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Abstract
Operator learning, the approximation of mappings between infinite-dimensional function spaces using

ideas from machine learning, has gained increasing research attention in recent years. Approximate opera-
tors, learned from data, hold promise to serve as efficient surrogate models for problems in computational
science and engineering, complementing traditional numerical methods. However, despite their empirical
success, our understanding of the underpinning mathematical theory is in large part still incomplete. In
this paper, we study the approximation of Lipschitz operators in expectation with respect to Gaussian
measures. We prove higher Gaussian Sobolev regularity of Lipschitz operators and establish lower and
upper bounds on the Hermite polynomial approximation error. We further consider the reconstruction
of Lipschitz operators from m arbitrary (adaptive) linear samples. A key finding is the tight character-
ization of the smallest achievable error for all possible (adaptive) sampling and reconstruction maps in
terms of m. It is shown that Hermite polynomial approximation is an optimal recovery strategy, but we
have the following curse of sample complexity: No method to approximate Lipschitz operators based on
finitely many samples can achieve algebraic convergence rates in m. On the positive side, we prove that
a sufficiently fast spectral decay of the covariance operator of the Gaussian measure guarantees conver-
gence rates which are arbitrarily close to any algebraic rate in the large data limit m → ∞. Finally, we
focus on the recovery of Lipschitz operators from finitely many point samples. We consider Christoffel
sampling and weighted least-squares approximation, and present an algorithm which provably achieves
near-optimal sample complexity.

Keywords: operator learning, high-dimensional approximation, Lipschitz operators, Gaussian measures,
sample complexity, recovery
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1 Introduction
We study the approximation of generic Lipschitz operators which map between (infinite-)dimensional Hilbert
spaces. The approximation error is measured in expectation in L2 with input samples drawn from a Gaussian
measure. We commence with a detailed literature review in Subsection 1.1, where we put our work in the
context of operator learning and motivate the Gaussian setting as a natural framework for analyzing Lipschitz
operators. We subsequently summarize our main contributions in Subsection 1.2 and give an overview of the
organization of the remainder of the paper.
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1.1 Motivation and literature review
With the rise of machine learning, in particular deep learning, in computational science and engineering
(CSE), operator learning has emerged as a new paradigm for the data-driven approximation of mappings
between infinite-dimensional function spaces in the past years. Multiple deep learning architectures, typically
referred to as neural operators, such as DeepONet [56], FNO [53], non-local neural operators [43], and PCA-
Net [15], have been proposed and their efficiency has been demonstrated in various practical applications.
We refer to the recent reviews [42, 17] and references therein. Nevertheless, their empirical success has so
far not yet been supported to large extent by a general mathematical theory. A thorough understanding of
theoretical approximation guarantees, however, is important for a reliable deployment of operator learning
methods in CSE applications.

A typical starting point in the theoretical analysis are universal approximation results. They guarantee
the existence of a neural operator of certain type which approximates a target operator up to some arbitrarily
small error [18, 51, 41, 50, 49]. Albeit being necessary for assessing the basic utility of a neural operator,
mere existence results are of limited use in practical applications, where instead questions about quantitative
approximation guarantees and explicit convergence rates are of greater importance.

To address the latter, two quantities are of key interest, which are based on different cost models: On
the one hand, the parametric complexity quantifies the convergence of the approximation error in terms of
the number of tunable parameters employed by the approximation method. In the context of (deep) neural
network (NN) approximations, this is often referred to as expression rates. On the other hand, the sample
complexity quantifies the convergence of the approximation error in terms of the number of samples used for
fitting the parameters to data. Previous research efforts majorly focused on deriving expression rates for NN
approximations of specific (classes of) operators whereas there has been comparably little work on sample
complexity estimates.

A well-studied class of operators in the field of operator learning is the set of holomorphic operators. They
arise, for example, as parameter-to-solution maps of parameterized partial differential equations (PDEs) in
various contexts, such as uncertainty quantification and control problems, see, e.g., [20] and [6, Chpt. 4]. It
has been shown that they can be learned with algebraic or (on finite-dimensional domains) even exponen-
tial parametric complexity with NNs [63, 37, 66]. Moreover, they can be approximated with near-optimal
algebraic sample complexity with least-squares and compressed sensing methods [8, 9, 5, 12] as well as with
NNs [10, 4, 3]. We mention in passing that algebraic NN expression rate estimates have also been derived
for classes of (non-holomorphic) operators which arise as solution operators of certain PDEs [25]. Moreover,
algebraic complexity estimates are also available for infinite-dimensional functionals (with one-dimensional
codomain) with mixed regularity [28].

Another important class of operators is given by Lipschitz operators, which arise, for example, in the
context of parametric elliptic variational inequalities as obstacle-to-solution operators in obstacle problems,
see, e.g., [65] and [35, Chpt. 4]. Recently, it was shown in [49] that bounded Lipschitz (and Ck-Fréchet
differentiable) operators cannot be approximated with algebraic parametric complexity using PCA-Net.
More specifically, the number of real-valued PCA-Net parameters scales exponentially with the inverse of the
approximation error. This result, termed the curse of parametric complexity, can be interpreted as the infinite-
dimensional analogue to the classical curse of dimensionality in finite dimensions, see also [52]. It can be
seemingly overcome by neural operators which use hyper-expressive activation functions or non-standard NN
architectures [65]. In practical implementations, however, each real-valued parameter can only be represented
by a sequence of bits of finite length. In [48], the cost model of counting real-valued parameters was therefore
replaced by instead counting the number of bits used to encode each parameter to some finite accuracy.
The resulting cost-accuracy scaling law reveals a curse of parametric complexity that is independent of the
activation functions used in any NN approximation. It states that the number of bits required to encode each
NN parameter still scales exponentially with the inverse of the approximation error. Based on the theory of
widths, it was shown in [40] that bounded Lipschitz and Ck-operators also exhibit a curse of data complexity.
That is, the error in expectation with respect to a Gaussian measure with at most algebraically decaying
PCA eigenvalues converges at most logarithmically in the number of samples for any learning algorithm
which is based on i.i.d. pointwise samples. In the present paper, we prove a curse of sample complexity which

2



generalizes this result to arbitrary (centered, nondegenerate) Gaussian measures. In addition, we prove that
for Gaussian measures with sufficiently fast spectral decay (of the covariance operator), convergence rates
which are arbitrarily close to any algebraic rate are possible, even for unbounded Lipschitz operators. We
mention in passing the work [55] for further results in the statistical theory of deep non-parametric estimation
of Lipschitz operators. Therein, however, the authors work with probability measures with compact support.
Consequently, their results are not directly applicable to Gaussian measures.

Gaussian measures are not only the typical choice of probability measure for measuring the approximation
error in expectation, they also allow to draw on results from infinite-dimensional analysis [16, 23, 24, 57].
In fact, the theory of Gaussian Sobolev spaces is key in our analysis as it is well-known that Lipschitz
functionals are Gaussian Sobolev functionals. This connection yields explicit control over approximation
bounds in terms of the spectral properties of the covariance operator of the underlying Gaussian measure.
The Gaussian setting has been considered previously to prove expression rates for NN approximations of
operators, see, e.g. [66, 29]. It can also be studied within the abstract framework developed in [34], see
Example 1 therein, to derive dimension-independent results for the approximation of high- and infinite-
dimensional function(al)s. Its connection to Lipschitz regularity, however, has, to the best of our knowledge,
not yet been made use of to derive sample complexity estimates for Lipschitz operators.

1.2 Contributions
Let X ,Y be separable Hilbert spaces with dim(X ) = ∞ and let µ be a Gaussian measure on X . Detailed
notation and further preliminaries are introduced in Section 2. Additional notions and technical results from
operator theory and infinite-dimensional analysis are discussed in the appendix. We now give an (informal)
overview of our main contributions, which are are four-fold:

1. In Section 3, we extend standard results from infinite-dimensional analysis and define the (weighted)
Gaussian Sobolev space W 1,2

µ,b(X ;Y) by means of a sequence of positive real-valued weights b = (bi)i∈N with
0 < bi ≤ 1. As our first main contribution we show that this space contains the set Lip(X ,Y) of Lipschitz
operators which map from X to Y:

Result 1 (Lipschitz operators are Gaussian Sobolev operators, cf. Thm. 3.9). If Y is finite-dimensional,
then Lip(X ,Y) ⊂ W 1,2

µ,b(X ;Y). If Y is infinite-dimensional and if b ∈ ℓ2(N), then Lip(X ,Y) ⊂ W 1,2
µ,b(X ;Y).

In both cases, the space of bounded Lipschitz operators is continuously embedded in W 1,2
µ,b(X ;Y).

The sequence b is essential to treat the case dim(Y) = ∞ and it can be interpreted as a sequence of
parameters which control the degree of (weak) differentiability of the Sobolev operators. Result 1 is crucial in
our subsequent analysis. Elements in W 1,2

µ,b(X ;Y) are characterized as operators whose polynomial expansion
coefficients with respect to the (infinite-dimensional) Hermite polynomials {Hγ}γ∈Γ, with countable index set
Γ, are weighted ℓ2-summable. The corresponding weights u = (uγ)γ∈Γ are given in terms of the (b-weighted)
PCA eigenvalues λb,i (of the covariance operator) of µ. As a result, we can study the approximation of a
Lipschitz operator by considering its Hermite polynomial s-term expansions.

2. In Section 4, we give upper and lower bounds for the convergence of these expansions in terms of the
PCA eigenvalues. In particular, we show the following curse of parametric complexity: No s-term Hermite
polynomial expansion can converge with an algebraic rate uniformly for all Lipschitz operators as s → ∞.
This holds regardless of the decay rate of the eigenvalues. More specifically, let S ⊂ Γ be a finite index set
with at most s elements and let FS denote the polynomial approximation of an operator F ∈ W 1,2

µ,b(X ;Y)
by Hermite polynomials Hγ with γ ∈ S. Moreover, let π : N → Γ be a bijection such that (uπ(i))i∈N is a
nonincreasing rearrangement of u. Our second main contribution is the following result:

Result 2 (Curse of parametric complexity, cf. Theorem 4.1, Theorem 4.6, Theorem 4.7). For every s ∈ N,

inf
S⊂Γ,|S|≤s

sup
∥F ∥

W
1,2
µ,b

(X ;Y)≤1
∥F − FS∥L2

µ(X ;Y) = sup
∥F ∥

W
1,2
µ,b

(X ;Y)≤1

∥∥F − F{π(1),...,π(s)}
∥∥

L2
µ(X ;Y) = uπ(s+1), (1.1)
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where the suprema are taken either over the class of all Lipschitz operators or all W 1,2
µ,b-operators. Moreover,

uπ(s+1) cannot decay algebraically fast as s→∞, regardless of the spectral properties of µ. On the positive
side, the decay of uπ(s+1) can become arbitrarily close to any algebraic rate as s→∞ if the PCA eigenvalues
λb,i decay sufficiently fast (e.g. double-exponentially).

3. Up to this point, we study best polynomial approximation of Lipschitz operators. In Section 5, we
consider learning Lipschitz and W 1,2

µ,b-operators from finite samples. Using tools from information-based
complexity [61], we define the adaptive m-width Θm(K) of a set of operators K. It quantifies the best worst-
case error that can be achieved by uniformly learning operators in K from m measurements L(F ) ∈ Ym

which are generated by an adaptive sampling operator L and used as inputs for an arbitrary (nonlinear)
reconstruction map T : Ym → L2

µ(X ;Y). More specifically,

Θm(K) := inf
{

sup
F ∈K
∥F − T (L(F ))∥L2

µ(X ;Y) : L, T as above
}
.

Our key result is its characterization in terms of the weights uγ and roughly reads as follows (neglecting
some technical assumptions):

Result 3 (Characterization of the adaptive m-width, cf. Thm. 5.4, Thm. 4.6, Thm. 4.7). For any number
of samples m ∈ N, we have

Θm(K) = uπ(m+1),

where K is either the set of all Lipschitz or all W 1,2
µ,b-operators of at most unit W 1,2

µ,b-norm. Again, uπ(m+1)
cannot decay algebraically fast as m→∞, regardless of the spectral properties of µ. But its decay can become
arbitrarily close to any algebraic rate in the large data limit m→∞ if the PCA eigenvalues λb,i of µ decay
sufficiently fast (e.g. double-exponentially).

This result tightly characterizes the sample complexity of learning Lipschitz operators and gives rise
to the following curse of sample complexity: No procedure (e.g., NNs, polynomial approximation, random
features, kernel methods, etc.) for uniformly learning Lipschitz operators with Sobolev norm at most one
can achieve algebraic convergence rates for the L2

µ-approximation error. This holds for general (centered,
nondegenerate) Gaussian measures µ. In light of Result 3, note that Result 2 shows that Hermite polynomial
approximation of Lipschitz or W 1,2

µ,b-operators (with Sobolev norm at most one) is optimal among all possible
(adaptive) sampling and reconstruction maps.

4. Result 3 pertains to arbitrary linear samples and does not provide explicit algorithms. To address this
lack of constructiveness, we restrict the class of sampling maps in Section 6 and study the reconstruction of
operators F : X → Y from pointwise samples. In this case, each training datum has the form (X,F (X)) ∈
X × Y. Pointwise sampling is one of the most relevant sampling methods in practical applications because
it is nonintrusive. Using our results from Section 4 and Section 5, we present a sampling strategy and an
algorithm for constructing for any Lipschitz and W 1,2

µ,b-operator F a weighted least-squares approximant F̂
with provable near-optimal sample complexity. More specifically, we use Christoffel sampling [21] to define
a suitable sampling measure ν on X from which we draw m independent samples in order to construct F̂
as a linear combination of at most s Hermite polynomials. We prove the following two results which provide
sample complexity bounds in probability:

Result 4 (Sample complexity for Sobolev operators, cf. Cor. 6.5). Let 0 < ϵ < 1 denote the failure probability
and let F ∈W 1,2

µ,b(X ;Y). Suppose that m satisfies

m ≥ cs log(s/ϵ), (1.2)

where c > 0 is a universal constant. Then, with ν-probability at least 1− ϵ, F̂ is well-defined and∥∥∥F − F̂∥∥∥
L2

µ(X ;Y)
≤
(

1 + 2
√

2√
ϵ

)
uπ(s+1)∥F∥W 1,2

µ,b
(X ;Y). (1.3)
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The sample complexity in (1.2) is near-optimal, i.e., it is linear in s up to a log-factor. We present
an algorithm (Algorithm 1) which achieves for m samples the optimal approximation error uπ(s+1) (see
Result 3) up to constants, where s can be chosen near-optimally as m/(c · log(m/ϵ)). Note that the constant
in (1.3) has poor scaling in ϵ. The next result shows that this can be avoided in the case of Lipschitz operators
as follows:

Result 5 (Sample complexity for Lipschitz operators, cf. Thm. 6.6). Let 0 < ϵ < 1 denote the failure
probability and let F : X → Y be Lipschitz continuous with Lipschitz constant L > 0. Suppose that m
satisfies

m ≥ Csu−2
π(s+1) log(4s/ϵ), (1.4)

where C > 0 is a constant which only depends on ∥F (0)∥Y and L. Then, with ν-probability at least 1− ϵ, we
have ∥∥∥F − F̂∥∥∥

L2
µ(X ;Y)

≤
√

2uπ(s+1)

(
∥F∥W 1,2

µ,b
(X ;Y) + 1

)
. (1.5)

The bound on the approximation error in (1.5) is independent of ϵ, but the sample complexity in (1.4)
shows the additional factor u−2

π(s+1). By Theorem 4.6, the latter grows only subalgebraically with respect to
s. In this sense, the resulting algorithm (Algorithm 2) still has provable near-optimal sample complexity.

2 Preliminaries
First, we recall some standard notions and fix the notation which we use throughout the text. Further
notation will be introduced in the text as needed.

2.1 Basic notation
As usual, N denotes the set of all positive integers, N0 the set of all nonnegative integers, and R the real
numbers. We denote by (X , ⟨·, ·⟩X ) and (Y, ⟨·, ·⟩Y) two separable Hilbert spaces with corresponding inner
products. For simplicity, we focus on real Hilbert spaces, but all results can be readily generalized to the
complex case as well. We use capital letters X ∈ X and Y ∈ Y (at times also H,K,Z) for elements of the
respective Hilbert spaces. Operators which map from X to Y are typically denoted by the capital letters F
or G. For functionals, i.e., in the case Y = R, we also use lower case letters at times. The set of all continuous
operators from X to Y is denoted by C(X ,Y) and we write C(X ) := C(X ,R).

We equip the space X with a centered, nondegenerate Gaussian measure µ with covariance operator
Q :=

∫
X X ⊗Xdµ(X). We recall that Q : X → X is a positive-definite, self-adjoint, trace-class operator,

see, e.g., [23, Prop. 1.8]. As such, there exists an orthonormal eigenbasis (PCA basis) {ϕi}i∈N of X and a
sequence of corresponding PCA eigenvalues λ = (λi)i∈N. To be explicit, we have Qϕi = λiϕi with λi > 0 for
every i ∈ N and

∑
i∈N λi <∞. By rescaling, we may assume without loss of generality that

∑
i∈N λi = 1. We

denote the standard Gaussian measure on R by µ1 := N (0, 1), the standard Gaussian measures on Rn, n ∈ N,
by µn :=

⊗n
i=1 µ1, and the standard Gaussian measure on the space of sequences RN by µ∞ :=

⊗∞
i=1 µ1.

For N ∈ N, we set [N ] := {1, 2, . . . , N} and [∞] := N. Sequences of real numbers with (possibly finite)
index set I are denoted by lower case bold letters x = (xi)i∈I ∈ RI . Sequences with elements in a Hilbert
space Z are denoted by bold capital letters Z = (Zi)i∈I ∈ ZI . We write 0 and 1 for the sequence of all
zeros and all ones, respectively. Algebraic operations on a sequence x ∈ RI are defined componentwise: We
write

√
x := (√xi)i∈I and 1/x := (1/xi)i∈I , whenever these expressions make sense, and for a scalar c ∈ R,

we write cx := (cxi)i∈I for the scaled sequence. In a similar vein, inequalities of the form x ≤ y between
sequences x,y ∈ RI are understood componentwise, that is, xi ≤ yi for every i ∈ I. The expressions x ≥ y,
x < y, and x > y are understood in a similar sense. Given an index subset J ⊂ I, we write xJ for the
subsequence (xi)i∈J . We use standard notation

δi,j :=
{

1 if i = j,

0 if i ̸= j,
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for the Dirac delta function, and for two sequences γ,γ′ ∈ NN
0 , we set

δγ,γ′ :=
∞∏

i=1
δγi,γ′

i
.

We denote the Euclidean norm and inner product on Rn by ∥·∥Rn and ⟨·, ·⟩Rn , respectively, and the standard
basis vectors by ei := (δi,j)j∈[n] for i ∈ [n]. The symbol Ln denotes the Lebesgue measure on Rn. Finally,
we use the notation x ≲ y for x, y ∈ R if there exists a global constant C > 0 independent of any parameters
such that x ≤ Cy. We write x ≳ y if y ≲ x, and x ∼ y if both x ≲ y and x ≳ y.

2.2 Sequence spaces
Let 1 ≤ p ≤ ∞. Given an index set I, a sequence of positive weights w = (wi)i∈I > 0, and a Hilbert space
Z, we define the weighted sequence space ℓp

w(I;Z) as the set of all Z-valued sequences Z = (Zi)i∈I whose
norm ∥Z∥ℓp

w(I;Z) is finite, where

∥Z∥ℓp
w(I;Z) :=

{ (∑
i∈I w

−p
i ∥Zi∥p

Z
)1/p if 1 ≤ p <∞,

supi∈I

{
w−1

i ∥Zi∥Z
}

if p =∞.

We denote the closed unit ball in ℓp
w(I;Z) by

Bp
w(I;Z) :=

{
x ∈ ℓp

w(I;Z) : ∥x∥ℓp
w(I;Z) ≤ 1

}
.

If Z = R, we just write (ℓp
w(I), ∥·∥ℓp

w(I)) and Bp
w(I), and if w = 1, we write (ℓp(I;Z), ∥·∥ℓp(I;Z)) and Bp(I;Z).

2.3 The weighted space Xb

Let b = (bi)i∈N be a sequence of positive weights with 0 < b ≤ 1. By means of the PCA basis {ϕi}i∈N of X
we define the space

Xb :=
{
X ∈ X :

∑
i∈N

b−2
i |⟨X,ϕi⟩X |

2
<∞

}
.

Note that Xb is a Hilbert subspace of X with inner product

⟨X,Z⟩Xb
:=
∑
i∈N

b−2
i ⟨X,ϕi⟩X ⟨Z, ϕi⟩X , X, Z ∈ Xb,

which induces the norm
∥X∥Xb

:=
√
⟨X,X⟩Xb

, X ∈ Xb.

Moreover, it is easy to see that the family of vectors {ηi}i∈N defined by

ηi := biϕi, i ∈ N, (2.1)

is an orthonormal basis of Xb.
Remark 2.1. We highlight two important cases. If b = 1, we recover the full space X , that is, X1 = X . If
b =
√

λ, we obtain the Cameron-Martin space H ⊂ X of µ (see Appendix C.1). Indeed, Theorem C.4 implies
X√

λ = H.
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2.4 Lebesgue-Bochner spaces and Hermite polynomials
We write L2

µ(X ;Y) for the Lebesgue-Bochner space of (equivalence classes of) strongly measurable operators
F : X → Y with finite Bochner norm

∥F∥L2
µ(X ;Y) :=

(∫
X
∥F (X)∥2

Ydµ(X)
)1/2

.

If Y = R, the Lebesgue-Bochner space L2
µ(X ;R) coincides with the usual Lebesgue space and we write

L2
µ(X ;R) = L2

µ(X ). More information can be found, e.g., in [38, Chpt. 1].
Next, we introduce the (infinite-dimensional) Hermite polynomials. For n ∈ N0, we define the nth nor-

malized (probabilist’s) Hermite polynomial on R by

Hn : R→ R, Hn(x) := (−1)n

√
n!

exp
(
x2

2

)
dn

dxn
exp

(
−x

2

2

)
.

The Hermite polynomials {Hn}n∈N form an orthonormal basis of L2
µ1

(R), see, e.g., [23, Prop. 9.4]. We
define the infinite-dimensional Hermite polynomials by products of the one-dimensional ones. To this end,
we introduce the set of all sequences of nonnegative integers with finite support

Γ :=
{

γ ∈ NN
0 : supp(γ) <∞

}
,

with the support of γ defined by supp(γ) := {i ∈ N : γi ̸= 0}. It is easy to see that Γ is countable. For γ ∈ Γ
and d ∈ N, we set

Hγ,d : Rd → R, Hγ,d(x) :=
d∏

i=1
Hγi

(xi). (2.2)

Remark 2.2. Since γ ∈ Γ has finite support and H0 = 1, each Hermite polynomial Hγ,d can also be seen as
a function Hγ,∞ with infinite dimensional input x ∈ RN (simply by ignoring all xi with i ̸∈ supp(γ)).

Finally, we define Hermite polynomials on the infinite-dimensional space X by means of the PCA basis
{ϕi}i∈N and the PCA eigenvalues λ = (λi)i∈N:

Hγ,λ : X → R, Hγ,λ(X) :=
∞∏

i=1
Hγi

(
⟨X,ϕi⟩X√

λi

)
. (2.3)

As only finitely many factors in (2.3) are different from 1, every Hγ,λ is a smooth function on X with
polynomial growth at infinity, that is,

|Hγ,λ(X)| ≤ C
(

1 + ∥X∥
∥γ∥ℓ1(N)
X

)
for some constant C > 0. In particular, by the Fernique Theorem (Theorem C.1), we have Hγ,λ ∈ L2

µ(X )
for every γ ∈ Γ. The Hermite polynomials Hγ,λ play a distinguished role in L2

µ(X ) in the following sense:

Theorem 2.3 ([23, Thm. 9.7]). The family {Hγ,λ}γ∈Γ of infinite-dimensional Hermite polynomials is an
orthonormal basis of L2

µ(X ).

Let us recall that
L2

µ(X ;Y) = L2
µ(X )⊗ Y

with Hilbertian tensor product. By Theorem 2.3, any F ∈ L2
µ(X ;Y) can be written as an unconditionally

L2
µ(X ;Y)-convergent expansion in Hermite polynomials, also called the Wiener-Hermite Polynomial Chaos

(PC) expansion,
F =

∑
γ∈Γ

YγHγ,λ, (2.4)
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with Wiener-Hermite PC coefficients

Yγ :=
∫

X
F (X)Hγ,λ(X)dµ(X) ∈ Y.

Moreover, Parseval’s identity holds, i.e.,

∥F∥2
L2

µ(X ;Y) =
∑
γ∈Γ
∥Yγ∥2

Y . (2.5)

3 Gaussian Sobolev and Lipschitz operators
Let b = (bi)i∈N be a sequence of weights with 0 < b ≤ 1. We sketch the definition of the weighted Gaussian
Sobolev space W 1,2

µ,b(X ;Y) and state its characterization as a weighted ℓ2-sequence space. Details are provided
in Appendix C.2. We then prove that all Lipschitz operators from X to Y lie in W 1,2

µ,b(X ;Y) under some
sufficient conditions on b. The results in this section are the basis for the approximation theoretical analysis
carried out in the remainder of this paper.

3.1 The space W 1,2
µ,b(X ;Y)

The definition of the space W 1,2
µ,b(X ;Y) is based on the operator DXb

which denotes the Fréchet differential
operator along the space Xb (see Appendix A). We first define DXb

as an operator which maps from a set of
cylindrical boundedly differentiable operators FC1

b (X ,Y) to the space L2
µ(X ; HS(Xb,Y)), where HS(Xb,Y)

denotes the space of Hilbert-Schmidt operators from Xb to Y (see Appendix B.2). The study of the Cameron-
Martin space H of µ allows us to show that DXb

is closable in L2
µ(X ;Y), see Proposition C.7. Details about

the closure and closability of operators are recalled in Appendix B.1. With this in hand, we make the following
definition:

Definition 3.1 (The Sobolev space W 1,2
µ,b(X ;Y)). We define the space W 1,2

µ,b(X ;Y) as the domain of the
closure of the operator DXb

: FC1
b (X ,Y)→ L2

µ(X ; HS(Xb,Y)) (still denoted by DXb
) in L2

µ(X ;Y).

The space W 1,2
µ,b(X ;Y) is a Hilbert space with the graph norm

∥F∥W 1,2
µ,b

(X ;Y) :=
(∫

X
∥F (X)∥2

Ydµ(X) +
∫

X
∥DXb

F (X)∥2
HS(Xb,Y)dµ(X)

)1/2
,

which is induced by the inner product

⟨F,G⟩W 1,2
µ,b

(X ;Y) :=
∫

X
⟨F (X), G(X)⟩Y dµ(X) +

∫
X
⟨DXb

F (X), DXb
G(X)⟩HS(Xb,Y) dµ(X).

As usual, we write W 1,2
µ,b(X ) := W 1,2

µ,b(X ;R) for the space of Sobolev functionals. A few remarks are in order.
Remark 3.2. Defining Gaussian Sobolev spaces as the domain of closure of a suitable differential operator
is standard and can be found, e.g., in [19, 23, 57, 62]. For an equivalent definition via the completion of
FC1

b (X ,Y) under an appropriate Sobolev norm, we refer to [16, Chpt. 5].
Remark 3.3. Weighted Gaussian Sobolev spaces have been considered in the literature in the study of
continuous and compact Sobolev embeddings [67, 22, 19] by composing the differential operator with an
additional self-adjoint nonnegative operator. Recently, in [58], the authors defined weighted Gaussian Sobolev
spaces of functionals on ℓr(N), r ≥ 1, by weighting the partial derivatives with elements of a weight sequence
b ∈ ℓ∞(N) and remarked that their construction unifies various definitions of Gaussian Sobolev spaces via
different choices of b. Our definition of W 1,2

µ,b(X ;Y) is equivalent to the definition in [58] in the Hilbert space
case r = 2. However, our approach via the differential operator along the space Xb highlights the role of
the latter as the underlying differential structure of W 1,2

µ,b(X ;Y). For b =
√

λ, we obtain the same space as
defined in [16, 57, 24]. For b = 1, we obtain a smaller space as defined in [23].
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Next, we use the Wiener-Hermite PC expansion (2.4) of L2
µ(X ;Y)-operators to characterize the space

W 1,2
µ,b(X ;Y) by a weighted ℓ2-space. To this end, we need the following definition:

Definition 3.4. The b-weighted PCA eigenvalues are given by

λb = (λb,i)i∈N, λb,i := λi

b2
i

. (3.1)

The following theorem is an immediate consequence of Proposition C.9, which we prove in Appendix C.2:

Theorem 3.5 (ℓ2-characterization of W 1,2
µ,b(X ;Y)). The map

ℓ2
u(Γ;Y)→W 1,2

µ,b(X ;Y), Y = (Yγ)γ∈Γ 7→
∑
γ∈Γ

YγHγ,λ

with the family of weights

u = (uγ)γ∈Γ, uγ = uγ(λb) :=
(

1 +
∑
i∈N

γi

λb,i

)−1/2

, (3.2)

is an isometric isomorphism. In particular, using the representation (2.4), we have

∥F∥2
W 1,2

µ,b
(X ;Y) =

∑
γ∈Γ

u−2
γ

∥∥∥∥∫
X
FHγ,λdµ

∥∥∥∥2

Y
, ∀F ∈W 1,2

µ,b(X ;Y).

The weights uγ in (3.2) are key in our subsequent analysis. We make the following assumption:

Assumption 3.6 (Properties of b). We assume that b = (bi)i∈N is a sequence of positive real numbers
with 0 < b ≤ 1 such that the sequence of weighted PCA eigenvalues λb = (λb,i)i∈N, defined in (3.1), is
nonincreasing. If dim(Y) =∞, we assume in addition that b ∈ ℓ2(N).

By Assumption 3.6, we can order the weights uγ in a nonincreasing way, that is, there exists a nonin-
creasing rearrangement π : N→ Γ of u such that

uπ(1) ≥ uπ(2) ≥ · · · > 0. (3.3)

The map π is unique up to permutations of weights of the same value. The additional requirement of
ℓ2-summability of b in Assumption 3.6 in the case where Y is infinite-dimensional will become clear by
Theorem 3.9, which we prove in Subsection 3.2. It implies that the set of Lipschitz operators is a subset of
W 1,2

µ,b(X ;Y).
Remark 3.7. Assumption 3.6 implies that lim supi→∞ λb,i <∞. Interestingly, this condition is equivalent to
the continuous embedding of W 1,2

µ,b(X ) in the Orlicz space Lp log
p
2 L(X , µ) for p ∈ [1,∞), see [58, Thm. 4.2].

The stronger condition limi→∞ λb,i = 0 is equivalent to the compact embedding of W 1,2
µ,b(X ) in L2

µ(X ),
see [22], and, more generally, in the Orlicz space L2 logq L(X , µ) for q ∈ [0, 1), see [58, Thm. 5.2].

3.2 Lipschitz operators
We now turn to Lipschitz continuous operators and recall their definition.

Definition 3.8 (Lipschitz operators). An operator F : X → Y is called (L-)Lipschitz (continuous) if there
exists a constant L > 0 such that

∥F (X)− F (Z)∥Y ≤ L∥X − Z∥X , ∀X,Z ∈ X .

9



The number L is called a Lipschitz constant of F . The smallest Lipschitz constant of F is given by

[F ]Lip(X ,Y) := sup
X,Z∈X

X ̸=Z

∥F (X)− F (Z)∥Y
∥X − Z∥X

.

We denote the space of all Lipschitz operators from X to Y by Lip(X ,Y) and write Lip(X ) := Lip(X ;R).
We further define the space of all bounded Lipschitz operators C0,1(X ;Y) as the set of all Lipschitz operators
F ∈ Lip(X ,Y) with finite norm

∥F∥C0,1(X ,Y) := sup
X∈X

∥F (X)∥Y + [F ]Lip(X ,Y).

Note that C0,1(X ,Y) is a strict subset of Lip(X ,Y) as operators in Lip(X ,Y) do not need to be bounded.

The next result, which is the main result of this section, motivates Gaussian Sobolev spaces as a natural
setting for the study of Lipschitz operators. We present a sketch of the proof, highlighting the main ideas.
A detailed proof is given in Appendix D.

Theorem 3.9 (Lipschitz operators are Gaussian Sobolev operators). Let b = (bi)i∈N be a sequence of positive
numbers with 0 < b ≤ 1.

(i) If Y is finite-dimensional, then Lip(X ,Y) ⊂W 1,2
µ,b(X ;Y) and the embedding C0,1(X ,Y) ↪→W 1,2

µ,b(X ;Y)
is continuous with

∥F∥W 1,2
µ,b

(X ;Y) ≤
√

dim(Y) · ∥F∥C0,1(X ,Y), ∀F ∈ C
0,1(X ,Y).

(ii) If Y is infinite-dimensional and if b ∈ ℓ2(N), then Lip(X ,Y) ⊂ W 1,2
µ,b(X ;Y) and the embedding

C0,1(X ,Y) ↪→W 1,2
µ,b(X ;Y) is continuous with

∥F∥W 1,2
µ,b

(X ;Y) ≤ max
{

1, ∥b∥ℓ2(N)

}
∥F∥C0,1(X ,Y), ∀F ∈ C

0,1(X ,Y).

Proof (Sketch). Let F ∈ Lip(X ,Y). In order to show that F lies in W 1,2
µ,b(X ;Y), it suffices to find a sequence

(Fn)n∈N of operators which converge to F in L2
µ(X ;Y) and which are uniformly bounded in W 1,2

µ,b(X ;Y)
(see Lemma C.8). To this end, we construct a specific sequence of operators of the form Fn = Vn ◦ Tn with
Vn : Rn → Y and Tn : X → Rn which converge to F in L1,2

µ,b(X ;Y) and, in fact, in W 1,2
µ,b(X ;Y). As we will

show, the operator Vn inherits Lipschitz continuity of F . Hence, by Rademacher’s theorem, Vn is differentiable
Ln-almost everywhere. We are now left with showing that Fn is differentiable µ-almost everywhere and that
there exists a constant C > 0 such that

∥DXb
Fn(X)∥HS(Xb,Y) ≤ C (3.4)

for all n ∈ N and µ-almost every X ∈ X .
In case (i), let m := dim(Y) ∈ N. We fix an orthonormal basis {ψj}j∈[m] of Y and consider the (Lipschitz

continuous) coordinate functions V (j)
n := ⟨Vn, ψj⟩Y : Rn → R. Unwinding definitions, a straight-forward

calculation then leads to (3.4) for any weight sequence 0 < b ≤ 1. The resulting constant C depends linearly
on
√

dim(Y). The same reasoning thus does not work in case (ii) where Y has infinite dimension. At this
point, we additionally require that b ∈ ℓ2(N). A slight modification of the argument in (i) then yields (3.4)
with a finite constant C which depends linearly on min{1, ∥b∥ℓ2(N)} and is independent of the dimension of
Y. The continuous embedding of C0,1(X ,Y) in W 1,2

µ,b(X ;Y) follows in both cases from (3.4) and the fact that
Fn → F in W 1,2

µ,b(X ;Y).
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Remark 3.10. In light of Theorem 3.9, note that Assumption 3.6 implies that Lip(X ,Y) ⊂ W 1,2
µ,b(X ;Y)

regardless of whether Y is finite- or infinite-dimensional. Moreover, it implies that the weighted PCA eigen-
values λb,i decay more slowly than the unweighted λi. If Y is finite-dimensional, we can choose b = 1, which
gives λb = λ. This is not possible if Y is infinite-dimensional. However, since λ ∈ ℓ1(N), a valid choice for b
in any case is b =

√
λ, which leads to λb = 1 and thus to no decay of the λb,i at all.

Remark 3.11. For functionals, i.e., in the case Y = R, it is well-known that Lipschitz continuity im-
plies Gaussian Sobolev regularity. We refer to [23, Prop. 10.11] and [24, Prop. 3.18], where it is shown
that Lip(X ) ⊂ W 1,2

µ,1(X ) and Lip(X ) ⊂ W 1,2
µ,

√
λ

(X ), respectively. One can define Gaussian Sobolev spaces
W 1,p

µ,b(X ;Y) for any order 1 ≤ p < ∞ and a proof analogous to the one of Theorem 3.9 shows that they
contain Lip(X ,Y) as a subset. For the case Y = R, we mention [16, Ex. 5.4.10(i)] and [57, Prop. 10.1.4].
However, only in the case p = 2 there is a simple characterization of the Gaussian Sobolev norm in terms of
Hermite polynomial coefficients, as given by Theorem 3.5.

Finally, we introduce the following notation.

Definition 3.12 (Sobolev unit (Lipschitz) ball). We define the Sobolev unit ball

B1(W 1,2
µ,b(X ;Y)) :=

{
F ∈W 1,2

µ,b(X ;Y) : ∥F∥W 1,2
µ,b

(X ;Y) ≤ 1
}

and the Sobolev unit Lipschitz ball

Bb
1(Lip(X ,Y)) :=

{
F ∈ Lip(X ,Y) : ∥F∥W 1,2

µ,b
(X ;Y) ≤ 1

}
.

4 Polynomial s-term approximation
The ℓ2-characterization of W 1,2

µ,b(X ;Y) via Wiener-Hermite PC expansions (Theorem 3.5) motivates studying
polynomial s-term approximations of W 1,2

µ,b-operators and quantifying the smallest achievable s-term error.
To this end, for any index set S ⊂ Γ, we define the space of Y-valued polynomials

PS;Y :=

∑
γ∈S

YγHγ,λ : Yγ ∈ Y


and the corresponding orthogonal L2

µ-projection

(·)S : L2
µ(X ;Y)→ PS;Y , F 7→ FS :=

∑
γ∈S

(∫
X
FHγ,λdµ

)
Hγ,λ.

Next, let F ∈ W 1,2
µ,b(X ;Y) and let S ⊂ Γ be finite with |S| ≤ s. Setting Yγ :=

∫
X FHγ,λdµ, it follows from

Parseval’s identity (2.5) and Theorem 3.5 that

∥F − FS∥2
L2

µ(X ;Y) =
∑

γ∈Γ\S

∥Yγ∥2
Y ≤

(
max

γ∈Γ\S
u2

γ

)∑
γ∈Γ

u−2
γ ∥Yγ∥2

Y =
(

max
γ∈Γ\S

u2
γ

)
∥F∥2

W 1,2
µ,b

(X ;Y). (4.1)

Let us recall from (3.3) the nonincreasing rearrangement π : N → Γ of u = (uγ)γ∈Γ. We set S = π([s]) =
{π(1), . . . ,π(s)} and conclude for K ∈ {B1(W 1,2

µ,b(X ;Y)), Bb
1(Lip(X ,Y))} that

inf
S⊂Γ,|S|≤s

sup
F ∈K
∥F − FS∥L2

µ(X ;Y) ≤ sup
F ∈K

∥∥F − Fπ([s])
∥∥

L2
µ(X ;Y) ≤ max

γ∈Γ\π([s])
uγ = uπ(s+1), ∀s ∈ N. (4.2)

Our first main result in this section shows that this chain of inequalities can, in fact, be improved to equality
and hence gives a tight characterization of the best polynomial s-term error. The proof is an immediate
consequence of Theorem 5.4, which we prove in Section 5, in the special case V = L2

µ(X ;Y).
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Theorem 4.1 (Best polynomial s-term error). For K ∈ {B1(W 1,2
µ,b(X ;Y)), Bb

1(Lip(X ,Y))} and every s ∈ N,
we have

inf
S⊂Γ,|S|≤s

sup
F ∈K
∥F − FS∥L2

µ(X ;Y) = sup
F ∈K

∥∥F − Fπ([s])
∥∥

L2
µ(X ;Y) = uπ(s+1).

Motivated by Theorem 4.1, we study in the rest of this section the decay of uπ(s+1) for s → ∞. The
proofs are based on the relation of the set π([s]) to an anisotropic total degree index set. We discuss this
relation in Subsection 4.1 and subsequently prove lower and upper bounds for uπ(s+1) in Subsections 4.2
and 4.3.

4.1 Relation to anisotropic total degree index sets
We first recall the notion of anisotropic total degree (TD) index sets and provide lower and upper size
bounds. We then identify a specific anisotropic TD index set to which we can relate π([s]).

Definition 4.2 (Anisotropic TD index set). For d ∈ N and a = (a1, . . . , ad) ∈ Rd, a > 0, we define the
anisotropic TD index set in d dimensions with weight a by

ΛTD
d,a :=

{
ν ∈ Nd

0 :
d∑

i=1
aiνi ≤ 1

}
.

Lemma 4.3 (Lower and upper size bounds for anisotropic TD index sets). Let d ∈ N and a = (a1, . . . , ad) ∈
Rd with 0 < a1 ≤ · · · ≤ ad. We have ∣∣ΛTD

d,a

∣∣ ≤ d∏
i=1

(
1
aii

+ 1
)
, (4.3)

and if in addition mini∈[d] ai ≤ 1, then
d∏

i=1

1
aii
≤
∣∣ΛTD

d,a

∣∣ . (4.4)

Proof. The upper bound (4.3) is Lemma 5.3 in [36, Lemma 5.3]. The lower bound (4.4) is proved in [13]. We
refer to [33] for further discussion.

For any ε > 0, we now define the set

S(ε) :=
{

γ ∈ Γ : u−2
γ ≤ 1 + 1

ε2

}
=
{

γ ∈ Γ :
∑
i∈N

γi

λb,i
≤ 1
ε2

}
(4.5)

as well as the quantity
d(ε) := min

{
l ∈ N : λb,l+1 < ε2} ∈ N ∪ {∞} (4.6)

with the convention min(∅) =∞. By definition, S(ε) = π([|S(ε)|]), and if d(ε) <∞, then S(ε) is isomorphic
to an anisotropic TD index set,

S(ε) ∼= ΛTD
d(ε),a, (4.7)

with weights ai := ε2/λb,i, i ∈ [d(ε)], under the isomorphism

{γ ∈ Γ : supp(γ) ⊂ [d(ε)]} → Nd(ε)
0 , γ 7→ (γ1, . . . , γd(ε)).

Observe that, by Assumption 3.6, we have 0 < a1 ≤ a2 ≤ · · · ≤ ad(ε).
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Remark 4.4 (Effective dimension). The number d(ε), defined in (4.6), can be interpreted as the effective
dimension of the approximation problem. For i ≥ d(ε) + 1, we have λb,i < ε2. Hence, for very small
0 < ε < 1, the variance of µ in the ith coordinate direction essentially vanishes for i ≥ d(ε) + 1 and therefore
N (0, λb,i) ≈ δ0, where N (0, λb,i) denotes the one-dimensional Gaussian measure on R with mean 0 and
variance λb,i and δ0 is the Dirac delta measure centered at 0. Thus, measuring an operator F on X with
respect to µ essentially reduces to measuring F in its first d(ε) coordinates (with respect to the PCA basis
{ϕi}i∈N) on Rd(ε) with respect to the Gaussian product measure

⊗d(ε)
i=1 N (0, λb,i).

Remark 4.5 (Finiteness of d(ε)). Note that requiring d(ε) <∞ for every ε > 0 together with Assumption 3.6
implies limi→∞ λb,i = 0. On the other hand, the limit condition limi→∞ λb,i = 0 implies Assumption 3.6
after a suitable reordering of the λb,i and the property d(ε) < ∞ for every ε > 0. In this context, we also
recall Remark 3.7.

4.2 Lower bound
We now prove the second main result of this section which constitutes a lower bound for uπ(s+1). It states
that, regardless of the (unweighted) PCA eigenvalues λ and choice of b, one cannot achieve an algebraic
decay for s → ∞. In light of Remark 4.5, we emphasize that we do not assume that limi→∞ λb,i = 0, but
only that the λb,i are nonincreasing (Assumption 3.6). In particular, the effective dimension d(ε) in (4.6)
might be infinite for a given ε > 0.

Theorem 4.6 (Impossibility of algebraic decay of uπ(s+1)). For any p ∈ N, there exists s̄ ∈ N, depending
on λb,1, . . . , λb,p+1, p, such that

uπ(s+1) ≥ Cs− 1
2p , ∀s ≥ s̄, (4.8)

with constant

C = C(λb,1, . . . , λb,p, p) := 1
2

(
p∏

i=1

λb,i

i

) 1
2p

. (4.9)

Proof. We fix some arbitrary 0 < ε ≤
√
λb,1, whose exact value will be chosen later, and define for n ∈ N,

S(ε, n) :=
{

γ ∈ NN
0 :
∑
i∈N

γi

λb,i
≤ 1
ε2 , supp(γ) ⊂ [n]

}
.

We make a couple of simple but important observations. First note that S(ε) = S(ε, d(ε)), where S(ε) and
d(ε) are defined in (4.5) and (4.6), respectively. Second, we have S(ε, n′) ⊂ S(ε, n) for every 1 ≤ n′ ≤ n.
Third, S(ε, n) is isomorphic to the anisotropic TD index set ΛTD

a,n with weight a = (a1, . . . , an), ai := ε2/λb,i,
under the isomorphism

{γ ∈ NN
0 : supp(γ) ⊂ [n]} → Nn

0 , γ 7→ (γ1, . . . , γn).

Moreover, since we chose ε ≤
√
λb,1, we have mini∈[n] ai = ε2/λb,1 ≤ 1. We can thus combine the preceding

observations with the lower size bound (4.4) to conclude

|S(ε)| = |S(ε, d(ε))| ≥ |Sε,d′ | ≥
d′∏

i=1

λb,i

ε2i
, ∀1 ≤ d′ ≤ d(ε). (4.10)

Analogous to the definition of d(ε) in (4.6), we set

d̃(ε) := min
{
l ∈ N : λb,l+1

l + 1 < ε2
}
∈ N.

Note that d̃(ε) is well-defined because λb,i ≤ λb,1 for every i ∈ N. Moreover, we have d̃(ε) ≤ d(ε) as well as
d̃(ε)→∞ as ε→ 0.
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Next, let us fix some arbitrary p ∈ N. Then there exists 0 < ε̄ = ε̄(λb,1, . . . , λb,p+1, p) ≤ min{
√
λb,1, 1}

such that d̃(ε) ≥ p for every 0 < ε ≤ ε̄. Since λb,i/(ε2i) ≥ 1 for every 1 ≤ i ≤ d̃(ε), it follows from (4.10) that

|S(ε)| ≥
d̃(ε)∏
i=1

λb,i

ε2i
≥

p∏
i=1

λb,i

ε2i
= C̃ε−2p, ∀0 < ε ≤ ε̄,

with constant

C̃ = C̃(λb,1, . . . , λb,p, p) :=
p∏

i=1

λb,i

i
.

We choose s̄ = s̄(λb,1, . . . , λb,p+1, p) ∈ N sufficiently large such that s+ 1 ≥ ⌈C̃ε̄−2p⌉ for every s ≥ s̄. We fix
some arbitrary s ≥ s̄ and pick 0 < ε̃ ≤ ε̄ such that

C̃ε̃−2p = s+ 1.

Solving for ε̃2 yields
ε̃2 = ε̃2(λb,1, . . . , λb,p, p, s) = C̃1/p(s+ 1)−1/p.

By our choice of ε̃, we have |S(ε̃)| ≥ s+1. Since S(ε̃) = π(|S(ε̃)|), we conclude π(s+1) ∈ S(ε̃) and therefore

u2
π(s+1) ≥

(
1
ε̃2 + 1

)−1
≥ 1

2 ε̃
2 = 1

2 C̃
1/p(s+ 1)−1/p ≥ 1

4 C̃
1/ps−1/p, ∀s ≥ s̄,

where the second inequality holds because ε̃ ≤ ε̄ ≤ 1. This completes the proof.

4.3 Upper bounds
We have now seen that uπ(s+1) cannot decay algebraically in for s → ∞, regardless of the decay of the
b-weighted PCA eigenvalues λb,i. We now study the decay of uπ(s+1) for three different characteristic decay
rates of these eigenvalues. In all three cases, we have limi→∞ λb,i = 0 so that the effective dimension d(ε) is
finite for every ε > 0, see Remark 4.5. In principle, the proof of the following result can be adapted to any
other spectral decay rate as well, as long as this limit condition is satisfied.

Theorem 4.7 (Specific decays of uπ(s+1)). Let α > 0.

(a) Algebraic spectral decay: Let λb,i ≲ i−α for every i ∈ N. Then, for every δ, η > 0, there exists
s̄ = s̄(δ, η) ∈ N such that for every s ≥ s̄,

uπ(s+1) ≤ (2(α+ η))
1

2(1/α+δ) log(s)− 1
2(1/α+δ) . (4.11)

(b) Exponential-algebraic spectral decay: Let λb,i ≲ e−iα for every i ∈ N. Then, for every η > 1, there
exists s̄ = s̄(α, η) ∈ N such that for every s ≥ s̄,

uπ(s+1) ≲ e
− 1

2

(
1− 1

η(α+1)

)− 1
1+1/α log(s)

1
1+1/α

. (4.12)

(c) Double exponential spectral decay: Let λb,i ≲ e−eαi for every i ∈ N. Then, for every δ, η > 0, there
exists s̄ = s̄(α, δ, η) ∈ N such that for every s ≥ s̄,

uπ(s+1) ≲ e− 1
2 ( α

η log(s))
1

1+δ
. (4.13)
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Proof. All rates can be derived by suitably choosing the parameter ε in the set S(ε), defined in (4.5). By (4.7),
the upper size bound (4.3) implies

|S(ε)| ≤
d(ε)∏
i=1

(
λb,i

iε2 + 1
)
≤

d(ε)∏
i=1

λb,i

ε2

(
1
i

+ 1
)
≤ (2ε−2)d(ε)

d(ε)∏
i=1

λb,i, (4.14)

where we used the fact that λb,i ≥ ε2 for i ∈ [d(ε)] by definition of d(ε), see (4.6). For brevity, we write in
the following d = d(ε).

Case (a). Let λb,i ≤ Ci−α for every i ∈ N and some constant C > 0. Plugging this into (4.14) and using
the Stirling type estimate dd ≤ edd! as well as the inequality d−d ≤ e1/e yields

|Sε| ≤ (2ε−2)dCd
d∏

i=1
i−α = (2Cε−2)d(d!)−α ≤ (2Cε−2)deαdd−αd ≤ eαdeα/e(2Cε−2)d. (4.15)

Let 0 < ε ≤ 1. Then, by definition, d = min{l ∈ N : (l+ 1)−α < ε2} ≤ ε−2/α. We take the logarithm on both
sides in (4.15) and deduce

log(|S(ε)|) ≤ αd+ α

e
+ d log(2Cε−2) ≤ α

e
+ αε−2/α + ε−2/α log(2Cε−2).

Next, let δ, η > 0 be arbitrary. There exists 0 < ε̄ = ε̄(δ, η) ≤ 1 such that log(2Cε−2) ≤ ηε−2δ for every
0 < ε ≤ ε̄, which implies

log(|Sε|) ≤
α

e
+ αε−2/α + ηε−2/α−2δ ≤ α

e
+ (α+ η)ε−2/α−2δ, ∀0 < ε ≤ ε̄. (4.16)

We set
α

e
+ (α+ η)ε−2/α−2δ = log(s)

and solve for ε2, which yields

ε2 = ε(s)2 =
(

log(s)− α

e

)− 1
1/α+δ (α+ η)

1
1/α+δ . (4.17)

We can now choose s̄ = s̄(δ, η) ∈ N sufficiently large such that the right-hand side in (4.17) is smaller than
ε̄ and log(s)/2 ≥ α/e for every s ≥ s̄. Then, (4.16) holds with ε = ε(s) and therefore

|Sε(s)| ≤ s, ∀s ≥ s̄.

Since S(ε) = π(|S(ε)|), it follows uπ(s+1) ̸∈ S(ε) and consequently,

u2
π(s+1) ≤ (ε(s)−2 + 1)−1 ≤ ε(s)2 ≤

(
log(s)− α

e

)− 1
1/α+δ (α+ η)

1
1/α+δ

≤ log(s)− 1
1/α+δ (2(α+ η))

1
1/α+δ

for every s ≥ s̄.
Case (b). Let λb,i ≤ Ce−iα for every i ∈ N and some constant C > 0. With (4.14) we find

|S(ε)| ≤ (2ε−2)dCd
d∏

i=1
e−iα

= (2ε−2)dCde−
∑d

i=1
iα

. (4.18)

Let 0 < ε ≤ min{1,
√
λb,2}. We then have 2 ≤ d = min{l ∈ N : e−(l+1)α

< ε2} ≤ log(ε−2)1/α < d+1. Taking
the logarithm on both sides in (4.18) gives

log(|Sε|) ≤ d log(2Cε−2)−
d∑

i=1
iα ≤ d log(2Cε−2)−

∫ d−1

0
tαdt

≤ log(ε−2)1/α log(2Cε−2)− 1
α+ 1

(
log(ε−2)1/α − 2

)α+1
.
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Next, let η > 1 be arbitrary. There exists 0 < ε̄ = ε̄(α, η) ≤
√
λb,2 such that for every 0 < ε ≤ ε̄,

log(ε−2)1/α − 2 ≥ 1
η1/(α+1) log(ε−2)1/α

and therefore

log(|Sε|) ≤ log(ε−2)1/α log(2Cε−2)− 1
η(α+ 1) log(ε−2)1+1/α ≤

(
1− 1

η(α+ 1)

)
log(2Cε−2)1+1/α, (4.19)

where C ′ = max{C, 1}. We set (
1− 1

η(α+ 1)

)
log(2C ′ε−2)1+1/α = log(s)

and solve for ε2, which yields

ε2 = ε(s)2 = 2C ′e
−
(

1− 1
η(α+1)

)− 1
1+1/α log(s)

1
1+1/α

. (4.20)

We can now choose s̄ = s̄(α, η) ∈ N sufficiently large such that the right-hand side of (4.20) is smaller than
ε̄ for every s ≥ s̄. Consequently, (4.19) holds with ε = ε(s), and therefore

|Sε(s)| ≤ s ∀s ≥ s̄.

Similar as in case (a), we conclude

u2
π(s+1) ≤ (ε(s)−2 + 1)−1 ≤ 2C ′e

−
(

1− 1
η(α+1)

)− 1
1+1/α log(s)

1
1+1/α

for every s ≥ s̄.
Case (c). Let λb,i ≤ Ce−eαi for every i ∈ N and some constant C > 0. Plugging this into (4.14) yields

|S(ε)| ≤ (2ε−2)dCd
d∏

i=1
e−eαi

= (2Cε−2)de−
∑d

i=1
eαi

. (4.21)

Let 0 < ε ≤ e−1/2. Then, by definition, d = min{l ∈ N : e−eα(l+1)
< ε2} ≤ log(log(ε−2))/α < d + 1. Taking

the logarithm on both sides in (4.21) gives

log(|S(ε)|) ≤ d log(2Cε−2)−
d∑

i=1
eαi = d log(2Cε−2)− eα(d+1) − 1

eα − 1

≤ 1
α

log(log(ε−2)) log(2Cε−2)− 1
eα − 1

(
log(ε−2)− 1

)
≤ 1
α

log(log(2C ′ε−2)) log(2C ′ε−2) + 1
eα − 1

with C ′ = max{C, 1}. Next, let δ, η > 0 be arbitrary. We argue similarly as in case (a). There exists
0 < ε̄ = ε̄(α, δ, η) ≤ e−1/2 such that log(log(2C ′ε−2)) ≤ η

2 log(2C ′ε−2)δ as well as η
2α log(2C ′ε−2)1+δ ≥ 1

eα−1
for every 0 < ε ≤ ε̄. This implies

log(|S(ε)|) ≤ η

2α log(2C ′ε−2)1+δ + 1
eα − 1 ≤

η

α
log(2C ′ε−2)1+δ.

We set
η

α
log(2C ′ε−2)1+δ = log(s)
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and solve for ε2, which yields
ε2 = ε(s)2 = 2C ′e−( α

η log(s))
1

1+δ
. (4.22)

We can now choose s̄ = s̄(α, δ, η) > 0 sufficiently large such that the right hand-side of (4.22) is smaller than
ε̄2 for every s ≥ s̄. Hence, (4.21) holds with ε = ε(s), and therefore

|Sε(s)| ≤ s, ∀s ≥ s̄.

We conclude
u2

π(s+1) ≤ (ε(s)−2 + 1)−1 ≤ ε(s)2 ≤ 2C ′e−( α
η log(s))

1
1+δ

for every s ≥ s̄. This completes the proof.

Remark 4.8 (Asymptotics of the upper bounds).

(a) If λb,i ≲ i−α decays at least algebraically, then (4.11) shows that for fixed δ > 0, uπ(s+1) decays at least
logarithmically of order 1

2(1/α+δ) . In particular, taking the limit δ → 0, we see that any logarithmic
decay rate of order smaller than α/2 can be attained asymptotically in the limit s→∞.

(b) If λb,i ≲ e−iα has at least exponential-algebraic decay, then (4.12) yields a decay of uπ(s+1) which is
faster than logarithmic for any η > 1. Taking the limit η → 1, we see that any decay slower than

exp
(
−1

2

(
1 + 1

α

) 1
1+1/α

log(s)
1

1+1/α

)

can be attained asymptotically in the limit s→∞.

(c) If λb,i ≲ e−eαi decays at least double exponentially, then (4.13) shows that uπ(s+1) decays super-
logarithmically but still subalgebraically (in accordance with Theorem 4.6). However, for fixed α > 0,
taking the limit δ → 0 and suitably choosing η, decay rates arbitrarily close to any algebraic order can
be attained asymptotically in the limit s→∞.

4.4 Discussion
Theorem 4.6 shows that uπ(s+1) decays subalgebraically in s. In particular, as p ∈ N can be chosen arbitrarily
large, we conclude that the decay is slower than any algebraic decay rate for all sufficiently large s. In
combination with Theorem 4.1, we deduce the following curse of parametric complexity: No s-term
Wiener-Hermite PC expansion can converge with an algebraic rate uniformly for all operators in the Sobolev
unit (Lipschitz) ball as s→∞. This holds regardless of the decay rate of the PCA eigenvalues.

Note that in this context, the parameters, that is, the polynomial coefficients in the truncated Wiener-
Hermite PC expansion, are elements of Y. In [49], a related curse of (scalar) parametric complexity for
learning (bounded) Lipschitz operators with PCA-Net was proved. It relates the learnability of Lipschitz
operators by PCA-Nets to the size, i.e., the number of (scalar) neural network parameters, of the latter.
More specifically, it implies the following (informal) result:

Theorem 4.9 (Curse of (scalar) parametric complexity for PCA-Net, cf. [49, Thm. 9]). For any α > 0,
there exists a bounded Lipschitz operator F ∈ C0,1(X ,Y) and a constant cα > 0 such that

∥F −Ψ∥2
L2

µ(X ;Y) ≥ cα (size(ψ))−α (4.23)

for every PCA-Net Ψ = DY ◦ ψ ◦ EX . Here, ψ : RdX → RdY is a (ReLU) neural network and EX : X → RdX

and DY : RdY → Y are encoder and decoder maps, respectively, which are defined in terms of the empirical
PCA eigenvalues based on finitely many fixed sample points.
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Remark 4.10. Inspection of the proof of [49, Thm. 9] shows that the empirical PCA eigenvalues used in the
definition of EX ,DY can be replaced by the exact PCA eigenvalues which puts Theorem 4.9 in the setting
of the present paper.

We now argue that the curse of (Y-)parametric complexity described by Theorem 4.1 and Theorem 4.6 is
consistent with the curse of (scalar) parametric complexity described by Theorem 4.9. To this end, suppose
that Hermite polynomial s-term approximations of Lipschitz operators in the Sobolev unit Lipschitz ball are
possible with some algebraic rate of order β > 0:

Assumption 4.11. There exists β > 0 such that for all F ∈ Bb
1(Lip(X ,Y)), there are constants C(F ) > 0

and s̄(F ) ∈ N such that ∥∥F − Fπ([s])
∥∥

L2
µ(X ;Y) ≤ C(F )s−β , ∀s ≥ s̄(F ). (4.24)

We then have the following result:

Proposition 4.12. Suppose that Assumption 4.11 is true. Then there exists α > 0 with the following
property: For all F ∈ C0,1(X ,Y), there exist constants C = C(F ) > 0 and ϵ̄ = ϵ̄(F ) > 0 such that for all
0 < ϵ ≤ ϵ̄, there is a PCA-Net Ψ = D̃Y ◦ ψ ◦ ẼX such that

∥F −Ψ∥L2
µ(X ;Y) ≤ ϵ and size(ψ) ≤ Cϵ−1/α.

It is easy to see that Proposition 4.12 leads to a contradiction to Theorem 4.9, hence implying Assump-
tion 4.11 to be false. With the notion introduced in [49], it asserts that α is an algebraic convergence rate for
the class of C0,1(X ,Y)-operators. The proof is based on [66, Thm. 3.9] which provides expression rate bounds
for the approximation of multivariate Hermite polynomials by ReLU neural networks. As a preliminary step,
we make the following observation: Let S be a downward closed subset of NN

0 , that is, γ ∈ S implies γ′ ∈ S
for every γ′ ≤ γ. It is then easy to see by induction on the size of S that

max
γ∈S
∥γ∥ℓ1(N) ≤ |S| − 1 and max

γ∈S
|supp(γ)| ≤ |S| − 1. (4.25)

Proof of Proposition 4.12. Suppose that Assumption 4.11 is true. Let F ∈ C0,1(X ,Y) and define the rescaled
operator F̃ := r−1∥F∥−1

C0,1(X ,Y)F , where r :=
√

dim(Y) if Y is finite-dimensional and r := min{1, ∥b∥ℓ2(N)}
if Y is infinite-dimensional. Then, by Theorem 3.9, we have F̃ ∈ Bb

1(Lip(X ,Y)). Next, let s̄ = s̄(F ) be the
constant in Assumption 4.11 and set ϵ̄ := min{s̄−β/2, e−β/(β+1)} so that ϵ̄(β+1)/β = min{s̄−(β+1)/2, e−1}. Let
0 < ϵ ≤ ϵ̄ be arbitrary and choose s ≥ s̄ with s−β/2 ∼ ϵ.

We proceed with several observations: First, recall from (2.2) that the truncated Wiener-Hermite PC
expansion F̃π([s]) is defined via the Hermite polynomials Hπ(1),d1 , . . ., Hπ(s),ds

with di := max{j : j ∈
supp(π(i))}. By Remark 2.2, we can interpret each Hπ(i),di

as a function Hπ(i),∞ on RN. Second, observe
that the set π([s]) is a downward closed subset of NN

0 of size s. Hence, by (4.25), we have

max
γ∈π([s])

∥γ∥ℓ1(N) ≤ s− 1 and max
γ∈π([s])

|supp(γ)| ≤ s− 1, ∀s ∈ N.

With these facts in hand, we can now directly apply [66, Thm. 3.9] to conclude that there exists a ReLU
neural network ψ = (ψ1, . . . , ψs) : Rd → Rs with d := max{d1, . . . , ds} and with each ψi depending solely on
the variables (xi)i∈[d] such that

max
i∈[s]

∥∥Hπ(i),∞ − ψi

∥∥
L2

µ∞ (RN) ≤ ϵ
(β+1)/β . (4.26)

Here, we interpret the ψi as functionals on RN by ignoring all variables xi with i > d. Moreover, we have

size(ψ) ≲ s6 log(s) log(ϵ−(β+1)/β) ≤
(

1 + 1
β

)
ϵ−14/β−1. (4.27)
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We now define the encoder and decoder maps

ẼX : X → Rd, ẼX (X) :=
(
⟨X,ϕ1⟩X√

λ1
, . . . ,

⟨X,ϕd⟩X√
λd

)
,

D̃Y : Rs → Y, D̃Y(x) :=
s∑

i=1

(∫
X
F̃Hπ(i),λdµ

)
xi.

The corresponding (rescaled) PCA-Net Ψ := r∥F∥−1
C0,1(X ,Y)

(
D̃Y ◦ ψ ◦ ẼX

)
satisfies

∥F −Ψ∥L2
µ(X ;Y) ≤ r∥F∥

−1
C0,1(X ,Y)

(∥∥∥F̃ − F̃π([s])

∥∥∥
L2

µ(X ;Y)
+
∥∥∥F̃π([s]) − D̃Y ◦ ψ ◦ ẼX

∥∥∥
L2

µ(X ;Y)

)
=: r∥F∥−1

C0,1(X ,Y)(T1(F ) + T2(F )).

By Assumption 4.11, we can bound T1(F ) by

T1(F ) ≤ C(F )s−β ∼ C(F )ϵ2 ≤ C(F )ϵ,

where C(F ) is the constant in (4.24). For T2(F ), we find by (4.26) and Parseval’s identity that

T2(F ) ≤
s∑

i=1

∥∥∥∥∫
X
F̃Hπ(i),λdµ

∥∥∥∥
Y

∥∥Hπ(i),∞ − ψi

∥∥
L2

µ∞ (RN) ≤ ϵ
(β+1)/βs1/2

(
s∑

i=1

∥∥∥∥∫
X
F̃Hπ(i),λdµ

∥∥∥∥2

Y

)1/2

≲ ϵ∥F̃∥L2
µ(X ;Y) ≤ ϵ.

Altogether, we conclude
∥F −Ψ∥L2

µ(X ;Y) ≤ C
′r∥F∥−1

C0,1(X ,Y)(C(F ) + 1)ϵ

for some global constant C ′ > 0. Upon rescaling ϵ and ϵ̄ by the factor C ′r∥F∥−1
C0,1(X ,Y)(C(F ) + 1), the claim

follows in light of (4.27) with α = β/(14 + β).

We have now seen that the approximation of Lipschitz operators by Wiener-Hermite PC expansions
cannot be done efficiently with algebraic convergence. On the other hand, we highlight that Theorem 4.7
shows the connection between the decay of the eigenvalues λb,i and the decay of uπ(s+1). It implies that the
curse of Y-parametric (and hence also scalar parametric) complexity can be overcome at least asymptotically
in the sense that decay rates arbitrarily close to any algebraic rate can be attained in the limit s→∞. This,
however, requires the decay of the λb,i to be faster than exponential, see case (b) in Theorem 4.7. As can be
seen by case (c) therein, a double-exponential decay is sufficient.

5 Optimal sampling and (adaptive) m-widths
Up to this point, we have studied the approximation of W 1,2

µ,b- and Lipschitz operators by finite linear combi-
nations of Hermite polynomials. This is a certain type of what in the field of information-based complexity
is referred to as linear information [61, Chpt. 4.1.1]. In this section, we consider more general sampling and
reconstruction schemes based on adaptive information, that is, (nonlinear) reconstruction from m adaptively
chosen samples. We define adaptive sampling operators and the adaptive m-width and characterize the latter
in terms of the weights uγ . We follow in parts ideas from [8] where recovery strategies based on adaptive
information were studied for holomorphic operators. It is known that adaptive methods can only be better
than nonadaptive methods by a factor of at most 2 and there are examples where adaptive methods perform
slightly better than nonadaptive ones. We refer to Theorem 2 in [60] and references therein. For this reason,
we consider adaptive sampling operators instead of nonadaptive ones. However, we will prove that for W 1,2

µ,b-
and Lipschitz operators, linear approximation based on nonadaptive information is, in fact, optimal, see
Theorem 5.4.

19



5.1 Adaptive sampling operators
We subsequently introduce in detail scalar-valued and Hilbert-valued adaptive sampling operators and discuss
their definitions.

Definition 5.1 (Adaptive sampling operator; scalar-valued case). Let (V, ∥·∥V) be a normed vector space
and m ∈ N. A (scalar-valued) adaptive sampling operator is a map of the form

L : V → Rm, L(F ) =


L1(F )

L2(F ;L1(F ))
...

Lm(F ;L1(F ), . . . ,Lm−1(F ))

 ,

where L1 : V → R is a bounded linear functional and Li : V × Ri−1 → R is bounded and linear in its first
component for i = 2, . . . ,m.

Trivially, any bounded linear map L : V → Rm is an adaptive sampling operator. Different choices for
V lead to important special cases. If V ⊂ L2

µ(X ) and γ(1), . . . ,γ(m) ∈ Γ, then we may define a sampling
operator, generating (nonadaptive) linear information, by

L(F ) :=
(∫

X
FHγ(i),λdµ

)
i∈[m]

∈ Rm, ∀F ∈ V. (5.1)

If V = C(X ) and X1, . . . , Xm ∈ V, we can define a pointwise sampling operator, generating (nonadaptive)
standard information [61, Chpt. 4.1.1], by

L(F ) := (F (Xi))i∈[m] ∈ Rm, ∀F ∈ C(X ). (5.2)

In both cases, the γ(i) and the Xi can, in principle, also be chosen adaptively based on previous measurements∫
X FHγ(j)dµ and F (Xj), respectively, for j ∈ [i− 1].

Next, we generalize the definition to the Hilbert-valued case. For notational convenience, for any Y ∈ Y,
v = (vi)i∈[m] ∈ Rm, and F ∈ L2

µ(X ), we write Y v for the vector (Y vi)i∈[m] ∈ Ym and Y F for the map
X 7→ Y F (X).

Definition 5.2 (Adaptive sampling operator; Hilbert-valued case). Let V ⊂ L2
µ(X ;Y) be a vector subspace

with norm ∥·∥V and consider an operator

L : V → Ym, L(F ) =


L1(F )

L2(F ;L1(F ))
...

Lm(F ;L1(F ), . . . ,Lm−1(F ))

 ,

where L1 : V → Y is a bounded linear operator and Li : V × Yi−1 → Y is bounded and linear in its first
component for i = 2, . . . ,m. Then L is a Hilbert-valued adaptive sampling operator if the following condition
holds: There exist Y, Ỹ ∈ Y \ {0}, a normed vector space Ṽ ⊂ L2

µ(X ), and a scalar-valued adaptive sampling
operator L̃ : Ṽ → Rm such that, if Y F ∈ V for some F ∈ L2

µ(X ), then F ∈ Ṽ and L(Y F ) = Ỹ L̃(F ).

This definition involves a technical assumption which links the Hilbert-valued case to the scalar-valued
case and which we will use to establish a lower bound for the adaptive m-width, see (5.4). However, this
condition is not too strong. It holds, for example, in the case of adaptive pointwise sampling. Here, we choose
V = C(X ,Y) and define

L(F ) := (F (Xi))i∈[m] ∈ Y
m, ∀F ∈ V,
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where the ith sample point Xi is potentially chosen based on the previous measurements F (X1), . . . , F (Xi−1).
We then have

L(Y F ) = Y L̃(F ), ∀F ∈ Ỹ := C(X ),∀Y ∈ Y,

where L̃ : Ṽ → Rm is the adaptive pointwise sampling operator in (5.2). As another example, we will see in
the proof of the upper bound of the adaptive m-width that the Hilbert-valued version of linear sampling, as
defined in (5.1), is a Hilbert-valued sampling operator in the sense of Definition 5.2 (under a mild condition
on V).

5.2 Adaptive m-widths and main result
We now formally define the adaptive m-width and state our main result.

Definition 5.3 (Adaptive m-width). Let (V, ∥·∥V) be a normed vector subspace of L2
µ(X ;Y) and let K ⊂ V

be a subset. The adaptive m-width of K in V is given by

Θm(K;V, L2
µ(X ;Y))

:= inf
{

sup
F ∈K
∥F − T (L(F ))∥L2

µ(X ;Y) : L : V → Ym adaptive, T : Ym → L2
µ(X ;Y)

}
.

(5.3)

The adaptive m-width describes the smallest worst-case error that can be achieved when we reconstruct
all operators in a set K by a reconstruction map T from m samples that have been generated by an adap-
tive Hilbert-valued sampling operator L. It thus quantifies the error that can occur from optimally chosen
sampling and reconstruction maps. Note that in (5.3) we allow for any (possibly nonlinear) reconstruction
maps. The choice of V, however, determines which sampling operators are allowed. If V = C(X ,Y), we can
use pointwise sampling, whereas, if V = L2

µ(X ;Y), we cannot.
We consider two choices for K, namely K = B1(W 1,2

µ,b(X ;Y)) and K = Bb
1(Lip(X ,Y)), see Definition 3.12.

Our lower bound pertains to arbitrary V. For the upper bound, we require the mild additional assumption
that V is continuously embedded in L2

µ(X ;Y). Our main result in this section is the following characterization
of the adaptive m-width of the Sobolev unit (Lipschitz) ball in terms of the weights uγ :

Theorem 5.4 (Tight characterization of the adaptive m-width). Let K ∈ {B1(W 1,2
µ,b(X ;Y)), Bb

1(Lip(X ,Y))}
and let m ∈ N. We have the lower bound

Θm(K;V, L2
µ(X ;Y)) ≥ uπ(m+1), (5.4)

where π : N→ Γ is a nonincreasing rearrangement of u = (uγ)γ∈Γ, see (3.3). If, in addition, V is continu-
ously embedded in L2

µ(X ;Y), we have the matching upper bound

Θm(K;V, L2
µ(X ;Y)) ≤ inf

S⊂Γ,|S|≤m
sup
F ∈K
∥F − FS∥L2

µ(X ;Y)

≤ sup
F ∈K

∥∥F − F{π(1),...,π(m)}
∥∥

L2
µ(X ;Y) ≤ uπ(m+1).

(5.5)

5.3 Proof of Theorem 5.4
The proof of the lower bound is based on the theory of Gelfand and Kolmogorov m-widths. We recall relevant
results in Subsection 5.3.1. Further information can be found in [31, Chpt. 10]. Detailed proofs of the lower
and upper bound are then given in Subsection 5.3.2 and Subsection 5.3.3, respectively.

5.3.1 Results about widths

Let K be a subset of a normed vector space (Z, ∥·∥Z) and let m ∈ N. The Gelfand m-width of K is defined
by

dm(K,Z) := inf
{

sup
x∈K∩Lm

∥Z∥Z : Lm subspace of X with codim(Lm) ≤ m
}
.
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An equivalent characterization is given by

dm(K,Z) = inf
{

sup
Z∈K∩ker(A)

∥Z∥Z : A : Z → Rm linear
}
.

We also recall the adaptive compressive m-width of K,

Em
ada(K,Z) := inf

{
sup
Z∈K
∥Z −∆(Γ(Z))∥Z : Γ : Z → Rm adaptive, ∆ : Rm → Z

}
,

and the Kolmogorov m-width of K,

dm(K,Z) := inf
{

sup
K∈K

inf
Z∈Zm

∥Z −K∥Z : Zm subspace of Z with dim(Zm) ≤ m
}
.

Next, we state some standard results which relate the various notions of m-widths to each other.

Theorem 5.5 ([31, Thm. 10.4]). If K is symmetric with respect to the origin, i.e., −K = K, then

dm(K,Z) ≤ Em
ada(K,Z).

In [68], Stesin gave an explicit characterization of the Kolmogorov m-width in (finite) sequence spaces.
For this, let us recall from Subsection 2.2 the notation Bp

w(I;Z) to denote the unit ball in the sequence space
ℓp(I;Z).

Theorem 5.6 (Stesin). Let N ∈ N with N > m, 1 ≤ q < p ≤ ∞, and w ∈ RN be a vector of positive
weights. Then

dm(Bp
w([N ]), ℓq([N ])) =

 max
i1,...,iN−m∈[N]

ik ̸=ij

N−m∑
j=1

w
pq

p−q

ij

 1
p − 1

q


−1

.

In finite sequence spaces it is also possible to relate the Gelfand m-width and the Kolmogorov m-width:

Theorem 5.7 ([8, Thm. B.3]). For 1 ≤ p, q ≤ ∞, let w ∈ RN be a vector of positive weights and let
1 ≤ p∗, q∗ ≤ ∞ be such that 1/p+ 1/p∗ = 1 and 1/q + 1/q∗ = 1. Then

dm(Bp([N ]), ℓq
w([N ])) = dm(Bq∗

1/w([N ]), ℓp∗
([N ])).

Lemma 5.8 ([8, Lem. B.4]). Let w ∈ RN be a vector of positive weights and 1 ≤ p, q ≤ ∞. Then

dm(Bp([N ]), ℓq
w([N ])) = dm(Bp

1/w([N ]), ℓq([N ])).

5.3.2 Lower bound

Since Bb
1(Lip(X ,Y)) is a subset of B1(W 1,2

µ,b(X ;Y)), it suffices to prove the lower bound for the adaptive
m-width of K = Bb

1(Lip(X ,Y)), that is,

Θm(Bb
1(Lip(X ,Y));V, L2

µ(X ;Y)) ≥ uπ(m+1), ∀m ∈ N. (5.6)

This implies the same lower bound in the case K = B1(W 1,2
µ,b(X ;Y)). The proof consists of two main steps.

We first reduce the problem to a discrete one which involves the adaptive compressive m-width of the unit
ball in a space of suitably weighted finite sequences, see Lemma 5.9. In the discrete setting, we can then
use Theorems 5.5 and 5.7, and Lemma 5.8 to relate the adaptive compressive m-width to the Kolmogorov
m-width. In the second step, we apply Theorem 5.6 and combine it with a limiting argument to conclude
the claim.

For the next result, let us recall the notation (cu)I with u = (uγ)γ∈Γ, c ∈ R, and I ⊂ Γ to denote the
scaled subsequence (cuγ)γ∈I .
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Lemma 5.9 (Reduction to discrete problem). Let I ⊂ Γ be a finite index set. Then, for every constant
c ∈ (0, 1), we have

Θm(Bb
1(Lip(X ,Y));V, L2

µ(X ;Y)) ≥ dm(B2
(cu)I

(I), ℓ2(I)).

The proof of this lemma is based on the construction of a suitable Lipschitz continuous operator. To this
end, let R > 0 and n ∈ N, and consider the capped one-dimensional Hermite polynomials

H̃n,R(x) :=


Hn(x) if −R ≤ x ≤ R,
Hn(R) if x > R,

Hn(−R) if x < −R.
(5.7)

For γ ∈ Γ and d ∈ N, we define

H̃γ,R,d : Rd → R, H̃γ,R,d(x) :=
d∏

i=1
H̃γi,R(xi), (5.8)

as well as

H̃γ,R,λ : X → R, H̃γ,R,λ(X) :=
∞∏

i=1
H̃γi,R

(
⟨X,ϕi⟩X√

λi

)
. (5.9)

Lemma 5.10 (Lipschitz continuity). For every R > 0 and every γ ∈ Γ, the functional H̃γ,R,λ : X → R,
defined in (5.9), is Lipschitz continuous.

Proof. Fix R > 0 and γ ∈ Γ with supp(γ) ⊂ [d] for some d ∈ N. We define the scaling functional

Sλ,d : X → Rd, Sλ,d(X) :=
(
⟨X,ϕi⟩X√

λi

)
i∈[d]

,

and note that H̃γ,R,λ = H̃γ,R,d ◦Sλ,d, with H̃γ,R,d given by (5.8). As Sλ,d is Lipschitz continuous, it suffices
to show that H̃γ,R,d is Lipschitz continuous. This, in turn, follows by a simple induction argument over the
dimension d.

By Lemma 5.10 and Theorem 3.9, we have H̃γ,R,λ ∈ W 1,2
µ,b(X ;Y) for every R > 0. The next result

establishes the connection between H̃γ,R,λ and Hγ,λ in the limit R → ∞. For its proof we introduce the
following notation: For x ∈ Rd, d ∈ N, and 1 ≤ k ≤ d, we write x[k] := (x1, . . . , xk) ∈ Rk. We also recall
the complementary error function erfc : R→ R, x 7→ 2√

π

∫∞
x
e−t2

dt, which grows faster than polynomially at
infinity, that is,

lim
t→∞

tmerfc(t) = 0, ∀m ∈ N. (5.10)

Lemma 5.11 (Convergence in W 1,2
µ,b(X )). For every γ ∈ Γ, we have

lim
R→∞

H̃γ,R,λ = Hγ,λ in W 1,2
µ,b(X ).

Proof. Let γ ∈ Γ with supp(γ) ⊂ [d], d ∈ N. We first consider convergence in L2
µ(X ). By Fubini’s theorem

and a change of variables, one has∥∥∥H̃γ,R,λ −Hγ,λ

∥∥∥2

L2
µ(X )

=
∫
Rd

∣∣∣H̃γ,R,d(x)−Hγ,d(x)
∣∣∣2 dµd(x).

It thus suffices to show that
lim

R→∞
H̃γ,R,d = Hγ,d in L2

µd
(Rd), ∀d ∈ N. (5.11)
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For this, we use induction over d and start with d = 1. For n ∈ N0, we compute∫
R

∣∣∣H̃n,R(x)−Hn(x)
∣∣∣2 dµ1(x) =

∫ −R

−∞
|Hn(−R)−Hn(x)|2 dµ1(x) +

∫ ∞

R

|Hn(R)−Hn(x)|2 dµ1(x)

≤
(
Hn(−R)2 +Hn(R)2) erfc

(
R√
2

)
+ 2

∫
[−R,R]c

Hn(x)2dµ1(x)

=: T1(R) + T2(R),

where we used the notation [−R,R]c := R \ [−R,R]. By (5.10), we have limR→∞ T1(R) = 0. Since Hn ∈
L2

µ1
(R), the second term T2(R) converges to zero as R → ∞ by the dominated convergence theorem. Now,

let d > 1 and suppose that (5.11) holds for any 1 ≤ d′ < d. Without loss of generality, we may assume R ≥ 1.
Then, by Fubini’s theorem, we have∫

Rd

∣∣∣H̃γ,R,d(x)−Hγ,d(x)
∣∣∣2 dµd(x)

≤ 2
∫
R

∫
Rd−1

∣∣∣H̃γ,d−1,R(x[d−1])H̃γd,R(xd)− H̃γ,d−1,R(x[d−1])Hγd
(xd)

∣∣∣2 dµd−1(x[d−1])dµ1(xd)

+ 2
∫
R

∫
Rd−1

∣∣∣H̃γ,d−1,R(x[d−1])Hγd
(xd)−Hγ[d−1](x[d−1])Hγd

(xd)
∣∣∣2 dµd−1(x[d−1])dµ1(xd)

=: t1(R) + t2(R).

The term t1(R) can be bounded from above by

t1(R) ≤ 2
(

sup
R≥1

∫
Rd−1

∣∣∣H̃γ,d−1,R(x[d−1])
∣∣∣2 dµd−1(x[d−1])

)∫
R

∣∣∣H̃γd,R(xd)−Hγd
(xd)

∣∣∣2 dµ1(xd).

By induction hypothesis for d′ = d− 1, the term H̃γ,d−1,R converges in L2
µd−1

(Rd−1) as R→∞. Hence, the
supremum over R ≥ 1 of the first integral on the right-hand side is finite. Applying the induction hypotheses
for d′ = 1, we conclude that the second integral over R converges to zero as R → ∞. A similar argument
shows that limR→∞ t2(R) = 0. This completes the proof of (5.11).

Next, we consider convergence of ∇Xb
H̃γ,R,λ in L2

µ(X ;Xb). For this, we recall the basis {ηi}i∈N of Xb,
defined in (2.1), and the d-dimensional Hermite polynomials Hγ,d, defined in (2.2). Note that the capped
Hermite polynomials H̃n,R, as defined in (5.7), are absolutely continuous along each compact subinterval in
R. We can therefore apply Lemma C.13. We write xi := ⟨X,ϕi⟩X , i ∈ [d], and compute

∂

∂ηi
H̃γ,R,λ(X) = biλ

−1/2
i ∂iH̃γ,R,d(λ−1/2

1 x1, . . . , λ
−1/2
d xd)

=
{
biλ

−1/2
i ∂iHγ,d(λ−1/2

1 x1, . . . , λ
−1/2
d xd) if xi ∈ [−R,R],

0 if xi ∈ [−R,R]c.

Moreover, ∂
∂ηi

H̃γ,R,λ = ∂
∂ηi

Hγ,λ = 0 for i > d. Consequently, we have

∥∥∥∇Xb
H̃γ,R,λ −∇Xb

Hγ,λ

∥∥∥2

L2
µ(X ;Xb)

=
∫

X

d∑
i=1

∣∣∣∣ ∂∂ηi
H̃γ,R,λ(X)− ∂

∂ηi
Hγ,λ(X)

∣∣∣∣2 dµ(X)

=
d∑

i=1

∫
Ri−1×[−R,R]c×Rd−i

∣∣∣biλ
−1/2
i ∂iHγ,d(x1, . . . , xd)

∣∣∣2 dµd(x).

Since ∂iHγ,d ∈ L2
µd

(Rd), the right-hand side converges to zero as R → ∞ by the dominated convergence
theorem. The proof is now complete.
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Lemma 5.12 (Riesz basis). Let I ⊂ Γ be finite. Then, for every ε > 0 there exists R̄ > 0 such that for every
R ≥ R̄ we have

(1− ε)∥x∥2
ℓ2(I) ≤

∥∥∥∥∥∥
∑
γ∈I

xγH̃γ,R,λ

∥∥∥∥∥∥
2

L2
µ(X )

≤ (1 + ε)∥x∥2
ℓ2(I), ∀x = (xγ)γ∈I ∈ RI . (5.12)

In particular, {H̃γ,R,λ}γ∈I is a Riesz basis of span{H̃γ,R,λ : γ ∈ I} for every R ≥ R̄ with Riesz constants
at worst 1± ε.

Proof. We first work in d = 1 dimension and compute for n,m ∈ N0,〈
H̃n,R, H̃m,R

〉
L2

µ1 (R)
=
∫
R
H̃n,R(x)H̃m,R(x)dµ1(x)

=
∫ R

−R

Hn(x)Hm(x)dµ1(x) +
∫ −R

−∞
Hn(−R)Hm(−R)dµ1(x) +

∫ ∞

R

Hn(R)Hm(R)dµ1(x)

=
∫ R

−R

Hn(x)Hm(x)dµ1(x) + 1
2Hn(−R)Hm(−R)erfc

(
R√
2

)
+ 1

2Hn(R)Hm(R)erfc
(
R√
2

)
=: T1(R) + T2(R) + T3(R).

Note that HnHm is a polynomial of order n + m. Hence, by (5.10), we deduce limR→∞ T2(R) = 0 and
limR→∞ T3(R) = 0. Moreover, by the dominated convergence theorem and orthonormality of the Hermite
polynomials, we have

lim
R→∞

T1(R) =
∫ ∞

−∞
Hn(x)Hm(x)dµ1(x) = δn,m.

Altogether,
lim

R→∞

〈
H̃n,R, H̃m,R

〉
L2

µ1 (R)
= δn,m. (5.13)

Now, let γ,γ′ ∈ Γ with supp(γ), supp(γ′) ⊂ [d] for some d ∈ N. Since

〈
H̃γ,R,λ, H̃γ′,R,λ

〉
L2

µ(X )
=
∫
Rd

H̃γ,R,d(x)H̃γ′,d,R(x)dµd(x) =
d∏

i=1

∫
R
H̃γi,R(xi)H̃γ′

i
,R(xi)dµ1(xi),

we conclude by (5.13) that
lim

R→∞

〈
H̃γ,R,λ, H̃γ′,R,λ

〉
L2

µ(X )
= δγ,γ′ .

Next, let us fix some arbitrary ε > 0. Then there exists R̄ > 0 such that for every R ≥ R̄, we have∣∣∣∣〈H̃γ,R,λ, H̃γ′,R,λ

〉
L2

µ(X )
− δγ,γ′

∣∣∣∣ ≤ ε.
Since I ⊂ Γ is finite, we obtain for any x = (xγ)γ∈I ∈ RI ,∥∥∥∥∥∥

∑
γ∈I

xγH̃γ,R,λ

∥∥∥∥∥∥
2

L2
µ(X )

=
∑
γ∈I

∑
γ′∈I

γ′ ̸=γ

xγxγ′

〈
H̃γ,R,λ, H̃γ′,R,λ

〉
L2

µ(X )︸ ︷︷ ︸
≤ε

+
∑
γ∈Γ

x2
γ

〈
H̃γ,R,λ, H̃γ,R,λ

〉
L2

µ(X )︸ ︷︷ ︸
≤1+ε

≤ ε∥x∥2
ℓ1(I) + (1 + ε)∥x∥2

ℓ2(I) ≤ (ε |I|+ 1 + ε)∥x∥2
ℓ2(I).
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Similarly, we have∥∥∥∥∥∥
∑
γ∈I

xγH̃γ,R,λ

∥∥∥∥∥∥
2

L2
µ(X )

≥ −ε∥x∥2
ℓ1(I) + (1− ε)∥x∥2

ℓ2(I) ≥ (−ε |I|+ 1− ε)∥x∥2
ℓ2(I).

As ε > 0 was arbitrary, the claim follows.

We are now ready to reduce the adaptive m-width to the Gelfand m-width in a discrete setting.

Proof of Lemma 5.9. Let L : V → Ym be an adaptive sampling operator as in Definition 5.2. Then there
exist Y, Ỹ ∈ Y \ {0} and a normed vector space Ṽ ⊂ L2

µ(X ) such that, if Y F ∈ V for some F ∈ L2
µ(X ),

then F ∈ Ṽ and L(Y F ) = Ỹ L̃(F ), where L̃ : Ṽ → Rm is a scalar-valued adaptive sampling operator as in
Definition 5.1. Next, let I ⊂ Γ be a finite subset and let us fix c ∈ (0, 1) and ε > 0. By Lemma 5.11 and
Lemma 5.12, there exists R > 0 sufficiently large such that (5.12) holds and∥∥∥H̃γ,R,λ −Hγ,λ

∥∥∥
W 1,2

µ,b
(X )
≤ 1− c

c
|I|−1/2

, ∀γ ∈ I. (5.14)

We fix some arbitrary sequence x = (xγ)γ∈I ∈ RI with ∥x∥ℓ2
uI

(I) ≤ c and define FR, F ∈W 1,2
µ,b(X ;Y) by

FR := Y

∥Y ∥Y

∑
γ∈I

xγH̃γ,R,λ and F := Y

∥Y ∥Y

∑
γ∈I

xγHγ,λ.

Note that ∥F∥W 1,2
µ,b

(X ;Y) = ∥x∥ℓ2
uI

(I) ≤ c by Theorem 3.5, and therefore, by (5.14),

∥FR − F∥W 1,2
µ,b

(X ;Y) ≤
∑
γ∈I

|xγ |
∥∥∥H̃γ,R,λ −Hγ,λ

∥∥∥
W 1,2

µ,b
(X )
≤ 1− c

c
|I|−1/2∑

γ∈I

|xγ | ≤ 1− c.

Thus, by the triangle inequality, ∥FR∥W 1,2
µ,b

(X ;Y) ≤ 1. By Lemma 5.10 and since I is finite, the operator FR

is Lipschitz continuous and we conclude FR ∈ Bb
1(Lip(X ,Y)).

By Lemma 5.12, the family of functionals {H̃γ,R,λ}γ∈I is a Riesz basis of F := span{H̃γ,R,λ : γ ∈ I}.
Hence, there exists a unique biorthogonal dual basis {Ĥγ,R,λ}γ∈I such that ⟨H̃γ,R,λ, Ĥγ′,R,λ⟩ = δγ,γ′ for
every γ,γ′ ∈ I. The orthogonal projection onto F is defined by

PF : L2
µ(X )→ F , PFg :=

∑
γ∈I

〈
g, Ĥγ,R,λ

〉
L2

µ(X )
H̃γ,R,λ.

Let {ψj}j∈N be an orthonormal basis of Y. For G ∈ L2
µ(X ;Y), we write gj := ⟨G,ψj⟩Y ∈ L

2
µ(X ) and find

by (5.12) that

∥G∥2
L2

µ(X ;Y) =
∞∑

j=1
∥gj∥2

L2
µ(X ) ≥

∞∑
j=1
∥PFgj∥2

L2
µ(X ) ≥

∞∑
j=1

(1− ε)
∑
γ∈I

∣∣∣∣〈gj , Ĥγ,R,λ

〉
L2

µ(X )

∣∣∣∣2

= (1− ε)
∑
γ∈I

∞∑
j=1

∣∣∣∣〈gj , Ĥγ,R,λ

〉
L2

µ(X )

∣∣∣∣2 = (1− ε)
∑
γ∈I

∥∥∥∥∫
X
GĤγ,R,λdµ

∥∥∥∥2

Y
.

(5.15)

We now define the scalar-valued adaptive sampling operator

ΞR : RI → Rm, ΞR(z) := L̃

 1
∥Y ∥Y

∑
γ∈I

zγH̃γ,R,λ

 .
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We need to show that it is well-defined, that is, ∥Y ∥−1
Y
∑

γ∈I zγH̃γ,R,λ ∈ Ṽ for every z ∈ RI . Since
Bb

1(Lip(X ,Y)) ⊂ V, it suffices to observe that Y ∥Y ∥−1
Y
∑

γ∈I zγH̃γ,R,λ is Lipschitz continuous as an op-
erator from X to Y and it therefore lies in V. Next, let T : Ym → L2

µ(X ;Y) be an arbitrary reconstruction
map. We define T̃ : Rm → L2

µ(X ;Y) by

T̃ : Rm → L2
µ(X ;Y), T̃ (z) := T (Ỹ z),

and observe that
T (L(FR)) = T (Ỹ ΞR(x)) = T̃ (ΞR(x)).

We now set G := FR − T (L(FR)) in (5.15). We use the estimate ∥Z∥Y ≥ ∥Y ∥
−1
Y |⟨Z, Y ⟩Y |, which holds for

every Z ∈ Y by the Cauchy-Schwarz inequality, and compute

∥FR − T (L(FR))∥2
L2

µ(X ;Y) ≥ (1− ε)
∑
γ∈I

∥∥∥∥∫
X

(FR − T (L(FR))) Ĥγ,R,λdµ

∥∥∥∥2

Y

= (1− ε)
∑
γ∈I

∥∥∥∥xγ
Y

∥Y ∥Y
−
∫

X
T̃ (ΞR(x))Ĥγ,R,λdµ

∥∥∥∥2

Y

≥ (1− ε)
∑
γ∈I

∥Y ∥−2
Y

∣∣∣∣∣
〈
xγ

Y

∥Y ∥Y
−
∫

X
T̃ (ΞR(x))Ĥγ,R,λdµ, Y

〉
Y

∣∣∣∣∣
2

≥ (1− ε)
∑
γ∈I

∣∣∣∣xγ −
1
∥Y ∥Y

∫
X

〈
T̃ (ΞR(x)), Y

〉
Y
Ĥγ,R,λdµ

∣∣∣∣2 .
Finally, we define the (scalar-valued) reconstruction map

∆R : Rm → RI , ∆R(z) :=
(

1
∥Y ∥Y

∫
X

〈
T̃ (z), Y

〉
Y
Ĥγ,R,λdµ

)
γ∈I

,

and conclude
∥FR − T (L(FR))∥2

L2
µ(X ;Y) ≥ (1− ε)∥x−∆R(ΞR(x))∥2

ℓ2(I).

We have thus shown that for any pair (L, T ) of a Hilbert-valued adaptive sampling operator and a
reconstruction map, the error ∥FR − T (L(FR))∥L2

µ(X ;Y) can be bounded from below by the error (1 −
ε)∥x−∆R(ΞR(x))∥ℓ2(I) for some pair (ΞR,∆R) of a scalar-valued adaptive sampling operator and a (scalar-
valued) reconstruction map. Consequently,

Θm(Bb
1(Lip(X ,Y));V, L2

µ(X ;Y))

= inf
{

sup
F ∈Bb

1 (Lip(X ,Y))
∥F − T (L(F ))∥L2

µ(X ;Y) : L : V → Ym adaptive, T : Ym → L2
µ(X ;Y)

}

≥ (1− ε)1/2 inf

 sup
x∈RI

∥x∥
ℓ2

uI
(I)≤c

∥x−∆(Ξ(x))∥ℓ2(I) : Ξ : RI → Rm adaptive, ∆ : Rm → RI


= (1− ε)1/2Em

ada(cB2
uI

(I), ℓ2(I)) = (1− ε)1/2Em
ada(B2

(cu)I
(I), ℓ2(I)).

As ε > 0 was arbitrary, we can take the limit ε→ 0+. The claim now follows by Theorem 5.5.

Finally, we can prove the desired lower bound for the adaptive m-width.
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Proof of (5.6). Let N ∈ N with N > m, let I = π([N ]) = {π(1), . . . ,π(N)} ⊂ Γ be the index set
corresponding to the N largest entries of u, and fix c ∈ (0, 1). By Theorem 5.7 and Lemma 5.8, we have

dm(B2
(cu)I

(I), ℓ2(I)) = dm(B2(I), ℓ2
1/(cu)I

(I)) = dm(B2
(cu)I

(I), ℓ2(I)) = c · dm(B2
uI

(I), ℓ2(I)) (5.16)

For every p > 2 and r = r(p) := 1/2− 1/p, Hölder’s inequality implies N−rBp
uI

(I) ⊂ B2
uI

(I). Consequently,

dm(B2
uI

(I), ℓ2(I)) ≥ dm(N−rBp
uI

(I), ℓ2(I)) = N−rdm(Bp
uI

(I), ℓ2(I)). (5.17)

Applying Theorem 5.6 with q = 2 yields

dm(Bp
uI

(I), ℓ2(I)) =

 max
i1,...,iN−m∈I

ik ̸=ij

N−m∑
j=1

u
2p

p−2
ij

 1
p − 1

2


−1

.

Since (uπ(i))i∈N is nonincreasing, it follows with q = q(p) := 2p
p−2 ∈ (2,∞) that

dm(Bp
uI

(I), ℓ2(I)) = min
i1,...,iN−m∈I

ik ̸=ij

N−m∑
j=1

u
2p

p−2
ij

 1
2 − 1

p

=

 N∑
j=m+1

uq
π(j)

1/q

≥ uπ(m+1).

We combine this estimate with (5.16), (5.17), and Lemma 5.9, and conclude

uπ(m+1) ≤ c−1NrΘm(Bb
1(Lip(X ,Y));V, L2

µ(X ;Y)).

Taking the limit p→ 2+ yields r → 0+ and therefore

uπ(m+1) ≤ c−1Θm(Bb
1(Lip(X ,Y));V, L2

µ(X ;Y)).

As c ∈ (0, 1) was arbitrary, we can take the limit c→ 1−, and the claim finally follows.

5.3.3 Upper bound

We now prove the upper bound for the adaptive m-width, that is,

Θm(K;V, L2
µ(X ;Y)) ≤ inf

S⊂Γ,|S|≤m
sup
F ∈K
∥F − FS∥L2

µ(X ;Y)

≤ sup
F ∈K

∥∥F − F{π(1),...,π(m)}
∥∥

L2
µ(X ;Y) ≤ uπ(m+1)

(5.18)

for K ∈ {B1(W 1,2
µ,b(X ;Y)), Bb

1(Lip(X ,Y))}. For this, we assume that V is continuously embedded in L2
µ(X ;Y).

Proof of (5.18). The second and third inequality hold by (4.2), so we only need to prove the first inequality.
We fix m ∈ N and S = {γ(1), . . . ,γ(n)} ⊂ Γ with n ≤ m. We define the adaptive sampling operator

L : V → Ym, Li(F ) :=
{ ∫

X FHγ(i),λdµ if 1 ≤ i ≤ n,
0 if n+ 1 ≤ i ≤ m,

and the reconstruction map

T : Ym → L2
µ(X ;Y), T (Y ) :=

m∑
i=1

YiHπ(i),λ.

Since V is continuously embedded in L2
µ(X ;Y), it is easy to see that L is a well-defined bounded linear

operator. We need to show that it satisfies the conditions in Definition 5.2. It suffices to show that there
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exists Y ∈ Y \ {0}, a normed vector space Ṽ ⊂ L2
µ(X ), and a scalar-valued adaptive sampling operator

L̃ : Ṽ → Ym such that, if Y F ∈ V for some F ∈ L2
µ(X ), then F ∈ Ṽ and L(Y F ) = Y L̃(F ). To this end, we

choose some Y ∈ Y with ∥Y ∥Y = 1 and define the space

Ṽ :=
{
F ∈ L2

µ(X ) : Y F ∈ V
}
.

It can be readily checked that this defines a normed vector space with norm given by ∥F∥Ṽ := ∥Y F∥V for
any F ∈ Ṽ. Moreover, as V is continuously embedded in L2

µ(X ;Y), there exists a constant C > 0 such that

∥F∥L2
µ(X ) = ∥Y F∥L2

µ(X ;Y) ≤ C∥Y F∥V = C∥F∥Ṽ , ∀F ∈ Ṽ,

where in the first step we used the fact that ∥Y ∥Y = 1. This shows that Ṽ is continuously embedded in
L2

µ(X ). We now define the operator

L̃ : Ṽ → Rm, L̃i(F ) :=
{ ∫

X FHγ(i),λdµ if 1 ≤ i ≤ n,
0 if n+ 1 ≤ i ≤ m.

Note that L̃ is linear and by the continuous embedding of Ṽ in L2
µ(X ), it is also bounded. In particular,

L̃ is a scalar-valued adaptive sampling operator. Moreover, by construction, if Y F ∈ V, then F ∈ Ṽ and
L(Y F ) = Y L̃(F ). Hence, L is indeed an adaptive (Hilbert-valued) sampling operator as in Definition 5.2.
Consequently,

Θm(K;V, L2
µ(X ;Y)) ≤ sup

F ∈K
∥F − T (L(F ))∥L2

µ(X ;Y) = sup
F ∈K
∥F − FS∥L2

µ(X ;Y).

As S was arbitrary, we can now take the infimum over all subsets S ⊂ Γ with |S| ≤ m and conclude the
claim.

5.4 Discussion
Note that Theorem 5.4 shows that linear Hermite polynomial approximation based on the index set S =
{π(1), . . . ,π(m)} is optimal among all possible recovery strategies which are based on linear (adaptive)
information for the uniform approximation of W 1,2

µ,b- and Lipschitz operators with Sobolev norm at most one.
Moreover, Theorem 5.4 in combination with Theorem 4.6 yields the following curse of sample com-

plexity: No strategy based on finitely many (potentially adaptively chosen) linear samples for the uniform
recovery of all operators in the Sobolev unit (Lipschitz) ball can achieve algebraic convergence rates. This
holds regardless of the decay rate of the PCA eigenvalues of the covariance operator of the underlying Gaus-
sian measure.

As already mentioned in the introduction, a related result was previously shown in [40] by means of
the so-called sampling nonlinear m-width sm(K)L2

µ(X ) of a set K ⊂ L2
µ(X ). The latter is based on standard

information. More specifically, compared to the definition of the adaptive m-width in (5.3), the sampling
operator δX : K → Ym with X = (X1, . . . , Xm) ∈ Xm is given by point evaluation at fixed sample points
X1, . . . , Xm, that is, δX(F ) = (F (X1), . . . , F (Xm)) ∈ Ym for every F ∈ K, and one defines

sm(K)L2
µ(X ) := inf

{
sup
F ∈K
∥F − T (δX(F ))∥L2

µ(X ) : X ∈ Xm, T : Ym → L2
µ(X )

}
.

Observe that Theorem 2.12 in [40] implies the following result, which was termed the curse of data complexity:

Theorem 5.13. Let µ be a centered Gaussian measure with at most algebraically decreasing (unweighted)
PCA eigenvalues λi ≳ i−α of the covariance operator for some α > 0. Then there exists a constant C > 0
such that

sm(Lip(X ))L2
µ(X ) ≥ C log(m)−(α+3), ∀m ∈ N.
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Our findings in the present section generalize this result in several directions. First, the adaptive m-
width covers recovery based on general linear (adaptive) information, not just standard information. Second,
its tight characterization by Theorem 5.4 pertains to general centered, nondegenerate Gaussian measures.
In addition, we again highlight that Theorem 4.7 provides upper bounds for the adaptive m-width of the
Sobolev unit (Lipschitz) ball in terms of the decay of the PCA eigenvalues λb,i. In particular, the curse of
sample complexity described above can be overcome asymptotically in the sense that in the large data limit
m → ∞, the adaptive m-width can decay with rates which are arbitrarily close to any algebraic rate if the
decay of the λb,i is double-exponential.

6 Constructive near-optimal pointwise sampling
Given an operator F in the Sobolev unit (Lipschitz) ball, constructing the optimal (in the sense of Theo-
rem 5.4) polynomial approximant Fπ([s]) requires access to the Wiener-Hermite PC coefficients

∫
X FHπ(i),λdµ

for all i ∈ [s]. In practice, however, this data is typically not available. Instead, one often relies on nonintru-
sive measurements which generate random standard information, that is, evaluations of F at points which
are (assumed to be) independently and identically distributed with respect to some probability measure. In
this section, based on our previous results, we derive algorithms to reconstruct W 1,2

µ,b- and Lipschitz operators
from i.i.d. point samples with near-optimal sample complexity (up to logarithmic and subalgebraic factors)
in high probability. The key tool for this is Christoffel sampling, that is, we construct a sampling measure
based on the Christoffel function of the problem, which we independently draw samples from. Reconstruction
of the target operator is then done via a weighted least-squares fit. This strategy is due to [21] and it is
closely related to leverage score sampling in data science. See [1] for a review.

In Subsection 6.1, standard results from least-squares approximation are recalled. We prove sample com-
plexity estimates in probability for L2

µ-, W 1,2
µ,b-, and Lipschitz operators in Subsection 6.2 and present our

algorithms in Subsection 6.3.

6.1 Least-squares: Preliminaries
We recall some important notions from (weighted) least-squares approximation, see also [6, Chpt. 5]. For a
set S ⊂ Γ of size |S| = s, we first recall from Section 4 the polynomial space

PS;Y :=

∑
γ∈S

YγHγ,λ : Yγ ∈ Y

 ⊂ L2
µ(X ;Y)

and the corresponding orthogonal L2
µ-projection

(·)S : L2
µ(X ;Y)→ PS;Y , F 7→ FS :=

∑
γ∈S

(∫
X
FHγ,λdµ

)
Hγ,λ.

We henceforth assume that we are given m distinct sample points X1, . . . , Xm ∈ X with m ≥ s. Next, let
w : X → (0,∞) be a positive weight function whose reciprocal is a probability density with respect to µ,
i.e.,

∫
X w(X)−1dµ(X) = 1. The corresponding probability measure on X is given by

dν(X) := w(X)−1dµ(X).

As we will draw the sample points Xi in X with respect to ν, we call ν the sampling measure. The weight
function w is also used to define the (weighted) discrete semi-norm

∥F∥2
disc,w := 1

m

m∑
i=1

w(Xi)∥F (Xi)∥2
Y , ∀F ∈ L

2
µ(X ;Y).
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For fixed F ∈ L2
µ(X ;Y), it is well-defined µ- and hence ν-almost surely because the point evaluations

F (X1), . . . , F (Xm) are well-defined µ-almost surely. In the scalar-valued case Y = R, the corresponding
(weighted) discrete stability constant of the space

PS := PS;R = span{Hγ,λ : γ ∈ S} ⊂ L2
µ(X ) (6.1)

is given by
αw = αw(PS) := inf

{
∥p∥disc,w : p ∈ PS , ∥p∥L2

µ(X ) = 1
}
. (6.2)

The (reciprocal) Christoffel function of PS is defined as

K(PS) :=
∑
γ∈S

|Hγ,λ|2 . (6.3)

It yields an upper bound on the polynomial approximant FS :

Lemma 6.1 (Bound on FS). Let S ⊂ Γ be finite and F ∈ L2
µ(X ;Y). We have

∥FS(X)∥Y ≤ ∥F∥L2
µ(X ;Y)

√
K(PS)(X) for µ-a.e. X ∈ X .

Proof. Suppose that ∥F∥L2
µ(X ;Y) > 0. Otherwise there is nothing to show. Let us write Yγ :=

∫
X FHγ,λdµ ∈

Y for γ ∈ Γ. By Parseval’s identity, we have∑
γ∈S

∥Yγ∥2
Y

∥F∥2
L2

µ(X ;Y)
+
∑
γ ̸∈S

∥Yγ∥2
Y

∥F∥2
L2

µ(X ;Y)
= 1.

For brevity, we set a :=
∑

γ ̸∈S ∥Yγ∥2
Y/∥F∥

2
L2

µ(X ;Y). We can now apply Jensen’s inequality to find

∥FS(X)∥Y ≤
∑
γ∈S

Yγ ̸=0

∥Yγ∥Y |Hγ,λ(X)| ≤
[( ∑

γ∈S
Yγ ̸=0

∥Yγ∥2
Y

∥F∥2
L2

µ(X ;Y)

∥F∥2
L2

µ(X ;Y)

∥Yγ∥Y
|Hγ,λ(X)|+ a · 0

)2]1/2

≤
( ∑

γ∈S
Yγ ̸=0

∥Yγ∥2
Y

∥F∥2
L2

µ(X ;Y)

∥F∥4
L2

µ(X ;Y)

∥Yγ∥2
Y

|Hγ,λ(X)|2 + a · 02
)1/2

≤ ∥F∥L2
µ(X ;Y)

(∑
γ∈S

|Hγ,λ(X)|2
)1/2

= ∥F∥L2
µ(X ;Y)

√
K(PS)(X)

for µ-a.e. X ∈ X .

Next, let F ∈ L2
µ(X ;Y) be a given operator and let X1, . . . , Xm ∈ X be sample points such that the point

evaluations F (X1), . . . , F (Xm) ∈ Y are well-defined. We then define an approximant F̂ of F via a weighted
least-squares fit,

F̂ = F̂ (X1, . . . , Xm) ∈ argmin
P ∈PS;Y

1
m

m∑
i=1

w(Xi)∥P (Xi)− F (Xi)∥2
Y . (6.4)

Note that for every fixed F ∈ L2
µ(X ;Y), the loss function in (6.4) and therefore each of its minimizers F̂ (if

there are any) are well-defined µ-almost surely and hence also ν-almost surely since pointwise evaluations of
F are well-defined µ- and ν-almost surely.

The problem (6.4) can be reformulated as an algebraic least-squares problem. To this end, we introduce
the weighted (normalized) measurement matrix and measurement vector

A :=
(√

w(Xi)√
m

Hγj ,λ(Xi)
)

(i,j)∈[m]×[s]

∈ Cm×s, B :=
(√

w(Xi)√
m

F (Xi)
)

i∈[m]

∈ Cm,
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and the associated bounded linear operator

TA : Ys → Ym, Y = (Yj)s
j=1 7→

 s∑
j=1

AijYj


i∈[m]

.

It is an easy exercise to check that (6.4) is equivalent to

Y ∈ argmin
Z∈Ys

∥TAZ −B∥Ym , (6.5)

where we use the notation ∥·∥Ym := ∥·∥ℓ2([m];Y). More precisely, any solution of (6.5) yields the polynomial
coefficients of a solution F̂ of (6.4) and vice versa. Lemma 6.2 below shows that (6.5), in fact, has a unique
solution if αw is positive.

Lifting to Hilbert spaces

The least-squares problems (6.4), (6.5) are not quite standard, in that they involve operators and vectors,
respectively, which take values in a generic separable Hilbert space Y. Fortunately, many of the theoretical
tools in the scalar-valued case can be “lifted” to Hilbert spaces, see [3, Sect. 6.2]. The next result is an
instance of this lifting concept:

Lemma 6.2. The Hilbert-valued algebraic least-squares problem (6.5) has a unique solution if and only if
the discrete stability constant αw, defined in (6.2), is positive.

Proof. We commence by fixing an orthonormal basis {ψk}k∈N of Y and reduce the problem to the scalar-
valued case. By Parseval’s identity, we have

∥TAZ −B∥2
Ym =

∞∑
k=1

∥∥∥Az(k) − b(k)
∥∥∥2

Rm
, ∀Z ∈ Ys, (6.6)

with z(k) := ⟨Z, ψk⟩Y ∈ Rs and b(k) := ⟨B, ψk⟩Y ∈ Rm, k ∈ N. Consequently, Z ∈ Ys is a minimizer of the
left-hand side in (6.6) if and only if ∥Az(k) − b(k)∥2

Rm is minimal for every k. The scalar-valued least-squares
problem

y(k) ∈ argmin
z∈Rs

∥∥∥Az − b(k)
∥∥∥
Rm

always has a solution given by y(k) = (y(k)
1 , . . . , y

(k)
s ) := A†b(k) for every k ∈ N, where A† denotes

the pseudoinverse of A. By standard least-squares theory, this solution is unique if and only if αw > 0,
see [6, Chpt. 5.2 & Chpt. 5.5.1]. We now define

Y = (Y1, . . . ,Ys) ∈ Ys with Yj :=
∞∑

k=1
y

(k)
j ψk ∈ Y, ∀j ∈ [s].

To show that every Yj is indeed an element in Y, note that, by definition, we have
∞∑

k=1

(
y

(k)
j

)2
≤ m∥A†∥2

F ∥B∥
2
Ym <∞,

where ∥A∥F :=
√

trace(A∗A) denotes the Frobenius norm. This concludes the proof.

A second important property which we can lift from the scalar- to the Hilbert-valued case is the following
inequality, which holds by definition of αw:

αw∥p∥2
L2

µ(X ) ≤
1
m

m∑
i=1

w(Xi) |p(Xi)|2 , ∀p ∈ PS . (6.7)
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This is often referred to as a (lower) Marcinkiewicz-Zygmund inequality for PS , see [70, 39]. The following
result can be proven similarly as [5, Lem. 7.5].

Lemma 6.3 (Lower Marcinkiewicz-Zygmund inequality; Hilbert-valued case). Inequality (6.7) is equivalent
to a lower Marcinkiewicz-Zygmund inequality for PS;Y , namely

αw∥P∥2
L2

µ(X ;Y) ≤
1
m

m∑
i=1

w(Xi)∥P (Xi)∥2
Y , ∀P ∈ PS;Y .

6.2 Sample complexities
With the tools from the previous section, we now prove near-optimal sample complexity rates for the approx-
imation of L2

µ-, W 1,2
µ,b-, and Lipschitz operators F via the least-squares approximant F̂ , as defined in (6.4).

For this, we construct a suitable sampling measure ν based on the reciprocal Christoffel function K(PS). In
the case of L2

µ-operators, our results hold for any finite index set S ⊂ Γ of size s for which K(PS) > 0. We
remark that the positivity constraint can be avoided by defining the weight function w in a slightly different
way, see [1, Eq. (6.2)]. However, for ease of presentation, we stick with the mild constraint K(PS) > 0. For
W 1,2

µ,b- and Lipschitz operators, we make a specific choice for S so that 0 ∈ S and therefore

K(PS)(X) ≥ |H0,λ(X)|2 = 1, ∀X ∈ X . (6.8)

As it will repeatedly appear in our estimates below, we introduce the universal constant

c := 2 (log(1/2) + 1)−1 ≈ 6.518. (6.9)

6.2.1 L2
µ-operators

We fix a finite index set S ⊂ Γ of size s such that K(PS) > 0 and define

w(X) :=
(

1
s
K(PS)(X)

)−1
=

1
s

∑
γ∈S

|Hγ,λ(X)|2
−1

, ∀X ∈ X . (6.10)

This is indeed a probability density with respect to the measure µ because the Hermite polynomials are
orthonormal in L2

µ(X ).

Theorem 6.4 (Near-optimal sampling for L2
µ-operators in probability). Let 0 < ϵ < 1 denote the failure

probability and suppose that F ∈ L2
µ(X ;Y). Let X1, . . . , Xm ∈ X be drawn independently from the sampling

measure ν, where dν = w−1dµ with w as in (6.10). Suppose that m satisfies

m ≥ cs log(s/ϵ) (6.11)

with c given by (6.9). Then, with ν-probability at least 1−ϵ, the weighted least-squares approximant F̂ in (6.4)
is unique and well-defined and satisfies∥∥∥F − F̂∥∥∥

L2
µ(X ;Y)

≤
(

1 + 2
√

2√
ϵ

)
∥F − FS∥L2

µ(X ;Y). (6.12)

Proof. Let F ∈ L2
µ(X ;Y) and suppose that αw > 0. Then, by Lemma 6.2, F̂ is unique and well-defined µ-

and ν-almost surely. Using Lemma 6.3, we can generalize the standard arguments in the proof of [6, Thm.
5.3] to the Hilbert-valued case to obtain∥∥∥F − F̂∥∥∥

L2
µ(X ;Y)

≤ ∥F − FS∥L2
µ(X ;Y) + α−1

w ∥F − FS∥disc,w ν-almost surely.
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It thus suffices to bound αw from below away from zero with high probability and to estimate ∥F − FS∥disc,w

accordingly. To this end, let 0 < ϵ < 1. Standard arguments, based on the matrix Chernoff bound, see,
e.g., [6, Thm. 5.8], yield

Pν [αw ≤ 1/2] ≤ ϵ/2 if m ≥ cs log(s/ϵ) (6.13)

with c given by (6.9). We refer to the proof of [6, Thm. 5.19]) (with δ = 1/2) for further details. Next,
observe that

Eν

[
∥F − FS∥2

disc,w

]
= ∥F − FS∥2

L2
µ(X ;Y).

Hence, by Markov’s inequality, we get

Pν

[
∥F − FS∥disc,w >

∥F − FS∥L2
µ(X ;Y)√

ϵ/2

]
≤

Eν

[
∥F − FS∥2

disc,w

]
∥F − FS∥2

L2
µ(X ;Y)/(ϵ/2)

= ϵ

2 . (6.14)

We now combine (6.13) and (6.14) and apply the union bound to conclude the claim.

6.2.2 Sobolev and Lipschitz operators

We now make a specific choice for the index set S, namely

S = π([s]) = {π(1), . . . ,π(s)}.

In particular, π(1) = 0 ∈ π([s]) and therefore (6.8) is satisfied. The following result addresses the sample
complexity for W 1,2

µ,b-operators. It is an immediate consequence of Theorem 6.4 and (4.1), (4.2).

Corollary 6.5 (Near-optimal sampling for W 1,2
µ,b-operators in probability). Let 0 < ϵ < 1 denote the failure

probability and suppose that F ∈W 1,2
µ,b(X ;Y). Let X1, . . . , Xm ∈ X be drawn independently from the sampling

measure ν, where dν = w−1dµ with w as in (6.10). Suppose that m satisfies

m ≥ cs log(s/ϵ) (6.15)

with c given by (6.9). Then, with ν-probability at least 1−ϵ, the weighted least-squares approximant F̂ in (6.4)
is unique and well-defined and satisfies∥∥∥F − F̂∥∥∥

L2
µ(X ;Y)

≤
(

1 + 2
√

2√
ϵ

)
uπ(s+1)∥F∥W 1,2

µ,b
(X ;Y). (6.16)

Note that the bound on the approximation error in (6.16) has poor scaling in the reciprocal of the failure
probability ϵ. This can be removed if we restrict to Lipschitz operators under a mild alteration of the sampling
measure ν. However, this leads a to a slightly worse sample complexity which is linear in s up to a log-factor
and an additional subalgebraic term. Note that for Lipschitz operators F , each least-squares approximant F̂
(if there are any) is always well-defined, not only almost surely.

We proceed by defining a new weight function

w(X) :=
(

1
s+ 1

(
∥X∥2

X +K(Pπ([s]))(X)
))−1

=
(

1
s+ 1

(
∥X∥2

X +
s∑

i=1

∣∣Hπ(i),λ(X)
∣∣2))−1

, ∀X ∈ X .

(6.17)
Observe that it differs from the weight function in (6.10) only by the additional additive term ∥X∥2

X (and
the corresponding normalizing factor). It is again a well-defined probability measure by our assumption∑

i∈N λi = 1 which implies
∫

X ∥X∥
2
Xdµ(X) = 1.
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Theorem 6.6 (Near-optimal sampling for Lipschitz operators in probability). Let 0 < ϵ < 1 denote the
failure probability and suppose that F ∈ Lip(X ,Y) with Lipschitz constant L > 0. Let X1, . . . , Xm ∈ X be
drawn independently from ν, where dν = w−1dµ with w as in (6.17). Suppose that m satisfies

m ≥ Csu−2
π(s+1) log(4s/ϵ), C := max

{
8
(
∥F (0)∥Y + L

)2
, c
}
, (6.18)

where c is given by (6.9). Then, with ν-probability at least 1 − ϵ, the weighted least-squares approximant F̂
in (6.4) is unique and satisfies∥∥∥F − F̂∥∥∥

L2
µ(X ;Y)

≤
√

2uπ(s+1)

(
∥F∥W 1,2

µ,b
(X ;Y) + 1

)
.

The proof is based on the following result which follows from Bernstein’s inequality for bounded random
variables, see, e.g., [6, Lemma 7.18]. It can be proven the same way as [6, Lemma 7.11(ii)], we only remark
that ∥

√
wF∥L2

ν (X ;Y) = ∥F∥L2
µ(X ;Y) and ∥

√
wF∥L∞

ν (X ;Y) = ∥
√
wF∥L∞

µ (X ;Y) for every F ∈ L2
µ(X ;Y).

Lemma 6.7 (Bound on the weighted discrete approximation error). Let F ∈ L2
µ(X ;Y) and S ⊂ Γ be finite.

Suppose that X1, . . . , Xm ∈ X are drawn independently from ν, where dν = w−1dµ with w−1 as in (6.17).
Then, for any 0 < ϵ < 1 and any k ∈ (0,∞), we have

∥F − FS∥disc,w ≤
√

2
(
∥F − FS∥L2

µ(X ;Y) +
∥
√
w (F − FS)∥L∞

µ (X ;Y)√
k

)

with ν-probability at least 1− ϵ, provided that m ≥ 2k log(2/ϵ).

Proof of Theorem 6.6. We fix 0 < ϵ < 1 and a Lipschitz operator F : X → Y with Lipschitz constant L > 0.
We proceed as in the proof of Theorem 6.4 to derive the bound∥∥∥F − F̂∥∥∥

L2
µ(X ;Y)

≤
∥∥F − Fπ([s])

∥∥
L2

µ(X ;Y) + α−1
w

∥∥Fπ([s]) − F
∥∥

disc,w
,

and to show that
Pν [αw > 1/2] ≤ ϵ/2 if m ≥ cs log(2s/ϵ), (6.19)

with c given by (6.9). Next, we use Lemma 6.7 to bound ∥Fπ([s]) − F∥disc,w
. First note that by Lipschitz

continuity we have
∥F (X)∥Y ≤ ∥F (0)∥Y + L∥X∥X , ∀X ∈ X . (6.20)

Together with (6.8), we conclude for any X ∈ X ,∥∥∥√w(X)F (X)
∥∥∥

Y
=

√
s+ 1√

∥X∥2
X +K(Pπ([s]))(X)

∥F (X)∥Y

≤
√
s+ 1√
∥X∥2

X + 1

(
∥F (0)∥Y + L∥X∥X

)
≤
√
s+ 1

(
∥F (0)∥Y + L

)
.

(6.21)

Moreover, it follows from (6.20) and
∫

X ∥X∥
2
Xdµ(X) = 1 that ∥F∥L2

µ(X ;Y) ≤ ∥F (0)∥Y + L. Hence, by
Lemma 6.1, we obtain∥∥∥√w(X)Fπ([s])(X)

∥∥∥
Y
≤

√
s+ 1√

∥X∥2
X +K(Pπ([s]))(X)

∥F∥L2
µ(X ;Y)

√
K(Pπ([s]))(X)

≤
√
s+ 1

(
∥F (0)∥Y + L

)
.

(6.22)
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We now set
C := max

{
8
(
∥F (0)∥Y + L

)2
, c
}

(6.23)

and combine (6.21) and (6.22) to conclude∥∥√w (F − Fπ([s])
)∥∥

L∞
µ (X ;Y) ≤

√
Cs.

Next, we apply Lemma 6.7 with k := Csu−2
π(s+1) to find that, with probability at least 1− ϵ/2, we have

∥∥F − Fπ([s])
∥∥

disc,w
≤
√

2
(∥∥F − Fπ([s])

∥∥
L2

µ(X ;Y) + uπ(s+1)

)
≤
√

2uπ(s+1)

(
∥F∥W 1,2

µ,b
(X ;Y) + 1

)
, (6.24)

provided that
m ≥ 2Csu−2

π(s+1) log(4/ϵ). (6.25)

The last inequality in (6.24) follows from (4.1) and (4.2). Finally, we compare (6.25) with the lower bound
on m in (6.19). By definition of C, we find

2Csu−2
π(s+1) log(4s/ϵ) ≥ cs log(2s/ϵ),

where we used that uπ(s+1) ≤ 1. Consequently, we can combine the bound on αw in (6.19) and the bound
on ∥F − Fπ([s])∥disc,w

in (6.24) via the union bound. The proof is now complete.

6.3 Algorithms
Recall from Subsection 4.1 the relation of the index set π([s]) to an anisotropic total degree index set
via (4.5)–(4.7). Combined with the results from the Subsection 6.2, it yields a constructive way to approximate
W 1,2

µ,b- and Lipschitz operators via Christoffel sampling and a weighted least-squares fit with near-optimal
sample complexity. In the following, we present (high-level) algorithms for the approximation of general
continuous W 1,2

µ,b-operators (Algorithm 1) and of Lipschitz operators (Algorithm 2), based on Corollary 6.5
and Theorem 6.6, respectively.

We introduce the following notation for the largest possible dimension of the approximation space PS ,
defined in (6.1): Let m be a given number of samples and let 0 < ϵ < 1 denote the failure probability. We
define

s1 = s1(m, ϵ) := max{s ∈ N : cs log(s/ϵ) ≤ m}, (6.26)

where c = 2 (log(1/2) + 1)−1. For a Lipschitz continuous operator F : X → Y, suppose that we know the
Lipschitz constant L and the value ∥F (0)∥Y . In this case, we set

s2 = s2(m, ϵ, L, ∥F (0)∥Y) := max{s ∈ N : 2Csu−2
π(s+1) log(4/ϵ) ≤ m}, (6.27)

where C = C(L, ∥F (0)∥Y) is given by (6.23). We leave s1 and s2 undefined in cases where the maximum is
taken over the empty set.

We make the following assumptions:

(i) The sequence of weighted PCA eigenvalues (λb,i)i∈N is nonincreasing (see Assumption 3.6) and we
additionally have limi→∞ λb,i = 0 so that the effective dimension of the problem is finite, see Remark 4.4
and Remark 4.5.

(ii) We can exactly compute any finite number of the unweighted PCA eigenvalues λi, see steps 5 and 8
in Algorithm 1 and steps 2 and 5 in Algorithm 2.

(iii) We have pointwise access to the target operator F . In particular, we require continuity of the W 1,2
µ,b-

operators in Algorithm 1 to ensure that pointwise evaluations are well-defined.
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Algorithm 1 Least-squares approximation of an operator F ∈W 1,2
µ,b(X ;Y) ∩ C(X ,Y)

Input:
0 < b ≤ 1 ▷ Weight sequence
dν = w−1dµ ▷ Sampling measure with w given by (6.10)
m ∈ N ▷ Number of samples
ϵ ∈ (0, 1) ▷ Failure probability
0 < h < 1 ▷ (Small) step size

Output: Least-squares approximant F̂ of F which satisfies∥∥∥F − F̂∥∥∥
L2

µ(X ;Y)
≤
(

1 + 2
√

2√
ϵ

)
uπ(s1+1)∥F∥W 1,2

µ,b
(X ;Y)

with ν-probability at least 1− ϵ, where s1 is given by (6.26).
1: c← 2 (log(1/2) + 1)−1

▷ Sample complexity constant
2: if c log(1/ϵ) > m then
3: abort ▷ Abort if there are too few samples
4: end if
5: Compute λ1.
6: τ ← λb,1 ▷ Eigenvalue tolerance
7: while TRUE do
8: Compute all PCA eigenvalues λi for which λb,i ≥ τ .
9: d← min{l ∈ N : λb,l+1 < τ} ▷ Effective dimension

10: Construct the index set

Γ̃ =
{

γ ∈ Nd
0 :

d∑
i=1

γi

λb,i
≤ τ−1

}
and compute the corresponding weights

uγ =
(

1 +
d∑

i=1

γi

λb,i

)−1/2

, γ ∈ Γ̃.

11: s← |Γ̃|
12: Construct a nonincreasing rearrangement π : [s]→ Γ̃ of (uγ)

γ∈Γ̃.
13: s′ ← max{r ∈ [s] : cr log(r/ϵ) ≤ m}
14: if s′ ≤ s− 1 then
15: S ← {π(1), . . . ,π(s′)} ▷ s′ = s1
16: break
17: else
18: τ ← τ − h
19: end if
20: end while
21: Draw m samples X1, . . . , Xm ∼i.i.d. ν and compute F (X1), . . . , F (Xm).
22: Compute the least-squares approximant F̂ based on π([s′]) via (6.4).
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Algorithm 2 Least-squares approximation of a Lipschitz operator F : X → Y
Input:

0 < b ≤ 1 with b ∈ ℓ2(N) if dim(Y) =∞ ▷ Weight sequence
dν = w−1dµ ▷ Sampling measure with w given by (6.17)
m ∈ N ▷ Number of samples
ϵ ∈ (0, 1) ▷ Failure probability
∥F (0)∥Y ▷ Norm of operator value at origin
L > 0 ▷ Lipschitz constant
0 < h < 1 ▷ (Small) step size

Output: Least-squares approximant F̂ of F which satisfies∥∥∥F − F̂∥∥∥
L2

µ(X ;Y)
≤
√

2uπ(s2+1)

(
∥F∥W 1,2

µ,b
(X ;Y) + 1

)
with ν-probability at least 1− ϵ, where s2 is given by (6.27).

1: C ← max
{

8
(
∥F (0)∥Y + L

)2
, 2 (log(1/2) + 1)−1

}
▷ Sample complexity constant

2: Compute λ1.
3: τ ← λb,1 ▷ Eigenvalue tolerance
4: while TRUE do
5: Compute all PCA eigenvalues λi for which λb,i ≥ τ .
6: d← min{l ∈ N : λb,l+1 < τ} ▷ Effective dimension
7: Construct the index set

Γ̃ =
{

γ ∈ Nd
0 :

d∑
i=1

γi

λb,i
≤ τ−1

}
and corresponding weights

uγ =
(

1 +
d∑

i=1

γi

λb,i

)−1/2

, γ ∈ Γ̃.

8: s← |Γ̃|
9: Construct a nonincreasing rearrangement π : [s]→ Γ̃ of (uγ)

γ∈Γ̃.
10: if 2Cu−2

π(2) log(4/ϵ) > m then
11: abort ▷ Abort if there are too few samples
12: else
13: s′ ← max{r ∈ [s] : 2Cru−2

π(r+1) log(4/ϵ) ≤ m}
14: if s′ ≤ s− 1 then
15: S ← {π(1), . . . ,π(s′)} ▷ s′ = s2, see (6.27)
16: break
17: else
18: τ ← τ − h
19: end if
20: end if
21: end while
22: Draw m samples X1, . . . , Xm ∼i.i.d. ν and compute F (X1), . . . , F (Xm).
23: Compute the least-squares approximant F̂ based on π([s2]) via (6.4).
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6.4 Discussion
The results in this section show that weighted least-squares approximation via Christoffel sampling is an
efficient way to reconstruct L2

µ-, W 1,2
µ,b-, and Lipschitz operators from finitely many point samples. In light

of Theorem 5.4, the resulting approximation errors in Corollary 6.5 and Theorem 6.6 are quasi-optimal,
that is, they are, up to constants, best possible uniformly for all operators in the Sobolev unit (Lipschitz)
ball. The sample complexity in (6.15) is near-optimal in the sense that it is linear in s up to a log-factor.
The sample complexity in (6.25) is linear in s up to a log-term and the factor u−2

π(s+1). The latter grows
only subalgebraically in s by Theorem 4.6. In this (broader) sense, the sample complexity in (6.25) is again
near-optimal.

The presented algorithms implement our theoretical findings as constructive approximation schemes.
Note that the data points (Xi, F (Xi)) ∈ X × Y are infinite-dimensional, so additional discretization steps
are necessary to make the method applicable in practice. As already mentioned in the introduction, actual im-
plementations of any algorithm for learning Lipschitz operators on hardware always require in-memory costs,
i.e., number of bits, that are exponential in the reciprocal of the approximation error, see [48]. Nevertheless,
our algorithms show that only finitely many PCA eigenvalues λi are necessary to construct near-optimal
approximants for W 1,2

µ,b- and Lipschitz operators. In particular, infinite eigenvalue searches can be avoided.

7 Conclusion and outlook
In this article, we analyzed the approximation of Hilbert-valued Lipschitz operators from finite data. We first
extended results from infinite-dimensional analysis and showed that all Lipschitz operators lie in a Gaussian
Sobolev space W 1,2

µ,b(X ;Y). We then studied Hermite polynomial s-term approximations and proved that
they cannot achieve algebraic convergence rates. This curse of parametric complexity is independent of the
decay of the (weighted) PCA eigenvalues λb,i of the covariance operator of the Gaussian measure µ. We
illustrated how the decay of the λb,i influences the approximation rate and proved that convergence rates
arbitrarily close to any algebraic rate can be attained at least asymptotically for s → ∞ if the eigenvalues
decay double-exponentially.

We studied the smallest worst-case error for reconstructing W 1,2
µ,b- and Lipschitz operators from m (po-

tentially adaptively chosen) samples in terms of the adaptive m-width and tightly quantified the dependence
of the latter on the λb,i. We showed that no recovery strategy based on finite (adaptive) linear information
can achieve algebraic convergence rates for all W 1,2

µ,b-operators. This curse of sample complexity (which im-
plies the curse of parametric complexity) holds for a general (centered, non-degenerate) Gaussian measure
independently of its spectral properties. The same is true for Lipschitz operators. In particular, restricting
the set of all W 1,2

µ,b-operators to only those which are Lipschitz continuous does not provide enough additional
regularity to overcome the curse of sample complexity. It is an active area of research to identify classes of
operators for which efficient learning in the sense of algebraic convergence rates is possible. As discussed
in Subsection 1.1, examples include holomorphic operators and solution operators of certain PDEs. On the
positive side, we proved that W 1,2

µ,b-regularity, and Lipschitz regularity in particular, suffices to achieve ap-
proximation rates which are arbitrarily close to any algebraic rate in the large data limit m→∞, provided
that the PCA eigenvalues λb,i decay double-exponentially.

Finally, we passed from general (adaptive) linear information to standard information and studied the
approximation of W 1,2

µ,b- and Lipschitz operators based on finitely many point samples. We showed that by
means of Christoffel sampling and weighted least-squares approximation it is possible to achieve near-optimal
sample complexities and we presented corresponding constructive algorithms.

We conclude with discussing several open problems: The estimates in Corollary 6.5 and Theorem 6.6
are nonuniform in the given class of operators, that is, they only hold for a fixed operator of that class and
therefore do not provide upper bounds for the adaptivem-width. It is an open problem to prove corresponding
uniform bounds based on Christoffel sampling and weighted least-squares approximation. We remark that
it is possible to derive such a uniform bound in the context of Theorem 6.4 with the L∞-norm and without
ϵ on the right-hand side in (6.12), see [6, Cor. 5.9]. However, this is not helpful in our setting as we do not
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expect L∞-convergence of the approximation error.
We also remark in passing that there has been a series of recent works that refine Christoffel sampling to

remove the logarithmic dependence on s in the sample complexity estimates, as it appears in Theorem 6.4
and Theorem 6.6, see, e.g., [26, 27, 46, 47, 54, 59, 69]. However, they involve more elaborate constructions,
so for simplicity we have considered standard Christoffel sampling. Furthermore, these results only consider
scalar-valued functions, not operators, so they are not immediately applicable in our setting. They also
do not always provide upper bounds in the L2

µ-norm, which is essential for our analysis. We remark that
recent works also consider other Lp-norms [45, 44]. We leave it to the future to study such refinements and
generalizations.

It remains unclear whether Christoffel sampling provides any benefits over Monte Carlo sampling for
learning Lipschitz operators in the Gaussian setting, that is, whether (uniform) near-optimal sample com-
plexities can be achieved with samples drawn directly from the underlying Gaussian measure. We refer to [9],
where the same question was studied in the context of holomorphic operators and Jacobi measures. In that
case, Monte Carlo sampling is as good as Christoffel sampling.

In the present paper, we did not consider encoding and decoding errors, errors due to noisy observations,
or the error of computing empirical PCA bases, as in PCA-Net [49]. In subsequent work we shall take these
errors into account and study the convergence of PCA-Net-like approaches for learning Lipschitz operators
as well as analyze deep neural network approximations, e.g., in terms of practical existence theorems [7, 2,
3, 4, 32], or techniques from statistical learning theory [64, 55]. The present article provides the theoretical
foundations for these future research directions and serves as an important first step towards practical
implementations of (near-)optimal approximation algorithms for Lipschitz operators.
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Appendices
A Notions of differentiability
We recall several notions of differentiability, loosely following [16, Chpt. 5.1]. The constructions in this section
hold for general Banach spaces X and Y. As usual, we denote by L(X ,Y) the space of all bounded linear
operators F from X to Y with finite operator norm ∥F∥L(X ,Y) := supX∈X ,X ̸=0 ∥F (X)∥Y/∥X∥X . We set
L(X ) := L(X ,R).

Definition A.1 (Differentiability). Let M be a collection of non-empty subsets of X , let X ∈ X , and let
Ω be an open neighborhood of X. A mapping F : Ω → Y is said to be differentiable with respect to M at
the point X if there exists a continuous linear mapping ℓ ∈ L(X ,Y) such that for every fixed set M ∈ M,
we have

lim
t→0

sup
Z∈M

∥∥∥∥F (X + tZ)− F (X)
t

− ℓ(Z)
∥∥∥∥

Y
= 0.

In that case, ℓ is unique and we write DMF (X) := ℓ for the derivative of F at X.

IfM is the class of all finite, compact, or bounded subsets of X , then we say that F is Gâteaux, Hadamard,
or Fréchet differentiable at X, respectively. If X is finite-dimensional, then Hadamard and Fréchet differ-
entiability at X are equivalent and the corresponding derivatives of F at X coincide. We usually drop the
superscriptM in the notation of the derivative and write DF (X) instead of DMF (X). It will be clear from
context which notion of derivative we refer to. We call F differentiable (in the corresponding sense) if it is
differentiable (in the corresponding sense) at every point X ∈ X . The resulting derivative DF is a mapping
from X to L(X ,Y).

If E is a linear subspace of X (possibly with a stronger norm), then we say that F is differentiable along
E at the point X (in the corresponding sense) if the mapping Z 7→ F (X + Z) is differentiable from E to
Y at Z = 0 (in the corresponding sense). If F is Fréchet differentiable along E at X, then it is Hadamard
differentiable along E at X. If F is Hadamard differentiable along E at X, then it is Gâteaux differentiable
along E at X. In both cases, the corresponding derivatives at X coincide and we denote them by DEF (X). We
call F differentiable along E (in the corresponding sense) if it is differentiable along E at every point X ∈ X
(in the corresponding sense). The resulting derivative DEF is a mapping from X to L(E ,Y). Moreover, the
differential operator DE , mapping F to its derivative DEF , is linear in F .

Example A.2. If E = X , then DEF = DF . If F is Fréchet differentiable and we choose E to be the
Cameron-Martin space H of a Gaussian measure on X (see Appendix C.1), then DEF is the H-derivative of
F which is commonly used in infinite-dimensional analysis, see [57, Sect. 9].

If E = span{Z}, Z ∈ X \ {0}, is one-dimensional, we obtain the usual directional derivative

∂

∂Z
F (X) := Dspan{Z}F (X)(Z) = lim

t→0

F (X + tZ)− F (X)
t

∈ Y.

In this case, the Gâteaux, Hadamard, and Fréchet derivatives along E at X coincide. For any subspaces
E ′ ⊂ E ⊂ X , it can be readily seen that, if F : X → Y is differentiable along E at a point X ∈ X (in the
corresponding sense), then F is also differentiable along E ′ at X (in the corresponding sense) and

DEF (X)|E′ = DE′F (X).

In particular, if F is differentiable along E at X (in the corresponding sense), then, for any Z ∈ E \ {0}, the
directional derivative ∂

∂ZF (X) at X exists and

∂

∂Z
F (X) = DEF (X)(Z).
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If X = Rn and Z = ei is the ith standard unit vector, we use the standard notation ∂iF (x) = ∂xiF (x) :=
∂

∂ei
F (x) for x = (x1, . . . , xn) ∈ Rn.
If E is a Hilbert subspace of X and if F : X → R is Fréchet differentiable along E at X, then, by the Riesz

representation theorem, there exists a unique Z ∈ E such that DEF (X)(X ′) = ⟨Z,X ′⟩E for every X ′ ∈ E . In
this case, we call Z the E-gradient of F at X and write

∇EF (X) := Z.

Definition A.3 (The space C1
b (X )). We denote by C1

b (X ) the set of all boundedly Fréchet differentiable
functionals on X , that is, the set of all Fréchet differentiable mappings F : X → R which are bounded on X
and whose derivative DF is bounded in L(X ). The corresponding norm is given by

∥F∥C1
b

(X ) := sup
X∈X

|F (X)|+ ∥DF∥L(X ).

B Results from operator theory
B.1 Closability and closure of operators
We define closability and the closure of operators between Hilbert spaces and state standard properties. For
further details we refer to [14, Chpt. 12].

Let H1,H2 be two Hilbert spaces. A linear H2-valued operator (not necessarily bounded) acting on H1
is a linear mapping A : dom(A)→ H2 from a linear subspace dom(A) ⊂ H1 to H2. The set dom(A) is called
the domain of A. The graph of A is defined as the set

ΓA := {(H,AH) ∈ H1 ⊕H2 : H ∈ dom(A)} .

Considered as a subspace of the direct sum H1 ⊕H2 and equipped with the graph inner product,

⟨H,K⟩ΓA
:= ⟨H,K⟩H1

+ ⟨AH,AK⟩H2
, H,K ∈ dom(A),

this becomes a Hilbert space with graph norm

∥(H,AH)∥ΓA
:=
√
⟨H,H⟩ΓA

=
(
∥H∥2

H1
+ ∥AH∥2

H2

)1/2
.

Definition B.1 (Closability and closure). A linear operator A : dom(A) → H2 is called closable (in H1)
if the closure of its graph ΓA in H1 ⊕H2 is the graph of some (necessarily unique) linear operator, that is,
there exists a linear operator A : dom(A)→ H2 such that ΓA = ΓA. In this case, we call A the closure of A.

If A is closable, then the domain of its closure is given by

dom(A) =
{
H ∈ H1 : ∃(Hn)n∈N ⊂ dom(A) : lim

n→∞
Hn = H, (AHn)n∈N converges in H2

}
.

For H ∈ dom(A), we have
AH = lim

n→∞
AHn in H2

for every sequence (Hn)n∈N ⊂ dom(A) such that Hn → H in H1, and the limit limn→∞ AHn is independent
of the sequence (Hn)n∈N (cf. [14, Thm. 2.1]). If A is closable, we equip dom(A) with the graph inner product,
which turns (dom(A), ⟨·, ·⟩Γ

A
) into a Hilbert space.
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B.2 Hilbert-Schmidt operators
We recall the notion of Hilbert-Schmidt operators. Further details can be found, e.g., in [14, Chpt. 8.7]. Let
H1,H2 be two separable Hilbert spaces.

Definition B.2 (Hilbert-Schmidt operator). A bounded linear operator A ∈ L(H1,H2) is called a Hilbert-
Schmidt operator if there exists an orthonormal basis {ζi}i∈N of H1 such that

∞∑
i=1
∥Aζi∥2

H2
<∞. (B.1)

The convergence of the series (B.1) and its value are independent of the basis of H1. We denote the space
of all Hilbert-Schmidt operators from H1 to H2 by HS(H1,H2) and set

∥A∥HS(H1,H2) :=
( ∞∑

i=1
∥Aζi∥2

H2

)1/2

for any orthonormal basis {ζi}i∈N of H1. This norm is induced by the inner product

⟨A,B⟩HS(H1,H2) :=
∞∑

i=1
⟨Aζi, Bζi⟩H2

,

where for any pair of Hilbert-Schmidt operators A,B, the series on the right-hand side converges for every
orthonormal basis {ζi}i∈N of H1 and its value is independent of the basis. The space HS(H1,H2) with this
inner product is a separable Hilbert space.

C Results from infinite-dimensional analysis
We recall some well-known results from infinite-dimensional analysis which are used to define the Gaussian
Sobolev space W 1,2

µ,b(X ;Y) (see Definition 3.1) and to prove Theorem 3.9 in Appendix D. We first define the
Cameron-Martin space H of µ in X in Appendix C.1 and then discuss the construction of W 1,2

µ,b(X ;Y) as
well as some of its important properties in Appendix C.2. We mainly follow [57] and [23], which consider
the cases b =

√
λ and b = 1, respectively, and generalize the proofs therein to the case 0 < b ≤ 1. More

information can also be found in [16]. Throughout this section, we use notation as introduced in Sections 2
and 3.

C.1 The Cameron-Martin space
We commence with the celebrated Fernique theorem:

Theorem C.1 (Fernique, [57, Thm. 2.3.1]). There exists α > 0 such that∫
X

exp(α∥X∥2
X )dµ(X) <∞.

Fernique’s theorem implies that any mapping X → Y which grows at most polynomially at infinity
belongs to L2

µ(X ;Y). In particular, the mapping

j : X ∗ → L2
µ(X ), F 7→ j(F ) = F,

is well-defined. We use it to define the Cameron-Martin space:
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Definition C.2 (Cameron-Martin space). The Cameron-Martin space of µ (in X ) is the set of all X ∈ X
whose H-norm is finite, where

∥X∥H := sup
{
F (X) : F ∈ X ∗, ∥j(F )∥L2

µ(X ) ≤ 1
}
.

To further describe the structure of the space H, we introduce the reproducing kernel Hilbert space X ∗
µ

of µ as the closure of j(X ∗) under the L2
µ(X )-norm, that is,

X ∗
µ := j(X ∗)

∥·∥L2
µ(X ) ,

together with the mapping
Rµ : X ∗

µ → X , F 7→
∫

X
XF (X)dµ(X),

where the integral is to be understood in the sense of Bochner. Note that Rµ is well-defined by Theorem C.1.

Proposition C.3 (Relation between H and X ∗
µ , [57, Prop. 3.1.2]). An element H ∈ X belongs to H if and

only if there exists Ĥ ∈ X ∗
µ such that H = Rµ(Ĥ). In that case, we have

∥H∥H = ∥Ĥ∥L2
µ(X ).

Hence, Rµ : X ∗
µ → H is an isometric isomorphism that turns H into a Hilbert space with inner product

⟨H,K⟩H :=
〈
Ĥ, K̂

〉
L2

µ(X )

whenever H = RµĤ and K = RµK̂.

In our case, where X is a separable Hilbert space, the Cameron-Martin space has a particularly simple
structure in terms of the covariance operator Q of µ and the corresponding orthonormal PCA eigenbasis
{ϕi}i∈N of X and PCA eigenvalues λi:

Theorem C.4 (Cameron-Martin space in a separable Hilbert space, cf. [57, Thm. 4.2.7]).

(i) The Cameron-Martin space of µ is given by

H = Q1/2(X ).

(ii) For H = Q1/2(Z) ∈ H with Z ∈ X , we have

Ĥ(X) =
∞∑

i=1
λ

−1/2
i ⟨X,ϕi⟩X ⟨Z, ϕi⟩X for µ-a.e. X ∈ X .

(iii) The inner product in H satisies

⟨H,K⟩H =
〈
Q−1/2H,Q−1/2K

〉
X
, ∀H,K ∈ H.

In particular, the family of vectors {ξi}i∈N with

ξi :=
√
λiϕi, ∀i ∈ N, (C.1)

is an orthonormal basis of H and ξ̂i ∈ X ∗
µ is given by

ξ̂i(·) = λ
−1/2
i ⟨·, ϕi⟩X , ∀i ∈ N. (C.2)

The right-hand side in (C.2) defines an element in X ∗ and we identify each ξ̂i with its version in X ∗.
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C.2 The Gaussian Sobolev space W 1,2
µ,b(X ;Y)

Recall from Subsection 2.3 the weighted space Xb with weight sequence b = (bi)i∈N, 0 < b ≤ 1, and with
orthonormal basis {ηi}i∈N, defined in (2.1).

C.2.1 Construction

The construction of Gaussian Sobolev spaces is based on so-called cylindrical functionals which have an
explicit simple structure.

Definition C.5 (Cylindrical functionals and operators). A functional φ : X → R is called a cylindrical
functional if there exist n ∈ N, ℓ1, . . . , ℓn ∈ X ∗, and a function ω : Rn → R such that

φ(X) = ω(ℓ1(X), . . . , ℓn(X)), ∀X ∈ X .

We call φ a cylindrical boundedly Fréchet differentiable functional if, with the above notation, ω ∈ C1
b (Rn).

The space of all such functionals is denoted by FC1
b (X ). Moreover, we define the set of all cylindrical

boundedly Fréchet differentiable Y-valued operators by

FC1
b (X ,Y) := span

{
X ∋ X 7→ φ(X)Y ∈ Y : φ ∈ FC1

b (X ), Y ∈ Y
}
.

Lemma C.6. For every F ∈ FC1
b (X ,Y) the derivative DXb

F lies in L2
µ(X ; HS(Xb,Y)).

Proof. By linearity of the differential operatorDXb
, it suffices to consider cylindrical operators F ∈ FC1

b (X ,Y)
of the form F (·) = φ(·)Y for some φ ∈ FC1

b (X ) and Y ∈ Y. We fix any such F and note that it is Fréchet
differentiable along Xb at every point X ∈ X with derivative

DXb
F (X)(Z) = ⟨∇Xb

φ(X), Z⟩Xb
Y, ∀Z ∈ Xb.

Next, define the map
JY : Xb → HS(Xb,Y), JY (X)(Z) := ⟨X,Z⟩Xb

Y,

It is well-defined as well as linear and bounded. Indeed, using the orthonormal basis {ηi}i∈N of Xb, we have,
by Parseval’s identity,

∥JY (X)∥2
HS(Xb,Y) =

∞∑
i=1
∥JY (X)(ηi)∥2

Y =
∞∑

i=1

∣∣⟨X, ηi⟩Xb

∣∣2 ∥Y ∥2
Y = ∥X∥2

Xb
∥Y ∥2

Y .

Moreover, by definition, the map X 7→ ∇Xb
φ(X) is continuous and bounded from X to Xb. Since DXb

F =
JY ◦ ∇Xb

φ, we conclude that F 7→ DXb
F is continuous and bounded as a map from X to HS(Xb,Y). In

particular, by Theorem C.1, it belongs to L2
µ(X ; HS(Xb,Y)).

Proposition C.7 (Closability of DXb
). The (Fréchet) differential operator along Xb, DXb

: FC1
b (X ;Y) →

L2
µ(X ; HS(Xb,Y)) is closable in L2

µ(X ;Y).

Proof. First note that the mapping DXb
: FC1

b (X ;Y) → L2
µ(X ; HS(Xb,Y)) is well-defined by Lemma C.6.

The proof of closability is a straight-forward modification of the proof of [57, Lem. 10.2.4], replacing the
derivative along the Cameron-Martin space by the derivative along the space Xb.

The previous result justifies the definition of the space W 1,2
µ,b(X ;Y) as described in Definition 3.1.
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C.2.2 Properties

The following lemma provides an important criterion for an operator to belong to W 1,2
µ,b(X ;Y):

Lemma C.8. If Fn → F in L2
µ(X ;Y) and supn∈N ∥Fn∥W 1,2

µ,b
(X ;Y) <∞, then F ∈W 1,2

µ,b(X ;Y).

Proof. Since W 1,2
µ,b(X ;Y) is a Hilbert space, it is reflexive. As (Fn)n∈N is bounded in W 1,2

µ,b(X ;Y) by assump-
tion, there exists a subsequence (Fnk

)k∈N which converges weakly in W 1,2
µ,b(X ;Y) to some G as k →∞. Since

Fnk
→ F in L2

µ(X ;Y) by assumption, we conclude that F = G, and the claim follows.

Next, we consider the ℓ2-characterization of W 1,2
µ,b(X ;Y), see Theorem 3.5. For γ ∈ Γ and i ∈ N, we define

γ(i) = (γ(i)
k )k∈N ∈ Γ as follows: If γi = 0, we set γ(i) := 0, and if γi > 0, we set

γ
(i)
k :=

{
γk − 1 if k = i,

γk if k ̸= i.

Proposition C.9. Let F ∈W 1,2
µ,b(X ;Y). Then, we have

∂

∂ηi
F =

∑
γ∈Γ

bi

√
γi

λi

(∫
X
FHγ,λdµ

)
Hγ(i),λ, ∀i ∈ N, (C.3)

and

∥F∥2
W 1,2

µ,b
(X ;Y) =

∑
γ∈Γ

(
1 +

∞∑
i=1

b2
i

γi

λi

)∥∥∥∥∫
X
FHγ,λdµ

∥∥∥∥2

Y
. (C.4)

Conversely, if for a family of vectors (Yγ)γ∈Γ ⊂ Y, one has

∑
γ∈Γ

(
1 +

∞∑
i=1

b2
i

γi

λi

)
∥Yγ∥2

Y <∞, (C.5)

then
F :=

∑
γ∈Γ

YγHγ,λ ∈W 1,2
µ,b(X ;Y).

Proof. First, let us fix a cylindrical functional φ ∈ FC1
b (X ). By [23, Lemma 10.14], the partial derivatives

of φ satisfy
∂

∂ϕi
φ =

∑
γ∈Γ

√
γi

λi

(∫
X
φHγ,λdµ

)
Hγ(i),λ, ∀i ∈ N. (C.6)

Since ∂
∂ηi

φ = bi
∂

∂ϕi
φ, it follows follows from (C.6) together with orthonormality of the Hermite polynomials

that ∫
X

(
∂

∂ηi
φ

)
Hγ(i),λdµ = bi

√
γi

λi

∫
X
φHγ,λdµ, ∀i ∈ N. (C.7)

By linearity, this holds, in fact, for every cylindrical operator φ ∈ FC1
b (X ,Y).

Now suppose that F ∈ W 1,2
µ,b(X ;Y). It suffices to prove (C.3) as (C.4) then follows by Parseval’s iden-

tity (2.5). For this, it is enough to show that∫
X

(
∂

∂ηi
F

)
Hγ(i),λdµ = bi

√
γi

λi

∫
X
FHγ,λdµ, ∀i ∈ N. (C.8)

By definition of W 1,2
µ,b(X ;Y), there exists a sequence (φn)n∈N ⊂ FC1

b (X ,Y) such that limn→∞ φn = F and
limn→∞

∂
∂ηi

φn = ∂
∂ηi

F in L2
µ(X ;Y). We set φ = φn in (C.7) and take the limit n→∞ to obtain (C.8).
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Conversely, suppose that (C.5) holds for a sequence (Yγ)γ∈Γ ⊂ Y. We fix an enumeration τ : N → Γ of
Γ and define

Fn :=
n∑

j=1
Yτ(j)Hτ(j),λ, ∀n ∈ N.

By Parseval’s identity, we can bound the L2
µ(X ;Y)-norm of the Fn by

∥Fn∥2
L2

µ(X ;Y) =
n∑

j=1
∥Yγ∥2

Y ≤
∑
γ∈Γ
∥Yγ∥2

Y (C.9)

and the right-hand side is finite by (C.5). This implies, in particular, that (Fn)n∈N is a Cauchy sequence in
L2

µ(X ;Y). Hence, there exists some F ∈ L2
µ(X ;Y) such that

Fn → F in L2
µ(X ;Y) as n→∞. (C.10)

Since Fn ∈ FC1
b (X ,Y), we can set φ = Fn in (C.7), and obtain

∂

∂ηi
Fn =

n∑
j=1

bi

√
τ(j)i

λi
Yτ(j)Hτ(j)(i) , ∀i ∈ N.

Consequently, we can bound the L2
µ(X ; HS(Xb,Y))-norm of the derivatives DXb

Fn by∫
X
∥DXb

Fn(X)∥2
HS(Xb,Y)dµ(X) =

∫
X

∞∑
i=1

∥∥∥∥ ∂

∂ηi
Fn(X)

∥∥∥∥2

Y
dµ(X)

=
∞∑

i=1

∫
X

∥∥∥∥∥∥
n∑

j=1
bi

√
τ(j)i

λi
Yτ(j)Hτ(j)(i)(X)

∥∥∥∥∥∥
2

Y

dµ(X)

=
∞∑

i=1

n∑
j=1

b2
i

τ(j)i

λi

∥∥Yτ(j)
∥∥2

Y

≤
∞∑

j=1

∞∑
i=1

b2
i

τ(j)i

λi

∥∥Yτ(j)
∥∥2

Y ,

(C.11)

and the right-hand side is again finite by (C.5). Combining (C.9) and (C.11), we conclude that the Fn are
uniformly bounded in W 1,2

µ,b(X ;Y). By Lemma C.8, it then follows that F ∈W 1,2
µ,b(X ;Y).

We now consider operators with a certain structure. They will become important in the proof of Theo-
rem 3.9 in Appendix D. To this end, recall from Theorem C.4(iii) the orthonormal basis {ξi}i∈N of H with
ξi =

√
λiϕi, Rµξ̂i = ξi, and ξ̂i ∈ X ∗. For every F ∈ L2

µ(X ;Y) and n ∈ N, we define

EnF : X → Y, EnF := E[F | ξ̂1, . . . , ξ̂n], (C.12)

to be the conditional expectation of F with respect to the σ-algebra generated by the random variables
ξ̂1, . . . , ξ̂n. Furthermore, for n ∈ N, we define the mapping

Pn : X → span{ξ̂i : i ∈ [n]}, PnX :=
n∑

i=1
ξ̂i(X)ξi. (C.13)

Proposition C.10 (Properties of EnF in L2
µ). For F ∈ L2

µ(X ;Y), let EnF and Pn be given as in (C.12)
and (C.13), respectively. Then the following holds:
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(i) For every F ∈ L2
µ(X ;Y) and n ∈ N,

EnF (X) =
∫

X
F (PnX + (I − Pn)Z)dµ(Z) for µ-a.e. X ∈ X .

In particular, EnF can be identified with an operator on Pn(X ) by setting Fn(Z) := EnF (X) for
Z = Pn(X).

(ii) For every F ∈ L2
µ(X ;Y), the sequence (EnF )n∈N converges to F in L2

µ(X ;Y).

Proof. We refer to the proofs of Proposition 7.4.1 and Proposition 7.4.4, respectively, in [57], which can be
adopted almost verbatim, only changing the Lebesgue integrals to Bochner integrals.

Proposition C.10 can be extended to operators in W 1,2
µ,b(X ;Y):

Proposition C.11 (Properties of EnF in W 1,2
µ,b). Let F ∈W 1,2

µ,b(X ;Y) and let EnF be defined as in (C.12).
We have EnF ∈W 1,2

µ,b(X ;Y) for every n ∈ N and

lim
n→∞

EnF = F in W 1,2
µ,b(X ;Y).

The case of H-differentiable functionals, that is, b =
√

λ (see Remark 2.1) and Y = R, is covered
by [57, Prop. 10.1.2] which reads as follows:

Proposition C.12. Let F ∈W 1,2
µ,

√
λ

(X ). Then, for every n ∈ N, we have EnF ∈W 1,2
µ,

√
λ

(X ) and the following
properties hold:

(i) For every i ∈ N, the ith partial derivative of EnF is given by

∂

∂ξi
EnF =

{
En( ∂

∂ξi
F ) if j ≤ n,

0 if j > n.

(ii) We have limn→∞ EnF = F in W 1,2
µ,

√
λ

(X ).

Proof of Proposition C.11. We first prove the claim for F ∈ FC1
b (X ,Y) and then for general operators in

W 1,2
µ,b(X ;Y) by density and a diagonal argument. Let us fix F ∈ FC1

b (X ,Y). By linearity, it suffices to
consider cylindrical operators of the form F (·) = φ(·)Y with φ ∈ FC1

b (X ) and Y ∈ Y. Since ηi = biλ
−1/2
i ξi,

we have
∂

∂ηi
EnF (X) = biλ

−1/2
i

∂

∂ξi
EnF (X) = biλ

−1/2
i Y

∂

∂ξi
Enφ(X), ∀X ∈ X , ∀i ∈ N.

Let {ψj}j∈N be an orthonormal basis of Y. Using Proposition C.12(i), Parseval’s identity, and the contraction
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property of the conditional expectation, we can bound the norm of the derivative DXb
EnF by

∥DXb
EnF∥2

L2
µ(X ;HS(Xb,Y)) =

∫
X

∞∑
i=1

∥∥∥∥ ∂

∂ηi
EnF (X)

∥∥∥∥2

Y
dµ(X)

=
∫

X

∞∑
i=1

∞∑
j=1

b2
iλ

−1
i ∥Y ∥

2
Y

∣∣∣∣〈 ∂

∂ξi
Enφ(X), ψj

〉
Y

∣∣∣∣2 dµ(X)

=
n∑

i=1
b2

iλ
−1
i ∥Y ∥

2
Y

∞∑
j=1

∫
X

∣∣∣∣〈En

(
∂

∂ξi
φ

)
(X), ψj

〉
Y

∣∣∣∣2 dµ(X)

=
n∑

i=1
b2

iλ
−1
i ∥Y ∥

2
Y

∥∥∥∥En

(
∂

∂ξi
φ

)∥∥∥∥2

L2
µ(X )

≤
n∑

i=1
b2

iλ
−1
i ∥Y ∥

2
Y

∥∥∥∥ ∂

∂ξi
φ

∥∥∥∥2

L2
µ(X )

≤
∫

X

∞∑
i=1

∥∥∥∥ ∂

∂ηi
F (X)

∥∥∥∥2

Y
dµ(X) = ∥DXb

F∥2
L2

µ(X ;HS(Xb,Y)).

(C.14)

Since in addition ∥EnF∥L2
µ(X ;Y) ≤ ∥F∥L2

µ(X ;Y) by the contraction property of the conditional expectation,
we conclude

∥EnF∥W 1,2
µ,b

(X ;Y) ≤ ∥F∥W 1,2
µ,b

(X ;Y), ∀F ∈ FC
1
b (X ,Y). (C.15)

In particular, this shows that EnF ∈ W 1,2
µ,b(X ;Y) for every n ∈ N. To prove convergence in W 1,2

µ,b(X ;Y), we
first note that by Proposition C.10(ii), EnF converges to F in L2

µ(X ;Y) as n→∞. Since φ is cylindrical, it
can be written as φ(X) = ω(ξ̂1(X), . . . , ξ̂k(X)) for some k ∈ N. This implies

∥DXb
EnF −DXb

F∥L2
µ(X ;HS(Xb,Y)) ≤

(
max
i∈[k]

b2
iλ

−1
i

)
∥Y ∥Y

∥∥∥∇X√
λ
Enφ−∇X√

λ
φ
∥∥∥

L2
µ(X ;X√

λ)
,

and the right-hand side converges to 0 as n→∞ by Proposition C.12(ii). Altogether, we conclude

lim
n→∞

EnF = F in W 1,2
µ,b(X ;Y) for all F ∈ FC1

b (X ,Y). (C.16)

For the general case, let F ∈ W 1,2
µ,b(X ;Y), and let (Fk)k∈N ⊂ FC1

b (X ,Y) be a sequence converging to F
in W 1,2

µ,b(X ;Y). Again by the contraction property of the conditional expectation, we have

∥EnFk − EnF∥L2
µ(X ;Y) ≤ ∥Fk − F∥L2

µ(X ;Y), ∀n, k ∈ N,

which implies limk→∞ EnFk = EnF in L2
µ(X ;Y). In addition, by (C.15), (EnFk)k∈N is a Cauchy sequence in

W 1,2
µ,b(X ;Y), which yields

lim
k→∞

DXb
EnFk = DXb

EnF in L2
µ(X ; HS(Xb,Y)).

Consequently, again by (C.15),

∥DXb
EnF∥L2

µ(X ;HS(Xb,Y)) = lim
k→∞

∥DXb
EnFk∥L2

µ(X ;HS(Xb,Y)) ≤ lim
k→∞

∥DXb
Fk∥L2

µ(X ;HS(Xb,Y))

= ∥DXb
F∥L2

µ(X ;HS(Xb,Y)).

Together with ∥EnF∥L2
µ(X ;Y) ≤ ∥F∥L2

µ(X ;Y), we conclude

∥EnF∥W 1,2
µ,b

(X ;Y) ≤ ∥F∥W 1,2
µ,b

(X ;Y), ∀F ∈W
1,2
µ,b(X ;Y), (C.17)
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and therefore EnF ∈W 1,2
µ,b(X ;Y) for every n ∈ N. To prove convergence, first note that, for any k ∈ N,

∥EnF − F∥W 1,2
µ,b

(X ;Y) ≤ ∥EnF − EnFk∥W 1,2
µ,b

(X ;Y) + ∥EnFk − Fk∥W 1,2
µ,b

(X ;Y) + ∥Fk − F∥W 1,2
µ,b

(X ;Y)

≤ ∥EnFk − Fk∥W 1,2
µ,b

(X ;Y) + 2∥Fk − F∥W 1,2
µ,b

(X ;Y),

where we used (C.17) in the second step. Next, let ϵ > 0 be arbitrary and choose k large enough such that
∥Fk − F∥W 1,2

µ,b
(X ;Y) ≤ ϵ. Then,

∥EnF − F∥W 1,2
µ,b

(X ;Y) ≤ ∥EnFk − Fk∥W 1,2
µ,b

(X ;Y) + 2ϵ,

and taking the limsup n→∞ yields, by (C.16),

lim sup
n→∞

∥EnF − F∥W 1,2
µ,b

(X ;Y) ≤ 2ϵ.

As this holds for any ϵ > 0, the claim follows.

We provide one more technical lemma which asserts that certain functionals lie in W 1,2
µ,b(X ). For X ∈ X

and i ∈ N, we use use the notation xi := ⟨X,ϕi⟩X , where {ϕi}i∈N is the PCA basis of X .

Lemma C.13. Let φ : X → R be a functional of the form

φ(X) = ω(λ−1/2
1 x1, . . . , λ

−1/2
n xn), X ∈ X ,

with n ∈ N and ω ∈ L2(Rn). Suppose that ω (possibly modified on an Ln-null set) is absolutely continuous
along each compact subinterval of almost every line parallel to one of the coordinate axes with (weak) partial
derivatives in L2(Rn). That is, there exists g : Rn → R such that ψ = g Ln-a.e., and for each k ∈ [n], the
functions

gk(x, t) := g(x1, . . . , xk−1, t, xk+1, . . . , xn)

are absolutely continuous in t on compact subsets of R for Ln−1-a.e. point x = (x1, . . . , xk−1, xk+1, . . . , xn)
in Rn−1, and ∂tgk ∈ L2(Rn). Then, φ ∈W 1,2

µ,b(X ) and

∂

∂ηi
φ(X) = biλ

−1/2
i ∂iω(λ−1/2

1 x1, . . . , λ
−1/2
n xn)

for µ-a.e. X ∈ X and every i ∈ [n].

Proof. First note that for i ∈ [n], X ∈ X , we have λ−1/2
i xi = ξ̂i(X) with ξ̂i ∈ X ∗ given by (C.2). For brevity,

we write ξ̂(X) := (ξ̂1(X), . . . , ξ̂n(X)). The assumptions on ω imply that it lies in the space W 1,2
loc (Rn) of

weakly differentiable functions which, up to their first derivatives, are locally L2-integrable, see, e.g., [30,
Thm. 4.21]. Let (ωj)j∈N ⊂ C∞

c (Rn) be a sequence of smooth, compactly supported functions such that
limj→∞ ωj = ω and limj→∞ ∂iωj = ∂iω in L2(Rn) for every i ∈ [n]. We define

φj := ωj ◦ ξ̂, ∀j ∈ N,

and note that, by construction, φj ∈ FC1
b (X ). It is then easy to see that, as j →∞,

φj → φ in L2
µ(X )

as well as
∂

∂ηi
φj(·)→ biλ

−1/2
i ∂iω(ξ̂(·)) in L2

µ(X ) for every i ∈ [n].

This shows the claim by definition of W 1,2
µ,b(X ).
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D Proof of Theorem 3.9
We modify the argument in the proof of [57, Prop. 10.1.4]. Let F : X → Y be Lipschitz continuous with
L := [F ]Lip(X ,Y). The idea is to use Lemma C.8 to show that F ∈ W 1,2

µ,b(X ;Y). By Lipschitz continuity,
F (X) ≤ F (0) + L∥X∥X for every X ∈ X and therefore, by Theorem C.1, F ∈ L2

µ(X ;Y). As approximating
sequence to F we take Fn := EnF , as defined in (C.12). By Proposition C.10, we have limn→∞ EnF = F in
L2

µ(X ;Y), and we can write
EnF (X) = Vn(Tn(X))

for some Vn : Rn → Y and Tn : X → Rn, Tn(X) := (ξ̂1(X), . . . , ξ̂n(X)) with ξi, ξ̂i defined in (C.1), (C.2). Note
that Vn inherits Lipschitz continuity of F . Indeed, using Proposition C.10(i) and the fact that ξ̂i(ξj) = δi,j ,
we find for x, z ∈ Rn that

∥Vn(x + z)− Vn(x)∥Y =

∥∥∥∥∥EnF

(
n∑

i=1
xiξi +

n∑
i=1

ziξi

)
− EnF

(
n∑

i=1
xiξi

)∥∥∥∥∥
Y

≤
∫

X

∥∥∥∥∥F
(

n∑
i=1

xiξi +
n∑

i=1
ziξi + (I − Pn)Y

)
− F

(
n∑

i=1
xiξi + (I − Pn)Y

)∥∥∥∥∥
Y

dµ(Y )

≤ L

∥∥∥∥∥
n∑

i=1
ziξi

∥∥∥∥∥
X

= L

∥∥∥∥∥
n∑

i=1

√
λiziϕi

∥∥∥∥∥
X

= L

(
n∑

i=1
λiz

2
i

)1/2

(D.1)

≤ L
(

max
i∈[n]

√
λi

)
∥z∥Rn . (D.2)

Proof of (i). Suppose that dim(Y) = m ∈ N and let {ψj}j∈[m] be an orthonormal basis of Y. For j ∈ [m],
we define the function(al)s

V (j)
n : Rn → R, x 7→ ⟨Vn(x), ψj⟩Y

E(j)
n F : X → R, X 7→ ⟨EnF (X), ψj⟩Y = V (j)

n (Tn(X)).

From (D.2) it follows that V (j)
n is Lipschitz continuous. By Rademacher’s theorem it is therefore Fréchet

differentiable Ln-almost everywhere. Suppose that X ∈ X is a point such that V (j)
n is differentiable at Tn(X).

We can then apply the chain rule and since ξ̂j(ηi) = biλ
−1/2
i δi,j , we get

DXb
(E(j)

n F )(X)(ηi) =
{〈
∇V (j)

n (Tn(X)), biλ
−1/2
i ei

〉
Rn

= biλ
−1/2
i ∂iV

(j)
n (Tn(X)) if 1 ≤ i ≤ n,

0 otherwise.

Recall that ei denotes the ith standard unit vector in Rn. To derive an upper bound for |∂iV
(j)

n (x)|, x ∈ Rn,
we equip Rn with a rescaled Euclidean inner product,

⟨x,y⟩Rn
λ

:=
n∑

i=1

√
λixiyi

with induced norm ∥x∥Rn
λ

:=
√
⟨x,x⟩Rn

λ
. We denote the hereby defined space as Rn

λ and observe that

{λ−1/2
i ei}i∈N is an orthonormal basis. Now note that (D.1) implies that V (j)

n is L-Lipschitz as a function
from Rn

λ to R. Hence, for Ln-almost every x ∈ Rn and 1 ≤ i ≤ n, it follows
n∑

i=1
λ−1

i

∣∣∣∂iV
(j)

n (x)
∣∣∣2 =

n∑
i=1

∣∣∣DV (j)
n (x)(λ−1/2

i ei)
∣∣∣2

=
∥∥∥DV (j)

n (x)
∥∥∥2

HS(Rn
λ

,R)
=
∥∥∥DV (j)

n (x)
∥∥∥2

L(Rn
λ

,R)
≤ L2.

(D.3)
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Consequently, whenever V (j)
n is differentiable at Tn(X), we have for every j ∈ [m],

∥DXb
(EnF )(X)∥2

HS(Xb,Y) =

∥∥∥∥∥∥
m∑

j=1
DXb

(E(j)
n F )(X)ψj

∥∥∥∥∥∥
2

HS(Xb,Y)

=
∞∑

i=1

∥∥∥∥∥∥
m∑

j=1
DXb

(E(j)
n F )(X)(ηi)ψj

∥∥∥∥∥∥
2

Y

=
∞∑

i=1

m∑
j=1

∣∣∣DXb
(E(j)

n F )(X)(ηi)
∣∣∣2 =

n∑
i=1

m∑
j=1

b2
iλ

−1
i

∣∣∣∂iV
(j)

n (Tn(X))
∣∣∣2

≤ mL2,

(D.4)

where we used in the last step that bi ≤ 1 for every i ∈ N.
Next, we show that for µ-a.e. X ∈ X and every j ∈ [m], V (j)

n is Fréchet differentiable at Tn(X). To this
end, let A ⊂ Rn be the set such that for every j ∈ [m], V (j)

n is differentiable at every point x ∈ Rn \ A.
Then each V

(j)
n is Fréchet differentiable at any point Tn(X) with X ∈ X \ T−1

n (A). It thus suffices to show
that µ(T−1

n (A)) = 0. We know that Ln(A) = 0, and since µn is absolutely continuous with respect to Ln,
it follows that µn(A) = 0. Moreover, it is easy to see that µn is equal to the push-forward measure (Tn)♯µ,
and thus µ(T−1

n (A)) = 0. Hence, (D.4) holds for µ-a.e. X ∈ X , which implies∫
X
∥DXb

(EnF )(X)∥2
HS(Xb,Y)dµ(X) ≤ mL2, ∀n ∈ N.

As EnF → F in L2
µ(X ;Y), we can now use Lemma C.8 to conclude that F ∈ W 1,2

µ,b(X ;Y). This shows that
Lip(X ,Y) ⊂W 1,2

µ,b(X ;Y).
Next, we show that C0,1(X ,Y) is continuously embedded in W 1,2

µ,b(X ;Y). By (D.4), we know that
∥DXb

(EnF )(X)∥L2
µ(X ;HS(Xb,Y) ≤

√
mL. Moreover, from Proposition C.10(i) it follows that ∥EnF∥L2

µ(X ;Y) ≤
supX∈X ∥F (X)∥Y . In total, we have

∥EnF∥W 1,2
µ,b

(X ;Y) ≤ sup
X∈X

∥F (X)∥Y +
√
mL ≤

√
m∥F∥C0,1(X ,Y).

As limn→∞ EnF = F in W 1,2
µ,b(X ;Y) by Proposition C.11, the claim follows.

Proof of (ii). Suppose that dim(Y) = ∞. Notice that in this case we cannot use the same argument as
in the proof of (i) for two reasons. First, (D.4) does not give a meaningful bound for m = ∞. Second, and
more subtly, a similar estimate as in (D.3) does not hold because equality of the operator norm and the
Hilbert-Schmidt norm is only true for rank-one-operators. We thus have to argue differently.

To this end, assume that b ∈ ℓ2(N). We derive bounds for the partial derivatives ∂iVn and use square-
summability of b to ensure finiteness even if Y has infinite dimension. First, as Vn : Rn → Y is Lipschitz
continuous, we can use the generalized Rademacher theorem to conclude that Vn is Hadamard differen-
tiable (and, in fact, Fréchet differentiable since Rn has finite dimension) Ln-almost everywhere in Rn,
see [11, Thm. 1 in Chpt. 2 & Rmk. 2 in Chpt. 1]. Suppose that X ∈ X is a point such that Vn is differ-
entiable at Tn(X). As in the proof of (i), we can then apply the chain rule to get

DXb
(EnF )(X)(ηi) =

{
DVn(Tn(X))(biλ

−1/2
i ei) = biλ

−1/2
i ∂iVn(Tn(X)) if 1 ≤ i ≤ n,

0 otherwise.

Note that setting z = ei in (D.2) implies that ∥∂iVn(x)∥Y ≤ L
√
λi for Ln-a.e. x ∈ Rn and every 1 ≤ i ≤ n.

Consequently, whenever Vn is differentiable at Tn(X), it follows that

∥DXb
(EnF )(X)∥2

HS(Xb,Y) =
∞∑

i=1
∥DXb

(EnF )(X)(ηi)∥2
Y =

n∑
i=1

b2
iλ

−1
i ∥∂iVn(X)∥2

Y

≤ L2
n∑

i=1
b2

i ≤ L2∥b∥2
ℓ2(N).

We can now proceed as in the proof of (i) to conclude the claim.
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