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Abstract

We have studied possible applications of a particular pseudo-differential algebra in singular anal-
ysis for the construction of fundamental solutions and Green’s functions of a certain class of
elliptic partial differential operators. The pseudo-differential algebra considered in the present
work, comprises degenerate partial differential operators on stretched cones which can be locally
described as Fuchs type differential operators in appropriate polar coordinates. We present a gen-
eral approach for the explicit construction of their parametrices, which is based on the concept of
an asymptotic parametrix, introduced in [8]. For some selected partial differential operators, we
demonstrate the feasibility of our approach by an explicit calculation of fundamental solutions
and Green’s functions from the corresponding parametrices. In our approach, the Green’s func-
tions are given in separable form, which generalizes the Laplace expansion of the Green’s function
of the Laplace operator in three dimensions. As a concrete application in quantum scattering
theory, we construct a fundamental solution of a single-particle Hamilton operator with singular
Coulomb potential.

1 Introduction

In the field of partial differential equations, fundamental solution and related Green’s functions
are a versatile tool with a wide range of applications in mathematics, physics and engineering.
Whereas the notion of a fundamental solution is uniquely defined, care has to be taken concerning
the notion of a Green’s function, which might differ depending on the context of its application. This
is particularly true for physics where the label ”Green’s function” might refer, e.g., to a classical
Green’s function in potential theory or to a many-particle Green’s function in quantum many-
particle theory. Despite some differences in the various notions of a Green’s function, there is an
essential common feature which links them to fundamental solutions. Therefore it does not seem to
be appropriate to give a single mathematically rigorous definition of a Green’s function. Instead we
will adopt it to the specific situation under consideration.

In the present work, we want to focus on second order linear partial differential operators of the
form

A =
∑
|α|≤2

aα(x)∂α (1.1)
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in an open domain 0 ∈ Ω ⊆ Rn. For such type of operators, let us briefly recall the definition of a
fundamental solution and Green’s function

Definition 1. A distribution u ∈ D′(Ω) is a fundamental solution of the operator (1.1) if it satisfies
the equation

Au = δ (1.2)

in a distributional sense, with respect to the Dirac-distribution δ.

Fundamental solutions have been proven to exist for a large class of differential operators of the
form (1.1), cf. [11, 12, 13] for a detailed account in the case of constant and smooth coefficients.
In the particular case of second order elliptic differential operators with real analytic coefficients in
Ω := BR(0), e.g. the Laplace-Beltrami operator on an analytic manifold, a fundamental solution
has the form

u(x) =
1

|x|n−2
f(x) + ln(|x|)g(x) (1.3)

with f, g real analytic functions in Ω and g = 0 for n odd, cf. [9, 14, 15]. The general notion
of ellipticity restricts the kernel of an elliptic operator to a finite dimensional subspace of its do-
main of definition. Therefore, a fundamental solution of an elliptic operator actually represents an
equivalence class of distributions whose members are equal modulo elements of its kernel.

As already mentioned before, the notion of a Green’s function is not well defined and we start
with the most general definition appropriate for our purposes.

Definition 2. A Green’s function G ∈ D′(Ω) of the operator (1.1) is a distribution valued function
G : Ω → D′(Ω) which satisfies the distributional equation

AGx̃ = δx̃ for all x̃ ∈ Ω, (1.4)

where δx̃ denotes the shifted Dirac distribution, i.e., δx̃(f) = f(x̃) for f ∈ D(Ω).

In our definition of a Green’s function, we abstain from specific boundary conditions and sym-
metry requirements which a classical Green’s function is supposed to satisfy, cf. [3]. This causes a
lack of uniqueness in our definition, cf. the discussion at the end of Section 3.2. The incorporation
of symmetry and boundary conditions in our approach will be discussed for the specific case of the
bi-Laplace operator in a forthcoming publication [2] and the general case is subject of our future
work.

Before we proceed with a discussion of our specific approach to fundamental solutions and Green’s
functions let us briefly compare the corresponding Definitions 1 and 2, respectively. In the case of a
differential operator (1.1) with constant coefficients both definitions are essentially equivalent. Let
u be a regular distribution which satisfies (1.2), the corresponding Green’s functions (1.4) in this
case is simply given by u(·− x̃). However, in the case of nonconstant coefficients a canonical Green’s
function correspond to a regular distribution G(·, x̃), x̃ ∈ Ω, such that Gx̃(f) =

∫
ΩG(x, x̃)f(x) dx,

which cannot be derived by a simple translation from a fundamental solution. It is the intention
of the present work to develop computational tools that provide fundamental solutions and Green’s
functions in closed form by means of power series expansions. For Green’s functions, the power series,
furthermore, separate the variables x and x̃ which is particularly suitable for numerical simulations.

In the present work, we want to discuss a novel approach for the construction of fundamental
solutions and Green’s functions for operators (1.1) with possibly singular coefficients aα, based on
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methods from singular analysis, To be precise, we allow for a single point P ∈ Ω, w.l.o.g. located
at the origin, such that aα ∈ C∞(Ω \ P ). In order to keep control of the singular behaviour,
we restrict ourselves to a specific typ of conical singularity, which can be best characterized by a
transformation to an appropriate system of polar coordinates. For notational simplicity, we consider
the case Ω = Rn. Let us introduce the cone C∆(X) := R̄+×X/({0}×X) with closed compact, n−1-
dimensional smooth base manifold X and the corresponding open streched cone C∧(X) := R+×X.
On C∧(X), we choose polar coordinates (r, φ), where r ∈ R+ and φ denotes some set of local
coordinates on X. Now consider a homeomorphism ϕ : C∆ → Rn such that the tip of the cone is
mapped on the origin, which induces a diffeomorphism

ϕ|C∧(X) : C∧(X) → Rn \ P. (1.5)

From this diffeomorphism, we get a representation of the operator (1.1) in polar coordinates of the
form

Ã = r−2
2∑
j=0

aj(r)

(
−r ∂

∂r

)j
. (1.6)

In the following, we will assume that Ã belongs to the class of degenerate partial differential operators
Diff2

deg(C∧) on the open cone C∧, with coefficients aj(r) ∈ C∞(R̄+,Diff2−j(X)), where Diff2−j(X),
j = 0, 1, 2, denotes partial differential operators with smooth coefficients, at most of order 2 − j,
on the base X of the cone. The preceeding assumptions concerning Ã are required by the pseudo-
differential algebra to be discussed below. For a partial differential operator (1.6), which additionally
satisfies the ellipticity conditions of the pseudo-differential algebra, cf. Appendix D, a parametrix
exists.

Let us briefly outline the underlying ideas and essential features of the pseudo-differential calculus
employed in the present work. For a detailed exposition, we refer to the monographs [4, 10, 20]. In
general, a pseudo-differential algebra can be considered as an extension of a corresponding algebra
of partial differential operators such that the extended algebra contains parametrices of its elliptic
elements. Roughly speaking, a parametrix should be considered as a pseudo-inverse of an elliptic
partial-differential operator. Ellipticity comprises the Fredholm property, which means that the
operator has a finite dimensional kernel and cokernel. Under such a premise, the existence of a
parametrix P can be proven, which satisfies the equations

P A = I +Kl and AP = I +Kr,

respectively. The parametrix can be represented as a pseudo-differential operator or as an ordinary
integral operator and provides a left and right inverse modulo the compact operators Kl and Kr,
respectively. In the standard pseudo-differential calculus these compact operators are smoothing
operators which do not encode any specific asymptotic information. In contrast to the standard
pseudo-differential calculus on smooth manifolds, the singular calculus on manifolds with conical,
edge or corner singularities involves compact remainders, denoted as Green operators Gl, (Gr),
which actually encode asymptotic information. We want to emphasize that the notions of Green’s
function and Green operator are different and should not be confused. As an illustrative example let
us consider the action of a parametrix P on an equation of the type Au = f with possibly singular
elliptic operator A and right hand side f . By left-multiplication with P, the equation turns into

u = P f − Gl u.
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Loosely speaking, the kernel function of a paramtrix P plays a role similar to a Green’s function G,
except of the presence of an remainder Gl u which depends on a Green operator and an unknown
solution. Obviously, we dont know u, but irrespective of its particular asymptotic behaviour, the
Green operator Gl maps it into a space with well defined asymptotic behaviour which only depends
on Ã, cf. [20] for a detailed exposition. In the present work, we actually show that by an appropriate
choice of a specific weight parameter of the parameterix, its kernel function satisfies our Definition 2
of a Green’s function. This follows from a property of the corresponding Green operator which maps
u into the kernel of Ã such that Gl u can be extended from C∧ ≡ R \ {0} to Rn and its extension
(Gl u)ext satisifies the homogeneous equation A(Gl u)ext = 0.

In Section 2, we present a general approach for the explicit construction of these parametrices,
based on the concept of an asymptotic parametrix, introduced in Refs. [7, 8]. Within our approach,
we want to extract fundamental solutions and Green’s functions from the integral kernels of these
parametrices. In order to demonstrate its feasibility, we provide in Sections 3 and 4 some explicit
calculations of fundamental solutions and Green’s functions from integral kernels of parametrices
for some selected partial differential operators.

An important point which deserves our attention is the fact, that fundamental solutions and
Green’s functions are by definition distributions in Ω ⊆ Rn, whereas the kernel of a parametrix
and derived quantities are functions on the streched cone C∧(X) where the origin is excluded by
definition. Therefore we will make use of Hadamard’s notion of a pseudofunction, cf. [21]. By the
diffeomorphism x = ϕ(r, φ), cf. (1.5), a function u(r, φ) on C∧(X) corresponds to a function ũ(x) on
Rn \P . A function u on C∧(X) can be regarded as a regular distribution on Ω if ũ can be identified
with an element in L1

loc(Rn), the set of equivalence classes of locally integrable functions in Rn, and
therefore with a regular distribution in D′(Rn). We call this regular distribution the pseudofunction
corresponding to u and denote it by Pf. u.

Let us briefly illustrate these concepts for the most prominent case in applications which is the
Laplace operator ∆3 in R3.

Example 1. A fundamental solution of the Laplace operator ∆3 in R3 is given by u(x) = − 1
4π|x|

and the corresponding Green’s function by G(x, x̃) = u(x − x̃) = − 1
4π|x−x̃| . Given any f ∈ D(R3)

the convolution

g(x) :=

∫
R3

G(x, x̃)f(x̃) dx̃ (1.7)

satisfies the equation A g = f .
In spherical polar coordinates, the Laplace operator is given by

∆̃3 :=
1

r2

[(
−r ∂

∂r

)2

−
(
−r ∂

∂r

)
+ ∆S2

]
and its fundamental solution can be expressed as

u(x) = Pf.− 1

4πr
.

The Green’s function G(x, x̃) of the Laplace operator, also known as Newton or Coulomb potential
in the physics literature, can be represented in a separable form by the Laplace expansion, i.e.,

G(·, x̃) :=

{
Pf. G(·|r̃, φ̃) for x̃ = ϕ(r̃, φ̃) 6= 0

Pf. limr̃→0G(·|r̃, φ̃) for x̃ = 0
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with

G(r, φ|r̃, φ̃) = −
∞∑
`=0

r`<

r`+1
>

1

2`+ 1

∑̀
m=−`

(−1)mY`,m(θ, ϕ)Y`,−m(θ̃, ϕ̃) (1.8)

and r< := min{|x|, |x̃|} and r> := max{|x|, |x̃|}, respectively, where (1.8) corresponds to a function
on C∧(S2)× C∧(S2).

In order to achieve a separation of variables, the Laplace expansion is done with respect to the
eigenfunctions of the Laplace-Beltrami operator on the sphere S2, so called spherical harmonics,
Y`,m, ` = 0, 1, . . . and m = −`, . . . , `. By taking the limit r̃ → 0 in (1.8) one can easily recover the
fundamental solution u. The Laplace expansion greatly facilitates the computation of the convolution
(1.7) and is therefore of great practical significance in computational physics and chemistry.

Our change of perspective from cartesian to polar coordinates is a key component of the present
work and is motivated by the fundamental solutions (1.3) for differential operators of the form (1.1)
with real analytic coefficients and the Laplace expansion of the Green’s function (1.8), where R3 has
been replaced by the cone C∆ := R̄+ × S2/({0} × S2) with base S2 on which the Laplace-Beltrami
operator has a pure point spectrum and the eigenfunctions form a complete basis in L2(S2).

1.1 Outline of our approach for the Laplace operator

Before we enter into a general discussion for second order differential operators in the cone algebra,
we want to exemplify our approach for the Laplace operator in Rn, with n ≥ 31. Following our
discussion in Section 1, there are two different types of representation for the Laplace operator in n
dimensions, depending on whether one considers it in Rn with respect to Cartesian coordinates

∆n :=

n∑
j=1

∂2
j (1.9)

or some kind of spherical polar coordinates defined on the stretched cone C∧ := R+ × Sn−1 with
base Sn−1. In spherical polar (n = 3), and hyperspherical polar (n ≥ 3) coordinates, the Laplace
operator is represented by

∆̃n :=
1

r2

[(
−r ∂

∂r

)2

− (n− 2)

(
−r ∂

∂r

)
+ ∆Sn−1

]
. (1.10)

where ∆Sn−1 denotes the Laplace-Beltrami operator on the n−1 sphere Sn−1. The Laplace-Beltrami
operator ∆Sn−1 has a pure point spectrum with eigenvalues λ` = −`(`+ n− 2), ` = 0, 1, 2, . . .. For
n = 3 each eigenvalue λ` has multiplicity 2`+ 1 and for n > 3 its multiplicity is given by

(`+ n/2− 1)
∏n−3
j=1 (`+ j)

(n/2− 1) · (n− 3)!
,

cf. [19] for further details. In the following, we denote by P`, ` = 0, 1, 2, . . ., the projection operators
from L2(Sn−1) on the corresponding eigenspaces of the eigenvalues −`(`+n− 2). Herewith, we can
form the spectral resolution

∆Sn−1 = −
∞∑
`=0

`(`+ n− 2)P` (1.11)

1The case n = 2 is different, according to our discussion in Section 2.1
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which is crucial for the following considerations.
The basic idea of our approach is to consider (1.10) as an element of an operator algebra which

enables the construction of a parametrix. This can be achieved within the pseudo-differential cone
algebra, developed by Schulze and collaborators, cf. the monographs [4, 10, 20]. Existence of a
parametrix for a partial differential operator is intimately connected with its ellipticity. In the
framework of the pseudo-differential calculus, considered in the present work, the notion of ellipticity
involves a whole hierarchy of symbols associated to a partial differential operator, cf. Chapter 10 of
[10] for a detailed discussion. For unbounded domains, e.g. C∧, one has to take into account the exit
behaviour to infinity, as a result, the Laplace operator ∆̃n is not elliptic in C∧, because it fails to
satisfy the elliptic exit condition. It is only the shifted Laplacian ∆̃n − κ2, discussed in Section 3,
which satisfies all ellipticity conditions. For the formal construction of a parametrix outlined below,
the exit condition is not essential and does not affect the final result. A rigorous justification for
disregarding it will be given in Section 4, where we consider a fundamental solution and Green’s
function for shifted Laplacian and recover the results given below by taking the limit κ→ 0.

In order to construct a parametrix, we have to represent (1.10) as Mellin type pseudo-differential
operator, i.e.,

∆̃nu = r−2 op
γ−n−1

2
M (h)u

for u ∈ D̃(C∧), here D̃(C∧) := {ϕ∗g | g ∈ D(Rn)}, where ϕ∗g denotes the pullback under the
diffeomorphism (1.5), with operator valued Mellin symbol

h(w) = w2 − (n− 2)w + ∆Sn−1

= w2 − (n− 2)w −
∞∑
`=0

`(`+ n− 2)P` (1.12)

we refer, e.g., to [4, Chapter 8] for further details. For the parametrix we take the ansatz

P u = r2 op
γ−n+3

2
M

(
h(−1)(w)

)
u

and consider the operator product

Pn ∆̃n = r2 op
γ−n+3

2
M (h(−1)(w))r−2 op

γ−n−1
2

M (h(w))

= op
γ−n−1

2
M (h(−1)(w + 2)) op

γ−n−1
2

M (h(w))

= op
γ−n−1

2
M (h(−1)(w + 2)h(w))

The operator valued symbol of the parametrix has to satisfy the equation

h(−1)(w + 2)h(w) = 1

which can be solved for

h(−1)(w) =
1

h(w − 2)

=
1

(w − 2)2 − (n− 2)(w − 2) + ∆Sn−1

=
∞∑
`=0

P`
(w − 2 + `)(w − `− n)︸ ︷︷ ︸

=:h
(−1)
` (w)

. (1.13)
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It can be easily that the terms in the sum (1.13) have only simple poles for n ≥ 3 but has a pole of
order 2 for n = 2 at ` = 0. It turns out, that for this particular reason, the case n = 2 is special,
therefore we only consider the case n ≥ 3.

Let u ∈ D̃(C∧), the action of the parametrix Pn is given by the double integral

r2 op
γ−n+3

2
M (h(−1))u = r2

∫
R

∫ ∞
0

(r
r̃

)−(n+4
2
−γ+iρ)

h(−1)(n+4
2 − γ + iρ)u(r̃, φ)

dr̃

r̃
d̄ρ, (1.14)

with d̄ρ := dρ
2π . Here we choose 2 − n

2 < γ < n
2 which is related to the ellipticity condition of the

conormal symbol in the cone algebra. Splitting the radial integral into two parts, i.e., r̃ < r and
r̃ > r, one can apply Cauchy’s residue theorem to the spectral resolution (1.11) of the operator
valued symbol. Taking into account, that all poles in (1.11) are of order 1, one can calculate the
integral along the complex line by closing the path on the right and left hand side, respectively.
After some algebraic manipulations one obtains

Pn u(r, φ) = −
∞∑
`=0

∫
Sn−1

∫ r

0

r̃`

r`+n−2

p`(φ|φ̃)

2`+ n− 2
u(r̃, φ̃) r̃n−1dr̃µn−1(φ̃)dφ̃

−
∞∑
`=0

∫
Sn−1

∫ ∞
r

r`

r̃`+n−2

p`(φ|φ̃)

2`+ n− 2
u(r̃, φ̃) r̃n−1dr̃µn−1(φ̃)dφ̃.

Therefore, the parametrix can be represented by an integral operator

Pn u(r, φ) =

∫
Sn−1

∫ ∞
0

Kn(r, φ|r̃, φ̃)u(r̃, φ̃)r̃n−1dr̃µn−1(φ̃)dφ̃

with kernel function

Kn(r, φ|r̃, φ̃) = −
∞∑
`=0

r`<

r`+n−2
>

p`(φ|φ̃)

2`+ n− 2
,

where p`(φ|φ̃) denotes the integral kernel of the projection operator P`, ` = 0, 1, 2, . . . and r< :=
min{r, r̃}, r> := max{r, r̃}, respectively. For n = 3, using spherical coordinates φ = (θ, ϕ), we have

p`(θ, ϕ|θ̃, ϕ̃) =
∑̀
m=−`

(−1)mY`,m(θ, ϕ)Y`,−m(θ̃, ϕ̃)

and recover the well known Laplace expansion of the Green’s function of ∆3, given by (1.8).

The Laplace operator is a particularly simple case because the symbol of the parametrix can be
derived by direct inversion (1.13). This was only possible, because all terms which contain derivatives
with respect to coordinates of the base Sn−1 are subsummed in the Laplace-Beltrami operator
∆Sn−1 which has especially nice spectral properties that enable the use of a spectral resolution in
(1.13). Furthermore, the direct inversion (1.13) requires that all coefficients aj , j = 0, 1, 2, in the
representation (1.6), are constants, which is obviously the case for the Laplace operator. However,
this will not be the case in general and we have to rely on an asymptotic parametrix construction
[8], which is considerably more envolved.
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2 A generalized approach for elliptic partial differential operators
in the pseudo-differential algebra

The Laplace operator discussed in Section 1.1 motivates a generalization of our approach to elliptic
second order differential operators on open stretched cones C∧(X), with closed compact, n − 1-
dimensional smooth base manifold X, of the following form

Ã = r−2

 2∑
j=0

aj(r)

(
−r ∂

∂r

)j
+ b(r)ΛX

 (2.1)

and real analytic coefficients aj , b ∈ C∞(R̄+)2. It should be mentioned, that despite the analyticity
of the coefficients, (2.1) might be singular, due to prefactor r−2 in front of the differential operator.
Furthermore, we assume that ΛX is an elliptic, essentially self-adjoint, second order differential
operator, semibounded from below, on the baseX. Furthermore, we assume that ΛX has a pure point
spectrum λ0, λ1, λ2 . . ., with lowest eigenvalue λ0 = 0 and a corresponding constant eigenfunction,
such that the corresponding eigenfunctions form a complete basis in L2(X).

For differential operators (2.1), we want to derive an explicit expression of the kernel of the
parametrix in terms of a generalized Laplace expansion of the form

K(r, φ|r̃, φ̃) =
∞∑
`=0

k`(r, r̃, λ`)p`(φ, φ̃), (2.2)

where p`(φ|φ̃) denotes the integral kernel of the projection operator P`, ` = 0, 1, 2, . . ., onto the
L2(X) subspace spanned by the eigenfunctions of ΛX for the eigenvalue λ`, i.e.,

p`(φ, φ̃) =

m∑̀
m=1

u`,m(φ)ū`,m(φ̃), with ΛXu`,m = λ`u`,m, for m = 1, . . . ,m`.

In order to deal with r dependent coefficients aj , b, j = 0, 1, 2, it becomes necessary to perform
an asymptotic parametrix construction, introduced in Ref. [8] from which we take notations and
definitions in the following. The differential operator (2.1) can be represented in the cone algebra
by the Mellin type pseudo-differential operator

Ã = r−2 op
γ−n−1

2
M

(
h(r, w,ΛX

)
where

h(r, w,ΛX) :=

2∑
j=0

aj(r)w
j + b(r)ΛX

belongs to C∞(R̄+,M2
O(X)), cf. [20] for further details.

2.1 Construction of an asymptotic parametrix

Given power series representations for the coefficients

aj(r) =
∞∑
p=0

a
(p)
j rp, j = 0, 1, 2 and b(r) =

∞∑
p=0

b(p)rp

2In our examples, we consider only the case where these coefficients are polynomials in r of finite order.
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we decompse

h(r, w,ΛX) =

∞∑
i=0

rihi(w,ΛX)

where

hi(w,ΛX) =

2∑
j=0

a
(i)
j w

j + b(i)ΛX

denotes the asymptotic symbols of the differential operator (2.1). From the ellipticity condition EC2

of the cone algebra, cf. Appendix D, we have the constraints a
(0)
2 , b(0) 6= 0 and that these coefficients

must be of opposite sign. In the following we take γ ∈ R such that the ellipticity condition EC3 with
respect to the conormal symbol, which in our case equals h0, is satisfied, i.e., h0 defines isomorphisms
h0(w,ΛX) : Hs(X) → Hs−2(X) for any s ∈ R and <w = n

2 − γ. With respect to the coefficients,
this condition is equivalent to

a
(0)
2 w2 + a

(0)
1 w + a

(0)
0 + b0λ` 6= 0, ` = 0, 1, 2, . . .

for all <w = n
2 − γ. For its corresponding asymptotic parametrix, we take

r2 op
γ−n+3

2
M

(
h(−1)(r, w,ΛX)

)
with formal power series ansatz

h(−1)(r, w,ΛX) :=

∞∑
j=0

rjh
(−1)
j (w,ΛX).

for its symbol.

Remark 1. For notational simplicity, we occasionally represent symbols of pseudo-differential oper-
ators by formal power series. Notwithstanding the fact that in the standard calculus such expressions
are avoided due to its asymptotic character and lack of convergence in general. In our applications
considered in the present work, however, we always perform calculations of parametrix symbols to
infinite order and prove convergence of the derived fundamental solutions or Green’s functions in
hindsight.

For notational simplicity we suppress the ΛX dependence of the symbols for a while. As a first
step, we commute the r−2 factor to the right

P Ã = r2 op
γ−n+3

2
M

(
h(−1)(r, w)

)
r−2 op

γ−n−1
2

M

(
h(r, w)

)
= op

γ−n−1
2

M

(
h(−1)(r, w + 2)

)
op

γ−n−1
2

M

(
h(r, w)

)
. (2.3)

Inserting the power series of the symbols and shifting all powers of r to the right, we obtain

PÃ =

 ∞∑
j=0

rj op
γ−n−1

2
M

(
h

(−1)
j (w + 2)

)[ N∑
i=0

ri op
γ−n−1

2
M

(
hi(w)

)]

=

∞∑
j,i=0

rj+i op
γ−n−1

2
−i

M

(
h

(−1)
j (w + 2− i)

)
op

γ−n−1
2

M

(
hi(w)

)
=

∞∑
j,i=0

rj+i op
γ−n−1

2
M

(
h

(−1)
j (w + 2− i)

)
op

γ−n−1
2

M

(
hi(w)

)
mod G
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where the last step is modulo Green’s operators, which will be discused in detail below. After the
manipulations, we can now define the sympbols of the parametrix in a recursive manner. For the

symbol h
(−1)
0 we get the equation

1 = op
γ−n−1

2
M

(
h

(−1)
0 (w + 2)

)
op

γ−n−1
2

M

(
h0(w)

)
= op

γ−n−1
2

M

(
h

(−1)
0 (w + 2)h0(w)

)
and therefore (

h
(−1)
0 (w + 2)

)
h0(w) = 1 −→ h

(−1)
0 (w) = h−1

0 (w − 2). (2.4)

The equations of the symbols h
(−1)
j , for j ≥ 1, are

0 = op
γ−n−1

2
M

(
h

(−1)
j (w + 2)

)
op

γ−n−1
2

M

(
h0(w)

)
+

j∑
i=1

op
γ−n−1

2
M

(
h

(−1)
j−i (w + 2− i)

)
op

γ−n−1
2

M

(
hi(w)

)
,

which gives

0 =
(
h

(−1)
j (w + 2)

)
h0(w) +

j∑
i=1

(
h

(−1)
j−i (w + 2− i)

)
hi(w),

and

h
(−1)
j (w) = −

(
j∑
i=1

(
h

(−1)
j−i (w − i)

)(
hi(w − 2)

)) (
h−1

0 (w − 2)
)

= −

(
j∑
i=1

(
h

(−1)
j−i (w − i)

)(
hi(w − 2)

))
h

(−1)
0 (w) (2.5)

respectively. In order to derive integral kernels, we have to know the poles of the meromorphic

operator valued symbols h
(−1)
j (w). It can be seen from (2.5) that the poles are recursively defined

such that h
(−1)
j (w) has meromorphic terms of the form

j = 0 : h
(−1)
0 (w)

j = 1 :
(
h

(−1)
0 (w − 1)

)
h

(−1)
0 (w)

j = 2 :
(
h

(−1)
0 (w − 2)

)(
h

(−1)
0 (w − 1)

)
h

(−1)
0 (w),

(
h

(−1)
0 (w − 2)

)
h

(−1)
0 (w) (2.6)

j = 3 :
(
h

(−1)
0 (w − 3)

)(
h

(−1)
0 (w − 2)

)(
h

(−1)
0 (w − 1)

)
h

(−1)
0 (w),

(
h

(−1)
0 (w − 3)

)(
h

(−1)
0 (w − 1)

)
h

(−1)
0 (w),(

h
(−1)
0 (w − 3)

)(
h

(−1)
0 (w − 2)

)
h

(−1)
0 (w),

(
h

(−1)
0 (w − 3)

)
h

(−1)
0 (w)

)
...

After re-emerging of ΛX in the symbols of the parametrix, we can perform spectral resolutions

h
(−1)
0 (w,ΛX) =

∞∑
`=0

h
(−1)
0 (w, λ`)P`, hi(w,ΛX) =

∞∑
`=0

hi(w, λ`)P`

h
(−1)
0 (w, λ`) =

1∑2
j=0 a

(0)
j (w − 2)j + b(0)λ`

, hi(w, λ`) :=
2∑
j=0

a
(i)
j w

i + b(i)λ`

10



and use the orthogonality of the projection operators, i.e. P`P˜̀ = δ`,˜̀P`, to get the coorresponding
spectral resolution of the Mellin symbols of the parametrix

h
(−1)
j (w,ΛX) =

∞∑
`=0

h
(−1)
j (w, λ`)P`

with

h
(−1)
j (w, λ`) = −

(
j∑
i=1

(
h

(−1)
j−i (w − i, λ`)

)(
hi(w − 2, λ`)

))
h

(−1)
0 (w, λ`)

where the latter symbols are defined in a recursive manner. According to our previous discussion, the

poles of h
(−1)
j (w, λ`) are given by the poles of the shifted symbols h

(−1)
0 (w−m), for m = 0, 1, . . . , j.

The symbol h
(−1)
0 (w) has poles at

w(λ`) = 2− a
(0)
1

2a
(0)
2

±

√√√√( a
(0)
1

2a
(0)
2

)2

− a
(0)
0

a
(0)
2

− b(0)

a
(0)
2

λ`.

In order to simplify our discussion, we want to restrict in the following to two different types of
differential operators.

Definition 3. Let Ã be an elliptic differential operator in Diff2
deg(C∧(X)) of the form (2.1), where

we assume w.l.o.g. a
(0)
2 = 1 for notational simplicity. A differential operator is referred as type-A if(

a
(0)
1

)2 − 4a
(0)
0 > 0, b(0) < 0, and as type-B if

(
a

(0)
1

)2 − 4a
(0)
0 = 0, b(0) < 0.

Remark 2. If follows from the ellipticity condition EC2 of the cone algebra, cf. Appendix D, that

a
(0)
2 b(0) < 0 and therefore our choice a

(0)
2 = 1 implies b(0) < 0.

Remark 3. According to our definition, the symbol h
(−1)
0 has two poles of order 1 if it corresponds

to a type-A differential operator and a single pole of order 2 if it corresponds to a type-B differential
operator.

Example 2. The Laplacian ∆n in Rn is of type-A for n ≥ 3 and of type-B for n = 2.

In the present work, we want to focus an type-A differential operators and leave type-B differ-
ential operators for a subsequent publication.

2.1.1 Parametrices for type-A differential operators

Let us consider asymptotic parametrices for type-A differential operators. For notational simplicity,
we introduce the λ` dependent parameter

∆w(λ`) :=

√√√√(a(0)
1

2

)2

− a(0)
0 − b(0)λ`.

Let us first consider the operator (2.1) with constant coefficients, which corresponds to the 0-th
order term in the expression of Ã with respect to powers of r.

11



Performing a similar calculation as in Section 1.1, with u ∈ D̃(C∧), we get:

P0 u(r, φ) = −
∞∑
`=0

∫
X

∫ r

0

r̃w1,`−n

rw1,`−2

p`(φ|φ̃)

2∆w(λ`)
u(r̃, φ̃) r̃n−1dr̃µn−1(φ̃)dφ̃

−
∞∑
`=0

∫
X

∫ ∞
r

r̃w2,`−n

rw2,`−2

p`(φ|φ̃)

2∆w(λ`)
u(r̃, φ̃) r̃n−1dr̃µn−1(φ̃)dφ̃

= −ra
(0)
1 /2

∞∑
`=0

∫
X

∫ ∞
0

r̃2−n−a(0)1 /2

(
r<
r>

)∆w(λ`) p`(φ|φ̃)

2∆w(λ`)
u(r̃, φ̃) r̃n−1dr̃µn−1(φ̃)dφ̃,

with

w1,` := 2− a
(0)
1

2
+ ∆w(λ`), w2,` := 2− a

(0)
1

2
−∆w(λ`),

where we choose an integration contour Γn+4
2
−γ between the two poles, i.e.,

n

2
+
a

(0)
1

2
−∆w(λ`) < γ <

n

2
+
a

(0)
1

2
+ ∆w(λ`).

This particular choice is motivated by our considerations for the Laplace operator in Section 1.1.
Eventually our choice can be justified by explicit constructions of fundamental solutions and Green’s
functions from the parametrices. In the following, we will provide evidence by considering selected
examples for type-A differential operators.

The parametrix P0 can be represented by an integral operator

P0 u(r, φ) =

∫
X

∫ ∞
0

K0(r, φ|r̃, φ̃)u(r̃, φ̃)r̃n−1dr̃µn−1(φ̃)dφ̃

with kernel function

K0(r, φ|r̃, φ̃) = −ra
(0)
1 /2r̃2−n−a(0)1 /2

∞∑
`=0

(
r<
r>

)∆w(λ`) p`(φ|φ̃)

2∆w(λ`)

Lemma 1. Let Ã0 be an elliptic type-A differential operator in C∧(X), i.e.,

Ã0 = r−2

[(
−r ∂

∂r

)2

+ a
(0)
1

(
−r ∂

∂r

)
+ a

(0)
0 + b(0)ΛX

]
, (2.7)

with coefficients satisfying

a
(0)
0 = −a(0)

1 (n− 2)− (n− 2)2. (2.8)

The distribution Pf. k0 ∈ D′(Rn), with

k0(r) := lim
r̃→0

K0(r, φ|r̃, φ̃) = −r2−n p0

a
(0)
1 + 2(n− 2)

(2.9)

is a fundamental solution of the corresponding differential operator A0 in Rn, i.e.,

A0 Pf. k0 = δ.

12



Proof. Under the first assumption in (2.8) the limit (2.9) follows immediatelly.

For any test function g ∈ D(Rn) let g̃ := ϕ∗g be its corresponding counterpart in D̃(C∧). Due
to the spherical symmetry of k0, we get3∫

Rn
g(x)A0 Pf. k0(x) dx

=

∫ ∞
0

rn−1 1

r2

[(
(n− 2) + r

∂

∂r

)2

g̃0(r) + a
(0)
1

(
(n− 2) + r

∂

∂r

)
g̃0(r) + a

(0)
0 g̃0(r)

]
k0(r)

p0
dr

where the right hand side only depends on the projection g̃0(r) := P0g̃. Calculating the integrals

−
∫ ∞

0
rn−1 1

r2

(
r
∂

∂r
g̃0(r)

)
r2−n 1

2∆w(λ0)
dr

= −
∫ ∞

0
∂rg̃0(r)

1

2∆w(λ0)
dr

= lim
r→0

g̃0(r)

2∆w(λ0)

=
g(0)

2∆w(λ0)

and

−
∫ ∞

0
rn−1 1

r2

(
r
∂

∂r

)[
r
∂

∂r
g̃0(r)

]
r2−n 1

2∆w(λ0)
dr

= −
∫ ∞

0
∂r
(
r∂rg̃0(r)

) 1

2∆w(λ0)
dr

= 0,

we finally obtain ∫
Rn
g(x)A0 Pf. k0(x) dx = g(0).

It remains to consider the higher order terms in the asymptotic parametrix construction for
type-A differential operators.

Proposition 1. Parametrix symbols h
(−1)
j (w, λ`) of higher order, i.e. j = 1, 2, . . ., which correspond

to type-A differential operators have generically poles of order 1, however in particular cases second

order poles may show up. For a symbol h
(−1)
j (w, λ`) poles at most of order 2 can appear only if

2∆w(λ`) ∈ {1, 2, . . . , j}. (2.10)

3Here and in the following, we make a slight abuse of notation concerning partial differential operators acting
on pseudofunctions. Generally it yields a distribution which is not regular any more, e.g., A0 Pf. k0 is not a regular
distribution. However, we make use of the pervasive notation which treats e.g. Dirac’s delta distribution like a function,
i.e., δ(g) =

∫
δ(x)g(x)dx.
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If this is the case, then h
(−1)
j (w, λ`) potentially has q` := j − kmin(λ`) + 1 poles of order 2 at

wm(λ`) = 2− a
(0)
1

2
+m+ ∆w(λ`), m = 0, 1, . . . , j − kmin(λ`),

with kmin(λ`) = 2∆w(λ`).

Proof. The symbols h
(−1)
j (w, λ`) given by the recursive formula (2.5) have zeros in the denominator,

cf. (2.6), at

w1,m(λ`) = 2− a
(0)
1

2
+m+ ∆w(λ`), w2,k(λ`) = 2− a

(0)
1

2
+ k −∆w(λ`), m, k = 0, . . . , j.

Therefore a zero of order 2 can appear only if

k −m = 2∆w(λ`),

which leads to a pole of order 2 at w0 := w1,j = w1,k provided w−w0 does not divide the correspond-

ing nominator. So let kmin(λl) := 2∆w(λ`), then h
(−1)
j (w, λ`) potentially has q` = j − kmin(λl) + 1

poles of order 2 at

wm = 2− a
(0)
1

2
+m+ ∆w(λ`), m = 0, 1, . . . , j − kmin(λ`).

Let us assume that the symbol h
(−1)
j (w, λ`) has 2j + 2 − 2q`, q` ≥ 0, simple poles, which we

arrange for each λ` in descending order, i.e.,

w1(λ`) > w2(λ`) > · · · > w2p+2−2q`(λ`)

where w1(λ`), . . . , wj`(λ`) lies right and wj`+1(λ`), . . . , w2p+2(λ`) left of the integration contour. The

remaining poles of order 2, denoted by w
(2)
k (λ`), k = 1, . . . , q`, are accordingly on the right side of

the integration contour and are as well arranged in descending order, i.e.,

w
(2)
1 (λ`) > w

(2)
2 (λ`) > · · · > w(2)

q`
(λ`).

The residue of such a poles is given by

Res
w

(2)
k (λ`)

(r
r̃

)−w
h

(−1)
j (w) = lim

w→w(2)
k

d

dw

[(
w − w(2)

k (λ`)
)2 (r

r̃

)−w
h

(−1)
j (w)

]

= − ln
(r
r̃

)( r̃
r

)w(2)
k

Res
(1)

w
(2)
k (λ`)

(
h

(−1)
j (·, λ`)

)
+

(
r̃

r

)w(2)
k

Res
(2)

w
(2)
k (λ`)

(
h

(−1)
j (·, λ`)

)
with

Res
(1)

w
(2)
k (λ`)

(
h

(−1)
j (·, λ`)

)
:= lim

w→w(2)
k (λ`)

[(
w − w(2)

k (λ`)
)2
h

(−1)
j (w)

]
,

Res
(2)

w
(2)
k (λ`)

(
h

(−1)
j (·, λ`)

)
:= lim

w→w(2)
k (λ`)

d

dw

[(
w − w(2)

k (λ`)
)2
h

(−1)
j (w)

]
.
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Putting things together, we obtain with u ∈ D̃(C∧)

Pj u(r, φ) = −
∞∑
`=0

j∑̀
k=1

∫
X

∫ r

0

r̃wk(λ`)−n

rwk(λ`)−2

(
Reswk(λ`) h

(−1)
j (·, λ`)

)
p`(φ|φ̃)u(r̃, φ̃) r̃n−1dr̃µn−1(φ̃)dφ̃

+
∞∑
`=0

2p+2−2q`∑
k=j`+1

∫
X

∫ ∞
r

r̃wk(λ`)−n

rwk(λ`)−2

(
Reswk(λ`) h

(−1)
j (·, λ`)

)
p`(φ|φ̃)u(r̃, φ̃) r̃n−1dr̃µn−1(φ̃)dφ̃

+
∞∑
`=0

q∑̀
k=1

∫
X

∫ r

0

r̃w
(2)
k (λ`)−n

rw
(2)
k (λ`)−2

[
ln
(r
r̃

)
Res

(1)

w
(2)
k (λ`)

h
(−1)
j (·, λ`)

− Res
(2)

w
(2)
k (λ`)

h
(−1)
j (·, λ`)

]
p`(φ|φ̃)u(r̃, φ̃) r̃n−1dr̃µn−1(φ̃)dφ̃

Let us summarize our calculations in the following lemma

Lemma 2. For a type-A differential operator Ã, the asymptotic parametrix given by the series

P = r2
∞∑
j=0

rj op
γ−n+3

2
M

(
h

(−1)
j (w,ΛX)

)
can be represented, for u ∈ D̃(C∧), by an integral operator

P u(r, φ) =
∞∑
j=0

rj
∫
X

∫ ∞
0

Kj(r, φ|r̃, φ̃)u(r̃, φ̃)r̃n−1dr̃µn−1(φ̃)dφ̃

with kernel functions

Kj(r, φ|r̃, φ̃) = −H(r − r̃)
∞∑
`=0

j∑̀
k=1

r2−wk(λ`)r̃wk(λ`)−n
(
Reswk(λ`) h

(−1)
j (·, λ`)

)
p`(φ|φ̃)

+H(r − r̃)
∞∑
`=0

q∑̀
k=1

r2−w(2)
k (λ`)r̃w

(2)
k (λ`)−n

[
ln
(r
r̃

)
Res

(1)

w
(2)
k (λ`)

h
(−1)
j (·, λ`)

−Res
(2)

w
(2)
k (λ`)

h
(−1)
j (·, λ`)

]
p`(φ|φ̃) (2.11)

+H(r̃ − r)
∞∑
`=0

2p+2−2q`∑
k=j`+1

r2−wk(λ`)r̃wk(λ`)−n
(
Reswk(λ`) h

(−1)
j (·, λ`)

)
p`(φ|φ̃).

Here H denotes the Heaviside function, i.e., H(r − r̃) =

{
0, r < r̃

1, r > r̃
.

Lemma 1 shows that for a
(0)
0 = −a(0)

1 (n−2)−(n−2)2, the limit r̃ → 0 of K0 yields a fundamental

solution of A0. Under these conditions, we get 2∆w(λ0) = a
(0)
1 +2(n−2), which can lead, according

to Proposition 1, for integer a
(0)
1 to poles of order 2 in the asymptotic parametrix construction if

15



(2.10) is satisfied. In such a case, due to the presence of logarithmic terms, it is not possible to take
the limit r̃ → 0 of Kj for j ≥ 2∆w(λ0). It should be emphasized, that this problem only concerns
λ0, because for higher eigenvalues, the prefactors r̃wk(λ`)−n, ` = 1, 2, . . ., have positive exponents
and the terms r̃wk(λ`)−n ln(r̃) vanish in the limit r̃ → 0. Furthermore it might happen, that poles
are located on the real axis between the integration contour Γn+4

2
−γ and the pole wjn(λ0) = n.

According to our construction, we only assume that Γn+4
2
−γ cuts the real axis between the poles

wjn−1(λ0) = 4− a(0)
1 − n and wjn(λ0) = n, so depending on the choice of γ such cases might occur.

For r > r̃, we decompose the kernel according to

Kj(r, φ|r̃, φ̃) = K
0)
j (r, φ|r̃, φ̃) +K

(1)
j (r, φ|r̃, φ̃) (r > r̃)

with

K
(0)
j (r, φ|r̃, φ̃) := −

∞∑
`=0

j∑̀
k=1

H0

(
wk(λ`)− n

)
r2−wk(λ`)r̃wk(λ`)−n

(
Reswk(λ`) h

(−1)
j (·, λ`)

)
p`(φ|φ̃)

+
∞∑
`=0

q∑̀
k=1

r2−wk(λ`)r̃wk(λ`)−n
[
ln(r) Res

(1)

w
(2)
k (λ`)

h
(−1)
j (·, λ`)

−Res
(2)

w
(2)
k (λ`)

h
(−1)
j (·, λ`)

]
p`(φ|φ̃)

K
(1)
j (r, φ|r̃, φ̃) := −

∞∑
`=0

j∑̀
k=1

H1

(
n− wk(λ`)

)
r2−wk(λ`)r̃wk(λ`)−n

(
Reswk(λ`) h

(−1)
j (·, λ`)

)
p`(φ|φ̃)

−
∞∑
`=0

q∑̀
k=1

r2−wk(λ`)r̃wk(λ`)−n ln(r̃) Res
(1)

w
(2)
k (λ`)

h
(−1)
j (·, λ`)p`(φ|φ̃),

where the Heavyside functions are defined at 0 by H0(0) = 1, H1(0) = 0, respectively. Taking the

limit r̃ → 0 of the average of K
0)
j , we obtain

kj(r) := lim
r̃→0

1

AX

∫
X
K

0)
j (r, φ|r̃, φ̃)µn−1(φ̃) dφ̃ = −r2−n

j0∑
k=1

δ
(
wk(λ0)− n

)(
Reswk(λ0) h

(−1)
j (·, λ0)

)
p0

+r2−n
q0∑
k=1

δ
(
w

(2)
k (λ0)− n

) [
ln(r) Res

(1)

w
(2)
k (λ0)

h
(−1)
j (·, λ0)

−Res
(2)

w
(2)
k (λ0)

h
(−1)
j (·, λ0)

]
p0, (2.12)

where AX denotes the surface area of X.

Remark 4. Logarithmic terms can only appear for j ≥ 2∆w(λ0). For each order j of the asymptotic
parametrix contruction, there are only a finite number of non vanishing terms in the sum over `.
Furthermore, there is at most only one nonvanishing term on the right hand side of (2.12).
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3 Shifted Laplace operators

As a first example for the asymptotic parametrix construction, we consider the shifted Laplace
operator ∆̃n − κ2 in dimension n ≥ 3 with ∆̃n given by (1.10). The shifted Laplace operator is of
type-A with base X = Sn−1 and ΛX = −∆Sn−1 . Its Mellin symbol has the form

h(w) = h0(w) + r2h2(w)

with h0 and h2 given by (1.12) and −κ2, respectively. Application of the recursion formula (2.5)
yields

h
(−1)
2m (w) = κ2m

m∏
j=0

h
(−1)
0 (w − 2j) and h

(−1)
2m+1 = 0 for m = 0, 1, . . . , (3.1)

where h
(−1)
0 is given by (1.13).

3.1 Fudamental solutions from the parametrix

To exemplify our approach, we only consider the cases n = 3, 4 in the following proposition. However
it is clear that analogous calculations can be performed in any dimension ≥ 3.

Proposition 2. For ∆n − κ2, n = 3, 4, the asymptotic parametrix construction, with integration
contour Γn+4

2
−γ taken for 2− n

2 < γ < 3− n
2 , yields a fundamental solution

u = Pf. k(r) with k(r) := k0(r) + rk1(r) + r2k2(r) · · · ,

where the functions kp, p = 0, 1, . . ., are given by (2.12).

Proof. According to (3.1), the symbols h
(−1)
2m,0 have a pole at n if 2 + 2j or n+ 2j equals n for some

j ∈ {0, 1, . . . ,m}. Therefore for n odd, only poles of order 1 appear, whereas for n even, poles of
order 1 and 2 show up. For an admissible γ, no poles appear on the strip between the integration
contour and the pole at n.

Case 1: n odd
In each symbol h

(−1)
2m , there is only for j = 0 a pole of order 1 at n. Formulas (2.12) and (3.1) yield

k2m(r) = −r2−n (−1)mκ2mp0

2mm!

m∏
j=0

1

n− 2j − 2
, with p0 =

(n− 2)!!

2
n+1
2 π

n−1
2

.

In particular, for n = 3 we get

k2m(r) = −r−1 κ2m

4π(2m)!
(3.2)

and

k(r) =

∞∑
j=0

rjkj(r) = − 1

4πr

∞∑
m=0

(κr)2m

(2m)!
= − 1

4πr
cosh(κr)

This can be compared with the standard fundamental solution, cf. [21],

u(x) = Pf.− 1

4πr
e−κr. (3.3)
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It can be easily seen, the difference between both fundamental solutions

Pf.− 1

4πr

(
cosh(κr)− e−κr

)
= Pf.− 1

4πr
sinh(κr)

correspond to a smooth harmonic function in R3.

Case 2: n even
For p < n− 2, the symbols h

(−1)
2m have a pole of order 1 and for p ≥ n a pole of order 2 at n. Let

Q0(w) :=
1

w − 2
and Qm(w) :=

m∏
j=0,2j+26=n

1

w − 2j − 2

m∏
j=1

1

w − 2j − n
for m ≥ 1,

as well as

Q′m(w) =
dQm
dw

(w) = −Qm(w)

 m∑
j=0,2j+26=n

1

w − 2j − 2
+

m∑
j=1

1

w − 2j − n

 for m ≥ 1.

With this, we get

Resn h
(−1)
2m = κ2mQm(n) for 2m < n− 2,

and
Res(1)

n h
(−1)
2m = κ2mQm(n), Res(2)

n h
(−1)
2m = κ2mQ′m(n) for 2m ≥ n− 2.

Therefore, according to formulas (2.12) and (3.1),

k2m(r) = −r2−nκ2m

{
Qm(n)p0 for 2m < n− 2

−
(
ln(r)Qm(n)−Q′m(n)

)
p0 for 2m ≥ n− 2

Let us demonstrate the proposition by an explicit calculation for n = 4, where we have

Q0(4) =
1

2
, Qm(4) = − 1

22mm!(m− 1)!
for m ≥ 1

and

Q′m(4) = − 1

22m+1m!(m− 1)!

−1 +

m−1∑
j=1

j−1 +

m∑
j=1

j−1

 for m ≥ 1.

Finally, with p0 = 1
2π2 , we get

k(r) = − 1

4π2
r−2−

∞∑
m=1

r−2+2mκ
2m

2π2

 1

22mm!(m− 1)!
ln(r)− 1

22m+1m!(m− 1)!

−1 +
m−1∑
j=1

j−1 +
m∑
j=1

j−1


and after some algebraic manipulations, we obtain

k(r) = − 1

4π2
r−2− 1

4π2
(κr)−1I1(κr) ln(r)+

κ2

(4π)2

∞∑
k=0

1

22kk!(k + 1)!

−1 +
k∑
j=1

j−1 +
k+1∑
j=1

j−1

 (κr)2k

(3.4)
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where we used, cf. [1][Eq. 9.6.10],

(κr)−1I1(κr) =
1

2

∞∑
k=0

1

22kk!(k + 1)!
(κr)2k,

which according to (A.4), with α = −1, represents a fundamental solution.

Let us finally consider the role of the terms in the kernel of the parametrix which have been
excluded from our construction, i.e.,

K(1)(r, φ|r̃, φ̃) =
∞∑
0

rpK(1)
p (r, φ|r̃, φ̃).

Remark 5. According to our discussion after Lemma 2, it is only the ` = 0 term for which the
Limit r̃ → 0 cannot be performed.

For n even, k
(1)
2m := P0K

(1)
2m, m = 1, 2, . . ., is given by

k
(1)
2m(r, r̃) := −r2−n

q0∑
j=1

δ
(
w

(2)
j (λ0)− n

)
ln(r̃)

(
Res

(1)

w
(2)
j (λ0)

h
(−1)
2m (·, λ0)

)
p0

= −r2−n ln(r̃)κ2mQm(n)p0

which sums up to

k(1)(r, r̃) :=
∞∑
m=1

r2mk
(1)
2m(r, r̃) = −

( ∞∑
m=1

r2(m+1)−nκ2mQm(n)

)
ln(r̃)p0,

in particular for n = 4, we get

k(1)(r, r̃) =

( ∞∑
m=1

r2m−2κ2m 1

22mm!(m− 1)!

)
ln(r̃)p0

=
κ2

4

( ∞∑
k=0

(κr)2k 1

22k(k + 1)!k!

)
ln(r̃)p0

=
1

2
r−1I1(κr) ln(r̃)p0

In the second line, we used (A.3), which shows that k(1) corresponds to the kernel of a Green operator
which maps onto a smooth function in the kernel of the shifted Laplace operator.

3.2 Green’s functions from the parametrix

In order to demonstrate that one can even get a generalized Laplace expansion of a Green’s function
from the kernel of the parametrix, we consider the case n = 3 where no logarithmic terms show up
in the expansion.
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Proposition 3. For ∆3 − κ2 ,the kernel of the asymptotic parametrix

Kκ(r, φ|r̃, φ̃) =

∞∑
0

rpKp(r, φ|r̃, φ̃).

is given by

Kκ(r, φ|r̃, φ̃) = H(r − r̃)π
2

∞∑
`=0

(−1)`

[
I`+ 1

2
(κr)
√
r

I−`− 1
2
(κr̃)

√
r̃

−
I−`− 1

2
(κr)

√
r

I`+ 1
2
(κr̃)
√
r̃

]
p`(φ, φ̃)

−
√
πκ

2

∞∑
`=0

I`+ 1
2
(κr)
√
r

S`(κr̃)p`(φ, φ̃) (3.5)

with

S`(κr̃) :=

b`/2c∑
m=0

(κr̃)−1−`+2m (−1)m
(
2(`−m)− 1

)
!!

2mm!!
.

and I±`± 1
2

denote modified Bessel function of first order. The corresponding family of regular dis-

tributions

Kκ(·, x̃) :=

{
Pf.Kκ(·|r̃, φ̃) for x̃ = ϕ(r̃, φ̃) 6= 0

Pf. limr̃→0Kκ(·|r̃, φ̃) for x̃ = 0
,

satisfies Definition 2 for a Green’s function.

Proof. Details of the calculation for (3.5) are given in Appendix C. It is intructive to verify (3.5)
by comparison with the canonical Green’s function of the shifted Laplace operator, cf. [21], which
can be obtained from the fundamental solution (3.3)

Gκ(x, x̃) = − 1

4π|x− x̃|
e−κ|x−x̃|

For this Green’s function a generalized Laplace expansion based on Gegenbauers addition theorem
is known in the literature, cf. [22][p.366], such that

Gκ(·, x̃) :=

{
Pf. Gκ(·|r̃, φ̃) for x̃ = ϕ(r̃, φ̃) 6= 0

Pf. limr̃→0Gκ(·|r̃, φ̃) for x̃ = 0

with

Gκ(r, φ|r̃, φ̃) = −H(r − r̃)
∞∑
`=0

K`+ 1
2
(κr)
√
r

I`+ 1
2
(κr̃)
√
r̃

p`(φ, φ̃)

−H(r − r̃)
∞∑
`=0

I`+ 1
2
(κr)
√
r

K`+ 1
2
(κr̃)
√
r̃

p`(φ, φ̃) (3.6)

where

K`+ 1
2
(κr̃) =

π

2
(−1)`

(
I−`− 1

2
(κr)− I`+ 1

2
(κr)

)
(3.7)

denotes a modified Bessel function of second order.
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Let us consider the differences between the kernel functions (3.5) and (3.6), which is given by

Kκ(r, φ|r̃, φ̃)−Gκ(r, φ|r̃, φ̃) =
∞∑
`=0

I`+ 1
2
(κr)
√
r

(
K`+ 1

2
(κr̃)
√
r̃

+

√
πκ

2
S`(κr̃)

)
p`(φ, φ̃). (3.8)

According to (A.3), the distribution corresponding to this difference maps D(R3) into a smooth
function in the kernel of ∆3 − κ2.

Although, the kernel of the parametrix (3.5) satisfies our definition of a Green’s function it is
clear, by comparison with (3.6), that it has some shortcomings. First of all, (3.5) is not a symmetric
kernel function, unlike (3.6), which reflects the fact that the shifted Laplace operator is symmetric.
Given (3.5), this can be cured however by a simple consideration. First of all, the second sum can
be skipped, bcause it maps D(R3) into smooth functions in the kernel of ∆3 − κ2. Furthermore,
according to the previous remark, we are free to add a term of the form

π

2
(−1)`

∞∑
`=0

I`+ 1
2
(κr)
√
r

A(κr̃)√
r̃
p`(φ, φ̃),

in order to restore symmetry under permutation (r, φ)↔ (r̃, φ̃). Permutational symmetry requires

−
I−`− 1

2
(κr)

√
r

I`+ 1
2
(κr̃)
√
r̃

+
I`+ 1

2
(κr)
√
r

(
I−`− 1

2
(κr̃)

√
r̃

+
A(κr̃)√

r̃

)
=
A(κr)√

r

I`+ 1
2
(κr)
√
r

which is obviously satisfied by

A(κr̃) = −I−`− 1
2
(κr̃) mod I`+ 1

2
(κr̃)

The remaining ambiguity can be resolved by another shortcomming of (3.5) which concerns its
asymptotic behaviour for r, r̃ → ∞. Whereas (3.6) decays exponentially, this is not the case for
(3.5). The reason is due to the fact that the modified Bessel functions of the first kind I±`± 1

2
increase

exponentially, and it is only their difference, the modified Bessel functions of the second kind K`+ 1
2
,

cf. (3.7), which decays exponentially [1][9.7.1,9.7.2]. In order to get the desired asymptotic behaviour,
we have to add the term

π

2
(−1)`

∞∑
`=0

I`+ 1
2
(κr)
√
r

I`+ 1
2
(κr̃)
√
r̃

p`(φ, φ̃),

which obviously preserves permutational symmetry. With these modification (3.5) ultimatey be-
comes (3.6). From the point of view of singular analysis the required modifications can be assigned
to Green operators, which is linked to the fact that these terms map into spaces with fixed asymptotic
behaviour.

4 Application in Physics: Scattering theory

In pseudo-differential calculus the notion of ellipticity poses severe restrictions on the partial dif-
ferential operators for which a parametrix exists and therefore excludes many interesting cases. A
typical example, already mentioned in Section 1.1, is the Laplace operator which does not satisfy
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the exit condition. As a possible remedy, one can consider the elliptic shifted Laplace operator,
calculate a fundamental solution or Green’s function and finally takes the limit κ→ 0, which yields
the corresponding quantities for the Laplace operator, cf. Appendix A for further details.

Such an approach can be easily generalized by performing analytic continuations with respect
to a given parameter on which the fundamental solution or Green’s function depends. The method
of analytical continuation paves the way to many interesting applications in physics, in particular
quantum many-body and scattering theory.

Remark 6. Typical differential operators in scattering theory do not satisfy the exit condition for
ellipticity. A prominent example is the Helmholtz equation(

∆ + κ2
)
u = δ

which differs from the shifted Laplace equation, discussed in Section 3, by the minus sign in front
of constant κ2. Actually, the two equations and their fundamental solutions are related by analytic
continuation of the parameter κ, i.e., a rotation in the complex plane by ±π/2 transforms one into
the other. More explicitly, let us consider the fundamental solution of the Helmholtz equation in
n-dimension, cf. ([6]),

un,κ = Pf.
1

4i(2π)
n−2
2

k
n−2
2 r

2−n
2 H

(1)
n−2
2

(κr),

where H
(1)
n−2
2

denotes a Hankel function of the first kind. Using the indentity, cf. [1][9.6.4],

H
(1)
n−2
2

(κr) = −2i

π
e−

1
2
n−2
2
πiKn−2

2
(−iκr),

the fundamental solution becomes

un,κ = Pf.−(2π)−
n
2 (−iκ)

n−2
2 r

2−n
2 Kn−2

2
(−iκr)

which can be obtained from the standard fundamental solution of the shifted Laplacian, cf. (A.1) by
rotating κ from the real to the negative imaginary axis. The renormalized fundamental solution (3.4),
which we have obtained from the asymptotic parametrix construction, differs from it by holomorpic
terms only. Therefor it is possible to get access to a fundamental solution of the Helmholtz equation
by an analytic continuation from the asymptotic parametrix construction.

Analytic continuation, like the one discussed in the previous remark is a versatile tool in quantum
theory [17]. A rigorous treatment however, requires full control on the convergence of the power
series expansion of the asymptotic parametrix construction. We want to discuss this topic in the
simplest non trivial case of n = 3 nonrelativistic electron-nucleus scattering based on a differential
operator, given in spherical coordinates by

Ã := −2
(
H+κ2

)
=

1

r2

[(
−r ∂

∂r

)2

−
(
−r ∂

∂r

)
+ ∆S2 + r2Z − r22κ2

]
, (4.1)

where H denotes the non relativistic Hamiltonian of an electron (atomic units), interacting with a
nucleus of charge Z, cf. [16] for further details. The corresponding Mellin symbol h of the differential
operator A is given by the expansion

h(w) = h0(w) + rh1 + r2h2 with h0(w) = w2 − w + ∆S2 , h1 = 2Z, h2 = −2κ2.
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According to (2.5), we get for the asymptotic parametrix symbol of order 1

h
(−1)
1 (w) = −

(
h

(−1)
0 (w − 1)

)
Zh

(−1)
0 (w) with h

(−1)
0 (w) =

1

h0(w − 2)

and for order p ≥ 2, the recursive formula

h(−1)
p (w) = −

((
h

(−1)
p−1 (w − 1)

)
Z −

(
h

(−1)
p−2 (w − 2)

)
κ2

)
h

(−1)
0 (w) (4.2)

In order to keep track of the combinatorics, let us introduce the notion of binary words given by
the following definition

Definition 4. A binary word α is composed of the numbers 1 and 2, i.e., α = (α1, α2, α3, . . .)
with αi ∈ {1, 2}. For a word composed of Nα characters, let Nα

Z and Nα
κ denote the number of

characters 1 and 2, respectively. Furthemore, let Sp, p ≥ 1, denote the set of all possible words such

that p =
∑Nα

k=1 αk = Nα
Z + 2Nα

κ .

According to the previous definition, we have, e.g., S1 = {(1)}, S2 = {(1, 1), (2)}, S3 =
{(1, 1, 1), (1, 2), (2, 1)}.

Proposition 4. Given the word operations b1, b2
(

1
c, 2c

)
, given by α = (. . .) → αb1= (. . . , 1)(

α = (. . .)→1cα = (1, . . .)
)

and α = (. . .)→ αb2= (. . . , 2)
(
α = (. . .)→2cα = (2, . . .)

)
, respectively.

With these operations acting on all elements of a set of binary words, we get Sp = Sp−1b1∪Sp−2b2
and Sp =1cSp−1∪2cSp−2, respectively.

Proof. Sp = Sp−1b1∪Sp−2b2 follows from the fact that α ∈ Sp is either of the form (. . . , 1) or of the
form (. . . , 2). The other one follows in an analogous manner.

Proposition 5. The p’th order symbol of the asymptotic paramtrix is given by

h(−1)
p (w) =

∑
α∈Sp

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα∏
j=0

h
(−1)
0 (w − pj), (4.3)

with p0 = p and pj = p−
∑j

k=1 αk for j ≥ 1.

Proof. The proof goes by induction. Formula (4.3) is obviously true for p = 1, 2. Using (4.2) and
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Proposition 4, we can perform the induction step

h
(−1)
p+1 (w) =

∑
α∈Sp

(−1)N
α
Z+12N

α+1ZN
α
Z+1

(
κ2
)Nα

κ

Nα∏
j=0

h
(−1)
0 (w − pj − 1)

h
(−1)
0 (w)

+
∑

α∈Sp−1

(−1)N
α
Z 2N

α+1ZN
α
Z
(
κ2
)Nα

κ +1

Nα∏
j=0

h
(−1)
0 (w − pj − 2)

h
(−1)
0 (w)

=
∑

α∈Spb1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα∏
j=0

h
(−1)
0 (w − pj)

+
∑

α∈Sp−1b2

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα∏
j=0

h
(−1)
0 (w − pj)

=
∑

α∈Sp+1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα∏
j=0

h
(−1)
0 (w − pj).

Let us first consider the physically most relevant case n = 3 and calculate the spherical limit kp,
given by (2.12), i.e.,

kp(r) = − 1

4πr

∑
α∈Sp−2b2

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ
(
Res3

Nα∏
j=0

h
(−1)
0 (· − pj , λ0)

)
(4.4)

+
1

4πr

∑
α∈Sp−1b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

ln(r)
(
Res

(1)
3

Nα∏
j=0

h
(−1)
0 (· − pj , λ0)

)

−
(
Res

(2)
3

Nα∏
j=0

h
(−1)
0 (· − pj , λ0)

)
Taking into account

Nα∏
j=0

h
(−1)
0 (· − pj , λ0) =

Nα∏
j=0

1

(w − 2− pj)(w − 3− pj)
,

we get the resolvents

Res3

Nα∏
j=0

h
(−1)
0 (· − pj , λ0) =

Nα−1∏
j=0

1

pj(pj − 1)
(α ∈ Sp−2b2 and p ≥ 2),

Res
(1)
3

Nα∏
j=0

h
(−1)
0 (· − pj , λ0) =

{
−1 p = 1

−
∏Nα−2
j=0

1
pj(pj−1) p ≥ 2

(α ∈ Sp−1b1),
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Res
(2)
3

Nα∏
j=0

h
(−1)
0 (· − pj , λ0) =

{
0 p = 1

−
∏Nα−2
j=0

1
pj(pj−1)

∑Nα−2
j=0

(
1

pj−1 + 1
pj

)
p ≥ 2

(α ∈ Sp−1b1).

Plugging these expressions into (4.4), we get

k0(r) = − 1

4πr
, k1(r) =

1

4πr
2Z ln(r),

and for p ≥ 2

kp(r) = − 1

4πr

∑
α∈Sp−2b2

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−1∏
j=0

1

pj(pj − 1)
(4.5)

− 1

4πr

∑
α∈Sp−1b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−2∏
j=0

1

pj(pj − 1)

ln(r)−
Nα−2∑
j=0

(
1

pj − 1
+

1

pj

)
Lemma 3. Let the function kA(Z, κ, r) be given by the series

kA(Z, κ, r) =
∞∑
p=0

rpkp(r). (4.6)

The series converges absolutely, i.e., kA is well defined, for all values of r ∈ R+
4. For fixed r > 0 it

is an entire function of the parameters Z, κ ∈ C.

Proof. Let us first estimate the cardinality of a set |Sq|, q ≥ 0, which is given by

|Sq| =
bq/2c∑
Nκ=0

(
q −Nκ

Nκ

)
= F (q),

where F (q) is the q’th Fibonacci number, which for large q have the asymptotic behaviour

F (q) ∼ aq√
5

with a =
1 +
√

5

2
.

Furthermore, we can estimate the products

1

p!(p− 1)!
≤

Nα−1∏
j=0

1

pj(pj − 1)
,

Nα−2∏
j=0

1

pj(pj − 1)
≤ 1

p!
,

and finally the sums

Nα−2∑
j=0

(
1

pj − 1
+

1

pj

)
≤ Hp +Hp−1 ∼ ln(p) + ln(p− 1) + 2γ

Taking C := 2amax{|Z|, |κ|}, we can prove the lemma by performing a direct comparisation test
with respect to the convergent series

1

4
√

5π

∞∑
p=2

rp−1

(
Cp−2

(p− 2)!
+

Cp−1

(p− 1)!

[
| ln(r)|+ ln(p) + ln(p− 1) + 2γ

])
.

4Actually, it represents a regular function kA(Z, κ, z) in the complex z-plane cut along the negative real axis.
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For (4.5) we can consider two limits with respect to the paramters Z, κ. For Z = 0, we just
recover (3.2 of the shifted Laplacian, whereas for κ = 0 our calculations yield a fundamental solution
of the Hamiltonian.

Proposition 6. A fundamental solution of the differential operator (4.1) for κ = 0, is given by
(4.5), taking κ = 0, i.e.,

kA(Z, 0, r) = − 1

4πr

1− 2Zr ln(r) +

∞∑
p=2

(−1)p2pZp

p!(p− 1)!
rp
(
ln(r)− (Hp +Hp−1 − 1)

) , (4.7)

where Hp :=
∑p

k=1
1
k denotes the p-th harmonic number. Furthermore, kH(r) = −1

2kA(r) is a
fundamental solution of the corresponding Hamiltonian.

Proof. The absolute convergence of the series (4.7) for any r > 0 follows from Lemma 3.

In order to show A |κ=0 Pf. kA = δ, we have to consider for w ∈ D(Rn), cf. Appendix B,∫
R3

w(x)A |κ=0 Pf. kA(Z, 0, r) dx

= 4π

∫ ∞
0

[(
1 + r

∂

∂r

)2

w0(r)−
(

1 + r
∂

∂r

)
w0(r) + 2rZw0(r)

]
kA(Z, 0, r)dr

= 4π

∫ ∞
0

[(
r
∂

∂r

)2

w0(r) +

(
r
∂

∂r

)
w0(r) + 2rZw0(r)

]
kA(Z, 0, r)dr, (4.8)

where w0(r) := 1
4π

∫
S2 w̃(r, φ)µ(φ) dφ with w̃ := ϕ∗w in D̃(C∧). Straightforward calculations

yield ∫ ∞
0

(
r
∂

∂r
w0(r)

)
r−1 dr = −w0(0)

∫ ∞
0

(
r
∂

∂r

)[
r
∂

∂r
w0(r)

]
r−1 dr = 0

and for q = 0, 1, 2, . . . ∫ ∞
0

(
r
∂

∂r
w0(r)

)
rq dr = −(q + 1)

∫ ∞
0

rqw0(r) dr

∫ ∞
0

(
r
∂

∂r
w0(r)

)
rq ln(r) dr = −

∫ ∞
0

(
(q + 1) ln(r) + 1

)
rqw0(r) dr

∫ ∞
0

(
r
∂

∂r

)[
r
∂

∂r
w0(r)

]
rq dr = (q + 1)2

∫ ∞
0

rqw0(r) dr

∫ ∞
0

(
r
∂

∂r

)[
r
∂

∂r
w0(r)

]
rq ln(r) dr = (q + 1)

∫ ∞
0

(
(q + 1) ln(r) + 2

)
rqw0(r) dr
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Interting these expressions into (4.8) yields

∫
Rn
w(x)APf. kA(Z, 0, r) dx

= w0(0) + 22Z2

∫ ∞
0

r ln(r)w0(r) dr −
∞∑
p=2

(−1)p2pZp

p!(p− 1)!

[
p(p− 1)

∫ ∞
0

rp−1 ln(r)w0(r) dr

+(2p− 1)

∫ ∞
0

rp−1w0(r) dr + 2Z

∫ ∞
0

rp ln(r)w0(r) dr

−
(
Hp +Hp−1 − 1

)(
p(p− 1)

∫ ∞
0

rp−1w0(r) dr + 2Z

∫ ∞
0

rp ln(r)w0(r) dr

)]
= w0(0) +

∞∑
p=3

(−1)p2pZp

p!(p− 1)!

[
−
(
Hp−1 +Hp−2 − 1

)
p(p− 1)

−(2p− 1) +
(
Hp +Hp−1 − 1

)
p(p− 1)

] ∫ ∞
0

rp−1w0(r) dr

= w0(0)

= w(0)

In order to illustrate the behaviour of the fundamental solutions (4.7) of the differential operator
(4.1) for κ = 0, we have plotted some of them for selected values of Z in Fig. 1. For Z = 0 we get
a strictly increasing fundamental solution of the Laplacian as a reference function. With increasing
values of Z, we observe an increasing oscillatory behaviour around this reference function. These
oscillations are caused by the 2Z/r term in (4.1) and resemble to the oscillatory behaviour of
fundamental solutions of the Helmholtz equation. In contrast to the latter, however, the oscillations
are damped with increasing distance to the origin.

Next, let us consider the general case

Proposition 7. The regular distribution Pf. kA(Z, κ, r), given by (4.5) and (4.6) is a fundamental
solution of the differential operator (4.1) for Z, κ ∈ C.

Proof. Similar to the proof of Proposition 6, we have to consider integrals

∫
R3

w(x)APf. kA(Z, κ, r) dx

= 4π

∫ ∞
0

[(
r
∂

∂r

)2

w0(r) +

(
r
∂

∂r

)
w0(r) + 2rZw0(r)− 2r2κ2w0(r)

]
kA(Z, κ, r)dr, (4.9)
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Figure 1: Fundamental solutions (4.7) of the differential operator (4.1) for Z = 0, 1, 2, 3 and κ = 0.

with w ∈ D(R3). Using the integrals from Proposition 6, we obtain∫
R3

w(x)APf. kA(Z, κ, r) dx

= w0(0) + 2κ2

∫ ∞
0

rw0(r) dr + 22Z2

∫ ∞
0

r ln(r)w0(r) dr − 22κ2Z

∫ ∞
0

r2 ln(r)w0(r) dr

−
∞∑
p=2

{ ∑
α∈Sp−2b2

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−1∏
j=0

1

pj(pj − 1)

(
p(p− 1)

∫ ∞
0

rp−1w0(r) dr

+2Z

∫ ∞
0

rpw0(r) dr − 2κ2

∫ ∞
0

rp+1w0(r) dr

)

+
∑

α∈Sp−1b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−2∏
j=0

1

pj(pj − 1)

[
p(p− 1)

∫ ∞
0

rp−1 ln(r)w0(r) dr

+(2p− 1)

∫ ∞
0

rp−1w0(r) dr + 2Z

∫ ∞
0

rp ln(r)w0(r) dr − 2κ2

∫ ∞
0

rp+1 ln(r)w0(r) dr

−

Nα−2∑
j=0

(
1

pj − 1
+

1

pj

)(p(p− 1)

∫ ∞
0

rp−1w0(r) dr

+2Z

∫ ∞
0

rpw0(r) dr − 2κ2

∫ ∞
0

rp+1w0(r) dr

)]}
In order to prove the proposition, we can compare the coefficients of the integrals

∫∞
0 rp−1w0(r) dr

and
∫∞

0 rp−1 ln(r)w0(r) dr, with p = 1, 2, . . .. Let us start with the integrals
∫∞

0 rqw0(r) dr. It can
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be easily seen that the two p = 2 terms cancel each other. For p ≥ 3 we get the coefficients

∫ ∞
0

rp−1w0(r) dr :

−
∑

α∈Sp−2b2

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−1∏
j=0

1

pj(pj − 1)
p(p− 1)

−
∑

α∈Sp−3b2

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−1∏
j=0

1

(p− 1)j((p− 1)j − 1)
2Z

+
∑

α∈Sp−4b2

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−1∏
j=0

1

(p− 2)j((p− 2)j − 1)
2κ2

−
∑

α∈Sp−1b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−2∏
j=0

1

pj(pj − 1)

(2p− 1)−

Nα−2∑
j=0

(
1

pj − 1
+

1

pj

) p(p− 1)


+

∑
α∈Sp−2b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−2∏
j=0

1

(p− 1)j((p− 1)j − 1)

Nα−2∑
j=0

(
1

(p− 1)j − 1
+

1

(p− 1)j

) 2Z

−
∑

α∈Sp−3b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−2∏
j=0

1

(p− 2)j((p− 2)j − 1)

Nα−2∑
j=0

(
1

(p− 2)j − 1
+

1

(p− 2)j

) 2κ2

In order to prove, that the terms in these coefficients cancel each other, let us consider the first
three terms and the last three terms, separately. The second and third term add up to

−
∑

α∈Sp−3b2

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−1∏
j=0

1

(p− 1)j((p− 1)j − 1)
2Z

+
∑

α∈Sp−4b2

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−1∏
j=0

1

(p− 2)j((p− 2)j − 1)
2κ2

=
∑

α∈1cSp−3b2

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−1∏
j=0

1

pj(pj − 1)
p(p− 1)

+
∑

α∈2cSp−4b2

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−1∏
j=0

1

pj(pj − 1)
p(p− 1)

=
∑

α∈Sp−2b2

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−1∏
j=0

1

pj(pj − 1)
p(p− 1)
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and therefore cancel the first term. By a similar argument, we get for the last and second last term

+
∑

α∈Sp−2b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−2∏
j=0

1

(p− 1)j((p− 1)j − 1)

Nα−2∑
j=0

(
1

(p− 1)j − 1
+

1

(p− 1)j

) 2Z

−
∑

α∈Sp−3b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−2∏
j=0

1

(p− 2)j((p− 2)j − 1)

Nα−2∑
j=0

(
1

(p− 2)j − 1
+

1

(p− 2)j

) 2κ2

= −
∑

α∈1cSp−2b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−2∏
j=0

1

pj(pj − 1)

Nα−2∑
j=0

(
1

pj − 1
+

1

pj

)
− 1

p
− 1

p− 1

 p(p− 1)

−
∑

α∈2cSp−3b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−2∏
j=0

1

pj(pj − 1)

Nα−2∑
j=0

(
1

pj − 1
+

1

pj

)
− 1

p
− 1

p− 1

 p(p− 1)

= −
∑

α∈Sp−1b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−2∏
j=0

1

pj(pj − 1)

Nα−2∑
j=0

(
1

pj − 1
+

1

pj

) p(p− 1)− (2p− 1)


and therefore cancel the third last term. It remains to consider the coefficients of the integrals∫∞

0 rp−1 ln(r)w0(r) dr, with p = 2, 3, . . .. It can be seen by inspection that the p = 2 and p = 3
terms cancel each other. For p ≥ 4 we get the coefficients∫ ∞

0
rp−1 ln(r)w0(r) dr :

−
∑

α∈Sp−1b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−2∏
j=0

1

pj(pj − 1)
p(p− 1)

−
∑

α∈Sp−2b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−2∏
j=0

1

(p− 1)j((p− 1)j − 1)
2Z

+
∑

α∈Sp−3b1

(−1)N
α
Z 2N

α
ZN

α
Z
(
κ2
)Nα

κ

Nα−2∏
j=0

1

(p− 2)j((p− 2)j − 1)
2κ2

By the same argument given before, it can be shown that the second and third term cancel the first
term, and therefore also these coefficients vanish all together. Summing up, we get∫

Rn
w(x)APf. kA(Z, 0, r) dx = w0(0) = w(0),

which finishes the proof.

5 Conclusions

It was the intention of the present work to shed some light on possible connections between Green’s
functions and parametrices of elliptic partial differential operators. Closely related from a formal
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point of view there are subtle differences in their conception. Roughly speaking, given a linear
partial differential equation of the form Au = f , a Green’s function for A gives a solution via
u(x) =

∫
G(x, x̃)f(x̃)dx̃, whereas a parametrix provides a solution u modulo some remainder, which

is typically not further specified. For potential applications of parametrices in science and engi-
neering this poses a problem and in our previous work, see e.g. [7], particular attention was paid
to determine these remainders explicitly. Furthermore it is a typical feature of pseudo-differential
calculus to construct parametrices in an asymptotic manner, either, within the calculus of clas-
sical pseudo-differential operators, up to a certain order in the covariables, or as in the singular
case, cf. [8], up to a certain order in an appropriate distance variable. By such constructions one
is left with unspecified higher order terms and the question of convergence for these asymptotic
series remains open. Within the present work, we have calculated complete asymptotic series of
parametrices for various variants of the Laplace operator and discussed their relation to the corre-
sponding fundamental solutions and classical Green’s functions. It turned out in these cases, that
we could recover convergent series expansions for fundamental solutions and Green’s functions from
the parametrices. These considerations pave the way to obtain more general results which are valid
for a larger class of elliptic, possibly singular differential operators. In particular we would like to
overcome some severe limitations in Definition (2.1) concerning the dependence of coefficients on
the variables and respective derivatives of the cone X. Eventually, we want to obtain a general
framework which allows the explicit construction of Green’s functions for a large class of elliptic
differential operators that can be applied for numerical simulations. This seems to be a promising
strategy to overcome limitations due to the presence of singularities in the underlying mathematical
model.
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Appendices

A Regularization of fundamental solutions

Loosely speaking, any reasonable definition of ellipticity for differential operators in a pseudodiffer-
ential calculus implies existence of a parametrix. In the framework of the singular pseudodifferential
calculus, considered in the present work, the notion of ellipticity involves a whole hierarchy of
symbols associated to a differential operator, cf. Chapter 10 of [10] for a detailed discussion. For
unbounded domains, e.g. Rn, one has to take into account the exit behaviour to infinity, as a result,
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the Laplacian ∆n is not elliptic in Rn, it is only the shifted Laplacian ∆n − κ2, which satisfies the
ellipticity conditions. A possible resolution to this problem is to construct at first regularized para-
metrices for the shifted differential operators which have the correct exit behaviour at infinity and
from these, the corresponding fundamental solutions or Green’s functions. Afterwards one considers
the limit κ → 0 for the regularization parameter κ, and sees whether one gets the fundamental
solution or Green’s function of the original problem.

Let us illustrate such an approach for the Laplacian ∆n in Rn in the case n ≥ 3. A fundamental
solution of the shifted Laplacian ∆n − κ2, see e.g. Schwartz [21][Section II, §3], is given by

un,κ = Pf.
[
−(2π)−

n
2 κ

n−2
2 r

2−n
2 Kn−2

2
(κr)

]
, (A.1)

where Kn−2
2

, n = 3, 4 . . ., denote modified Bessel functions of the second kind. The modified Bessel

functions have an asymptotic behaviour for r → 0, cf. [1], of the form

Kn−2
2

(κr) ∼ 1
2Γ
(
n−2

2

) (
1
2κr
)−n−2

2 .

Using the identities

Γ
(
n−2

2

)
= 2

n−2Γ
(
n
2

)
and ωn =

2π
n
2

Γ
(
n
2

) (area of Sn−1),

we get

lim
κ→0

un,κ = − 1

(n− 2)ωn
r2−n

which agrees with the fundamental solution of the Laplacian.
For the shifted Laplacian ∆n − κ2 in even dimension n, we want to consider possible variations

of the canonical fundamental solution (A.1) by subtracting some smooth terms which belong to the
kernel of the shifted Laplacian. For the modified Bessel functions of integer order Kn−2

2
, we consider

the series, cf. [1][9.6.11], and obtain

−(2π)−
n
2 κ

n−2
2 r

2−n
2 Kn−2

2
(κr) = − 1

4π
n
2

r2−n

n−4
2∑

k=0

(−1)k
(n−4

2 − k)!

4kk!
(κr)2k

+(−1)
n−2
2 (2π)−

n
2 κ

n−2
2 r

2−n
2 In−2

2
(κr) ln

(
1
2κr
)

(A.2)

+(−1)
n
2 κn−2(4π)−

n
2

∞∑
k=0

(
ψ(k + 1) + ψ(n2 + k)

) 1

4kk!(n−2
2 + k)!

(κr)2k

with Psi function

ψ(1) = −γ, ψ(m) = −γ +
m−1∑
j=1

j−1, m = 2, 3, . . .

The function, cf. [1][9.6.10],

r
2−n
2 In−2

2
(κr) =

(
κ
2

)n−2
2

∞∑
k=0

1

4kk!(n−2
2 + k)!

(κr)2k (A.3)

32



can be obviously extended to a smooth function in Rn, which belongs to the kernel of the shifted
Laplacian as can be seen by an explicit calculation in polar coordinates

(
∆̃n − κ2

)
r

2−n
2 In−2

2
(κr) =

1

r2

[(
−r ∂

∂r

)2

− (n− 2)

(
−r ∂

∂r

)
+ ∆Sn−1

]
r

2−n
2 In−2

2
(κr)

= r−
n+1
2

[
(κr)2∂2

r In−2
2

(κr) + (κr)∂rIn−2
2

(κr)−
((

n−2
2

)2
+ (κr)2

)
In−2

2
(κr)

]
= 0,

which continuously extends to Rn because of the smoothness of the function. Therefore, we can
subtract from (A.2) the terms

(−1)
n−2
2 (2π)−

n
2 κ

n−2
2 r

2−n
2 In−2

2
(κr) ln

(
1
2κ
)

and

−(2γ + α)(−1)
n
2 κn−2(4π)−

n
2

∞∑
k=0

1

4kk!(n−2
2 + k)!

(κr)2k α ∈ R

in order to obtain the modified fundamental solution Pf. kmod(r) with

kmod(r) = − 1

4π
n
2

r2−n

n−4
2∑

k=0

(−1)k
(n−4

2 − k)!

4kk!
(κr)2k

+(−1)
n−2
2 (2π)−

n
2 κ

n−2
2 r

2−n
2 In−2

2
(κr) ln(r) (A.4)

+(−1)
n
2 κn−2(4π)−

n
2

∞∑
k=0

−α+

k∑
j=1

j−1 +

n−2
2

+k∑
j=1

j−1

 1

4kk!(n−2
2 + k)!

(κr)2k

B Derivatives of distributions in polar coordinates

Within the present work, we consider regular distributions Pf. k in D′(Rn), with functions k :
C∧(X) → R which are O(r2−n) for r → 0. In order to show that Pf. k represents a fundamental
solution of a partial differential operator A, with corresponding operator Ã in the cone algebra, we
have to consider the distributional derivative APf. k, i.e., the distribution defined by∫

Rn
g(x)APf. k(x) dx :=

∫
Rn

(
A∗ g(x)

)
Pf. k(x) dx,

where A∗ denotes the formally adjoint operator and g any test function in D(Rn). It should be em-
phasized, that this definition refers exclusively to cartesian coordinates with corresponding Lebesgue
measure dx, cf. Schwartz [21][Section II, §3].

Within the present work, we consider partial differential operators A which correpond to partial
differential operators on the streched cone of the form

Ã = r−2

[(
−r ∂

∂r

)2

+ a
(0)
1

(
−r ∂

∂r

)
+ a

(0)
0 + b(0)ΛX

]
,
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with coefficients satisfying a
(0)
0 = −a(0)

1 (n− 2)− (n− 2)2. Using
(
−r ∂∂r

)
= −

(∑n
i=1 xi

∂
∂xi

)
and the

essential self-adjointness of ΛX , we get∫
Rn
g(x)APf. k(x) dx

=

∫
Rn

([( n∑
i=1

∂

∂xi
xi ·
)( n∑
i=1

∂

∂xj
xj ·

)
− a(0)

1

( n∑
i=1

∂

∂xi
xi ·
)

+ a
(0)
0 + b(0)ΛX

]
g(x)

|x|2

)
Pf. k(x) dx

=

∫
X

∫ ∞
0

([(
n+ r

∂

∂r

)2 − a(0)
1

(
n+ r

∂

∂r

)
+ a

(0)
0 + b(0)ΛX

]
g̃(r, φ)

r2

)
k(r, φ) rn−1drµ(φ)dφ

=

∫
X

∫ ∞
0

1

r2

([(
(n− 2) + r

∂

∂r

)2
+ a

(0)
1

(
(n− 2) + r

∂

∂r

)
+a

(0)
0 + b(0)ΛX

]
g̃(r, φ)

)
k(r, φ) rn−1drµ(φ)dφ

with g̃ := ϕ∗g(r, φ) for g ∈ D(Rn), cf. Section 1. These integrals exist, because the integrand remains
bounded due to our constraint on the coefficients and the O(r2−n) behaviour of k.

C Calculation of the parametrix for the shifted Laplace operator
in three dimensions

In this appendix we want to give some technical details concerning the calculation of the kernel of
the parametrix (3.5) for the shifted Laplace operator in three dimensions. According to Proposition
1 all poles of symbols of the parametrix are simple, and formula (2.11) simplifies to

K2m(r, φ|r̃, φ̃) = −H(r − r̃)
∞∑
`=0

j∑̀
k=1

r2−wk(λ`)r̃wk(λ`)−n
(
Reswk(λ`) h

(−1)
2m (·, λ`)

)
p`(φ|φ̃)

+H(r̃ − r)
∞∑
`=0

4m+2∑
k=j`+1

r2−wk(λ`)r̃wk(λ`)−n
(
Reswk(λ`) h

(−1)
2m (·, λ`)

)
p`(φ|φ̃).

The integration contour Γ 7
2
−γ is taken with 1

2 < γ < 3
2 , where the poles

w1,j(λ`) = 3+`+pj , with j = 0, 1, . . . ,m and w2,j(λ`) = 2−`+pj , with j = 0, 1, . . . ,m−b `2c−1

are located right of the integration contour, and the poles

w2,j(λ`) = 2− `+ pj , with j = m− b `2c, . . . ,m,

are located left of it. Here and in following, we use the notation pj := 2m− 2j.
The symbols (3.1) of the parametrix are given by

h
(−1)
2m (w, λ`) = κ2m

m∏
j=0

1

(w − 2 + `− pj)(w − 3− `− pj)
for m = 0, 1, . . . ,
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and we have to calculate the residues at their poles. Let us first consider the case r > r̃, where the
poles right to the integration contour contribute. For these poles, we get

Reswj(λ`) h
(−1)
2m (·, λ`) =

m∏
k=0
k 6=j

1

pj − pk

m∏
k=0

1

pj − pk + 1 + 2`
for j = 0, 1, . . .m wj(λ`) = 3 + `+ pj ,

and

Reswj(λ`) h
(−1)
2m (·, λ`) =

m∏
k=0
k 6=j

1

pj − pk

m∏
k=0

1

pj − pk − 1− 2`
for j = 0, 1, . . .m−b `2c−1 wj(λ`) = 2−`+pj ,

For the products, we get
m∏
k=0
k 6=j

1

pj − pk
=

(−1)j

2mj!(m− j)!
,

m∏
k=0

1

pj − pk + 1 + 2`
=


(−1)`−j(

2(j−`)−1
)

!!
(

(2(m−j+`)+1
)

!!
for 2j > 2`+ 1(

2(`−j)−1
)

!!(
(2(m−j+`)+1

)
!!

for 2j < 2`+ 1
,

m∏
k=0

1

pj − pk − 1− 2`
=


(−1)`+j+1(

2(j+`)+1
)

!!
(

(2(m−j−`)−1
)

!!
for j ≤ m− `

(−1)m+1
(

(2(j+`−m)−1
)

!!(
2(j+`)+1

)
!!

for j ≥ m− `+ 1
.

We can now sum up the kernel of the parametrix,

K(r, φ|r̃, φ̃)

= −
∞∑
`=0

∞∑
m=0

m∑
j=0

r−1−`+2j r̃2(m−j)+`κ2m (−1)jfj

2mj!(m− j)!
(
(2(m− j + `) + 1

)
!!
p`(φ|φ̃) (C.1)

−
∞∑
`=0

∞∑
m=b `2 c+1

m−b `2 c−1∑
j=0

r`+2j r̃−1−`+2(m−j)κ2m gmj

2mj!(m− j)!
(
(2(j + `) + 1

)
!!
p`(φ|φ̃)

with

fj =


(
2(`− j)− 1

)
!! for 0 ≤ j ≤ `

(−1)j−`(
(2(j−`)−1

)
!!

for `+ 1 ≤ j ,

and

gmj =


(−1)`+1(

2(m−j−`)−1
)

!!
for 0 ≤ j ≤ m− `

(−1)j+m+1
(
(2(j + `−m)− 1

)
!! for m− `+ 1 ≤ j ≤ m− b `2c − 1

,

By changing the order of summation,

∞∑
m=0

m∑
j=0

→
∞∑
j=0

∞∑
m=j

m̃=m−j−−−−−→
∞∑
j=0

∞∑
m̃=0
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we can achieve a separation of the variables, the first sum in (C.1) becomes

−
∞∑
`=0

∞∑
j=0

∞∑
m̃=0

r−1−`+2j r̃2m̃+`κ2(m̃+j) (−1)jfj

2m̃+jj!m̃!
(
(2(m̃+ `) + 1

)
!!
p`(φ|φ̃)

= −
∞∑
`=0

∑̀
j=0

r−1−`+2jκ2j (−1)j
(
(2(j − `)− 1

)
!!

2jj!
+

∞∑
j=`+1

r−1−`+2jκ2j (−1)`

2jj!
(
(2(j − `)− 1

)
!!


×

( ∞∑
m̃=0

r̃2m̃+`κ2m̃ 1

2m̃m̃!
(
(2(m̃+ `) + 1

)
!!

)
p`(φ|φ̃)

= −π
2

∞∑
`=0

(−1)`
I−`− 1

2
(κr)

√
r

I`+ 1
2
(κr̃)
√
r̃

p`(φ|φ̃), (C.2)

in the last line, we have identified the power series with modified Bessel function of first kind I±`± 1
2
,

cf. [5][Eqs. 10.53.4, 10.47.8]. The second sum in (C.1) can be rewritten as

−
∞∑
`=0

∞∑
j=0

∞∑
m̃=b `2 c+1

r`+2j r̃−1−`+2m̃κ2(m̃+j) gm̃j

2m̃+jj!m̃!
(
(2(j + `) + 1

)
!!
p`(φ|φ̃)

= −
∞∑
`=0

∞∑
j=0

∞∑
m̃=0

r`+2j r̃−1−`+2m̃κ2(m̃+j) gm̃j

2m̃+jj!m̃!
(
(2(j + `) + 1

)
!!
p`(φ|φ̃)

+
∞∑
`=0

∞∑
j=0

b `2 c∑
m̃=0

r`+2j r̃−1−`+2m̃κ2(m̃+j) gm̃j

2m̃+jj!m̃!
(
(2(j + `) + 1

)
!!
p`(φ|φ̃)

=
∞∑
`=0

 ∞∑
j=0

r`+2jκ2j 1

2jj!
(
(2(j + `) + 1

)
!!


×

(
`−1∑
m̃=0

r̃−1−`+2m̃κ2m̃ (−1)m̃
(
(2(`− m̃)− 1

)
!!

2m̃m̃!
+
∞∑
m̃=`

r̃−1−`+2m̃κ2m̃ (−1)`

2m̃m̃!
(
(2(m̃− `)− 1

)
!!

)
p`(φ|φ̃)

−
∞∑
`=0

 ∞∑
j=0

r`+2jκ2j 1

2jj!
(
(2(j + `) + 1

)
!!


 b

`
2 c∑

m̃=0

r̃−1−`+2m̃κ2m̃ (−1)m̃
(
(2(`− m̃)− 1

)
!!

2m̃m̃!

 p`(φ|φ̃)

=

∞∑
`=0

[
(−1)`

π

2

I`+ 1
2
(κr)
√
r

I−`− 1
2
(κr̃)

√
r̃

−
√
πκ

2

I`+ 1
2
(κr)
√
r

S`(κr̃)

]
p`(φ|φ̃), (C.3)

with

g̃m̃j =


(−1)`+1(

2(m̃−`)−1
)

!!
for ` ≤ m̃

(−1)m̃+1
(
(2(`− m̃)− 1

)
!! for m̃ ≤ `− 1

.

Like before, we identified the power series with modified Bessel function of first kind, except of the
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finit sum given by

S`(κr̃) :=

b`/2c∑
m=0

(κr̃)−1−`+2m (−1)m
(
2(`−m)− 1

)
!!

2mm!!
.

Finally, let us consider the case r < r̃, where the poles left to the integration contour contribute, we
get

K(r, φ|r̃, φ̃)

=
∞∑
`=0

b `2 c∑
m=0

m∑
j=0

r`+2j r̃−1−`+2(m−j)κ2m gmj

2mj!(m− j)!
(
(2(j + `) + 1

)
!!
p`(φ|φ̃)

∞∑
`=0

∞∑
m=b `2 c+1

m∑
j=m−b `2 c

r`+2j r̃−1−`+2(m−j)κ2m gmj

2mj!(m− j)!
(
(2(j + `) + 1

)
!!
p`(φ|φ̃)

=

∞∑
`=0

∞∑
j=0

j+b `2 c∑
m=j

r`+2j r̃−1−`+2(m−j)κ2m gmj

2mj!(m− j)!
(
(2(j + `) + 1

)
!!
p`(φ|φ̃)

=

∞∑
`=0

∞∑
j=0

j+b `2 c∑
m=j

r`+2j r̃−1−`+2(m−j)κ2m (−1)j+m+1
(
(2(j + `−m)− 1

)
!!

2mj!(m− j)!
(
(2(j + `) + 1

)
!!
p`(φ|φ̃)

=
∞∑
`=0

∞∑
j=0

b `2 c∑
m̃=0

r`+2j r̃−1−`+2m̃κ2(m̃+j) (−1)m̃+1
(
(2(`− m̃)− 1

)
!!

2m̃+jj!m̃!
(
(2(j + `) + 1

)
!!
p`(φ|φ̃)

= −
∞∑
`=0

 ∞∑
j=0

r`+2jκ2j 1

2jj!
(
(2(j + `) + 1

)
!!


 b

`
2 c∑

m̃=0

r̃−1−`+2m̃κ2m̃ (−1)m̃
(
(2(`− m̃)− 1

)
!!

2m̃m̃!

 p`(φ|φ̃)

= −
∞∑
`=0

√
πκ

2

I`+ 1
2
(κr)
√
r

S`(κr̃)p`(φ|φ̃). (C.4)

Summing up the terms (C.2), (C.3) and (C.4), we get the kernel of the parametrix (3.5).

D Ellipticity conditions for partial differential operators in the
cone algebra

In this appendix, we briefly outline the ellipticity conditions for partial differential operators (2.1)
in the cone algebra and resulting implications for (2.7). For a detailed treatment of ellipticity
conditions in the cone algebra, we refer to the monograph [20]. Let us denote the covariables for
r, φ by ρ and ξ, respectively. The homogeneous principal symbol of A is given by

σψ(A)(r, φ, ρ, ξ) =
1

r2

[
−a2(r)(rρ)2 + b(r)σ2

ψ(Λ)(φ, ξ)
]
,
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which has to satisfy the 1. ellipticity condition (EC1)

σψ(A)(r, φ, ρ, ξ) 6= 0,

for all (r, φ) ∈ R+ × X and (ρ, ξ) 6= 0. Furthermore, we have to consider the reduced principal
symbol

σ̃ψ(A)(r, φ, ρ, ξ) := r2σψ(A)(r, φ, r−1ρ, ξ) = −a2(r)ρ2 + b(r)σ2
ψ(Λ)(φ, ξ),

which has to satisfy the 2. ellipticity condition (EC2)

σ̃ψ(A)(r, φ, ρ, ξ) 6= 0,

for all (r, φ) ∈ R+×X and (ρ, ξ) 6= 0, i.e., it does not vanish up to r = 0. In particular, we get with

respect to (2.7) the condition a
(0)
2 = a2(0) 6= 0 and b(0) = b(0) < 0, which enter into our definition

of type-A and type-B differential operators, cf. Definition 3. For the construction of an asymptotic
parametrix, the 3. ellipticity condition (EC3) is crucial, which states that the principal conormal
symbol

σM (A)(w) :=

2∑
j=0

aj(0)wj + b(0)ΛX : Hs(X)→ Hs−2(X) (D.1)

is a family of isomorphisms for all w ∈ Γn
2
−γ . If this is the case, A is said to to be elliptic with

respect to the weight γ ∈ R. Finally, we want to mention the 4. ellipticity condition (EC4) on the
exit symbols σe(A) and σψ,e(A) which describe the behaviour of the symbol of a differential operator
for r → ∞. These symbols are important concerning the Fredholm property of A with respect to
certain weighted Sobolev spaces. Since we restrict ourselves in the present work to test functions
with compact support, this condition is largely ingnored in the present work.
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