y) ∈V ×R on Ω ×R, the task is to
find approximations to the minimizer u ∈V of the problem

E(|(ξω ,v)− y|2) 7−→ min, v ∈V, (19)

from i.i.d. samples (ξωi ,yi). If V = H is the RKHS, which regularizes the scalar-valued least-
squares regression problem on Ω ×R, then the canonical choice is ξω = K(ω, ·). In [9], for the
iteration

u(m+1) = u(m)+µm(ym − (ξωm ,u
(m)))ξωm , m = 0,1, . . . ,

weak convergence in V is studied by deriving estimates for quantities such as E((v,e(m))2)
and E((ξω ′ ,e(m))2) under some simplifying assumptions on the noise and the normalization
∥ξω∥ = 1. Note that this iteration is nothing but the unregularized iteration (14) with αm = 1
since (ξωm ,u

(m)) = u(m)(ωm) in this case. In the learning application, the assumption ∥ξω∥= 1
means K(ω,ω) = 1. Moreover, in this case

E((ξω ′ ,e(m))2) = E(∥u−u(m)∥L2
ρ (Ω ,R)),

since the expectation on the left is, in addition to the i.i.d. samples (ξωk ,yk), k = 0, . . . ,m−1, also
taken with respect to the independently ρ-distributed random variable ξω ′ . This links to learning
rates in the L2

ρ(Ω ,R) norm. The estimates for E((ξω ′ ,e(m))2) given in [9] concern both, the finite
horizon and the online setting and again depend on the parameters s ≥ 0 (smoothness of u) and
0 < β ≤ 1 (capacity assumption on Pρ ). For the estimates of E((v,e(m))2), the smoothness s′ ≥ 0
of the fixed element v ∈ V s′

Pρ
is traded against the smoothness s ≥ 0 of u ∈ V s

Pρ
. We refer to [9]

for the details.
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4 Proof of Theorem 1

In this subsection, we will use the notation and assumptions outlined above, with the only
change that the scalar product in V is simply denoted by (·, ·) and the associated norm ∥ · ∥V
is accordingly denoted by ∥ ·∥. Moreover, recall that we have set e(m) = u−u(m). We will prove
an estimate of the form

E(∥e(m)∥2) = O((m+1)−s/(2+s)), m → ∞, (20)

under the assumption u∈V s
Pρ

, 0< s≤ 1, if the parameters A and t in (15) are chosen accordingly.
The precise statement and the dependence of the constant in (20) on initial error, noise variance
and smoothness assumption are stated in the formulation of Theorem 1.

From (14) and ym = R∗
ωm u+ εωm we deduce the error representation

e(m+1) = αm(e(m)−µmPωm e(m))+ ᾱmu︸ ︷︷ ︸
ē(m+1):=

−αmµmRωm εωm ,

where ᾱm := 1−αm = (m+ 2)−1, compare also 15. The first term ē(m+1) corresponds to the
noiseless case considered in [8] while the remainder term is the noise contribution. Thus,

∥e(m+1)∥2 = ∥ē(m+1)∥2 −2αmµm(Rωm εωm , ē
(m+1))+α

2
mµ

2
m∥Rωm εωm∥2. (21)

We now estimate the conditional expectation with respect to given u(m), separately for the
three terms in (21). Here and in the following we denote this conditional expectation by E′. For
the third term, by (6) and the definition of the variance σ2, we have

E′(∥Rωm εωm∥2)≤ ΛE(∥εω∥2
Y ) = Λσ

2. (22)

For the second term, we need

E((Rω εω ,w)) = E((y−R∗
ω u,R∗

ω w)Y ) = 0 ∀ w ∈V.

This straightforwardly follows from the fact that u ∈ V is the minimizer of the problem (9).
Thus, by setting w = αme(m)+ ᾱmu, we obtain

E′(−2αmµm(Rωm εωm , ē
(m+1)))

= 2αmµm(αmµmE′((Rωm εωm ,Pωm e(m)))−E′((Rωm εωm ,w)))

= 2α
2
mµ

2
mE′((Rωm εωm ,Pωm e(m)))

≤ α
2
mµ

2
m(E′(∥Rωm εωm∥2)+E′(∥Pωm e(m)∥2)).

Here, the first term is estimated by (22). For the second term, we substitute the upper bound

E′(∥Pωm e(m)∥2)≤ ΛE′((Pωm e(m),e(m))) = Λ(Pρ e(m),e(m)), (23)

which follows from (6) and the definition of Pρ . Together this gives

E′(−2αmµm(Rωm εωm , ē
(m+1)))≤ Λα

2
mµ

2
m(σ

2 +(Pρ e(m),e(m))) (24)

for the second term in (21).
For the estimation of the first term E′(∥ē(m+1)∥2), we modify the arguments from [8], where

the case εm = 0 was treated. We use the error decomposition

∥ē(m+1)∥2 = ᾱ
2
m∥u∥2 +2αmᾱm(u,e(m)−µmPωm e(m)

+α
2
m(∥e(m)∥2 −2µm(e(m),Pωm e(m)))+µ

2
m∥Pωm e(m)∥2).
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After taking conditional expectations, we arrive with the definition of Pρ and (23) at

E′(∥ē(m+1)∥2) = ᾱ
2
m∥u∥2 +2αmᾱm(u,e(m)−µmPρ e(m))

+α
2
m(∥e(m)∥2 −2µm(e(m),Pρ e(m))+µ

2
mE′(∥Pωm e(m)∥2))

≤ ᾱ
2
m∥u∥2 +2αmᾱm(u,e(m)−µmPρ e(m))

+α
2
m(∥e(m)∥2 −µm(2−Λ µm)(e(m),Pρ e(m))).

Next, in order to estimate the term (u,e(m)− µmPρ e(m)), we take an arbitrary h = P1/2
ρ v ∈ V 1

Pρ
,

where v ∈V =V 0
Pρ

and ∥h∥V 1
Pρ

= ∥v∥. With this, we have

2αmᾱm(u,e(m)−µmPρ e(m))

= 2αmᾱm((u−h,(I −µmPρ)e(m))+(h,(I −µmPρ)e(m)))

≤ 2αmᾱm∥u−h∥∥(I −µmPρ)e(m)∥+2(ᾱmµ
−1/2
m (I −µmPρ)v,αmµ

1/2
m e(m))

≤ 2αmᾱm∥u−h∥∥e(m)∥+ ᾱ
2
mµ

−1
m ∥(I −µmPρ)v∥2 +α

2
mµm∥P1/2

ρ e(m)∥2

≤ 2αmᾱm∥u−h∥∥e(m)∥+ ᾱ
2
mµ

−1
m ∥h∥2

V 1
Pρ

+α
2
mµm(Pρ e(m),e(m)).

Here, we have silently used that ∥(I −µmPρ)e(m)∥ ≤ ∥e(m)∥ and similarly

∥(I −µmPρ)v∥ ≤ ∥v∥= ∥h∥V 1
Pρ

,

which holds since 0 < µm ≤ A ≤ (2Λ)−1 according to (15) and the restriction on A. Substitution
into the previous inequality results in

E′(∥ē(m+1)∥2) ≤ ᾱ
2
m(∥u∥2 +µ

−1
m ∥h∥2

V 1
Pρ

)+2αmᾱm∥u−h∥∥e(m)∥

+α
2
m(∥e(m)∥2 −µm(1−Λ µm)(e(m),Pρ e(m))).

Now, combining this estimate for the conditional expectation of the first term in (21) with
the bounds (22) and (24) for the third and second term, respectively, we arrive at

E′(∥ē(m+1)∥2)≤ α
2
m(∥e(m)∥2 +2Λσ

2
µ

2
m) (25)

+2αmᾱm∥u−h∥∥e(m)∥+ ᾱ
2
m(∥u∥2 +µ

−1
m ∥h∥2

V 1
Pρ

).

Here, the term involving (e(m),Pρ e(m)) ≥ 0 has been dropped since its forefactor −µm(1 −
2Λ µm) is non-positive due to the restriction on A in (15).

For given
u = ∑

k
ckψk ∈V s

Pρ
, 0 < s ≤ 1,

in (25) we choose
h = ∑

k:λk(m+1)b≥B

ckψk

with some fixed constants b,B > 0 specified below. This gives

∥h∥2
V 1

Pρ

= ∑
k:λk(m+1)b≥B

λ
−(1−s)
k (λ−s

k c2
k)≤ B−(1−s)(m+1)(1−s)b∥u∥2

V s
Pρ

and
∥u−h∥2 = ∑

k:λk(m+1)b<B

λ
s
k (λ

−s
k c2

k)≤ Bs(m+1)−bs∥u∥2
V s

Pρ

.
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After substitution into (25), we obtain

E′(∥ē(m+1)∥2)≤ α
2
m(∥e(m)∥2 +2Λσ

2
µ

2
m)+2αmᾱmBs/2(m+1)−bs/2∥u∥V s

Pρ
∥e(m)∥ (26)

+ ᾱ
2
m(∥u∥2 +µ

−1
m B−(1−s)(m+1)(1−s)b∥u∥2

V s
Pρ

).

Clearly, if s = 1, we can set h = u which would greatly simplify the considerations below and
leads to a more precise final estimate, see Section 5.1.

Next, we switch to full expectations in (26) by using the independence assumption for the
sampling process and take into account that

εm := E(∥e(m)∥2)1/2 ≥ E(∥e(m)∥).

Together with (15) and αm = (m+1)ᾱm, this gives

ε
2
m+1 ≤ α

2
m(ε

2
m +2A2

Λσ
2(m+1)−2t)+2αmᾱmBs/2(m+1)−bs/2∥u∥V s

Pρ
εm

+ ᾱ
2
m(∥u∥2 +A−1B−(1−s)(m+1)(1−s)b+t∥u∥2

V s
Pρ

)

≤ α
2
mε

2
m + ᾱ

2
m(2A2

Λσ
2(m+1)2−2t +2Bs/2(m+1)−bs/2+1∥u∥V s

Pρ
εm∥e(m)∥

+∥u∥2 +A−1B−(1−s)(m+1)(1−s)b+t∥u∥2
V s

Pρ

).

In a final step, we assume for a moment that

εk ≤C(k+1)−r, k = 0, . . . ,m, (27)

holds for some constants C,r > 0. Next, we set

a := max(2−2t,−bs/2+1− r,(1− s)b+ t)

and
D := 2A2

Λσ
2 +2CBs/2∥u∥V s

Pρ
+∥u∥2 +A−1B−(1−s)∥u∥2

V s
Pρ

.

Since 1/2 < t < 1 is assumed in (15), we have a > 0. Then, for k = 0,1, . . . ,m, the estimate for
εk+1 simplifies to

ε
2
k+1 ≤ α

2
k ε

2
k +Dᾱ

2
k (k+1)a

or, since α2
k ᾱ2

k−1 = ᾱ2
k , to

dk+1 := ᾱ
−2
k ε

2
k+1 ≤ α

2
k ᾱ

−2
k ε

2
k +D(k+1)a = dk +D(k+1)a.

By recursion we obtain

dm+1 ≤ d0 +D
m

∑
k=0

(k+1)a = ε
2
0 +D

m

∑
k=0

(k+1)a

and eventually

ε
2
m+1 ≤ (m+2)−2(∥e(0)∥2 +D(m+2)a+1)< (∥e(0)∥2 +D)(m+2)a−1,

since we have a > 0 and
m

∑
k=0

(k+1)a ≤
∫ m+2

1
xa dx < (m+2)a+1.

Thus, (27) holds by induction for all m if we ensure that

1−a ≥ 2r, ∥e(0)∥2 +D ≤C2. (28)
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To finish the proof of Theorem 1, it remains to maximize r for given 0 < s ≤ 1. To this end,
it is intuitively clear to require

a = 1−2r = 2−2t =−bs/2+1− r = (1− s)b+ t.

This system of equations has the unique solution

t =
1+ s
2+ s

, b =
1

2+ s
, 2r =

s
2+ s

, a =
2

2+ s
.

Furthermore, the appropriate value for C in (27) must satisfy

C2 ≥ ∥e(0)∥2 +∥u∥2 +2A2
Λσ

2 +2CBs/2∥u∥V s
Pρ
+A−1B−(1−s)∥u∥2

V s
Pρ

.

With such choices for t and C, the condition (28) is guaranteed and (27) yields the desired bound

ε
2
m ≤C2(m+1)s/(s+2), m = 1,2, . . . ,N −1.

By choosing concrete values for 0 < A ≤ (2Λ)−1 and B > 0, the constant C2 can be made more
explicit. E.g., substituting the upper bound

2CBs/2∥u∥V s
Pρ

≤ C2

2
+2Bs∥u∥2

V s
Pρ

and rearranging term shows that

C2 = 2
(
∥e(0)∥2 +∥u∥2 +Bs(2+(AB)−1)∥u∥2

V s
Pρ

+2A2
Λσ

2
)

is suitable. In particular, setting for simplicity A to its maximal value A = (2Λ)−1 and taking
B = Λ gives a more explicit dependence of C2 on the assumptions on ∥e(0)∥2, the variance σ2

and the smoothness of u, namely

C2 = 2∥e(0)∥2 +2∥u∥2 +8Λ
s∥u∥V s

Pρ
+σ

2/Λ . (29)

This is the constant shown in the formulation of Theorem 1. Clearly, varying A and B will
change the trade-off between initial error, noise variance and smoothness assumptions in the
convergence estimate (27). Note also that B is not part of the algorithm and can be adjusted to
any value. This finishes the proof of Theorem 1.

5 Further remarks

5.1 Comments on Theorem 1

In the special case s = 1, the proof of Theorem 2 simplifies as follows: In (25) we can set h = u
and (26) consequently simplifies to

E′(∥ē(m+1)∥2)≤ α
2
m(∥e(m)∥2 +2Λσ

2
µ

2
m)+ ᾱ

2
m(∥u∥2 +µ

−1
m ∥u∥2

V 1
Pρ

). (30)

Thus, with µm = A(m+1)−t we directly obtain a recursion for

dm := ᾱ
−2
m−1ε

2
m = (m+1)2E(∥e(m)∥2)

in the form

dm+1 ≤ dm +(2A2
Λσ

2(m+1)2−2t +∥u∥2 +A−1(m+1)t∥u∥2
V 1

Pρ

).
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For 1/2 < t < 1 we finally arrive at

E(∥e(m)∥2)≤ ∥e(0)∥2

(m+1)2 +
2A2Λσ2

(m+1)2t−1 +
∥u∥2

m+1
+

A−1∥u∥2
V 1

Pρ

(m+1)1−t , (31)

m = 1,2, . . .. This estimate shows more clearly the guaranteed error decay with respect to the
initial error ∥e(0)∥2, the noise variance σ2 and the norms ∥u∥2 and ∥u∥2

V 1
Pρ

of the solution u,

respectively, in dependence on t. The asymptotically dominant term is here of the form

O((m+1)−min(2t−1,1−t))

and is minimized if t = 2/3. For this value of t and with A = (2Λ)−1 one obtains

E(∥e(m)∥2)≤ ∥e(0)∥2

(m+1)2 +
∥u∥2

m+1
+

∥u∥2
V 1

Pρ

+σ2

2Λ(m+1)1/3 . (32)

Without further assumptions, one cannot expect a better error decay rate, see Section 3 and
Subsection 5.3.

Another comment concerns the finite horizon setting which is often treated instead of a
true online method. Here one fixes a finite N, chooses a constant learning rate µm = µ for
m = 0, . . . ,N − 1 in dependence on N, and asks for a best possible bound for E(∥e(N)∥2) only.
Our approach easily delivers results for this case as well. We demonstrate this only for s = 1.
For fixed µm = µ , the error recursion for the quantities dm takes now the form

dm+1 ≤ dm +(2A2
Λσ

2(m+1)2
µ

2 +∥u∥2 +µ
−1∥u∥2

V 1
Pρ

), m = 0, . . . ,N −1,

and gives

E(∥e(N)∥2)≤ ∥e(0)∥2

(N +1)2 +2Λσ
2
µ

2(N +1)+
∥u∥2 +µ−1∥u∥2

V 1
Pρ

N +1
.

Setting µ = A(N + 1)−2/3 results in a final estimate for the finite horizon case similar to (32)
but only for m = N.

There are obvious drawbacks of the whole setting in which Theorem 1 is formulated. First
of all, the assumptions are qualitative at most: Since µ , and thus ρ , is usually not at our disposal,
we cannot verify the assumption u ∈V s

Pρ
, nor assess the value of σ2. Moreover, even though in

view of the obtained results the restriction to learning rates µm of the form (15) may not cause
issues, the choice of optimal values for t and A is by no means obvious. A rule for the adaptive
choice of µm, which does not require knowledge about values for s and the size of norms of u
but leads to the same quantitaive error decay as guaranteed by Theorem 1, would be desirable.

5.2 Difficulties with convergence in L2
ρ(Ω ,Y )

Our result for the vector-valued case concerned convergence in V which is isometric to the
RKHS H generated by R. What we did not succeed in is to extend our methods to establish
better asymptotic convergence rates of fu(m) → fu in the L2

ρ(Ω ,Y ) norm. It is not hard to see
that, under the assumption (11) about the existence of the minimizer u in (9), error estimates in
the L2

ρ(Ω ,Y ) norm require the investigation of E(∥P1/2
ρ e(m)∥2) = E((Pρ e(m),e(m))) instead of

E(∥e(m)∥2). If, in analogy with (21), one examines the error decomposition

∥P1/2
ρ e(m+1)∥2 ≤ ∥P1/2

ρ ē(m+1)∥2 −2αmµm(Pρ Rωm εωm , ē
(m+1))+α

2
mµ

2
m∥P1/2

ρ Rωm εωm∥2,
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then difficulties mostly arise from the first term in the right-hand side. Indeed, we have

∥P1/2
ρ ē(m+1)∥2 = ᾱ

2
m∥P1/2

ρ u∥2 +2αmᾱm(Pρ u,e(m)−µmPωm e(m))

+ α
2
m(∥P1/2

ρ e(m)∥2 −2µm(Pρ e(m),Pωm e(m)))+µ
2
m∥P1/2

ρ Pωm e(m)∥2).

After taking conditional expectations E′(∥P1/2
ρ ē(m+1)∥2), we obtain a negative term

−2α
2
mµm∥Pρ e(m)∥2

on the right-hand side which needs to compensate for positive contributions from terms such as

E′(∥P1/2
ρ Pωm e(m)∥2).

Since, in general, Pρ does not commute with the operators Pω , this strategy does not work
without additional assumptions.

5.3 A special case

Let us now consider the particular ”learning” problem of recovering an unknown element u ∈V
from noisy measurements of its coefficients with respect to a CONS Ψ = {ψi}i∈N in V by the
online method considered in this paper. To this end, we assume that we are given µ-distributed
random samples (im,ym), where im ∈ N and

ym = (u,ψim)+ εm, m = 0,1, . . . (33)

are the noisy samples of the coefficients (u,ψi). Starting from u(0) = 0, we now want to approx-
imate u by the iterates u(m) obtained from the online algorithm

u(m+1) = αmu(m)+αmµm(ym − (u(m),ψim))ψim , m = 0,1, . . . , (34)

where the coefficients αm and µm are given by (15) with Λ = 1. This is a special instance of (14)
if we set Ω =N, Y =R and define Ri : R→V and R∗

i : V → R by Riy = yψi and R∗
i v = (v,ψi),

respectively. To simplify things further, let im be i.i.d. samples from N with respect to a discrete
probability measure ρ on N and let εm be i.i.d. random noise with zero mean and finite variance
σ2 < ∞ which is independent of im. This means that the underlying measure µ on N×R is a
product measure. The associated operator Pρ is given by

Pρ v = ∑
i∈N

ρi(v,ψi)ψi,

its eigenvalues λi = ρi are given by ρ , and it is trace class (w.l.o.g., we assume ρ1 ≥ ρ2 ≥ . . .).
The spaces V s

Pρ
, −∞ < s < ∞, can now be identified as sets of formal orthogonal series

V s
Pρ

:=

{
u ∼ ∑

i∈N
ciψi : ∥u∥2

V s
Pρ

= ∑
i∈N

ρ
−s
i c2

i

}
.

Obviously, V s
Pρ

⊂ V = V 0
Pρ

for s > 0. Since functions f : N→ R can be identified with formal
series with respect to Ψ by

u ∼ ∑
i∈N

ciψi ↔ fu : fu(i) = ci,

we have ∥ fu∥L2
ρ (N,R) = ∥u∥V−1

Pρ

and we can silently identify L2
ρ(N,R) with V−1

Pρ
. Under the as-

sumptions made, the underlying minimization problem (9) on V reads

E(| fv − y|2) = ∥ fv − fu∥2
L2

ρ (N,R)
+σ

2 7−→ min,
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and, as expected, has u as its unique solution. This example also shows that it may sometimes
be more appropriate to consider convergence in V than convergence in the sense of L2

ρ(Ω ,Y ).
The simplicity of this example enables a rather comprehensive convergence theory with

respect to the scale of V s
Pρ

spaces. We state the following results without detailed proof.

Theorem 2 Let −1 ≤ s̄ ≤ 0, s ≥ 0, and s̄ < s ≤ s̄+2. Then, for the sampling process described
above, the online algorithm (34) converges for u ∈V s

Pρ
in the V s̄

Pρ
norm with the bound

E(∥e(m)∥2
V s̄

Pρ

)≤C(m+1)−min( s−s̄
s+2 ,

2
s̄+4 )(As̄−s∥u∥2

V s
Pρ

+A2+s̄
σ

2), m = 1,2, . . . , (35)

if the parameters t and A in (15) satisfy

t = ts,s̄ := max((s+1)/(s+2),(s̄+3)/(s̄+4)), 0 < A ≤ 1/2.

Setting s̄= 0, one concludes from (35) that the convergence estimate for the online algorithm
(14), which holds by Theorem 1 for 0< s≤ 1 in the general case, is indeed matched. For s̄=−1,
which corresponds to L2

ρ(N,R) convergence, the rate is better and in line with known lower
bounds.

The estimate (35) for the online algorithm (34) is best possible, in the sense that, under the
conditions of Theorem 2, the exponent in (35) cannot be increased without additional assump-
tions on ρ . In particular, for s > s̄+ 2 no further improvement is obtained, i.e., the estimate
indeed saturates at s = s̄+2. This can be seen from the following result.

Theorem 3 Let −1 ≤ s̄ ≤ 0 ≤ s < ∞, s̄ < s and σ > 0. For the online algorithm (34) we have

sup
ρ

sup
u:∥u∥V s

Pρ

=1
(m+1)min((s−s̄)/(2+s),2/(s̄+4))E(∥e(m)∥2

V s̄
Pρ

)≥ c > 0, (36)

m = 1,2, . . . ,, where c depends on s̄, s, σ and the parameters t and A in (15), but is independent
of m.

The proofs of these statements are elementary but rather tedious and will be given elsewhere.
Let us just note that the simplicity of this example allows us to reduce the considerations to
explicit linear recursions for expectations associated with the decomposition coefficients c(m)

i :=
(u(m),ψi) of the iterates u(m) with respect to Ψ for each i ∈ N separately. This is because

E(∥e(m)∥2
V s̄

Pρ

) = ∑
i

ρ
−s̄
i E((c(m)

i )2), ∥u∥2
V s

Pρ

= ∥e(0)∥2
V s

Pρ

= ∑
i

ρ
−s
i c2

i (37)

and

c(m+1)
i = ᾱmci +αmc(m)

i +αm

{
µm(yim − (u(m),ψim)), im = i
0, im ̸= i

= ᾱmci +αm(c
(m)
i −δi,im µm(c

(m)
i + εm))

for m = 0,1, . . ., where δi,im = 1 with probability ρi, and δi,im = 0 with probability 1−ρi. Thus,
if we denote εm,i := E((c(m)

i )2) and ε̄m,i := E(c(m)
i ) and use the independence assumption, we

get a system of linear recursions

εm+1,i = α
2
m(1−ρiµm(2−µm))εm,i +2αmᾱm(1−ρiµm)ciε̄m,i + ᾱ

2
mc2

i +ρiα
2
mµ

2
mσ

2,

ε̄m+1,i = αm(1−ρiµm)ε̄m,i + ᾱmci,

m = 0,1, . . ., with starting values ε0,i = c2
i and ε̄0,i = ci. This system can, in principle, be solved

explicitly. For instance, we straightforwardly have

ε̄m,i =
1

m+1
ciSm, Sm :=

m

∑
k=0

Π
m−1
k ,
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where the notation

Π
m−1
k = (1− a

mt ) · . . .(1−
a

(k+1)t ), 0 ≤ k ≤ m−1, Π
m−1
m = 1, (38)

is used with a = Aρi. Similarly, we get

εm,i ≤
1

(m+1)2

(
2c2

i

m

∑
k=0

Π
m−1
k Sk +ρiσ

2
m−1

∑
k=0

(k+1)2
µ

2
k Π

m−1
k+1

)
.

A matching lower bound for εm,i can be obtained by using a slightly different value of a in the
definition of the products Π

m−1
k . The remainder of the argument for Theorem 2 requires first the

substitution of tight upper bounds for Π
m−1
k and Sk in dependence on t and a into the bounds

for εm,i. Next, after substitution of the estimates for εm,i into (37), the resulting series has to
be further estimated separately for the index sets I1 := {i : Aρi ≤ (m+ 1)t−1} and I2 := N\I1
followed by choosing the indicated optimal value of t = ts,s̄. This leads to the bound (35) in
Theorem 2. For the proof of Theorem 3, lower bounds for Π

m−1
k , Sk and, consequently, for εm

are needed, combined with choosing appropriate discrete probability distributions ρ .
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