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Abstract

Within the framework of many-particle perturbation theory, we develop an analytical ap-
proach that allows us to determine the small distance behavior of Green’s functions and related
quantities in electronic structure theory. As a case study, we consider the one-particle Green’s
function up to 2nd order in the perturbation approach. We derive explicit expressions for the
leading order terms of the asymptotic small distance behavior. In particular, we demonstrate
the appearance of a logarithmic term in the corresponding 2nd order Feynman diagrams. Our
asymptotic analysis leads to an improved classification scheme for the diagrams, which takes into
account not only the perturbation order, but also the asymptotic smoothness properties near
their diagonals. Such a classification may be useful in the design of numerical algorithms and
helps to improve their efficiency.

1 Introduction

Computational methods in electronic structure theory are now at a mature stage, allowing simu-
lations ranging from atoms and molecules to macromolecules and solids. Depending on the size
of the system and the property under consideration, a large variety of many-particle models and
sophisticated algorithms for their simulation are available, see e.g. [17, 29] and the references cited
therein. While a systematic control of the modeling errors seems illusory, a systematic control of
the discretization errors should be mandatory. In practical applications, however, this topic is often
poorly treated, for obvious reasons: In general, many-particle models are highly nonlinear, and the
discretization is done with respect to basis sets, such as the popular and successful Gaussian-type
basis functions in quantum chemistry, which are neither stable nor systematically refinable from a
mathematical point of view. Rather, they belong to the realm of approximate approximation theory
[31]. Moreover, most of the quantities of interest, such as many-particle wavefunctions, density
matrices, Green’s functions, and response functions, have a complicated singular structure due to
the underlying singular Coulomb interactions, which makes it difficult to systematically improve the
discretization error. With the exception of wavefunctions, which are eigenfunctions of multiparticle
Hamilton operators, and the corresponding single-particle-densities, see e.g. [13, 18, 19, 20, 43],
there is no asymptotic analysis of the underlying singular behavior of these quantities. As a conse-
quence, rigorous results on convergence rates and error estimates are largely lacking in the literature.
Even for systematic basis functions, such as plane waves, wavelets, or finite elements, the size of the
basis set is often determined by the computational cost of the problem under consideration rather
than by the requirement to achieve a certain prescribed size of discretization error. Except for
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pure mean-field models such as Hartree-Fock and density functional theory,1 many-particle models
generally suffer from edge singularities and higher-order corner singularities, which severely limit
the convergence rates that can be achieved by systematic basis sets [43]. Even the use of adaptive
discretization schemes, e.g. by best N -term approximation, does not overcome this obstacle [7]. The
only promising approaches are either to incorporate emerging singular terms into the basis set or
to remove singularities from the model by an appropriate subtraction scheme. The first approach is
found for example in explicitly correlated many-particle methods, such as in coupled cluster theory,
which include the leading order singular term of the wavefunction in the basis set. In practice,
such an approach works surprisingly well and produces the most accurate results for molecules of
moderate size [30] that are currently available. The second approach is related to renormalization
schemes commonly used in quantum field theory. The basic idea is to subtract singular asymptotic
terms from the quantities under consideration, to determine them individually, and to sum them up
in renormalized coupling constants or local corrections. An example is range separation methods,
where the singular long-range Coulomb potential is split into a singular short-range and a smooth
long-range part. For both approaches it is necessary to identify occurring singular parts before the
actual simulation. This is a largely unexplored territory, especially for time- or frequency-dependent
quantities.

The purpose of this work is to prepare the ground for a systematic asymptotic analysis of the
small disctance behavior of time- and frequency-dependent quantities in electronic structure theory,
such as the Green’s functions and related response functions. This topic has a long tradition in
quantum field theory and is related to issues such as ultra-violet divergencies and corresponding
renormalization schemes. These make heavy use of space-time symmetries, such as translational
invariance, which is reflected in the fact that most of the work is done in momentum space. In
electronic structure theory, however, spatial symmetries are often broken by external potentials.
Therefore, we rely instead on a pseudo-differential calculus, which can be seen as a compromise
between localization in momentum and configuration space. The mathematical machinery we use
to study the asymptotic behavior of Green’s functions and related quantities is borrowed from
spectral theory, microlocal analysis, and in particular singular analysis. Our primary tool is Schulze’s
singular pseudo-differential calculus and corresponding function spaces, which encompass the whole
hierarchy of Coulomb singularities that can arise in many-particle Coulomb systems. To illustrate
our approach and the techniques involved, in this article we consider the asymptotic small distance
behavior of one-particle Green’s functions up to second order in perturbation theory.

This paper is structured as follows: After some introductory remarks on Green’s functions in
quantum many-particle theory, we discuss in Section 2.2 our approach of translating back from for-
mal spectral resolutions of operator resolvents to a formalism in the framework of pseudo-differential
operator algebras. This is an unavoidable first step in our asymptotic analysis, due to the fact that
the second quantization, commonly used in quantum many-particle theory, is based on formal spec-
tral resolutions in terms of eigenfunctions of appropriately chosen one-particle Hamilton operators.
It requires sophisticated techniques, such as the concept of generalized eigenfunctions, to deal with
these spectral resolutions within a rigorous mathematical framework.

In the main part of the paper, we apply the aforementioned technique and study the small dis-
tance behavior of one-particle Green’s functions for many-particle systems interacting via singular
Coulomb interactions. After a brief outline of some basic concepts and techniques of singular anal-
ysis in Section 3, we discuss how to apply Agmon’s limiting absorption principle in the framework
of singular analysis. In particular, this allows us to consider certain limits of complex resolvents
required for Green’s functions in quantum many-particle theory. This is followed by a detailed
discussion of various types of Feynman diagrams from the point of view of singular analysis, which

1In these models, it is only the possibly singular Coulomb potentials of the nuclei that give rise to point-like conical
singularities. Such types of singularities are efficiently treated by Gaussian-type basis functions and can be adaptively
treated by systematically refined local basis functions such as finite elements or wavelets.
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contribute to one-particle Green’s functions. Our asymptotic analysis is explicitly carried out only
up to second order in perturbation theory, but can be extended to higher orders with obvious
modifications. It should be noted that our treatment only considers the asymptotic small-distance
behavior of one-particle Green’s functions and does not deal with convergence issues of perturbative
expansions. The main objective of the present work is the development of tools that can be used to
obtain the leading asymptotic terms in the small-distance behavior for a large class of Feynman dia-
grams. They will then be employed to reveal possible connections between their perturbative order
and their singular behavior, and may help to improve the performance of numerical approximation
schemes for many-particle Green’s functions. This will be the subject of a future publication.

From a functional analytic point of view, Feynman diagrams have a rather complicated structure,
reflecting the highly multilinear character of the corresponding spectral resolutions. This requires
some modifications of the standard singular calculus based on algebras of linear differential and
pseudo-differential operators. In particular, the appearance of locally averaged partial traces of
resolvents complicates the asymptotic analysis. The exact meaning of this notion will be discussed
in Section 4.3. Suffice it to say here that local averages of singular kernel functions and corresponding
traces are considered in the theory of Hilbert-Schmidt operators, cf. [4], for further details. The
novelty in our particular application is that the averages are restricted to subdomains of codimension
greater than one. At the level of second-order perturbation theory, these locally averaged partial
traces lead to a logarithmic term in the asymptotic expansion of, for example, one-particle Green’s
functions. We illustrate this particular aspect with some analytical calculations for corresponding
model problems.

In the final Section 5 we put our results into a broader perspective and briefly outline some
further developments.

2 Many-particle models in electronic structure theory

Ground states and excited states in atoms, molecules and solids have been successfully simulated
by a variety of many-particle models based on first principles derived from quantum theory. Let us
mention only the (time-dependent) density functional theory ((TD)DFT), density matrix functionals
and many-particle perturbation theory based on Green’s functions, such as the GW approximation.
There are several other, so-called ab initio approaches, cf. [29] for a comprehensive discussion, which
are directly based on the many-particle wavefunction, such as configuration interaction (CI), multi
configuration self consistent field (MCSCF), multi reference configuration interaction (MRCI), and
coupled cluster (CC) theory [10, 12, 14], to name just a few popular acronyms.

Despite their suggestive name, first principle models often lack, at least from a mathematical
point of view, a clean and transparent derivation from their common origin, the many-particle
Schrödinger equation. Therefore, systematic improvements for many popular first principle models
are difficult to obtain. One possible remedy is to exploit the interrelationships between these models,
which allow the transfer of insights from one model to another. It is well known that the ab initio CC,
(TD)DFT and density matrix models have many interrelationships based on a common background
in Green’s function many-particle theory, cf. [33, 35], on which we will focus on in the following. For
the improvement of existing and the development of new first principle models, it turns out to be
advantageous to have knowledge of the analytic properties of many-particle Green’s functions and
related quantities, independent of specific discretization schemes. A common feature of all models in
electronic structure theory is the Coulomb potential, which represents the fundamental interaction
between particles. Due to its singular nature, all quantities involved in electronic structure theory,
such as wavefunctions, density matrices, Green’s functions, and response functions, have a certain
singular structure in common. It manifests in a specific asymptotic behavior of these quantities near
the coalescence points of particles.
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2.1 Some basic reduced quantities of many-particle models

The common origin of many-particle models considered in electronic structure theory is the Schrö-
dinger equation, which has as solutions the wavefunctions Ψ(x1, . . . , xN , t) of an N -particle system.
Because of the high dimensionality of wavefunctions it is often advantageous to consider a reduced
quantity that depends only on n << N particles and describes the action of these particles in the
mean-field generated by the other particles. The most prominent examples in many-particle theory
are Green’s functions, with one- and two-particle Green’s functions, in terms of Dirac’s bra-ket
notation, given by

G1(x1, t1|x2, t2) = −i〈Ψ0|T{ψ(x1, t1)ψ†(x2, t2)}|Ψ0〉, (2.1)

G2(x1, t1, x2, t2|x3, t3, x4, t4) = −〈Ψ0|T{ψ(x1, t1)ψ(x2, t2)ψ†(x4, t4)ψ†(x3, t3)}|Ψ0〉, (2.2)

where Ψ0 denotes the stationary ground state wavefunction of the N -particle system,2 ψ†, ψ are field
creation and annihilation operators in the Heisenberg picture3 and T{· · · } denotes the time-ordering
of the operators involved. Therefore, a one-particle Green’s function can be interpreted for t1 > t2
as the probability amplitude of a process where a particle is added to the ground state in x2 at time
t2 and a particle is annihilated in x1 at time t1, or vice versa if t2 > t1. Similarly, a two-particle
Green’s function describes the effect on the ground state of a pair of particles or holes that are
created and then annihilated.

Alternatively, the one-particle Green’s function G1 can be viewed as the fundamental solution
of a Schrödinger type equation, i.e.,

(
i∂t1 − h1

)
G1(x1, t1|x2, t2)−

∫
Σ(x1, t1, x3, t3)G1(x3, t3|x2, t2)dx3dt3 = δ(x1 − x2)δ(t1 − t2), (2.3)

where all many-particle effects are represented by the self energy Σ and h1 is the one-particle
Hamiltonian associated to the coordinates of the first particle. This equation reduces in the non-
interacting case, i.e., when the self energy Σ is set to zero, to(

i∂t1 − h1

)
G

(0)
1 (x1, t1|x2, t2) = δ(x1 − x2)δ(t1 − t2). (2.4)

It is often convenient to perform a partial Fourier transform with respect to the time variable, i.e.

G1(x1, x2;ω) =

∫ ∞
−∞

eitωG1(x1, t1 + t, x2, t1) dt. (2.5)

After such a partial Fourier transform, (2.3) and (2.4) become

(
ω − h1

)
G1(x1, x2;ω)−

∫
Σ(x1, x3;ω)G1(x3, x2;ω)dx3 = δ3(x1 − x2), (2.6)

(
ω − h1

)
G

(0)
1 (x1, x2;ω) = δ(x1 − x2). (2.7)

Furthermore, Green’s functions satisfy Dyson-type integral equations, e.g.

G1(x1, t1|x2, t2) = G
(0)
1 (x1, t1|x2, t2)

+

∫
G

(0)
1 (x1, t1|x3, t3)Σ(x3, t3, x4, t4)G1(x4, t4|x2, t2) dx3dx4dt3dt4. (2.8)

2Here we assume that the underlying Hamiltonian is time-independent.
3In order separate coordinates refering to anihilation and creation operators as arguments of Green’s functions, we

use the notation G(·|·) such that coordinates of anihilation operators appear to the left and coordinates of creation
operators appear to the right of the bar, respectively.
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While an analytic expression can be given for G
(0)
1 , no such expression exists for the self energy.

The latter is defined either via many-body perturbation theory, or Dyson’s equation itself serves as
a definition, given the definition (2.1) of the interacting Green’s function. In this sense G1 and Σ
should be considered as dual quantities related by a Dyson equation.

Green’s functions are related to other reduced quantities such as densities

ρ(x, t) = −i lim
τ→0+

G1(x, t|x, t+ τ), (2.9)

or reduced n-particle density matrices, such as

γ(x1, x2, t) = −i lim
τ→0+

G1(x1, t|x2, t+ τ), (2.10)

where both derived quantities can themselves serve as basic reduced quantities in many-particle
models, such as in the framework of density and density-matrix functional theory.

2.2 Spectral resolutions and their translation back to operator algebras

Modern techniques in quantum many-particle theory rely heavily on the formalism of second quan-
tization. This formalism is based on spectral resolutions with respect to an illusory complete single-
particle basis and corresponding multilinear representations of the quantities of interest. First,
it provides powerful techniques for formal manipulations that take into account the bosonic or
fermionic character of the particles involved. Furthermore, the second quantization provides mul-
tilinear expressions for the quantities of interest, which can be used in numerical simulations. In
fact, it is hard to imagine how to avoid the formalism of second quantization altogether, especially
within the diagrammatic approach that is considered the backbone of many-particle theory. But
besides the lack of mathematical rigor with respect to the underlying spectral resolution, such an ap-
proach hides the asymptotic information we are interested in. Therefore, it is necessary to translate
second quantized expressions back to an operator formalism that is convenient for our purposes4.
Specifically, we have to deal with sums over virtual orbitals and energy denominators of the form

1

εa + εb − εi − εj
, lim

η↘0

1

εa − εi − ω ± iη
,

where we adopt the common convention that sums with indices a, b, c, . . . and i, j, k, . . . pass over
unoccupied and occupied orbitals, respectively. Let us develop a vocabulary for our translation of ex-
pressions derived from second quantization back to the operator formalism. It is a tacit agreement
in the quantum many-particle literature that formal discrete sums actually represent generalized
eigenfunction expansions in an infinite-dimensional one-particle Hilbert space H1,5 with the corre-
sponding one-particle Hamiltonian h, which has a countable discrete spectrum ε1 < ε2 < . . . < 0
and a continuous spectrum [0,∞), here assuming the absence of a singular part of the spectrum. To
get a complete one-particle basis in H1, it is therefore necessary to complement the eigenfunctions
φα, which belong to the discrete eigenvalues εα, α = 1, 2, . . ., by generalized eigenfunctions φλ, with
continuous index λ ∈ [0,∞), which represent the continuous part of the spectrum. To simplify the
notation, it is common practice in the physics literature to deliberately choose summation signs and
integral symbols to refer to spectral decompositions with respect to such a basis, cf. [21] [footnote
p. 18]. Furthermore, in the present work we assume a spectral gap ∆ov > 0 between occupied and
unoccupied one-particle states in the system. We introduce the canonical orthogonal projection
operators Qocc and Qvirt, which project to the subspace Hocc := span{φi}i=1,n spanned by occu-
pied orbitals and its orthogonal complement Hvirt := H⊥occ in H1, respectively. The one-particle

4See [5] for an alternative analytical approach to deal with the second quantized formalism.
5The canonical choice for H1 is the function space L2(R3)⊗ σ, where σ denotes the discrete space of spin degrees

of freedom. For notational simplicity, we suppress the spin degrees in the following.
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Hamiltonian h represents a semi-bounded self-adjoint operator defined on a dense subspace D1 ⊂ H1

and has a natural decomposition with respect to the orthogonal subspaces Hocc, Hvirt via

h = Qocc hQocc + Qvirt hQvirt .

To llustrate our approach, consider a typical two-particle term of the form

κ(x, x̃) :=
∑
a,b,i,j

φi(x)φa(x)φj(x̃)φb(x̃)

εa + εb − εi − εj
Fabij

with

Fabij :=

∫∫
φi(y)φa(y)φj(ỹ)φb(ỹ)f(y, ỹ)dydỹ

for some given function f(y, ỹ). In operator form, this expression can be written as

κ(x, x̃) :=
∑
i,j

φi(x)⊗ φj(x̃)Sij
(
φi(x)⊗ φj(x̃)f(x, x̃)

)
.

with

Sij := Qvirt⊗Qvirt
1

h1 + h2 − εi − εj
Qvirt⊗Qvirt, (2.11)

which is a bounded operator in L(H1 ⊗ H1), due to the gap ∆ov in the spectrum of h. Here, h1

and h2 denote the one-particle Hamiltonian with respect to the coordinates of the first and second
particle, respectively. Consider the following partial differential equation(

h1 + h2 − εi − εj
)
τij(x, x̃) = φi(x)⊗ φj(x̃)f(x, x̃), (2.12)

for the unknown τij with generic singular right hand side, e.g.

f(x, x̃) =
1

|x− x̃|
,

which is treated in the framework of singular analysis below. Here we just want to mention that the
partial differential operator on the left hand side of (2.12) represents a semi-bounded self-adjoint
operator defined on a dense subspace D2 ⊂ H1 ⊗H1 and the right hand side belongs to H1 ⊗H1.6

Multiplying (2.12) from the left with Qvirt⊗Qvirt we get

Hijτij(x, x̃) = Qvirt⊗Qvirt
(
φi(x)⊗ φj(x̃)f(x, x̃)

)
, (2.13)

with
Hij := Qvirt⊗Qvirt

(
h1 + h2 − εi − εj

)
Qvirt⊗Qvirt,

which satisfies the identity
SijHij = Qvirt⊗Qvirt, (2.14)

on H1 ⊗H1. Applying (2.14) to (2.13), we get

Qvirt⊗Qvirt τij(x, x̃) = Sij
(
φi(x)⊗ φj(x̃)f(x, x̃)

)
,

and finally

κ(x, x̃) :=
∑
i,j

φi(x)⊗ φj(x̃) Qvirt⊗Qvirt τij(x, x̃). (2.15)

In summary, the central point of our approach is equation (2.12), which allows us to extract the
asymptotic small distance behavior of τij and thus, via (2.15), of κ, using techniques from singular
analysis to be discussed in detail below.

6This can be easily seen by explicitly taking H1 := L2(R3), which gives H1 ⊗H1 = L2(R3 × R3).
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3 Singular analysis, the limiting absorption principle and pseudo-
differential calculus

In order to obtain the asymptotic small distance behavior of a given quantity, we have to identify the
corresponding singular partial differential equation (PDE), like (2.12), whose solution, after some
intermediate steps, finally provides the desired asymptotic information. In general, such a PDE
corresponds to a many-particle problem, which cannot be solved analytically. Instead of searching
for an explicit solution, we are content with constructing a corresponding parametrix. Knowledge
of a parametrix and its corresponding remainder, the so-called Green operator7 turns out to be
sufficent to obtain the singular parts of the asymptotic small-distance behavior of a solution of a
singular PDE. The concept of a parametrix is non-standard in many-particle theory. Therefore,
we want to briefly outline the underlying idea and an essential feature of it in singular analysis.
A parametrix can be thought of as a pseudo-inverse8 of an elliptic partial differential operator A.
Ellipticity includes the Fredholm property, which means that the operator has a finite dimensional
kernel and cokernel. Under such a premise, the existence of a left (right) parametrix P can be
proved that satisfies the equation

P A = I +Kl (AP = I +Kr),

respectively. The parametrix P can be represented as a pseudo-differential operator and provides
an inverse modulo the compact operators Kl, (Kr). In the standard pseudo-differential calculus
on smooth manifolds, these compact operators are smoothing operators that do not encode any
specific asymptotic information. In contrast, the singular calculus applies to singular spaces with
conical, edge, and corner singularities. In the singular case, the compact remainders are called
Green operators Gl, (Gr), which now encode important asymptotic information. As an eplicit
example, consider the action of a parametrix P on an equation of the type Au = f with possibly
singular elliptic operator A and right hand side f . By left-multiplication with P we get the equation
P Au = P f , and with Gl = P A−I, we finally get

u = P f − Gl u.

Roughly speaking, if f has a well-defined asymptotic behavior, the parametrix P maps f to another
function whose asymptotic behavior is also well-defined. For the remainder Gl u, we do not know the
solution u, but regardless of its particular asymptotic behavior, the Green operator Gl maps it into
a space with well-defined asymptotic behavior depending only on A, we refer to the monographs
[6, 28, 38] for a detailed exposition. What remains to be done is an explicit construction of the
parametrix and the corresponding Green operator, which can be achieved order by order with a
recursive procedure for the asymptotic expansion of the parametrix, cf. [11] for further details.

3.1 Weighted cone and edge Sobolev spaces with asymptotics

To extract the desired asymptotic information, it is necessary to introduce appropriate function
spaces that take care of the asymptotic behavior near a singularity, and corresponding operator
algebras that allow us to keep track of it. In the field of singular analysis one considers so-called
Sobolev spaces with asymptotics, which are constructed in a recursive manner. Starting with point-
like conic singularities, one proceeds successively to higher order edge and corner singularities. In
the present work, we are primarily concerned with edge-type singularities along the diagonals of the
Green’s functions under consideration.

7The notion of a Green operator should not be confused with that of a Green’s function. The latter is actually
similar to a parametrix, cf. [15] for further details.

8A related notion in linear algebra is the Moore-Penrose pseudo-inverse of a possibly non-invertible matrix.
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Let us first consider conical singularities, locally modeled by an open stretched cone

X∧ := R+ ×X

with base X. To avoid unnecessary generality and complicated notation, we restrict ourselves to
cones with base X that are diffeomorphic to S2. The weighted Sobolev spaces Ks,γ(X∧) for s ∈ N0

are defined with respect to the corresponding spherical polar coordinates x̃→ (r, x) as

Ks,γ(X∧) := ωHs,γ(X∧) + (1− ω)Hs(R3),

for a cutoff function ω, i.e. ω ∈ C∞0 (R+) such that ω(r) = 1 near r = 0. Here Hs,γ(X∧) =
rγHs,0(X∧) and Hs,0(X∧) is defined as the set of all u(r, x) ∈ r−1L2(R+×X) such that (r∂r)

jDu ∈
r−1L2(R+ ×X) for all D ∈ Diffs−j(X), 0 ≤ j ≤ s. The definition for s ∈ R follows by duality and
complex interpolation. Weighted Sobolev spaces with asymptotics are then subspaces of Ks,γ spaces
defined as direct sums

Ks,γQ (X∧) := EγQ(X∧) +Ks,γΘ (X∧) (3.1)

of flattened weighted cone Sobolev spaces

Ks,γΘ (X∧) :=
⋂
ε>0

Ks,γ−ϑ−ε(X∧)

with Θ = (ϑ, 0], −∞ ≤ ϑ < 0, and asymptotic spaces

EγQ(X∧) :=

{
ω(r)

∑
j

mj∑
k=0

cjk(x)r−qj lnk r

}
. (3.2)

The asymptotic space EγQ(X∧) is characterized by a sequence qj ∈ C which stems from a strip of
the complex plane, i.e.

qj ∈
{
z :

3

2
− γ + ϑ < <z < 3

2
− γ
}
,

where the width and position of this strip are determined by its weight data (γ,Θ) with Θ = (ϑ, 0]
and −∞ ≤ ϑ < 0. Each substrip of finite width contains only a finite number of qj . Furthermore,
the coefficients cjk belong to finite dimensional subspaces Lj ⊂ C∞(X). The asymptotics of EγQ(X∧)
is thus completely characterized by the asymptotic type Q := {(qj ,mj , Lj)}j∈Z+ . In the following
we use the asymptotic subspaces

SγQ(X∧) :=
{
u ∈ K∞,γQ (X∧) : (1− ω)u ∈ S(R, C∞(X))|R+

}
with Schwartz-type behavior for exit r →∞. The spaces Ks,γQ (X∧) and SγQ(X∧) are Fréchet spaces
equipped with natural semi-norms according to the decomposition (3.1); we refer to [6, 28, 38] for
further details.

Weighted wedge Sobolev spaces on W := X∧×Y can then be defined as functions Y → Ks,γ(Q)(X
∧),

where the subscript Q in parentheses means that the correpsonding expression refers to weighted
Sobolev spaces with and without asymptotics as well. Here and in the following, upper-case sub-
scripts like Q denote the asymptotic type of cone spaces. Consider the case Y = R3 and the
corresponding wedge Sobolev spaces

Ws(R3,Ks,γ(Q)(X
∧)) := {u : R3 → Ks,γ(Q)(X

∧) |u ∈ S(R3,Ks,γ(Q)(X
∧)}

with s, γ ∈ R and norm closure with respect to the norm

‖u‖2Ws(R3,Ks,γ
(Q)

(X∧)) :=

∫
[η]2s‖κ−1

[η] (Fy→ηu)(η)‖2Ks,γ
(Q)

(X∧)dη.
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Here Fy→η denotes the Fourier transform in R3 and {κλ}λ∈R+ is a strongly continuous group of
isomorphisms κλ : Ks,γ(Q)(X

∧)→ Ks,γ(Q)(X
∧) defined for the three-diemnsional particle case by

κλu(r, x, y) := λ
3
2u(λr, x, y).

The function [η] involved in the norm is given by a strictly positive C∞(R3) function of the covari-
ables η such that [η] = |η| for |η| ≥ ε > 0. The motivation behind this group action is the twisted
homogeneity of the principal edge symbols, see [38] for more details. For an open subset Y ⊂ R3

we define

Ws
comp(Y,Ks,γ(Q)(X

∧)) := {u ∈ Ws(R3,Ks,γ(Q)(X
∧)) : suppu ⊂ Y compact},

and

Ws
loc(Y,Ks,γ(Q)(X

∧)) := {u ∈ D′(Y,Ks,γ(Q)(X
∧)) : ϕu ∈ Ws

comp(R3,Ks,γ(Q)(X
∧)) for each ϕ ∈ C∞0 (Y )}.

The weighted Sobolev spaces W∞comp(Y,K∞,γQ (X∧)), which are of particular interest in our applica-
tions, have a nice tensor product representation for their asymptotic expansion, cf. [38] [Prop. 3.1.33],
given by

ω(r)
∑
j

mj∑
k=0

r−pj logk r cjk(x)vjk(y) + hΘ(r, x, y) (3.3)

where (r, x, y) denotes the corresponding coordinates on the wedge X∧ × Y . Tensor components
cjk ∈ C∞(X), vjk ∈ H∞comp(Y ) correspond to functions on the base of the cone X and the edge Y ,
respectively.

3.2 The case of conical singularities

To give a rough outline of our approach, for simplicity we first consider the free single-particle
Hamiltonian h0 := −1

2∆ and the corresponding resolvent

R0(z) :=
(
h0 − z

)−1
, z ∈ C \ R+

which is a bounded operator in B(L2(R3), L2(R3)) and B(L2(R3), H2(R3)), respectively. It has
been shown in [2] that even in the limit z → λ, with λ ∈ R+, i.e. in the continuous spectrum of h0,
the resolvent in uniform operator topology converges to a bounded operator between appropriately
weighted function spaces. These functions spaces are defined for s ∈ R by

L2,s(R3) :=
{
u |
(
1 + |x|2

) s
2u ∈ L2(R3)

}
, (3.4)

H2,s(R3) :=
{
u | Dαu ∈ L2,s(R3) for |α| ≤ 2

}
. (3.5)

According to [2] [Theorem 4.1], the resolvent R0(z) can be considered as an analytic operator-valued
function on C\R+, with values in B(L2,s, H2,−s) for s > 1

2 . For any λ ∈ R+, in the uniform operator
topology of B(L2,s, H2,−s), the limits

R+
0 (λ) := lim

z→λ
=z>0

R0(z), R−0 (λ) := lim
z→λ
=z<0

R0(z)

exist. Furthermore, for any u ∈ L2,s, s > 1
2 , they satisfy the partial differential equation(

h0 − λ
)
R±0 (λ)u = u. (3.6)
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Given u ∈ SγP ((S2)∧) for some asymptotics P with 1
2 < γ < 3

2 and the two-sphere S2 now being
a concrete basis of the cone X∧, we have u ∈ L2,s(R3) for s ∈ R and (3.6) satisfied. Now, what can
be said about the asymptotic behavior of R±0 (λ)u ∈ H2,−s, s > 1

2 . Consider the decomposition of
R±0 (λ) into a short-range and a long-range part

R±0 (λ)u = ωR±0 (λ)u+ (1− ω)R±0 (λ)u (3.7)

for an arbitrary C∞0 cutoff function ω that is equal to one on a sphere of radius rω around the origin.
Putting this into (3.6) we get

ω̃
(
h0 − λ

)
ωR±0 (λ)u = ω̃u, (3.8)

with ω̃ ≺ ω, i.e. ω̃ω = ω̃. Now consider the auxiliary operator A0 := h0 +µ, with µ > 0, which is an
elliptic element in the operator class C2((S2)∧, g), g = (γ, γ−2,Θ) of the cone algebra for γ /∈ Z+ 1

2
and Θ = (−∞, 0]. Then A has a parametrix Pγ in the cone algebra9 that belongs to C−2((S2)∧, g),
g = (γ − 2, γ,Θ). It can be written in the general form

Pγ = ω′r2 opγ−3
M

(
h(−1)(r, w)

)
ω̃′ +

(
1− ω′

)
P̃
(
1− ω̂′

)
, (3.9)

where ω′, ω̃′, ω̂′ are cutoff functions satisfying ω′ ≺ ω̃′, ω̂′ ≺ ω′, and P̃ is a standard pseudo-
differential operator of order −2 on R3. By definition, the parametrix satisfies the equation

Pγ A0 = 1 + G̃γ with G̃γ ∈ CG((S2)∧, gl), gl = (γ, γ,Θ),

where the Green operator Gγ maps Ks,γ((S2)∧) to SγQ for some discrete asymptotics Q. Applying
(3.9) to (3.8) yields

Pγ ω̃u = Pγ ω̃
(
h0 − λ

)
ωR±0 (λ)u

= Pγ ω̃
(
h0 + µ

)
ωR±0 (λ)u− (λ+ µ)Pγ ω̃R±0 (λ)u

= ωR±0 (λ)u+ G̃γωR±0 (λ)u− (λ+ µ)Pγ ω̃R±0 (λ)u

and

ωR±0 (λ)u = Pγ ω̃u− G̃γωR±0 (λ)u+ (λ+ µ)Pγ ω̃R±0 (λ)u, (3.10)

where the first two terms on the right hand side have well-defined asymptotic behavior. Furthermore,
we can conclude

R±0 (λ)u ∈ H2,−s(R3) → ωR±0 (λ)u ∈ H2(R3) → ωR±0 (λ)u ∈ H2,γ
(
(S2)∧

)
,

for s > 1
2 and weight10 1

2 < γ < 3
2 . Next, we shift the weight of the parametrix. This results in an

additional Green operator, i.e. we get

Pγ = Pγ+2 +Gγ

with

Gγ := Pγ −Pγ+2

= ω′ opγ−1
M

(
h(−1)(w)

)
ω̃′ − ω′ opγ+1

M

(
h(−1)(w)

)
ω̃′

=
[
ω′ opγ−1

M

(
h(−1)(w)

)
r2ω̃′ − ω′r2 opγ−1

M

(
T−2h(−1)(w)

)
ω̃′
]
r−2.

9For notational simplicity, we suppress the µ-dependence of the parametrix and the Green operator in our notation.
10It follows from a Sobolev embedding theorem, see [23], that ωR±0 (λ)u ∈ L∞(R3) and therefore belongs to
H2,γ

(
(S2)∧

)
for γ < 3

2
, see [38] [Prop. 2.1.45].
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According to [38, Proposition 2.3.69], the term in square brackets belongs to CG((S2)∧, g) with
g = (γ, γ, (−∞, 0]). Applying this to the last term in (3.10) yields

Pγ ωR±0 (λ)u = Pγ+2 ωR
±
0 (λ)u+ Gγ ωR±0 (λ)u, (3.11)

with Pγ+2 ωR
±
0 (λ)u ∈ H2,γ+2

(
(S2)∧

)
, which means that we have moved this term with uncontrolled

asymptotic behavior from γ to γ + 2. Finally, inserting (3.11) into (3.10) yields

ωR±0 (λ)u = Pγ ω̃u− G̃γωR±0 (λ)u+ (λ+ µ)Gγ ωR±0 (λ)u︸ ︷︷ ︸
:=Rγu

+(λ+ µ)Pγ+2 ω̃R
±
0 (λ)u, (3.12)

We can now apply a bootstrap argument using (3.12) recursively to shift the weight γ to even larger
values, i.e.

ωR±0 (λ)u = Rγu+ (λ+ µ)Pγ+2 ω̃
[
Rγu+ (λ+ µ)Pγ+2 ω̃R

±
0 (λ)u

]
= Rγu+ (λ+ µ)

[
Pγ+2 ω̃Rγu+ (λ+ µ)Gγ+2 ω̃Pγ+2 ω̃R

±
0 (λ)u

]︸ ︷︷ ︸
:=Rγ+2u

+(λ+ µ)2 Pγ+4 ω̃Pγ+2 ω̃R
±
0 (λ)u

and continue with

ωR±0 (λ)u = Rγu+ (λ+ µ)Rγ+2u+ (λ+ µ)2 Pγ+4 ω̃Pγ+2 ω̃
[
Rγu+ (λ+ µ)Pγ+2 ω̃R

±
0 (λ)u

]
= Rγu+ (λ+ µ)Rγ+2u+ (λ+ µ)2

[
Pγ+4 ω̃Pγ+2 ω̃Rγu

+(λ+ µ)Pγ+4 ω̃ Gγ+2 ω̃Pγ+2 ω̃R
±
0 (λ)u+ (λ+ µ)Gγ+4 ω̃Pγ+4 ω̃Pγ+2 ω̃R

±
0 (λ)u

]
+(λ+ µ)3 Pγ+6 ω̃Pγ+4 ω̃Pγ+2 ω̃R

±
0 (λ)u,

where we have used

Pγ+4 ω̃Pγ+2 ω̃Pγ+2 ω̃R
±
0 (λ)u = Pγ+4 ω̃

[
Pγ+4 +Gγ+2

]
ω̃Pγ+2 ω̃R

±
0 (λ)u

= Pγ+4 ω̃ Gγ+2 ω̃Pγ+2 ω̃R
±
0 (λ)u+ Gγ+4 ω̃Pγ+4 ω̃Pγ+2 ω̃R

±
0 (λ)u

+Pγ+6 ω̃Pγ+4 ω̃Pγ+2 ω̃R
±
0 (λ)u.

For our applications, the previous considerations must be generalized by including a local potential,
i.e.

h := −1
2∆ + v (3.13)

so that the spectrum of h consists of a discrete part σdisc ⊂ R− with the lowest eigenvalue ε1 and
a continuous part σcont = R+. Moreover, the absence of a singular part will be assumed here,
and we assume that the potential v is smooth11 and satisfies the requirements of [2], in particular

|v(x)| .
∣∣1 + |x|

∣∣−1−ε
, for ε > 0, but see [3]. According to [2] [Theorem 4.2], our previous discussion

can be applied literally to h and the corresponding analytic resolvent

R(z) :=
(
h− z

)−1
, z ∈ C \ R+ ∪ σdisc,

and limits λ ∈ R+

R+(λ) := lim
z→λ
=z>0

R(z), R−(λ) := lim
z→λ
=z<0

R(z).

11For the reduced quantities considered below, we want to avoid introducing additional singularities beyond the
leading singularity along their diagonals x = x̃. A smooth pseudopotential or finite nucleus model would do the job.
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For the actual calculation of a parametrix, we refer to [9, 15], where explicit asymptotic parametrix
constructions for h and h0 with Coulomb potential have been discussed. The smooth potentials
considered in the present work can be treated analogously. Alternatively, it maybe preferable to use
the formal recursion relation

(h− z)−1 = (h0 − z)−1 − (h0 − z)−1v(x)(h− z)−1, z ∈ C \ R+ ∩ σdisc,

in a recursive way to derive the asymptotic behavior and reduce everything to the resolvents R±0 .
Actually, this recursion relation can be applied to the resolvents R±0 , R± as shown in [2], where the
recursion relation

R±(λ) = R±0 (λ) +R±0 (λ)vR±(λ)

was proved to hold for a sufficiently fast decaying potential v.
We can summarize the content of this section in the following lemma.

Lemma 1. Let u ∈ L2,s(R3) be a function with specific asymptotic behavior, i.e. u belongs to
a space Ks,γQ (X∧) of asymptotic type Q, see Section 3.1. The short-range part of the resolvents

ωR±0 (λ), ωR±(λ), cf. (3.7), map u into a Ks,γ
Q̃

(X∧) of asymptotic type Q̃ via12

ωR±(0)(λ)u ∼ ωRγ(λ, µ)u+ (λ+ µ)ωRγ+2(λ, µ)u+ (λ+ µ)2ωRγ+4(λ, µ)u+ · · · , (3.14)

with

Rγ(λ, µ) := Pγ ω̃ − G̃γωR±(0)(λ) + (λ+ µ)Gγ ωR±(0)(λ),

Rγ+2(λ, µ) := Pγ+2 ω̃Rγ(λ, µ) + (λ+ µ)Gγ+2 ω̃Pγ+2 ω̃R
±
(0)(λ),

Rγ+4(λ, µ) := Pγ+4 ω̃Pγ+2 ω̃Rγ(λ, µ) + (λ+ µ)Pγ+4 ω̃ Gγ+2 ω̃Pγ+2 ω̃R
±
(0)(λ)

+(λ+ µ)Gγ+4 ω̃Pγ+4 ω̃Pγ+2 ω̃R
±
(0)(λ),

...

where Pγ ,Pγ+2,Pγ+4, . . . are parametrices and G̃γ ,Gγ ,Gγ+2,Gγ+4, . . . corresponding Green operators
of the partial differential operator h0 + µ or h + µ, µ > 0, depending on which variant, i.e. R±0 (λ)
or R±(λ), of (3.14) has been considered.

Remark 1. For smooth potentials v in (3.13), the Green operators in the asymptotic expansion
(3.14) map to spaces Ks,γ

Q̃
(X∧) with smooth asymptotic type Q̃, which means that a function f ∈

Es,γ
Q̃

(X∧), cf. (3.2), can be extended to a function in C∞(R3) after changing to Cartesian coordinates.

It should be noted, however, that the pseudo-differential calculus also allows for singular potentials,
e.g. of the Coulomb-type, see [9, 16] for specific applications.

3.3 The case of edge-type singularities

A situation analogous to the conical case mentioned above arises for edge-type singularities, where
one considers two-particle systems in R3×R3 with an edge along the diagonal. Perturbation theory
needs analytic resolvents

R
(2)
(0)(z) :=

(
h(0),1 + h(0),2 − z

)−1
, z ∈ C \

(
R+ ∪ σdisc

)
of the (free) two-particle Hamiltonian h(0),1 + h(0),2 with

h0,i := −1
2∆i and hi := h0,i + vi, i = 1, 2,

12The subscrift (0) indicates that the asymptotic expansion can be applied to R±0 (λ) and R±(λ) as well.
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which are bounded operators in B
(
L2(R3 × R3), L2(R3 × R3)

)
and B

(
L2(R3 × R3), H2(R3 × R3)

)
.

According to the limiting absorption principle, for R
(2)
0 (z) and any λ ∈ R+, the limits

R
(2),+
0 (λ) := lim

z→λ
=z>0

R
(2)
0 (z), R

(2),−
0 (λ) := lim

z→λ
=z<0

R
(2)
0 (z). (3.15)

exist in the uniform operator topology of B(L2,s, H2,−s). For these limits, the discussion in Section
3.2 can be adopted almost verbatim, replacing the conical Sobolev spaces by the wedge Sobolev
spaces discussed in Section 3.1, and the conical pseudo-differential calculus by a generalized edge
pseudo-differential calculus. Since we do not make explicit use of the edge calculus in the rest of
this paper, we only refer to the monographs [28, 38] for a general exposition and [8, 10, 11, 12, 13]
for applications in electronic structure theory.

In the case of R(2)(z), however, the limiting absorption principle is not directly applicable.
This is due to the fact that the potential part v(x1) + v(x2), (x1, x2) ∈ R3 × R3 does not satisfy

|v(x1) + v(x2)| .
∣∣1 + |(x1, x2)|

∣∣−1−ε
, for some ε > 0, even if |v(x)| .

∣∣1 + |x|
∣∣−1−ε

is satisfied by
the potential v for some ε > 0. Since we are only interested in the asymptotic behavior along the
diagonal, we use the formal expansion(

h1 + h2 − z
)−1

=
(
h0,1 + h0,2 − z

)−1 −
(
h0,1 + h0,2 − z

)−1(
v1 + v2

)(
h1 + h2 − z

)−1
, (3.16)

and introduce appropriate cutoff functions ω12 ∈ C∞0 (R3×R3), with ω12(x1, x2) = 1 for |x1−x2| < c1

and ω12(x1, x2) = 0 for |x1 − x2| > c2, with 0 < c1 < c2. Now we consider the first order term in
the expansion (3.16), i.e.(

h0,1 + h0,2 − z
)−1(

v1 + v2

)(
h0,1 + h0,2 − z

)−1
ω12

=
(
h0,1 + h0,2 − z

)−1(
v1 + v2

)
ω̃12

(
h0,1 + h0,2 − z

)−1
ω12 (3.17)

+
(
h0,1 + h0,2 − z

)−1(
v1 + v2

)(
1− ω̃12

)(
h0,1 + h0,2 − z

)−1
ω12,

with ω12 ≺ ω̃12. The multiplicative operator
(
v1 + v2

)
ω̃12 in the first term on the right hand side of

(3.17) satisfies an estimate of the form

|
(
v(x1) + v(x2)

)
ω̃12(x1, x2)| .

∣∣1 + |(x1, x2)|
∣∣−1−ε

, (3.18)

for some ε > 0, if |v(x)| .
∣∣1 + |x|

∣∣−1−ε
with x ∈ R3 is satisfied for some ε > 0. From (3.18) it

follows that
(
v1 + v2

)
ω̃12 belongs to B(H2,−s, L2,s) for some s > 1

2 , and by submultiplicativity of
the operator norm we get

lim
z→λ
=z>0

(
h0,1 + h0,2 − z

)−1(
v1 + v2

)
ω̃12

(
h0,1 + h0,2 − z

)−1
ω12 = R

(2),+
0 (λ)

(
v1 + v2

)
ω̃12R

(2),+
0 (λ)ω12,

and the corresponding limit for =z < 0 in the uniform operator topology. The second term on the
right hand side of (3.17) represents a smoothing operator. This can be seen by looking at the kernel
function of the operator (

1− ω̃12

)(
h0,1 + h0,2 − z

)−1
ω12,

which is given by (
1− ω̃12(x1, x2)

)
k(x1, x2|x̃1, x̃2, z)ω12(x̃1, x̃2) (3.19)

where k ∈ C∞(R6×R6\D) is singular along the diagonal D. Because of ω12 ≺ ω̃12, the multiplicative
operators on the left and right side of k in (3.19) cut out a neighborhood of the diagonalD. Therefore,
(3.19) and its limits z → λ belong to C∞(R6×R6) and can be ignored when considering the singular
asymptotic behavior modulo smooth contributions.

For edge-type singularities, we can summarize the previous considerations in the following propo-
sition.
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Proposition 1. Let u ∈ L2,s(R3 × R3) be a function with specific asymptotic behavior along the
diagonal D, i.e., u belongs to a wedge Sobolev space Ws(D,Ks,γQ (X∧)) of asymptotic type Q, see

Section 3.1. The singular asymptotic behavior of ω̃R±0 (λ)ωu and ω̃R±(λ)ωu, modulo smooth re-
mainders, can be derived from the pseudo-differential edge calculus by constructions analogous to
the case of a conical singularity. In the case of ω̃R±(λ)ωu, we assume for the potential v that the

estimate |v(x)| .
∣∣1 + |x|

∣∣−1−ε
is satisfied for some ε > 0.

4 Asymptotic behavior of one-particle Green’s functions

In this section we turn to the main topic of the present work, which is the small distance behavior
of reduced quantities such as Green’s functions in electronic structure theory.

The singular behavior of Feynman diagrams in quantum field theory can be classified according
to Weinberg’s theorem [42]. It would be desirable to have a similar tool in electronic structure theory
that provides a priori information about the regularity properties of these diagrams. A first step in
this direction has been made in [12, 14], where the asymptotic behavior and the Besov regularity
of certain classes of Goldstone diagrams, i.e. ring and ladder diagrams as well as combinations
thereof, were derived. In the present work we extend these results to frequency-dependent Feynman
diagrams to study the time-dependent models mentioned above in the long run. Finally, we want to
use them to reduce the computational complexity of numerical algorithms for these models in the
future.

As a first step in this direction, we apply the techniques from singular analysis, outlined in the
previous Sections, to study the asymptotic small distance behavior of frequency-dependent one-
particle Green’s functions up to 2nd order perturbation theory.

4.1 One-particle Green’s function in 1st order perturbation theory

Let us consider the one-particle Green’s function in 1st order perturbation theory

G1p(x, x̃, ω) = −
∑
j,a,b

φa(x)φb(x̃)
〈aj|V (2)|bj〉 − 〈aj|V (2)|jb〉
(εa − ω − iη)(εb − ω − iη)

(4.1)

with the two-particle Coulomb potential V (2), where the limit η ↘ 0 must be understood implicitly.
The discrete representation (4.1) can be translated back into the continuum by introducing the
one-particle Hamiltonian (3.13), a multiplicative operator V̂c corresponding to the Hartree potential

Vc(x) :=
∑
j

∫
V (2)(x, x̃)|φj(x̃)|2 dx̃,

and the integral exchange operator V̂x with the kernel function

Vx(x, x̃) := −
∑
j

φj(x)V (2)(x, x̃)φj(x̃).

Both operators depend on the two-particle Coulomb potential V (2) and have already been discussed
from a singular analysis point of view in [12, 14, 16]. For φj in the Schwartz space, the exchange
operator V̂x can be viewed as a parameter-dependent kernel function of a classical pseudo-differential
operator in the Hörmander class S−2(R3 × R3). Next, we introduce the operator

Â+(ω) := Qvirt
(
h− ω − iη

)−1
Qvirt, (4.2)

with η > 0 and consider the operator

Ĝ+
1p(ω) := −Â+(ω)

(
V̂c + V̂x

)
Â+(ω), (4.3)
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where (4.1) is the kernel function in the limit η ↘ 0. To apply the limiting absorption principle,
i.e.-to take the limit η ↘ 0 in (4.3), we assume that the potential operator V̂c + V̂x belongs to
B(H2,−s, L2,s) for some s > 1

2 . Due to the exponential decay of the eigenfunctions φj this is

obviously true for the exchange part V̂x but not for the multiplicative part V̂c because of the slow
decay of the Coulomb potential. To satisfy this requirement, we replace the long-range Coulomb
potential in the following discussion by a screened Coulomb potential with sufficiently fast decay at
infinity. Since we are only concerned with the effects of the singular short-range part of the Coulomb
potential, such an approach seems to be reliable. According to the limiting absorption principle,
the limit

Â0(ω) := lim
η↘0

Â+(ω)

exists in the uniform operator topology, with Â0(ω) ∈ B(L2,s, H2,−s) for s > 1
2 . The following

lemma connects the one-particle Green’s function (4.1) to an operator.

Lemma 2. Let V̂c + V̂x ∈ B(H2,−s, L2,s) for some s > 1
2 . Then we get the limit

Ĝ1p(ω) = limη↘0Ĝ
+
1p(ω)

in the uniform operator topology, with Ĝ1p(ω) ∈ B(L2,s, H2,−s) given by

Ĝ1p(ω) = −Â0(ω)
(
V̂c + V̂x

)
Â0(ω). (4.4)

The operator (4.4) has the one-particle Green’s function (4.1) as its kernel function.

Proof. The proof is a simple consequence of the submultiplicativity of the corresponding operator
norms, i.e.

‖Ĝ+
1p(ω)− Ĝ1p(ω)‖L2,s,H2,−s = ‖Â+(ω)

(
V̂c + V̂x

)
Â+(ω)− Â0(ω)

(
V̂c + V̂x

)
Â0(ω)‖L2,s,H2,−s

≤ ‖
(
Â+(ω)− Â0(ω)

)(
V̂c + V̂x

)
Â+(ω)‖L2,s,H2,−s

+‖Â0(ω)
(
V̂c + V̂x

)(
Â+(ω)− Â0(ω)

)
‖L2,s,H2,−s

≤
(
‖Â+(ω)‖L2,s,H2,−s + ‖Â0(ω)‖L2,s,H2,−s

)
‖V̂c + V̂x‖H2,−s,L2,s

×‖Â+(ω)− Â0(ω)‖L2,s,H2,−s

Let us assume that V̂c + V̂x is a bounded multiplicative operator between spaces Ks,γ with equal
weights but possibly different asymptotic types Q and Q̃, respectively, i.e.

V̂c + V̂x : Ks,γQ (X∧)→ Ks,γ
Q̃

(X∧),

which is the case, e.g. for a Yukawa-like screening of the Coulomb potential

V (2)(x1, x2) = e−α|x1−x2|/|x1 − x2|, α > 0.

To apply Lemma 1, we introduce appropriate cutoff functions η ∈ C∞0 (R3) with η(x) = 1 for |x| < c1

and η(x) = 0 for |x| > c2 with 0 < c1 < c2, and consider in (4.4) the decomposition

−η̂Ĝ1p(ω) = η̂Â0(ω)η̃
(
V̂c + V̂x

)
ηÂ0(ω) + η̂Â0(ω) η̃

(
V̂c + V̂x

)(
1− η

)︸ ︷︷ ︸
s.o.

Â0(ω)

+ η̂Â0(ω)
(
1− η̃

)︸ ︷︷ ︸
s.o.

(
V̂c + V̂x

)
ηÂ0(ω) + η̂Â0(ω)

(
1− η̃

)︸ ︷︷ ︸
s.o.

(
V̂c + V̂x

)(
1− η

)
Â0(ω),
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with η̂ ≺ η̃ ≺ η. The bracketed expressions represent smoothing operators (s.o.), see the corre-
sponding discussion in Section 3.3, and the second, third, and fourth terms can be safely ignored
if one considers the singular asymptotic behavior modulo smooth contributions. Thus we get the
asymptotic expression

−η̂Ĝ1p(ω) ∼ η̂Â0(ω)η̃
(
V̂c + V̂x

)
ηÂ0(ω) modulo s.o..

Taking R+(ω) := Â0(ω), we can now apply Lemma 1 and get

−η̂Ĝ1p(ω) ∼ η̂
(
Rγ(ω, µ) + · · ·

)
η̃
(
V̂c + V̂x

)
η
(
Rγ(ω, µ) + · · ·

)
+ · · ·

If we restrict ourselves to those terms that potentially contribute to the singular asymptotics, see Re-
mark 1, we get

−η̂Ĝ1p(ω) ∼ η̂Pγ η̃V̂cηPγ +η̂Pγ η̃V̂xηPγ + · · · (4.5)

in leading order of the asymptotic expansion. Alternatively, the parameterices in the asymptotic
expansion can be considered as classical pseudo-differential operators, where the symbol of the first
term belongs to the Hörmander class S−4(R3×R3) and the symbol of the second term belongs to the
Hörmander class S−6(R3 ×R3). The classification scheme for symbols translates to the asymptotic
smoothness classification for the corresponding kernel functions, discussed in Section 5.

4.2 2nd order terms of the one-particle Green’s function

The approximate one-particle Green’s function in 2nd order perturbation theory is of particular
importance for applications in quantum chemistry, see e.g., [22, 34, 36, 41] and the references
cited therein. From a mathematical point of view, an interesting new feature appears in 2nd order
Feynman diagrams where partial traces of resolvents complicate the asymptotic analysis. Apart from
that, we can apply techniques from singular analysis, similar to those used in 1st order perturbation
theory.

Let us consider the 2nd order 2p1h contribution of a particle system. It is given in physics
notation by

G2p1h(x, x̃, ω) = −
∑

j,a,b,c,d

φc(x)φd(x̃)
〈cj|V (2)|ab〉〈ab|V (2)|dj〉 − 〈cj|V (2)|ab〉〈ab|V (2)|jd〉
(εc − ω − iη)(εa + εb − εj − ω − iη)(εd − ω − iη)

, (4.6)

see [32] [Eq. 3.58a]. To give it a rigorous formulation, in addition to (4.2) and the multiplication
operator V̂ (2) that denotes multiplication with a singular two-particle Coulomb-type potential, let
us introduce the operator

Ŝ+
j (ω) := Qvirt⊗Qvirt

1

h1 + h2 − εj − ω − iη
Qvirt⊗Qvirt . (4.7)

The two-particle operator we want to consider in the following is given by

Ĥ+
j (ω) := V̂ (2) Ŝ+

j (ω) V̂ (2), (4.8)

whose kernel function is given by

H+
j (x1, x2|x3, x4;ω) =

∑
a,b

φa(x1)φb(x2)V (2)(x1, x2)V (2)(x3, x4)φa(x3)φb(x4)

εa + εb − εj − ω − iη
.

For an asymptotic analysis of (4.6), we need to consider the partially contracted kernel functions

H+
d (x1, x3;ω) :=

∑
j

∫
φj(x2)H+

j (x1, x2|x3, x4;ω)φj(x4) dx2dx4, (4.9)
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H+
x (x1, x3;ω) :=

∑
j

∫
φj(x2)H+

j (x1, x2|x4, x3;ω)φj(x4) dx2dx4, (4.10)

representing the direct and exchange parts in (4.6), respectively. The kernel functions (4.9) and
(4.10) represent up to a constant the second order 2p1h part of the self-energy, see [32] [Eq. 3.58b].
Let us introduce the operators Ĥ+

d (ω), Ĥ+
x (ω), which are defined by their kernel functions (4.9) and

(4.10), respectively. Now we can define the operator

Ĝ2p1h(ω) = −Â+(ω)
(
Ĥ+
d (ω)− Ĥ+

x (ω)
)
Â+(ω),

which has the one-particle Green’s function (4.6) as its kernel function.
In the following we consider (4.8) and its kernel function from the point of view of singular

analysis and give a rigorous asymptotic expression for (4.9) and (4.10). In particular, we show that
it can be considered, modulo smooth terms, as a parameter-dependent kernel function of a classical
pseudo-differential operator in the Hörmander class S−3(R3 × R3).

4.3 Singular behavior of partially contracted kernel functions

Understanding the singular behavior of the partially contracted kernel functions (4.9), (4.10) requires
careful analysis that takes into account the various overlapping singular strata involved. To get
started, it is useful to consider a simple example where the partial contraction can be calculated
analytically.

Example 1. As an analytical example of a partially contracted kernel function, consider the fun-
damental solution of the 3d Laplace operator, given by

H(x, x̃) = − 1

4π|x− x̃|
with x := (x1, x2, x3), x̃ := (x̃1, x̃2, x̃3), (4.11)

and perform the contraction in 1d with respect to the Gaussion function φ(x3) = e−x
2
3, φ(x̃3) = e−x̃

2
3,

i.e. we consider the kernel function

K(x1, x2|x̃1, x̃2) := − 1

4π

∫ ∞
−∞

φ(x3)φ(x̃3)

|x− x̃|
dx3dx̃3,

which can be calculated analytically. For this we use the well-known integral representation

1

|x− x̃|
=

1√
π

∫ ∞
−∞

e−|x−x̃|
2t2dt, (4.12)

and determine the integral

I(t) =
1√
π

∫ ∞
−∞

e−x
2
3

[∫ ∞
−∞

e−(x3−x̃3)2t2e−x̃
2
3dx̃3

]
dx3

=
1√
π

∫ ∞
−∞

e−x
2
3

[√
π

1 + t2
e
− t2

1+t2
x23

]
dx3

=

√
π

1 + 2t2
. (4.13)

With this, we can calculate the partially contracted kernel function

K(x1, x2|x̃1, x̃2) = − 1

4π

∫ ∞
−∞

√
π

1 + 2t2
e−|x12|

2t2dt, with x12 := (x1 − x̃1, x2 − x̃2)

= − 1

4
√

2π
e
|x12|

2

4 K0

(
|x12|2

4

)
, (4.14)
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where we used [24] [3.462 (25)] in the second step. Using the asymptotic expansion [2] [9.6.8] for
the modified Bessel function K0, we get

K(x1, x2|x̃1, x̃2) ∼ 1

2
√

2π
ln |x12|.

Such singular asymptotic behavior is quite gratifying because it is proportional to the Green function
of the 2d Laplace operator. 13

However, in our envisioned applications, such direct analytic calculations of partial contractions
of kernel functions are not feasible. Instead we rely on techniques from singular analysis, briefly
discussed in Section 3, which have already been used to analyze the asymptotic behavior of pair
amplitudes [10, 12, 14] in coupled cluster theory. Such an approach requires as an intermediate step
a full contraction with an appropriate tensor product. To illustrate our approach, we reconsider the
previous example.

Example 2. Given the kernel function (4.11) from Example 1 and the two Gaussian functions

δa,β(x) :=
β

π
e−β|x−a|

2
, δb,β(x) :=

β

π
e−β|x−b|

2
, x := (x1, x2) ∈ R2

which can in the limit β → ∞ be considered as approximations to Dirac delta distributions with
support at a := (a1, a2), b := (b1, b2), respectively. The partially contracted kernel function (4.14)
can be recovered in the limit β →∞ from the 3d-integral

K(a1, a2|b1, b2) = lim
β→∞

− 1

4π

∫
R3

δa,β(x1, x2)⊗ φ(x3) · δa,β(x̃1, x̃2)⊗ φ(x̃3)

|x− x̃|
dxdx̃.

This is shown in Appendix A via an explicit calculation.

Now consider the operators (4.7) and (4.8), where (4.7) is sandwiched between two singular
multiplicative operators V̂ (2). In order not to get lost in technicalities, we make some simplifications
concerning these operators. Given

Qvirt⊗Qvirt = I ⊗ I − I ⊗Qocc−Qocc⊗I + Qocc⊗Qocc,

we get for (4.7) the decomposition

Ŝ+
j (ω) :=

(
h1 + h2 − εj − ω − iη

)−1 − I ⊗Qocc
(
h1 + h2 − εj − ω − iη

)−1
I ⊗Qocc

−Qocc⊗I
(
h1+h2−εj−ω−iη

)−1
Qocc⊗I+Qocc⊗Qocc

(
h1+h2−εj−ω−iη

)−1
Qocc⊗Qocc,

where the second and third terms correspond to effective single-particle operators and the fourth
term is of finite rank. In the following, we restrict our discussion to the first term of this decom-
position and and apply the expansion (3.16) to it. Since we have assumed smooth single-particle
potentials v from the beginning, it is clear that the expansion generates a series of operators of
increasing smoothness. Therefore, we restrict ourselves to the first term of the expansion. Further-
more, we assume that the multiplicative operator V̂ (2), depends only on the interparticle distance,
i.e. it represents a bare or screened Coulomb potential with the asymptotic expansion

V (2)(x1, x2) ∼ 1

|x1 − x2|
+O(1).

13This example shows that it is essential to contract with smeared-out functions φ, because contraction with a delta
distribution φ(x) = δ(x−a), a ∈ R, results in a kernel function K(x1, x2|x̃1, x̃2) = − 1

4π|x12|
. Thus, this allows to treat

a singular 2d kernel function in our calculus.
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To summarize our simplifications, instead of (4.8) we consider the operator

Ĥ(0)(ω) := V̂ (2)
(
h0,1 + h0,2 − ε− ω − iη

)−1
V̂ (2). (4.15)

Motivated by Example 2, we define the 3d test functions

δa,β(x) :=

(
β

π

) 3
2

e−β|x−a|
2
, δb,β(x) :=

(
β

π

) 3
2

e−β|x−b|
2
, x ∈ R3

and the integral corresponding to the direct part

Kβ(a, b) := lim
β→∞

∫∫
R3×R3

δa,β(x1)φ(x2)
(
Ĥ(0)(ω)δb,β ⊗ φ

)
(x1, x2) dx1dx2. (4.16)

and consider the asymptotic behavior of the expression

K(a, b) := lim
β→∞

Kβ(a, b). (4.17)

The asymptotics of K can be obtained in several steps. In the first step, we consider

Ψb,β(x1, x2) :=
(
h0,1 + h0,2 − ε− ω − iη

)−1
V̂ (2)δb,β(x1)⊗ φ(x2), (4.18)

for which we can determine the asymptotic behavior by considering the corresponding PDE(
h0,1 + h0,1 − ε− ω − iη

)
Ψb,β(x1, x2) =

δb,β(x1)φ(x2)

|x1 − x2|
, (4.19)

in the context of singular analysis. To do this, we need to introduce appropriate coordinates that
reflect the singular structure. These are center of mass coordinates given by

z1(x1, x2) = 1√
2
(x1 − x2), z2(x1, x2) = 1√

2
(x1 + x2).

Within the pseudo-differential algebra outlined in Section 3, (4.19) can be solved by an asymptotic
parametrix construction and corresponding Green operators, cf. Lemma 1 and Proposition 1, with
leading order term14 given by

Ψb,β ∼ P
(
V (2)δb,β ⊗ φ

)
− GΨb,β,

where Ψb,β corresponds to R
(2),+
0 (ε + ω)

(
V (2)δb,β ⊗ φ

)
in the notation of Section 3.3. An explicit

calculation of the asymptotic parametrix and the Green operator, see [12], shows that the asymptotic
expansion15

P0Ψ̃b,β(z1, z2) ∼ Ψ̃b,β(0, z2) + 1√
2
|z1|φ

(
1√
2
z2

)
δb,β
(

1√
2
z2

)
+O(|z1|2) (4.20)

exists, where we define Ψ̃b,β

(
z1(x1, x2), z2(x1, x2)

)
:= Ψb,β(x1, x2). This gives us the asymptotic

expansion

Kβ(a, b) ∼
∫∫

R3×R3

δa,β(x1)φ(x2)

|x1 − x2|

[
Ψb,β

(
1
2(x1 + x2), 1

2(x1 + x2)
)

+ 1
2 |x1 − x2|φ

(
1
2(x1 + x2)

)
δb,β
(

1
2(x1 + x2)

)
+O(|z1|2)

]
dx1dx2 (4.21)

14For notational simplicity we suppress the ε− and ω-dependence of the quantities involved.
15The first term in the asymptotic expansion vanishes for an electron pair in a triplet state. The asymptotic expansion

takes into account only terms with zero relative angular momentum, as indicated by the projection operator P0. For
further details see [12].
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for (4.16) and we treat the contributions of the terms in the asymptotic expansion (4.20) separately.
First, we deal with the parameter-dependent integral

I1(a, b) := lim
β→∞

∫∫
R3×R3

δa,β(x1)φ(x2)

|x1 − x2|
Ψb,β

(
1
2(x1 + x2), 1

2(x1 + x2)
)
dx1dx2

= lim
β→∞

4

∫∫
R3×R3

δa,β(x̃1)φ(2x̃2 − x̃1)

|x̃1 − x̃2|
Ψb,β(x̃2, x̃2) dx̃1dx̃2. (4.22)

Its asymptotic behavior for |a − b| → 0 depends on the properties of the family of functions Ψb,β

along the diagonal, for β sufficiently large. To illustrate our problem, we focus on the leading order
term of the singular asymptotic expansion of this family. We write (4.18) as an integral equation,
i.e.

Ψb,β(x1, x2) :=

∫∫
R3×R3

K12(x1, x2 | x̂1, x̂2)
δb,β(x̂1)φ(x̂2)

|x̂1 − x̂2|
dx̂1dx̂2, (4.23)

where the kernel function K12 of the shifted inverse Laplace operator(
h0,1 + h0,1 − ε− ω − iη

)−1
,

has an asymptotic behavior of the form16

K12(x1, x2 | x̂1, x̂2) ∼ c12(
|x1 − x̂1|2 + |x2 − x̂2|2

)2 . (4.24)

We thus restrict our discussion to the leading order asymptotic expression

Ψ
(0)
b,β(x̃2, x̃2) ∼

∫∫
R3×R3

c12(
|x̃2 − x̂1|2 + |x̃2 − x̂2|2

)2 δb,β(x̂1)φ(x̂2)

|x̂1 − x̂2|
dx̂1dx̂2

=

∫∫
R3×R3

c12

|(x̌1, x̌2)|4
δb,β(x̌1 + x̃2)φ(x̌2 + x̃2)

|x̌1 − x̌2|
dx̌1dx̌2. (4.25)

In the following lemma we give an analytic expression for (4.25) with φ(x) = e−x
2

at b = 0, where
the Coulomb singularity has its maximal effect according to (4.19).

Lemma 3. For a test function φ(x) = e−x
2
, the leading order asymptotic expression (4.25) at b = 0,

i.e.

Ψ
(0)
0,β(x̃2, x̃2) :=

∫∫
R3×R3

c12

|(x̌1, x̌2)|4
δ0,β(x̌1 + x̃2)e−(x̌2+x̃2)2

|x̌1 − x̌2|
dx̌1dx̌2, (4.26)

is given by

Ψ
(0)
0,β(x̃2, x̃2) = 2c12

√
πβ|x̃2|−2e−(β+1)|x̃2|2

∫ π
2

0

{√
aπ
[
e

1
2
v2(r) − e

1
2
w2(r)

]
(4.27)

+
√

a
2π
[
w(r)e

1
4
w2(r)V

(
−1

2 , w(r)
)
− v(r)e

1
4
v2(r)V

(
−1

2 , v(r)
)]}

cos(r) dr

= 2c12

√
πβ|x̃2|−2e−(β+1)|x̃2|2

∫ π
2

0

{√
aπ
[
e

1
2
v2(r) − e

1
2
w2(r)

]
(4.28)

+
√

2πa
[
w(r)e

1
2
w2(r)F

(
w(r)/

√
2
)
− v(r)e

1
2
v2(r)F

(
v(r)/

√
2
)]}

cos(r) dr,

16The kernel function K12 can be obtained by analytic continuation of a fundamental solution of the shifted Lapalce
operator in 6d, i.e., ∆6 − κ2, given by

−(2π)−3κ2r−2K2(κr),

where K2 denotes a modified Bessel function of the second kind, see e.g. [39] [Section II, §3] The modified Bessel
function has an asymptotic behavior for r → 0, cf. [1], of the form K2(κr) ∼ 2 (κr)−2.
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with

v(r) :=
2
(
β sin(r)−cos(r)

)
|x̃2|√

2
(
β sin2(r)+cos2(r)

) , w(r) :=
2
(
β sin(r)+cos(r)

)
|x̃2|√

2
(
β sin2(r)+cos2(r)

) , (4.29)

where V
(
−1

2 , ·
)

denotes a parabolic cylinder function and F (s) := e−s
2 ∫ s

0 e
t2 dt is the Dawson inte-

gral17, see [1]. In the asymptotic limit x̃2 → 0 we get

Ψ
(0)
0,∞(x̃2, x̃2) := lim

β→∞
Ψ

(0)
0,β(x̃2, x̃2) ∼ c12π

2|x̃2|−2e−|x̃2|
2
. (4.30)

For a finite fixed value of β, Ψ
(0)
0,β remains bounded along the diagonal, and we get

lim
x̃2→0

Ψ
(0)
0,β(x̃2, x̃2) = 2c12π

2β. (4.31)

Proof. To perform the calulation, we introduce hyperspherical coordinates for two particles given
by

x1 = t sin(r)Φ(θ1, φ1), x2 = t cos(r)Φ(θ2, φ2), (4.32)

with radial variable t :=
√
|x1|2 + |x2|2 and standard spherical coordinates. In these coordinates we

have the 6d volume element

dV = t5 sin2(r) cos2(r) sin(θ1) sin(θ2)dtdrdφ1dφ2dθ1dθ2.

Thus (4.26) becomes

Ψ
(0)
0,β(x̃2, x̃2) = 4π2c12

∫ ∞
0

∫ π
2

0

∫ π

0

∫ π

0

1

t4
1

t sin(r)

(
β

π

) 3
2

e−β
(
t2 sin2(r)+|x̃2|2+2t sin(r)|x̃2| cos(θ1)

)
×e−

(
t2 cos2(r)+|x̃2|2+2t cos(r)|x̃2| cos(θ2)

)
t5 sin2(r) cos2(r) sin(θ1) sin(θ2)dtdrdθ1dθ2

= 4π2c12

(
β

π

) 3
2

e−(β+1)|x̃2|
∫ ∞

0

∫ π
2

0
e−t

2
(
β sin2(r)+cos2(r)

)
×

sinh
(
2βt sin(r)|x̃2|

)
βt sin(r)|x̃2|

sinh
(
2t cos(r)|x̃2|

)
t cos(r)|x̃2|

sin(r) cos2(r)dtdr,

and, introducing the variables

a := β sin2(r) + cos2(r), b := 2β sin(r)|x̃2|, d := 2 cos(r)|x̃2|,

we have

Ψ
(0)
0,β(x̃2, x̃2) = 2c12

√
πβ|x̃2|−2e−(β+1)|x̃2|2 (4.33)

×
∫ ∞

0

∫ π
2

0
e−at

2 [
cosh

(
(b+ d)t

)
− cosh

(
(b− d)t

)]
t−2 cos(r)drdt.

The integral with respect to t can be evaluated analytically. As a start, partial integration gives∫ ∞
0

e−at
2 [

cosh
(
(b+ d)t

)
− cosh

(
(b− d)t

)]
t−2dt (4.34)

= −e−at2
[
cosh

(
(b+ d)t

)
− cosh

(
(b− d)t

)]
t−1
∣∣∣∞
0︸ ︷︷ ︸

=0

−2a

∫ ∞
0

e−at
2 [

cosh
(
(b+ d)t

)
− cosh

(
(b− d)t

)]
dt

+

∫ ∞
0

e−at
2 [

(b+ b) sinh
(
(b+ d)t

)
− (b− d) sinh

(
(b− d)t

)]
t−1dt. (4.35)

17The parabolic cylinder function and the Dawson integral are related by V
(
− 1

2
, t
)

= 2√
π
e

1
4
t2F (t/

√
2).
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Next we use the formulas, cf. [24] [p. 390, Eq. 3562 (1.,2.)], [1] [19.14.4] and [1] [19.3.8],∫ ∞
0

e−at
2

cosh(γt)dt = 1
2Γ(1) 1√

2a
e
γ2

8a

[
D−1

(
− γ√

2a

)
+D−1

( γ√
2a

)]
= π

2
1√
2a
e
γ2

8a V
(

1
2 ,

γ√
2a

)
= 1

2

√
π
ae

γ2

4a

∫ ∞
0

e−at
2

sinh(γt)t−1dt = lim
µ→0

1
2Γ(2µ)e

γ2

8a

[
D−2µ

(
− γ√

2a

)
+ sin

(
(2µ− 1

2)π
)
D−2µ

( γ√
2a

)]
= π

2 e
γ2

8a V
(
−1

2 ,
γ√
2a

)
,

where D−2µ and V denote parabolic cylinder functions, and obtain for the integral (4.34) the ex-
pression ∫ ∞

0
e−at

2 [
cosh

(
(b+ d)t

)
− cosh

(
(b− d)t

)]
t−2dt

=
√
aπe

(b−d)2
4a −

√
aπe

(b+d)2

4a

+π
2 (b+ d)e

(b+d)2

8a V
(
−1

2 ,
b+d√

2a

)
− π

2 (b− d)e
(b−d)2

8a V
(
−1

2 ,
b−d√

2a

)
=
√
aπ
[
e

1
2
v2 − e

1
2
w2
]

(4.36)

+
√

a
2π
[
we

1
4
w2
V
(
−1

2 , w
)
− ve

1
4
v2V

(
−1

2 , v
)]
.

Inserting into (4.33) yields (4.27).
For our purposes, it is important to understand the behavior of (4.36) for β →∞. Given a fixed

value of 0 < r < π
2 , we get

a ∼ β sin2(r), v ∼
√

2β|x̃2|, w ∼
√

2β|x̃2|, v − w ∼ − 2
3
2

√
β

cot(r)|x̃2|,

and using the asymptotic expansion [1] [19.8.2], for v(r), w(r)� 1
2 ,

V
(
−1

2 , x) ∼
√

2
πe

1
4
x2x−1

(
1 + x−2 + · · ·

)
,

we get in the limit β →∞ for (4.36) the asymptotic expression

∼
√
aπ
[
e

1
2
w2
w−2 − e

1
2
v2v−2 + · · ·

]
Now let us consider a Taylor expansion of (4.36) with respect to v − w, keeping only those terms
that do not vanish in the limit β →∞, i.e.

e
1
2
w2
w−2 − e

1
2
v2v−2 + · · · ∼ −

[
w−1(v − w) + 1

2(v − w)2 + 1
3!w(v − w)3 + · · ·

]
e

1
2
w2
, (4.37)

where we only keep terms up to O(β−1). For |x̃2| close to zero, we consider only the leading order
term, i.e.

Ψ
(0)
0,β(x̃2, x̃2) ∼ 4πc12

√
2β|x̃2|−1e−(β+1)|x̃2|2

∫ π
2

0
w−1(r)e

1
2
w2(r) cos2(r)dr,
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and get in the limit β →∞

Ψ
(0)
0,∞(x̃2, x̃2) ∼ 4πc12|x̃2|−2e−|x̃2|

2

∫ π
2

0
cos2(r)dr

∼ π2c12|x̃2|−2e−|x̃2|
2
,

which corresponds to the asymptotic expression (4.30). To illustrate the behavior of the Taylor

expansion (4.37), we have plotted in Fig. 1 the function Ψ
(0)
0,β for β = 1000, and approximations of

Ψ
(0)
0,∞ using Taylor polynomials (4.37) of first, second, and third order, respectively.

Finally, we consider the limit |x̃2| → 0 for large but finite values of β, i.e., v, w � 1
2 , using the

Taylor approximation, cf. [1] [19.3.6],

V
(
−1

2 , x
)
≈ V

(
−1

2 , 0
)

+ V ′
(
−1

2 , 0
)
x =

√
2
πx,

which gives

√
aπ
[
e

1
2
v2(r) − e

1
2
w2(r)

]
+
√

a
2π
[
w(r)e

1
4
w2(r)V

(
−1

2 , w(r)
)
− v(r)e

1
4
v2(r)V

(
−1

2 , v(r)
)]

≈ 1
2

√
aπ
(
w2(r)− v2(r)

)
.

With

w2(r)− v2(r) = 8β|x̃2|
sin(r) cos(r)

β sin2(r) + cos2(r)
,

the right hand side can be further approximated by

1
2

√
aπ
(
w2(r)− v2(r)

)
≈ 4
√
πβ|x̃2|2 cos(r),

for fixed r > 0 and sufficiently large β, which gives the limit (4.31). Roughly speaking, for finite

values of β, the function Ψ
(0)
0,β can be viewed as a regularization of the singular function Ψ

(0)
0,∞. This

behavior is illustrated in Fig. 1, where Ψ
(0)
0,β, for β = 1000, 2000 and 3000, has been compared with

Ψ
(0)
0,∞, obtained from the third-order Taylor polynomial (4.37).

The previous lemma shows that it is possible to apply Lebesgue’s dominated convergence theorem
in (4.22), i.e.

I
(0)
1 (a, 0) := lim

β→∞
4

∫∫
R3×R3

δa,β(x̃1)φ(2x̃2 − x̃1)

|x̃1 − x̃2|
Ψ

(0)
0,β(x̃2, x̃2) dx̃1dx̃2

= 4

∫∫
R3×R3

δa(x̃1)φ(2x̃2 − x̃1)

|x̃1 − x̃2|
Ψ

(0)
0,∞(x̃2, x̃2) dx̃1dx̃2

= 4

∫
R3

φ(2x̃2 − a)

|a− x̃2|
Ψ

(0)
0,∞(x̃2, x̃2) dx̃1.

From (4.30) in Lemma 3 we can derive the leading order singular asymptotic term by taking

φ(2x̃2 − a)Ψ
(0)
0,∞(x̃2, x̃2) ∼ c12π

2|x̃2|−2e−|x̃2|
2
,

and using Laplace’s expansion of the Coulomb potential, i.e.

1

|a− x̃2|
=

∞∑
`=0

r`<

r`+1
>

4π

2`+ 1

∑̀
m=−`

(−1)mY`,m(θ, ϕ)Y`,−m(θ̃, ϕ̃), (4.38)
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Figure 1: (top) The function Ψ
(0)
0,β for β = 1000, and approximations of Ψ

(0)
0,∞ using Taylor polynomi-

als (4.37) of first, second, and third order, respectively. (bottom) The functions Ψ
(0)
0,β, for β = 1000,

2000 and 3000, compared to Ψ
(0)
0,∞, obtained from the third order Taylor polynomial (4.37).
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with r< := min{|a|, |x̃2|} and r> := max{|a|, |x̃2|}. This gives

I
(0)
1 (a, 0) ∼ c124π3 1

|a|

∫ |a|
0

e−|x̃2|
2
d|x̃2|+ c124π3

∫ ∞
|a|

1

|x̃2|
e−|x̃2|

2
d|x̃2|.

The two integrals correspond to transcendental functions with known asymptotic behavior, see
[1] [7.1.5,5.1.10], i.e.

1

|a|

∫ |a|
0

e−|x̃2|
2
d|x̃2| =

√
π

2|a|
erf(|a|) ∼ 1− 1

3 |a|
2 · · · , (4.39)

and∫ ∞
|a|

1

|x̃2|
e−|x̃2|

2
d|x̃2| =

1

2

∫ ∞
|a|2

t−1e−tdt =
1

2
E1(|a|2) ∼ −1

2
γ − ln(|a|) + 1

2 |a| −
1
8 |a|

2 + · · · , (4.40)

where erf and E1 denote the error function and the exponential integral, respectively. The integral
(4.39) is an analytic function in |a|2 and therefore does not contribute to the singular asymptotic
behavior, while the integral (4.40) has in leading order a singular term ln(|a|) in its asymptotic
expansion.18

The next term in the asymptotic expansion (4.21) is given by

I2(a, b) := lim
β→∞

1

2

∫∫
R3×R3

δa,β(x1)φ(x2)φ
(

1
2(x1 + x2)

)
δb,β
(

1
2(x1 + x2)

)
dx1dx2

= lim
β→∞

4

∫∫
R3×R3

δa,β(x̃1)φ(2x̃2 − x̃1)φ(x̃2)δb,β(x̃2) dx̃1dx̃2

= 4φ(2b− a)φ(b),

and does not contribute to the singular asymptotics.
Let us comment briefly on the modification required for the exchange part of the 2p1h Green’s

function. The corresponding integral (4.16) for the exchange part becomes

Kβ(a, b) := lim
β→∞

∫∫
R3×R3

δa,β(x1)φ(x2)
(
Ĥ(0)(ω)φ⊗ δb,β

)
(x1, x2) dx1dx2,

and in the asymptotic limit we get

Kβ(a, b) ∼
∫∫

R3×R3

∫∫
R3×R3

δa,β(x1)φ(x2)δb,β(x3)φ(x4)

|x1 − x2|
(
|x1 − x4|2 + |x2 − x3|2

)2|x3 − x4|
dx1dx2dx3dx4. (4.41)

In the asymptotic expansion (4.20) we consider only leading order contributions with zero relative
angular momentum due to the presence of the projection operator P0, which means that the corre-
sponding asymptotic terms are symmetric with respect to a particle exchange. Therefore, the same
reasoning applies to the exchange part and we get the same leading order term in the asymptotic
expansion of (4.41). This leads to spin-dependent cancellations between the direct and exchange
terms, similar to the so-called self-interaction correction in the Fock operator of the Hartree-Fock
model. Higher order direct and exchange terms also have contributions from non-zero relative an-
gular momenta and hence possesses different asymptotics.

Finally, we summarize our discussion in the following lemma.

Lemma 4. The kernel functions (4.9) and (4.10), which belong to the partially contracted operator
(4.8) and its simplified variant (4.15), have a singular asymptotic behavior, i.e., they are, modulo
smooth terms, of the form

Hd(x)(x1, x2, ω) ∼ a0(x1, ω) ln(|x1 − x2|) + a1(x1, ω)|x1 − x2|+ · · · ,

where only terms with zero relative angular momentum are considered. Such kernel functions belong
to the classical pseudo-differential operators of the Hörmander class S−3(R3,R3).

18Here γ denotes the Euler-Mascheroni constant.
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5 Asymptotic smoothness of Feynman diagrams and outlook

So far, we determined the asymptotic behavior of one-particle Green’s functions and the singular
behavior of partially contracted kernel functions. Now, let us shortly discuss how this approach can
be applied to Feynman diagrams to give a new refined classification system for them that contains
besides the order of perturbation also the asymptotic smoothness. In the future, this may be used to
design new sparse grid combination methods [26, 25, 37, 27] in a multiscale fashion with improved
computational complexities.

Conventionally, it is common practice to classify Feynman diagrams according to their number
of interaction lines, corresponding to the order of perturbation theory in which they appear. Such a
classification scheme roughly corresponds to the computational complexity of numerical simulations
for the diagramms. Now, following our previous discussion, we refine the classification of Feynman
diagrams by introducing the asymptotic smoothness as an additional order parameter. For this
purpose, we decompose a Feynman diagram with two external lines into a singular part with a fast
decay at infinity and a smooth remainder, i.e.

F (x, x̃, ω) = Fs(x, x̃, ω) + F∞(x, x̃, ω), (5.1)

with F∞ ∈ C∞(R3 × R3 × R) such that the singular part Fs satisfies the following definition.

Definition 1. A Feynman diagram F (x, x̃, ω) with two external lines x and x̃, where ω ∈ R is
considered as parameter, has asymptotic smoothness of order p if it belongs to C∞(R3 × R3 \ {0}),
for any ω ∈ R, and its singular part Fs satisfies the asymptotic smoothness property19∣∣∣∂αx ∂βx̃Fs(x, x̃, ω)

∣∣∣ ≤ Cα,β,N,ω|x− x̃|−3−p−|α|−|β|−N (5.2)

for −3 − p − |α| − |β| − N < 0, and each N ∈ N0, where it has bounded partial derivatives for
|α|+ |β| ≤ −3− p. Note that the constant Cα,β,N,ω > 0 in (5.2) may depend on ω.

Such a decomposition can be achieved, for example, by using an appropriate cutoff function
perpendicular to the diagonal. The previous definition is motivated by the corresponding property
of kernel functions of pseudo-differential operators of order p < 0, see [40] for further details.

To illustrate the benefit of our two-parameter classification scheme for Feynman diagrams, con-
sider the one-particle Green’s function discussed in the previous sections. For the corresponding
Feynman diagrams, we observe a correlation between their order in perturbation theory, i.e. the
number of interaction lines, and their asymptotic smoothness, which is schematically shown in
Fig. 2. Regarding the asymptotic smoothness of Feynman diagrams in higher orders of perturbation
theory, our results are still incomplete. However, we have at least outlined a general approach that
can be extended to higher orders.

Now, to take advantage of such a correlation, we suggest to design a sparse grid combination
method along the lines of [25, 26, 27, 37] that correlates asymptotic smoothness with a hierarchical
tensor product approximation scheme. In particular, the order of asymptotic smoothness of a Feyn-
man diagram entails its approximation properties20 with respect to hyperbolic cross approximation
schemes in tensor product bases, cf. [7, 14, 43] for further details. Thus, instead of performing a
single numerical calculation at the highest order of perturbation theory and with the largest possi-
ble basis set, the combination technique decomposes the calculation into a telescopic sequence and
restricts actual calculations to a hyperbolic cross/sparse grid with respect to perturbation order and
basis set size. Such an approach can also be viewed as a two-variate extrapolation method where
one direction corresponds to the order of perturbation and the other direction corresponds to the

19In this definition, the fast asymptotic decay of Fs at large distances, i.e. for |x − x̃| → ∞|, is triggered by the
parameter N .

20Indeed it determines the Besov and mixed Sobolev regularity of a Feynman diagram.
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Figure 2: Asymptotic smoothness versus order of perturbation theory for the singular part Fs
of certain Feynman diagrams contributing to the one-particle Green’s function. The asymptotic
smoothness parameter p was given in Definition 1.

asymptotic smoothness. The development, the error analysis, and the cost complexity estimation
of such a multiscale approach will be future work.

In conclusion let us make the following remarks: Despite good progress in the accuracy and effi-
cient implementation of many-particle models, their applicability is severely limited by the presence
of singularities. While there is a solid knowledge of the effects of singularities for wavefunction-based
methods, much less is known for reduced quantities such as Green’s and response functions. This is
partly due to the fact that these quantities are not easily accessible via the Schrödinger equation.
Instead, their very definitions involve concepts of many-particle theory, such as second quantiza-
tion, which are difficult to put into a rigorous mathematical framework. The present work is a first
attempt to unveil the singular structure of dynamical reduced quantities by means of a case study
for the one-particle Green’s function. To this end, we applied techniques from singular analysis,
which turned out to be useful for our purposes. Besides explicit asymptotic expansions concerning
the small distance behavior of the Green’s function, we derived a refined classification of the corre-
sponding Feynman diagrams, taking into account their asymptotic smoothness near the diagonal.
Our study of the small distance behavior of Green’s functions is reminiscent of related work in quan-
tum field theory. While a proper treatment of singularities via regularization and renormalization is
crucial there, this issue seems quite irrelevant in electronic structure theory. However, a more careful
consideration reveals the tight interplay between singular structures and computational complexity.
The extended classification scheme discussed above provides a first step in this direction and the
computational complexity of numerical algorithms for many-particle models may get improved by
taking into account their singular structure.
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Appendix

A Partial contractions of kernel functions

The calculation of the integral,

Iβ(a, b) :=

∫
R3

δa,β(x1, x2)⊗ φ(x3) · δa,β(x̃1, x̃2)⊗ φ(x̃3)

|x− x̃|
dxdx̃,

can be done in several steps. Using (4.12) and the Gaussian product formula, cf. [29],

e−α|x−a|
2
e−β|x−b|

2
= e
− αβ
α+β
|a−b|2

e
−(α+β)

∣∣∣x−αa+βbα+β

∣∣∣2
,

we get in a first step ∫
R2

e−β|x1−a|
2
e−|x1−x2|

2t2 dx1 = π
β+t2

e
− βt2

β+t2
|x2−a|2 ,

and in a second step ∫
R2

e
− βt2

β+t2
|x2−a|2e−β|x2−b|

2
dx2 = π

β+ βt2

β+t2

e
− βt2

β+2t2
|a−b|2

.

These integrals, together with (4.13), yield

Iβ(a, b) =

∫ ∞
−∞

√
π

1+2t2
β

β+2t2
e
− βt2

β+2t2
|a−b|2

dt

Now, substituting

u2 =
βt2

β + 2t2
,

for a sufficiently large β, we obtain

Iβ(a, b) = 2

∫ √
β
2

0

√
π

1+2
(

1− 1
β

)
u2
e−u

2|a−b|2 .

Finally, taking the limit β →∞, we get

lim
β→∞

Iβ(a, b) = lim
β→∞

[
2

∫ ∞
0

√
π

1+2
(

1− 1
β

)
u2
e−u

2|a−b|2 du− 2

∫ ∞√
β
2

√
π

1+2
(

1− 1
β

)
u2
e−u

2|a−b|2 du

]

= 2

∫ ∞
0

√
π

1+2u2
e−u

2|a−b|2 du

=

√
π

2
e
|a−b|2

4 K0

(
|a− b|2

4

)
,

and, up to a prefactor, we just recovered (4.14).
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