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Abstract

The appearance of singularities at isolated point loads of plane load-bearing structures, like
ceilings, poses severe difficulties for numerical simulations in structural engineering based on
elastic plate theory, e.g., Kirchhoff-Love or Mindlin-Reissner models. In order to overcome this
obstacle, we propose a general approach based on Green’s functions and methods from singular
analysis to explicitly determine the asymptotic behaviour of elastic plate models in the vicinity
of point loads. In this context, we have studied interrelations between Green’s functions and
parametrices in a conical pseudo-differential algebra for the Laplace and bi-Laplace operator.
Eventually our method provides a general approach for the construction of Green’s functions
of elastic shell models, where analytic Green’s functions are presently not available. Besides
a global model, we consider a local defect correction (LDC) in a neigbourhood of a point load.
These models are coupled with each other and can be solved in an iterative manner. Whereas the
global model can be treated numerically by a coarse discretization scheme, which is appropriate
away from a point load, the local model has to take care of the singular structure by a priori
subtracting the singular asymptotic behaviour of the solution which is provided by the above
mentioned methods from singular analysis.
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1 Introduction

The presence of singularities in physical models is a generic difficulty for their numerical simulation.
Even a rather mild singular behaviour of the quantity of interest, e.g., divergent higher derivatives
near the singularity, might severely restrict convergence rates of numerical discretization schemes.
Various approaches exist to overcome this obstacle, among these are adaptive refinement schemes
[16] and singular basis functions [2], which restore the original performance of discretization schemes
in absence of singularities. In this context it is helpful to have a priori knowledge of the expected
asymptotic singular behaviour of the quantity of interest. The desired asymptotic information can
be obtained by using techniques from singular analysis. Within the present work, we provide a case
study for the interrelation of numerical and singular analysis in order to solve singular boundary
value problems related to elliptic partial differential operators.

The paper is organized as follows: In Section 2, we outline two general types of singular elliptic
boundary value problems and discuss some basic techniques from singular analysis which provide a
priori asymptotic information in the vicinity of a singularity. In order to make the paper reasonably
self contained, this part contains a short outline of terms and definitions we have employed from
singular analysis. Section 2.1 provides a brief outline of the LDC method and how we want to make
use of a priori asymptotic information. This is followed in Section 2.2 by a preliminary error analysis
of the LDC in this context. In Section 3, we ouline the Kirchhoff-Love and Reissner-Mindlin plate
models and our Green’s function based approach to transform the original singular problems into
smooth problems that can be efficiently solved by numerical methods. Having specified the Green’s
functions, including boundary conditions, which are required by our approach, we turn to a discus-
sion of these Green’s functions from the singular analysis point of view. In particular, we highlight
some specific features of these two dimensional problems which are absent in higher dimensions.
For the sake of honesty, one should mention, that analytic expressions for the required Green’s
functions are well known in the literature, see e.g. [22, 20, 21]. Therefore readers only interested
in the numerical aspects of this work can immediately jump to Section 5. The motivation behind
our treatment of Green’s functions in the framework of singular analysis, is the lack of a general
approach that provides analytic expressions for a wide class of elliptic partial differential operators.
Actually, we hope that our work paves the way for applications where no analytic expressions for
the Green’s function are presently available. As a first step in this direction, the present work
should be considered as a feasibility study, which reveals the prospects but also potential problems
of our approach. In Section 4.1, we discuss a recursive scheme for the construction of the parametrix
of an elliptic operator and illustrate it for the Laplace operator. We discuss the properties of its
parametrix and point out how to get the desired Green’s function from it. Finally, we consider
in Section 4.2 a similar construction for the parametrix of the bi-Laplace operator and derive the
corresponding Green’s function, including appropriate boundary conditions. The paper closes in
Section 6 with concluding remarks and an outlook on our future work.

2



2 Local defect correction incorporating asymptotic information

Before we enter into our discussion of the LDC method, cf. [13, 14, 17] for a detailed exposition, let
us depict the basic idea of our approach in a rather informal manner. The boundary value problems,
we want to solve numerically are of generic form

Type a): Au∗ = f or Type b): Au∗ = δ(· − x̃) with x̃ ∈ Ω, (2.1)

in an open domain Ω, where A represents a possibly singular elliptic partial differential operator.
For type a) problems, the right-hand side f is commonly supposed to be singular. We want to
consider second and fourth order differential operators and boundary conditions involving u∗|∂Ω,
∂νu

∗|∂Ω and ∂2
νu
∗∣∣
∂Ω

, where ∂ν denotes the normal derivative at the boundary.
It is a peculiar feature of our LDC method that it requires an a priori knowledge of the asymptotic

behaviour of u∗ in the vicinity of singularities. The pseudo-differential calculus of singular analysis
provides a systematic approach to obtain the desired asymptotic information, for detailed expositions
we refer to the monographs [6, 19, 24]. In the following, we want to sketch some basic ideas of the
corresponding operator algebra and introduce appropriate function spaces which take care of the
asymptotic behaviour near a singularity. The function spaces we have to consider are weighted
Sobolev spaces with asymptotics, so called Kegel spaces, which replace the ordinary Sobolev spaces
commonly used in numerical analysis. Within the present work, it is sufficient to restrict our
discussion to point-like conical singularities, it should be mentioned, however, that the techniques
discussed below can be extended to higher order edge and corner singularities as well.

Let us consider a conical singularity that can be locally modelled by an open stretched cone
C2 := R+ × S1, with base S1. For applications in plate theory it is sufficient to consider cones
with base S1 but the definitions given below work for arbitrary cones with a smooth base. For the
definition of weighted Sobolev spaces Ks,γ(C2), we make use of the identification R2 \ {0} and C2

via polar coordinates θ : x→ (r, φ), i.e.,1

Ks,γ(C2) := ωHs,γ(C2) + (1− ω)Hs(R2),

for a cut-off function ω, i.e., ω ∈ C∞0 (R+) such that ω(r) = 1 near r = 0. Here Hs,γ(C2) =
rγHs,0(C2), and Hs,0(C2) for s ∈ N0 is defined to be the set of all u(r, φ) ∈ r−1L2(R+ × S1)
such that (r∂r)

jDu ∈ r−1L2(R+ × S1) for all D ∈ Diffs−j(S1), 0 ≤ j ≤ s. The definition for
s ∈ R in general follows by duality and complex interpolation. Beyond a certain distance from the
singularity, Ks,γ(C2) spaces become ordinary Sobolev spaces which means that for u ∈ Ks,γ(C2),
the part (1 − ω)u belongs, after back-transformation from polar to Cartesian coordinates, to the
ordinary Sobolev space Hs(R2). Weighted Sobolev spaces with asymptotics are subspaces of Ks,γ
spaces which are defined as direct sums

Ks,γQ (C2) := EγQ(C2) +Ks,γΘ (C2) (2.2)

of flattened weighted cone Sobolev spaces

Ks,γΘ (C2) :=
⋂
ε>0

Ks,γ−ϑ−ε(C2)

with Θ = (ϑ, 0], −∞ ≤ ϑ < 0, and asymptotic spaces

EγQ(C2) :=

{
ω(r)

∑
j

mj∑
k=0

cjk(x)r−qj lnk r

}
.

1The definition means that a function u : C2 → R in Ks,γ(C2) can be represented in the form ωu+ (1− ω)u such
that θ∗(1− ω)u ∈ Hs(R2), where θ∗ denotes the pullback on functions of the diffeomorphism θ.
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The asymptotic space EγQ(C2) is characterized by a sequence qj ∈ C which is taken from a strip of
the complex plane, i.e.,

qj ∈
{
z :

3

2
− γ + ϑ < <z < 3

2
− γ
}
,

where the width and location of this strip are determined by its weight data (γ,Θ) with Θ = (ϑ, 0]
and −∞ ≤ ϑ < 0. Each substrip of finite width contains only a finite number of qj . Furthermore, the
coefficients cjk belong to finite dimensional subspaces Lj ⊂ C∞(S1). The asymptotics of EγQ(C2) is
therefore completely characterized by the asymptotic type Q := {(qj ,mj , Lj)}j∈Z+ . In the following,
we employ the asymptotic subspaces

SγQ(C2) :=
{
u ∈ K∞,γQ (C2) : (1− ω)u ∈ S(R, C∞(S1))|R+

}
with Schwartz type behaviour for exit r →∞. The spaces Ks,γQ (C2) and SγQ(C2) are Fréchet spaces
equipped with natural semi-norms according to the decomposition (2.2); we refer to [6, 19, 24] for
further details.

Type a) problems are of standard form and the singular behaviour, to be specified below, should
be restricted to a finite number of points in Ω. Furthermore, let us assume that we have a left
parametrix P of A, which means that P acts as a pseudo-inverse of A, satisfying the operator
equation

P A = I + G, (2.3)

where G denotes a so-called Green operator. The operators in (2.3) belong to a pseudo-differential
algebra of operators that map between weighted Sobolev spaces with and without asymptotics.
More precisely, we consider a partial differential operator which represents continuous operators

A : Ks,γP (C2)→ Ks−µ,γ−µQ (C2), A : Ks,γ(C2)→ Ks−µ,γ−µ(C2),

where Ks,γP,(Q) and Ks,γ denote weighted Sobolev spaces with and without specified asymptotic be-
haviour, respectively. The specified, possibly disctinct asymptotic behaviour is indicated by the
subscripts P,Q. Similarly, a parametrix acts as continuous operator

P : Ks−µ,γ−µQ (C2)→ Ks,γP (C2), P : Ks−µ,γ−µ(C2)→ Ks,γ(C2), (2.4)

and the Green operator

G : Ks,γ(C2)→ Ss,γO (C2), (2.5)

maps weighted a weighted Sobolev space without specified asymptotic behaviour into a Schwartz
space with specified asymptotic behaviour. Application of a parameterix from the left to a type a)
equation yields

u∗ = P f − G u∗. (2.6)

Let us take a closer look at the asymptotic behaviour of the two terms on the right-hand side of
(2.6). If we assume that f has a specific asymptotic behaviour, i.e., it belongs to Ks−µ,γ−µQ for a
certain asymptotic type Q, then, according to (2.4), also P f belongs to such a space with a certain
asymptotic type P . The second term depends on the unknown solution u∗ ∈ Ks,γ , however, because
of (2.5), the Green operator provides a priori asymptotic information without an explicit knowledge
of u∗. In summary, (2.6) provides rather detailed asymptotic information concerning the unkown
solution u∗ if the parametrix P and the Green operator G are explicitly known.

In the LDC method, an approximate solution u(0) on the global domain Ω, induces boundary
conditions on the boundary of the local domain ∂ω. The corresponding boundary value problem on
ω is conveniently solved in two steps. In a first step appropriate boundary conditions, e.g., homo-
geneous Dirichlet or Neumann boundary conditions, are chosen for the parametrices and Green’s
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functions of type a) and b) problems, respectively. The actual boundary conditions, imposed by the
global solution on ∂ω, are taken into account in a second step, by a numerical solution of a desingu-
larized boundary value problem on ω, cf. point (iv) in the LDC schemes outlined below. Concerning
the pseudo-differential calculus for type a) problems, it should be mentioned that the parametrix
and corresponding Green operator are only required on the local domain ω, which actually contains
the singularity. This offers the possibility to employ a local asymptotic expansion of the parametrix
Pω and Green operator Gω in a neighbourhood of the singularity. In order to determine the leading
order singular asymptotic terms of the exact solution u∗, we furthermore approximate u∗ on the
right-hand side by the approximate solution u(0), i.e.,

u∗ ∼ Pω f − Gω u(0). (2.7)

Solutions of type b) problems correspond to fundamental solutions of the differential operator
A and are generically singular at the point x̃. We assume, that an asymptotic fundamental solution
is known in a local neighbourhood ω ⊂ Ω of the singularity, which satisfies the equation

A g∗(·, x̃) = δ(· − x̃) +O(|x− x̃|m), (2.8)

Application in LDC is simplified, if the asymptotic fundamental solution g∗(·, x̃) satisfies homoge-
neous boundary conditions, i.e., g∗(·, x̃)|∂Ω = 0, for second order differential operators, and addi-
tionally ∂νg

∗(·, x̃)|∂Ω = 0 or ∂2
νg
∗(·, x̃)

∣∣
∂Ω

= 0 for fourth order differential operators.

2.1 Brief outline of the LDC approach

Let us outline the simplest version of a LDC method based on (2.7) or (2.8). Here and in the following
section our discussion is based on a finite difference instead of a finite element discretization scheme
in order to avoid particular reference to a specific type of finite element in the regularity estimates
given below. Before we enter into this topic, let us define some spaces and operators which are
required in the following. The LDC method is based on two different grids Ω` and ω`, where Ω`

refers to a uniform global grid on the domain Ω and ω` to a local grid on the domain ω. On
the grids Ω` and ω`, we consider discretized differential operators AΩ` and Aω` , respectively. In
order to restrict f (u∗) to Ω` let us introduce an appropriate restriction operator R̃Ω (RΩ)2, and
a similar operators R̃ω (Rω) to restrict these functions from ω to ω`. Actually it makes sense to
consider different kinds of restriction operators for the right-hand side f and (approximate) solutions
because of their behaviour near the singularity. In some particular applications, the right-hand side
f has a divergent behaviour near the singularity, whereas the solution itself remains finite and
only its derivatives diverge. Vice versa let us also introduce prolongation operators TΩ` , Tω` which
provides prolongations from functions on the grids Ω` and ω` to functions on Ω and ω, respectively.
Furthermore let us introduce a transfer operator πΩ` which maps functions on Ω` into functions on
ω`. For the reverse mapping ω` → Ω` ∩ ω`, we introduce the transfer operator πω` . After these
preliminary remarks let us discuss two basic LDC approaches.

Type a) boundary value problems:

(i) Consider Eq. (2.1)[Type a)] on the global grid Ω`

AΩ`u
(0)
` = R̃Ωf, (2.9)

which is appropriate to approximate the solution except near singularities of the right-hand
side f .

2For type b) problems, discretization of the Dirac delta distribution requires special care, cf. [5, 26].
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(ii) Interpolate the boundary values, i.e., determine πΩ`u
(0)
` |∂ω` .

(iii) Approximate the singular asymptotic behaviour via

ũ(0) = Pω f − Gω TΩ`u
(0)
` , (2.10)

on the local domain ω.

(iv) Solve on ω` the local problem

Aω`δ` = R̃ω
(
f −A ũ(0)

)
(2.11)

with Dirichlet boundary conditions δ`|∂ω` = πΩ`u
(0)
` |∂ω` −Rωũ

(0)|∂ω` .

(v) Set on ω`: ũ
(1)
` := Rωũ

(0) + δ` which satisfies the boundary condition ũ
(1)
` |∂ω` = πΩ`u

(0)
` |∂ω` .

(vi) Solve on Ω`

AΩ`u
(1)
` =

{
AΩ`πω` ũ

(1)
` Ω` ∩ ω`

R̃Ωf Ω` \ ω`
(2.12)

Type b) boundary value problems:

(i) Consider Eq. (2.1)[Type b)] on the global grid Ω`

A`u
(0)
` = R̃Ωδ(· − x̃), (2.13)

which is appropriate to approximate the solution except near the singularity at x̃ ∈ Ω of
the Dirac distribution. We do not assume that x̃ corresponds to a lattice point of Ω` or ω`,
respectively.

(ii) Interpolate the boundary values, i.e., determine πΩ`u
(0)
` |∂ω` .

(iii) Approximate the singular asymptotic behaviour via the given asymptotic fundamental solution

ũ(0) = g∗(·, x̃), (2.14)

on the local domain ω.

(iv) Solve on ω` the local problem

Aω`δ` = R̃ω
(
δ(· − x̃)−A ũ(0)

)
(2.15)

with Dirichlet boundary conditions δ`|∂ω` = πΩ`u
(0)
` |∂ω`−Rωũ

(0)|∂ω` for second order differential
operators and an additional condition for fourth order operators, to be specified below. Here
δ(·−x̃)−A ũ(0) is supposed to represent a regular distribution which vanishes at the singularity.

(v) Set on ω`: ũ
(1)
` := Rωũ

(0) + δ` which satisfies the boundary condition ũ
(1)
` |∂ω` = πΩ`u

(0)
` |∂ω` .

(vi) Solve on Ω`

AΩ`u
(1)
` =

{
AΩ`πω` ũ

(1)
` Ω` ∩ ω`

R̃Ωf Ω` \ ω`
(2.16)
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2.2 Preliminary error analysis of the LDC method

Let us perform a rough error analysis of our LDC approach for Type a) problems for a second order
elliptic partial differential operator A. In order to simplify our presentation, we use some standard
estimates for finite difference schemes on regular grids. In the following, we will use standard Sobolev
spaces Hs(Ω), Hs(ω) on the global and local domain, as well as the corresponding discrete Sobolev
spaces Hs

` (Ω`), H
s
` (ω`) on the grids. Restriction operators R̃Ω, . . . which simply act by pointwise

restriction of functions require s > 1 (2D), according to the Sobolev embedding theorem, in order
to represent bounded operators, i.e.,

‖R̃Ω‖Hs
`↼Hs <∞. (2.17)

On a uniform grid, we assume ‖AΩ`‖Hs
`↼Hs+2

`
<∞ and ‖A−1

Ω`
‖Hs+2

` ↼Hs
`
<∞ for all s ∈ R. For the

canonical choice s = −1, e.g., R̃Ω has to be some kind of average3 in order to satisfy (2.17) for all
s ≥ −1.

The discretisation error of (2.9) is given by

AΩ`

(
u

(0)
` −RΩu

∗) = R̃Ωf −AΩ`RΩu
∗ =

(
R̃ΩA−AΩ`RΩ

)
u∗. (2.18)

For a finite difference scheme it is reasonable to expect∥∥∥R̃ΩA−AΩ`RΩ

∥∥∥
Hs
` (Ω`)↼Hs+4(Ω)

. h2
` for s ≥ −1, (2.19)

where h` denotes the grid spacing on Ω`. Through interpolation between (2.19) and the estimate∥∥∥R̃ΩA−AΩ`RΩ

∥∥∥
Hs
` (Ω`)↼Hs+2(Ω)

. 1 for s ≥ −1,

one gets ∥∥∥(R̃ΩA−AΩ`RΩ

)
u∗
∥∥∥
Hs
` (Ω`)

. h
min{2,t−s−2}
` ‖u∗‖Ht(Ω) for t ≥ s+ 2 ≥ 1. (2.20)

Taking into account
∥∥∥A−1

Ω`

∥∥∥
Hs+2
` (Ω`)↼Hs

` (Ω`)
. 1 one gets from (2.18) and (2.20) the following error

estimate on the global grid∥∥∥u(0)
` −RΩu

∗
∥∥∥
Hs+2
` (Ω`)

. h
min{2,t−s−2}
` ‖u∗‖Ht(Ω) for s ≥ −1. (2.21)

The next step in the LDC error analysis is to study the error on the local grid ω`. For this let
us introduce a convenient cut-off function χω and consider the difference

χω
(
ũ(0) − u∗

)
= Pω f − Gω TΩ`u

(0)
` − χω

(
P f − G u∗

)
=

(
Pω −χω P

)
f −

(
Gω −χω G

)
u∗ + Gω

(
u∗ − TΩ`u

(0)
`

)
(2.22)

In the case of (2.1) Type a), the last two terms in (2.22) belong to C∞(ω) whereas the regularity
of the first term can be controlled by construction of Pω. Therefore, let us assume in the following
that χω

(
ũ(0) − u∗

)
belongs to Cn(ω) for any n ∈ N which seems to be convenient. We can now

3A possible choice would be e.g.
(
R̃Ωf

)
(p) :=

∫
f(x)bp(x)dx/

∫
bp(x)dx with a finite element basis function fp in

the grid point p.
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consider the discretisation error on the local grid. From (2.9) and (2.11), we get

Aω`
(
ũ

(1)
` −Rωu

∗) = Aω`
(
Rωũ

(0) + δ` −Rωu∗
)

= Aω`δ` +Aω`Rω
(
ũ(0) − u∗

)
=

(
R̃ωf − R̃ωA ũ(0)

)
+Aω`Rω

(
ũ(0) − u∗

)
= R̃ωA

(
u∗ − ũ(0)

)
+Aω`Rω

(
ũ(0) − u∗

)
=

(
Aω`Rω − R̃ωA

)(
ũ(0) − u∗

)
, (2.23)

which satisfies the boundary condition(
ũ

(1)
` −Rωu

∗)∣∣∣
∂ω`

=
(
πΩ`u

(0)
` −Rωu

∗)∣∣∣
∂ω`

.

The error on the boundary therefore correponds to the error of the initial global solution u
(0)
` . For

sufficiently regular ũ(0)− u∗, the consistency error
(
Aω`Rω − R̃ωA

)(
ũ(0)− u∗

)
is determined by the

grid spacing hω of the local grid ω`. In the case of homogeneous Dirchlet boundary conditions one
gets the error estimate∥∥∥ũ(1)

` −Rωu
∗
∥∥∥
Hs+2
` (ω`)

. h
min{2,t−s−2}
`

∥∥∥ũ(0) − u∗
∥∥∥
Ht(ω)

for s ≥ −1. (2.24)

Finally, let us consider the second and last step (2.12) of the iteration scheme. For notational
simplicity, let us introduce the characteristic function χω of the local grid ω`. Then (2.12) can be
written in the form

AΩ`u
(1)
` = χω

(
AΩ`πω` ũ

(1)
`

)
+
(
1− χω

)
R̃Ωf.

The error can be represented in the following manner

AΩ`

(
u

(1)
` −RΩu

∗) = χω
(
AΩ`πω` ũ

(1)
`

)
+
(
1− χω

)
R̃Ωf −AΩ`RΩu

∗

= χω
(
AΩ`πω` ũ

(1)
` −AΩ`RΩu

∗)+ (1− χω)
(
R̃Ωf −AΩ`RΩu

∗)
= χωAΩ`

(
πω` ũ

(1)
` −RΩu

∗)+ (1− χω)
(
R̃ΩAu∗ −AΩ`RΩu

∗)
= χωAΩ`

(
πω` ũ

(1)
` −RΩu

∗)+ (1− χω)
(
R̃ΩA−AΩ`RΩ

)
u∗,

where the second term (1− χω)
(
R̃ΩA−AΩ`RΩ

)
u∗ corresponds to the consistency error away from

the singularity, which is supposed to be fine. This part of the error can be estimated e.g. for s = 0
according to

‖
(
R̃ΩA−AΩ`RΩ

)
u∗‖Hs

` (Ω`) . h
min{2,t−s−2}
` ‖u∗‖Ht(Ω).

The case s = −1, however, requires a modified cut-off function χω with bounded gradients. The
error due to the first term is due to

χω
(
πω` ũ

(1)
` −RΩu

∗) = χωπω`
(
ũ

(1)
` −Rωu

∗)+ χω
(
πω`Rω −RΩ

)
u∗

where the contribution of ũ
(1)
` −Rωu

∗ has been allready estimated in (2.24) and we assume χω
(
πω`Rω−

RΩ

)
= 0 for simplicity. Putting things together, we obtain the final estimate

‖u(1)
` −RΩu

∗‖Hs+2
` (Ω`)

. ‖χωAΩ`

(
πω` ũ

(1)
` −RΩu

∗)+ (1− χω)
(
R̃ΩA−AΩ`RΩ

)
u∗‖Hs

` (Ω`)

. ‖ũ(1)
` −Rωu

∗‖Hs+2
` (ω`)

+ ‖
(
R̃ΩA−AΩ`RΩ

)
(1− χ̃ω)u∗‖Hs

` (Ω`)

. h
min{2,t−s−2}
` max

{
‖ũ(0) − u∗‖Ht(ω), ‖(1− χ̃ω)u∗‖Ht

`(Ω`)

}
,

which demonstrates, by comparison with (2.21), a balanced treatment of the errors on the local and
global scale.
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2.3 Global versus local defect corrections

In the preceding Sections, we made no explicit assumptions concerning a specific choice of the local
subdomain ω ⊂ Ω. An important aspect for an optimal choice of ω is the need for further refinement
of the local grid ω` with respect to the global grid Ω`. If further refinement turns out to be unneces-
sary, it is fine to choose ω = Ω and to avoid a cumbersome matching of boundary conditions between
local and global solutions and possible iterative steps altogether. In order to determine whether a
global defect correction is appropriate or not depends on our a priori knowledge of the singular
behaviour of the unkown solution u∗. In general, we will only assume asymptotic information, like
in (2.7) and (2.8), but in certain cases much more could be known. Let us first consider Type a)
problems where (2.7) requires a parametrix Pω, Green operator Gω and an approximate solution
u(0). The construction of a parametrix and corresponding Green operator is an inherently asymp-
totic procedure, see [8] for a general outline and [7] for a specific example. Therefore it is advisable
to consider the asymptotic expansions of Pω, Gω only in a sufficiently small neighbourhood ω of the
singularity and allow for a further refinement of the grid. Furthermore, the term Gωu

(0) might re-
quire an iterative treatment due to the presence of the approximate solution u(0). For a non-singular
operator A, however, the term Gωu

(0) represents a smooth function which does not contribute to the
singular asymptotic behaviour of u∗ and the parametrix dependent term Pωf completely resolves
the singular behaviour. In such a case ω = Ω could be an appropriate choice. A similar argument
applies to Type b) problems, where fundamental solutions or classical Green’s function might be
known analytically or can be obtained from an asymptotic parametrix construction. The latter case
is explicitly dicussed in the present work for the Laplace and bi-Laplace operator in two dimensions4.

Even if the defect correction allows us to completely remove the singularity from our problem
it might still be beneficial to consider a locally refined grid ω`. Let us assume for example, that
after the defect correction our modified problem, which must be solved numerically, has a solution
of the form χ(x)u∗(x), where χ ∈ C∞(Ω) vanishes in a neighbourhood of the singularity. Cut-off
functions like χ are poorly approximated on regular grids5 and a local refinement scheme turns out
to be necessary for a balanced treatment of the discretization error.

Le us briefly summarize our previous discussion. In those cases where appropriate information
concerning the singular behaviour of the exact solution u∗ is available, it is often preferable to
use a global defect correction which yields a simplified numerical treatment of the problem under
consideration. Otherwise one has to work with a local and global domain and adjust the local grid
to the asymptotic information at hand.

3 Green’s functions and plate theory

In the context of the present work, we want to consider Green’s functions for elliptic partial differ-
ential operators

A =
∑
|α|≤µ

aα(x)∂α (3.1)

of order µ in an open domain Ω ⊆ R2. Our focus is, in particular, the Laplace and bi-Laplace
operator, which play a major role in the plate models considered in this paper. It should be men-
tioned, however, that from the very beginning, it was our intention to generalize this approach to
models which involve more general types of operators (3.1). Despite the fact, that Green’s func-
tions provide a versatile tool for numerical simulations, applicability is hampered by their limited
availability. Only for selected elliptic partial differential operators analytic expressions of the corre-
sponding Green’s functions are known. Amongst others, it is an intention of the present work, to

4Similar results can be obtained in dimensions greater than two, see [10] for specific examples.
5This argument does not refer to the asymptotic behaviour of the discretization error but considers the local error

distribution for a fixed discretization.
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develop more flexible tools in order to obtain analytic expressions of Green’s functions for a broader
class of differential operators. The label ”Green’s function” has been used in a variety of contexts6,
and we restrain from a general rigorous mathematical definition, instead we will refer in the following
to the working definition given below.

Definition 1. A Green’s function G ∈ D′(Ω) of an elliptic operator A is a distribution valued
function G : Ω → D′(Ω) which satisfies the distributional equation

AG(·, x̃) = δx̃ for all x̃ ∈ Ω, (3.2)

where δx̃ denotes the shifted Dirac distribution, i.e., δx̃(f) = f(x̃) for f ∈ D(Ω). In the follwing, we
will also use the commonly employed notation

δx̃(f) ≡
∫
δ(x− x̃)f(x) dx,

which treats Dirac’s distribution formally like a regular distribution.

This essentially corresponds to the classical notion of a Green’s function, cf. [4], with special
emphasize on its distributional character.

Within the present work, we want to consider two popular plate models of structural engineering.
The first model can be obtained from Kirchhoff-Love plate theory and corresponds to a fourth order
elliptic boundary value problem on a bounded open domain Ω ⊂ R2, i.e.,

K∆∆u = Pδ(· − x̃), u|∂Ω = g, ∂nu|∂Ω = f, (3.3)

for a plate with bending stiffness K, where a point load P is given at x̃ ∈ Ω. Due to Dirac’s δ
distribution on the right-hand side, the solution of (3.3) should be considered as a fundamental
solution in the distributional sense. For (3.3), we consider the Green’s function

∆∆GbL(·, x̃) = δ(· − x̃), GbL(·, x̃)|∂Ω = 0, ∂nGbL(·, x̃)|∂Ω = 0 for x̃ ∈ Ω, (3.4)

which is symmetric, i.e., GbL(x, x̃) = GbL(x̃, x), x, x̃ ∈ Ω, because of the essential self-adjointness of
the bi-Laplace operator ∆∆. In order to solve the boundary value problem (3.3) with the help of
(3.4), we decompose its solution u into two parts, i.e.,

u(x) = u0(x) + u∞(x),

with

u0(x) :=
P

K
GbL(x, x̃), (3.5)

and u∞ given as solution of the boundary value problem

K∆∆u∞ = 0, u∞|∂Ω = g, ∂nu∞|∂Ω = f. (3.6)

For a sufficiently well behaved boundary ∂Ω, e.g., circle or square, it has a smooth solution, which
can be efficiently approximated by finite difference or finite element schemes.

Another model, we want to consider belongs to Reissner-Mindlin plate theory. Like the Kirchhoff-
Love model discussed before, it corresponds to a fourth order elliptic boundary value problem on a
bounded open domain Ω ⊂ R2, i.e.,

K∆∆u = Pδ(· − x̃)− (2− ν)h2

10(1− ν)
P∆δ(· − x̃), u|∂Ω = g, ∂nu|∂Ω = f, (3.7)

6The notion of a Green’s function might refer to classical Green’s function in potential theory, many-particle Green’s
function in quantum many-particle theory or propagators in quantum field theory.

10



where h, ν denote the thickness and Poisson’s ratio of the plate, respectively. In order to get rid of
the singular part of its solution, we can make use again of the Green’s function (3.4) and of another
Green’s function for the Laplace operator,i.e.,

∆GL(·, x̃) = δ(· − x̃), GL(·, x̃)|∂Ω = 0, for x̃ ∈ Ω. (3.8)

For this purpose, let us decompose the solution into three parts, i.e.,

u(x) = u0(x) + u1(x) + u∞(x),

with

u1(x) := −(2− ν)h2

10(1− ν)

P

K
GL(x, x̃),

and u0, u∞ given by (3.5) and (3.6), respectively.

4 Green’s functions from a singular analysis point of view

In the second part of the paper, we want to discuss a general approach, based on techniques from
singular analysis, in order to explicitly determine the singular behaviour of solutions of singular
PDEs, fundamental solutions and Green’s functions of elliptic operators. The motivation behind
our work is that one can take significant advantages from the knowledge of the singular asymp-
totic behaviour in the design of algorithms for numerical solutions of singular problems. The LDC
method, discussed in the first part of the paper, provides a convincing example for such an approach.
Besides some well known singular problems, however, it is in generally difficult to get access to the
required asymptotic information. Singular analysis provides a unified framework for PDEs with
various types of singularities. It is in particular possible to derive rather detailed asymptotic infor-
mation concerning solutions of type a) problems, see e.g. [7, 8, 9], as well as fundamental solutions
and Green’s functions for elliptic partial differential operators [10] in dimensions greater than two.
For some technical reasons, to be discussed below, two dimensional problems are different. First
we consider the well known Green’s functions of the Laplace operator in R2, which reveals some
subtleties of this function from the singular analysis point of view.

Actually we have to consider two different representations of Laplace operators, depending on
whether one considers the Laplace operator with respect to Cartesian coordinates x := (x1, x2)

∆2 :=
∂2

∂x2
1

+
∂2

∂x2
2

(4.1)

or polar coordinates defined on the stretched cone C2 := R+×S1 with base S1. In polar coordinates,
the Laplace operator is represented by

∆̃2 :=
1

r2

[(
−r ∂

∂r

)2

+ ∆S1

]
. (4.2)

where ∆S1 = ∂2

∂φ2 denotes the Laplace-Beltrami operator on the circle S1. The Laplace-Beltrami op-

erator ∆S1 has a pure point spectrum with eigenvalues λ` = −`2, ` = 0, 1, 2, . . . and each eigenvalue
λ` has multiplicity two. In the following, we denote by P`, ` = 0, 1, 2, . . ., the projection operators
from L2(S1) onto the corresponding eigenspaces. Herewith, we can form the spectral resolution

∆S1 = −
∞∑
`=0

`2P` (4.3)

which is crucial for the following considerations.
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In the singular cone algebra, the Laplace operator (4.2) is represented by a Mellin pseudo-
differential operator with corresponding operator valued Mellin symbol h, i.e.,

∆̃2u = r−2 op
γ− 1

2
M (h)u := r−2

∫
R

∫ ∞
0

(r
r̃

)−(1−γ+iρ)
h(1− γ + iρ)u(r̃, φ)

dr̃

r̃
d̄ρ

with d̄ρ := dρ
2π , acting on functions u ∈ D̃(C2), here D̃(C2) := {ϕ∗g | g ∈ D(R2)}, where ϕ∗g denotes

the pullback under the diffeomorphism ϕ : C2 → R2 \ {0} given by charts of polar coordinates. The
operator valued Mellin symbol of the pseudo-differential operator is given by

h(w) = w2 + ∆S1 = w2 −
∞∑
`=0

`2P`, (4.4)

we refer, e.g., to [6, Chapter 8] for further details. Actually, the Laplace operator ∆̃2 is not elliptic
on the streched cone C2, therefore in order to construct a parametrix, it would be necessary to
consider the shifted Laplace operator ∆̃2− κ2 for which one can perform an asymptotic parametrix
construction, outlined in Ref [7]. However, these additional asymptotic terms vanish in the limit
κ→ 0 and eventually do not contribute to the Green’s function, therefore we neglect them from the
beginning.

The corresponding parametrix

P u = r2 op
γ− 5

2
M (h(−1))u := r2

∫
R

∫ ∞
0

(r
r̃

)−(3−γ+iρ)
h(−1)(3− γ + iρ)u(r̃, φ)

dr̃

r̃
d̄ρ,

with operator valued Mellin symbol h(−1), can be constructed in the usual manner. First, we consider
the operator product

P ∆̃2u = r2 op
γ− 5

2
M (h(−1))r−2 op

γ− 1
2

M (h)u

= op
γ− 1

2
M (T 2h(−1)) op

γ− 1
2

M (h)u

= op
γ− 1

2
M (T 2h(−1)h)u,

where Tn, n ∈ N, denotes shift operators acting on Mellin symbols via Tng(w) = g(w + n). The
operator valued symbol of the parametrix has to satisfy the equation(

T 2h(−1)(w)
)
h(w) = 1

which can be solved for

h(−1)(w) =
1

h(w − 2)

=
1

(w − 2)2 + ∆S1

=

∞∑
`=0

P`
(w − 2 + `)(w − `− 2)︸ ︷︷ ︸

=:h
(−1)
` (w)

. (4.5)

The last step is an exact inversion and therefore we have

P ∆̃2u = u
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on the space of test functions u ∈ D̃(C2). Vice versa, we have

∆̃2 P u = r−2 op
γ− 1

2
M (h)r2 op

γ− 5
2

M (h(−1))u

= op
γ− 5

2
M (T−2h) op

γ− 5
2

M (h(−1))u

= op
γ− 5

2
M

(
(T−2h)h(−1)

)
u

= u,

on the space of test functions D̃(C2), where the last step follows from (T−2h)h(−1) = I. It can be
easily that the terms in the sum (4.5) have only simple poles for ` ≥ 1 but has a pole of order 2
at ` = 0. It turns out, that for this particular reason, the Laplace operator in two dimensions is
special.

4.1 Construction of Green’s functions from the kernel function of the parametrix

In this section we discuss a general approach of how to recover a classical Green’s function of the
Laplace operator from the kernel function of a parametrix. As already mentioned before, the two-
dimensional case is different because of a pole of order 2 in the ` = 0 term of (4.5). This requires
some modifications of the general approach discussed in Ref. [10], which we first discuss for the
Laplace operator and in the following section for the bi-Laplace operator.

As already mentioned before, the Laplace operator has a pole of order 2 at w = 2 which belongs
to the term with ` = 0. The residuum at w = 2 is given by

Resw=2

(r
r̃

)−w
h(−1)(w) =

d

dw

[
(w − 2)2

(r
r̃

)−w
h(−1)(w)

]
w=2

= − ln
(r
r̃

)(r
r̃

)−2
P0.

Because of the poles at w ∈ Z, we have to choose γ /∈ Z. For reasons to be discussed below, we
choose either 0 < γ < 1 or 1 < γ < 2 for the integration contour Γ3−γ . Depending on our choice,
we obtain

r2 op
γ− 5

2
M (h

(−1)
0 )u =


−
∫∞
r ln

(
r
r̃

)
P0u r̃dr̃ for 0 < γ < 1∫ r

0 ln
(
r
r̃

)
P0u r̃dr̃ for 1 < γ < 2

and for ` ≥ 1 one gets

r2 op
γ− 5

2
M (h

(−1)
` )u = −

∫ ∞
0

(
r<
r>

)` 1

2`
P`u r̃dr̃

with

P`u :=

∫
S1

p`u dµ, p0 =
1

2π
and p` =

1

2π

(
e−i`(φ−φ̃) + ei`(φ−φ̃)

)
, ` = 1, 2, . . . . (4.6)

Putting things together, one gets

K2(r, φ|r̃, φ̃) = −Θ(r̃ − r) ln
(r
r̃

)
p0 −

∞∑
`=1

(
r<
r>

)` 1

2`
p`(φ, φ̃), for 0 < γ < 1, (4.7)

and

K2(r, φ|r̃, φ̃) = Θ(r − r̃) ln
(r
r̃

)
p0 −

∞∑
`=1

(
r<
r>

)` 1

2`
p`(φ, φ̃), for 1 < γ < 2, (4.8)

where Θ denotes the Heaviside step function and r< := min{r, r̃}, r> := max{r, r̃}, respectively.
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In the following, we will make use of Hadamard’s notion of a pseudofunction, cf. [25]. By the
diffeomorphism ϕ : C → R2\{0}, a function u(r, φ) on C2 corresponds to a function ũ(x) on R2\{0}.
Therefore a function u on C2 can be regarded as a regular distribution on R2 if ũ can be identified
with an element in L1

loc(R2), the set of equivalence classes of locally integrable functions in R2, and
therefore with a regular distribution in D′(R2). We call this regular distribution the pseudofunction
corresponding to u and denote it by Pf. u.

Let us now consider the kernel K2 as a distributional kernel in D′(R2), i.e., we define K2(x, x̃) :=
Pf.K2(r, φ|r̃, φ̃), where we tentatively assume x̃ 6= 0. A straightforward calculation, given in Ap-
pendix C, reveals

∆2K2(·, x̃) = δ(· − x̃)− δ, for 0 < γ < 1, (4.9)

and
∆2K2(·, x̃) = δ(· − x̃), for 1 < γ < 2. (4.10)

On a first glance, (4.8) seems to be a suitable candidate, however it cannot be considered as a
classical Green’s function because of its singular behaviour for r̃ → 0 outside the diagonal D. Let us
therefore look a little bit closer at the shortcoming of (4.7), which consists of the additional Dirac
distribution on the right-hand side of (4.9). This shortcoming indicates the need for a more general
approach which involves an additional Green operator, in addition to the parametrix that maps
onto the fundamental solution of the Laplace operator, i.e., we consider the ansatz

∆̃2

(
P +G

)
= I, ∆̃2 G = 0

on the cone C2. Such an approach, however, seems a bit like a snake who bites its own tail. The
original idea was to devise a general scheme to calculate Green’s functions and now it seems that
we require such a fundamental solution for repair. A closer look at the properties of the parametrix,
however, resolves this discrepancy. According to a general result, cf. [6][Section 7.2.3, Theorem 9],

ωr−2 op
γ− 1

2
M (h)ω̃ : Hs,γ

(
C2
)
→ Hs−2,γ−2

(
C2
)

is continuous for all s ∈ R and γ ∈ R, where ω, ω̃ denote arbitrary cut-off functions. Let us suppose,
there exists a function u which satisfies ∆̃2u = 0 on C2, and P0u = u, such that Pf. u represents a
fundamental solution of ∆2. The existence of such a u follows from the general theory of fundamental
solutions of partial differential operators [15]. Due to the local character of the Mellin operator7, it
satisfies

r−2 op
γ− 1

2
M (h)ω̃u = g,

with g ∈ Hs−2,γ−2
(
C2
)

for some s ∈ R and γ ∈ R. By choosing a cut-off function ω ≺ ω̃, we get

ωr−2 op
γ− 1

2
M (h)ω̃u = 0 and r−2 op

γ− 1
2

M (h)ω̃u = (1− ω)g

Acting with the parametrix from the left, this yields

ω̃u = P(1− ω)g

For r sufficiently small, i.e., ω̃(r) = 1, we get from (4.7),

u(r) = P(1− ω)g(r)

=

∫
S1

∫ ∞
0

K2(r, φ|r̃, φ̃)
(
1− ω(r̃)

)
g(r̃)r̃dr̃dφ̃

= − ln(r)

∫ ∞
0

(
1− ω(r̃)

)
g(r̃)r̃dr̃︸ ︷︷ ︸

:=C1

+

∫ ∞
0

ln(r̃)
(
1− ω(r̃)

)
g(r̃)r̃dr̃︸ ︷︷ ︸

:=C2

. (4.11)

7The Mellin pseudo-differential operator represents a local partial differential operator ∆̃2.
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A simple calculation gives
∆2 Pf. u = −C1

p0
δ,

which shows that u is just a constant multiple of a fundamental solution of ∆2. More precisely, the
previous consideration provides, up to a multiplicative constant, a fundamental solution of ∆2, which
can be used to correct (4.7) in order to get the correct behaviour in (4.9). Adding a corresponding
counterterm8 ln(r)p0 to (4.7) yields

K̃2(r, φ|r̃, φ̃) = K2(r, φ|r̃, φ̃) + ln(r)p0

=
(
Θ(r − r̃) ln(r) + Θ(r̃ − r) ln(r̃)

)
p0 −

∞∑
`=1

(
r<
r>

)` 1

2`
p`(φ, φ̃),

= ln(r>)p0 −
∞∑
`=1

(
r<
r>

)` 1

2`
p`(φ, φ̃). (4.12)

Our correction term corresponds to adding an additional Green operator

G u := ln(r)

∫ ∞
0

P0u r̃dr̃,

which obviously satisfies ∆̃2 G = 0 to the parameterix P and K̃2 represents the corresponding kernel
function of the operator P +G in the pseudo-differential algebra. Taking the limit limr̃→0 in (4.12),
one recovers the fundamental solution ln(r)p0, which means that we eventually obtained a Green’s
function G2(·, x̃) of the Laplace operator in a separable form given by the Laplace expansion, i.e.,

G2(·, x̃) :=

{
Pf. K̃2(·|r̃, φ̃) for x̃ = ϕ(r̃, φ̃) 6= 0

limr̃→0 Pf. K̃2(·|r̃, φ̃) for x̃ = 0
.

It can be easily seen, that a similar line of arguments doesn’t work for (4.8), just because (4.11)
becomes zero in this case. This is due to the fact, that a fundamental solution u does not belong to
Hs,γ

(
C2
)

for 1 < γ < 2. For comparison, we have calculated the Laplace expansion for the Green’s
function G2 of the Laplace operator ∆2 in Appendix A by a conventional approach, cf. Eq. (A.2). It
can be seen that this expansion agrees with (4.12) for all ` ≥ 0. Furthermore, it is worth mentioning
that in contrast to dimensions ≥ 3, the Green’s function G2 cannot be obtained from Green’s
functions Gκ of the shifted Laplace operator ∆ − κ2 by analytic continuation with respect to the
parameter κ→ 0. Here too, it is only the ` = 0 term in the spectral resolution (4.3) which causes a
problem. A detailed discussion of this problem is given in Appendix B.

In order to impose boundary conditions the operator P +G can be further modified. Let us
consider a homogeneous Dirichlet boundary value problem

∆2u = f, u|∂BR = 0

on the open ball BR(0) of radius R. Green’s functions which satisfy homogeneous Dirichlet boundary
condition are called Green’s functions of the first kind. In our particular case, the Green’s function
of first kind can be constructed by the method of images, cf. [11, 18], where one obtains

K̂2(r, φ|r̃, φ̃) =
(
ln(r>)− ln(R)

)
p0 −

∞∑
`=1

[(
r<
r>

)`
−
(r<r>
R2

)`] 1

2`
p`(φ, φ̃). (4.13)

The additional terms which impose the boundary condition correspond to the Green operator

G∂ u = − ln(R)

∫ ∞
0

P0ur̃dr̃ +
∞∑
`=1

r`

2`R2`

∫ ∞
0

r̃`P`ur̃dr̃

8The second constant C2 is irrelevant for a fundamental solution and can be discarded.
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which maps u into a harmonic polynomial G∂ u. Our previous considerations can be summarized in
the following proposition:

Proposition 1. The classical Green’s function G2 of ∆2 on the open ball BR(0) with homogeneous
Dirichlet boundary conditions is given by to G2 := Pf. K̂2 where K̂2 denotes the kernel of the operator

P +G+G∂ : L2(BR) −→ H2(BR), (4.14)

and satisfies the following conditions

(i) ∆2G2(·, x̃) = δ(· − x̃)

(ii) G2 ∈ C∞(R2 × R2 \D) (4.15)

(iii) G2(x, x̃) = G2(x̃, x) for (x, x̃) ∈ R2 × R2 \D

(iv) G2(x, x̃) = G2(x̃, x) = 0 for x ∈ BR(0), x̃ ∈ ∂BR(0).

It’s Laplace expansion is given by (4.13).

In order to treat an inhomogeneous Dirichlet boundary value problem

∆2u = f, u|∂BR = g

we have to supplement the parametrix (4.14) by a Poisson operator [12]

K g =

∞∑
`=0

r`

R`
P`g with g ∈ L2(∂BR),

where K g is a harmonic function on BR(0) which satisfies the boundary condition u|∂BR = g.
Putting things together, we obtain the operator

(
P +G+G∂ K

)
:

(
L2(BR)
L2(∂BR)

)
−→ H2(BR).

4.2 Classical Green’s functions for the bi-Laplace operator

The bi-Laplace operator ∆2∆2, cf. (4.1) plays a prominent role in the two dimensional Kirchhoff-
Love and Reissner-Mindlin plate theories. In polar coordinates, the biharmonic operator is given
by

∆̃2∆̃2 :=
1

r4

[(
−r ∂

∂r

)4

+ 4

(
−r ∂

∂r

)3

+ 4

(
−r ∂

∂r

)2

+ 2

(
−r ∂

∂r

)2

∆S1

+4

(
−r ∂

∂r

)
∆S1 + 4∆S1 + ∆S1∆S1

]
. (4.16)

Similar to the Laplace operator, we can represent the bi-Laplace operator in the cone algebra by a
Mellin type pseudo-differential operator, i.e.,

∆̃2∆̃2u = r−4 op
γ− 1

2
M (b)u

for u ∈ D̃(Cn), with operator valued Mellin symbol

b(w) = w4 + 4w3 + 4w2 + 2
(
w2 + 2w + 2

)
∆S1 + ∆S1∆S1 .
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For the parametrix, we choose the ansatz

P u = r4 op
γ− 9

2
M (b(−1))u

and consider the operator product

P
(
∆̃2∆̃2

)
= r4 op

γ− 9
2

M (b(−1))r−4 op
γ− 1

2
M (b)

= op
γ− 1

2
M (T 4b(−1)) op

γ− 1
2

M (b)

= op
γ− 1

2
M (T 4b(−1)b).

The operator valued symbol of the parametrix has to satisfy the equation

T 4b(−1)(w)b(w) = 1

which can be solved for

b(−1)(w) =
1

b(w − 4)

=
1

(w − 4)2(w − 2)2 + 2(w2 − 6w + 10)∆S1 + ∆S1∆S1

=

∞∑
`=0

P`
(w − 4)2(w − 2)2 − 2(w2 − 6w + 10)`2 + `4

=
∞∑
`=0

P`
(w − `− 4)(w + `− 4)(w − `− 2)(w + `− 2)︸ ︷︷ ︸

=:b
(−1)
` (w)

, (4.17)

where we applied a spectral resolution with projection operators (4.6). The term ` = 0 in (4.17) has
two poles of order 2 at w1 = 2 and w2 = 4, respectively and the term ` = 1 has a pole of order 2 at
w1 = 3. Otherwise all the poles in the sum (4.17) are simple. For ` = 0 the residuum at w1 = 2 is
given by

Resw=2

(r
r̃

)−w
b
(−1)
0 (w) =

d

dw

[
(w − 2)2

(r
r̃

)−w
b
(−1)
0 (w)

]
w=2

=
1

4

(r
r̃

)−2
P0

[
1− ln

(r
r̃

)]
and at w2 = 4 it is given by

Resw=4

(r
r̃

)−w
b
(−1)
0 (w) =

d

dw

[
(w − 4)2

(r
r̃

)−w
b
(−1)
0 (w)

]
w=4

= −1

4

(r
r̃

)−4
P0

[
1 + ln

(r
r̃

)]
For ` = 1 the residuum at w1 = 3 is given by

Resw=3

(r
r̃

)−w
b
(−1)
1 (w) =

d

dw

[
(w − 3)2

(r
r̃

)−w
b
(−1)
1 (w)

]
w=3

=
1

4

(r
r̃

)−3
P1 ln

(r
r̃

)
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Let u ∈ D̃(Cn), the action of the parametrix P is given by the double integral

r4 op
γ− 9

2
M (b(−1))u = r4

∫
R

∫ ∞
0

(r
r̃

)−(5−γ+iρ)
b(−1)(5− γ + iρ)u(r̃, φ)

dr̃

r̃
d̄ρ. (4.18)

For the bi-Laplace operator, we consider the intervals 1 < γ < 2 and 2 < γ < 3 as natural choice.
Like before, one can apply Cauchy’s residue theorem to the spectral resolution (4.17) of the operator
valued symbol. The calculations yield

r4 op
γ− 9

2
M (b

(−1)
0 )u =

∫ r

0

1

4
r̃2
[
1 + ln

(r
r̃

)] (
P0u

)
(r̃) r̃dr̃

+

∫ ∞
r

1

4
r2
[
1− ln

(r
r̃

)] (
P0u

)
(r̃) r̃dr̃

=

∫ ∞
0

1

4
r2
<

[
1− ln

(
r<
r>

)] (
P0u

)
(r̃) r̃dr̃

r4 op
γ− 9

2
M (b

(−1)
1 )u =


−
∫∞

0
1
16
r3
<

r>

(
P1u

)
(r̃, φ̃) r̃dr̃ +

∫∞
r

1
4rr̃ ln

(
r
r̃

) (
P1u

)
(r̃, φ̃) r̃dr̃ for 1 < γ < 2

−
∫∞

0
1
16
r3
<

r>

(
P1u

)
(r̃, φ̃) r̃dr̃ −

∫ r
0

1
4rr̃ ln

(
r
r̃

) (
P1u

)
(r̃, φ̃) r̃dr̃ for 2 < γ < 3

and for ` ≥ 2 one gets

r4 op
γ− 9

2
M (b

(−1)
` )u =

∫ ∞
0

1

8

(
r<
r>

)`( r2
>

`(`− 1)
−

r2
<

`(`+ 1)

) (
P`u
)
(r̃, φ̃) r̃dr̃.

Putting things together, one gets for

K4(r, φ|r̃, φ̃) =
1

4
r2
<

[
1− ln

(
r<
r>

)]
p0 +

[
1

4
Θ(r̃ − r)rr̃ ln

(r
r̃

)
− 1

16

r3
<

r>

]
p1 (4.19)

+
1

8

∞∑
`=2

(
r<
r>

)`( r2
>

`(`− 1)
−

r2
<

`(`+ 1)

)
p` for 1 < γ < 2,

and

K4(r, φ|r̃, φ̃) =
1

4
r2
<

[
1− ln

(
r<
r>

)]
p0 −

[
1

4
Θ(r − r̃)rr̃ ln

(r
r̃

)
+

1

16

r3
<

r>

]
p1 (4.20)

+
1

8

∞∑
`=2

(
r<
r>

)`( r2
>

`(`− 1)
−

r2
<

`(`+ 1)

)
p` for 2 < γ < 3,

For comparison, we have calculated the generalized Laplace expansion for the Green’s function G4

of the bi-Laplace operator in Appendix A, cf. Eq. (A.3), in a conventional manner. It can be seen
that the expansions (4.19), (4.20) and (A.3) agree for ` ≥ 2. The first term, corresponding to ` = 0
is the same for (4.19) and (4.20), whereas the second term differs, depending on the choice of γ, i.e.,

G4(r, φ|r̃, φ̃)−K4(r, φ|r̃, φ̃) = 1
4

(
r2 ln(r) + r̃2 ln(r̃)

)
p0 −

(
1
4 ln(r) + 1

8

)
rr̃p1, for 1 < γ < 2, (4.21)

G4(r, φ|r̃, φ̃)−K4(r, φ|r̃, φ̃) = 1
4

(
r2 ln(r) + r̃2 ln(r̃)

)
p0 −

(
1
4 ln(r̃) + 1

8

)
rr̃p1, for 2 < γ < 3, (4.22)

In Appendix C, we performed some explicit calculations in order to reveal the properties of the
corresponding distributions. For 1 < γ < 2, we getcontinuationGreen

∆2∆2 Pf.K4(·, x̃) = δ(· − x̃)− δ + Sx̃, (4.23)
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with non-regular distribution

Sx̃(u) := − lim
x→0

(
P1u(x)

|x|

)
1√
π
x̃

For 2 < γ < 3, we get
∆2∆2 Pf.K4(·, x̃) = δ(· − x̃)− δ, (4.24)

Following the same line of arguments as for the Laplace operator discussed before, we can repair
the kernel for 2 < γ < 3 by adding a fundamental solution in order to obtain a Green’s function for
the bi-Laplace operator. For the bi-Laplace operator, we have

ωr−4 op
γ− 1

2
M (b)ω̃ : Hs,γ

(
C2
)
→ Hs−4,γ−4

(
C2
)
,

which is continuous for all s ∈ R and γ ∈ R, where ω, ω̃ denote arbitrary cut-off functions. Let u
satisfy ∆̃∆̃u = 0 on C2, and P0u = u, such that Pf. u represents a fundamental solution of ∆∆. It
satisfies

ωr−4 op
γ− 1

2
M (b)ω̃u = 0 and r−4 op

γ− 1
2

M (b)ω̃u = (1− ω)g

with ω ≺ ω̃ and g ∈ Hs−4,γ−4
(
C2
)

for some s ∈ R and γ ∈ R. Acting with the parametrix from the
left, we get

ω̃u = P(1− ω)g

For r sufficiently small, i.e., ω(r) = 1, we get from (4.20),

u(r) = P(1− ω)g(r)

=

∫
S1

∫ ∞
0

K2(r, φ|r̃, φ̃)
(
1− ω(r̃)

)
g(r̃)r̃dr̃dφ̃

= 1
4r

2
(
1− ln(r)

) ∫ ∞
0

(
1− ω(r̃)

)
g(r̃)r̃dr̃︸ ︷︷ ︸

=:C1

+1
4r

2

∫ ∞
0

ln(r̃)
(
1− ω(r̃)

)
g(r̃)r̃dr̃︸ ︷︷ ︸

C2

. (4.25)

Like for the Laplace operator, a calulation gives

∆2∆2 Pf. u = −C1
p0
δ, (4.26)

which shows also in this case that u is a constant multiple of a fundamental solution of ∆2∆2.
The 1

4(C1 +C2)r2 term in (4.25) represents a smooth function which belong to the kernel of the bi-
Laplace operator and is irrelevant for a fundamental solution. It is only the −1

4C1r
2 ln(r) term which

is required to correct the kernel function (4.24). According to (4.26) we have to add a counterterm
1
4r

2 ln(r)p0 to (4.20) which would yield, however, a non symmetric kernel function, therefore its
better to add the symmetric expression

1
4

(
r2 ln(r) + r̃2 ln(r̃)

)
p0

where the second term maps onto a constant function and is irrelevant. Furthermore, we observe
that the p1 term in (4.20) is not symmetric with respect to a permutation of r and r̃. In order to
restore this symmetry of the kernel, we have to add another correction term A(r, r̃) which has to
satisfy

−1
4Θ(r − r̃)rr̃ ln

(r
r̃

)
+A(r, r̃) = −1

4Θ(r̃ − r)rr̃ ln

(
r̃

r

)
+A(r̃, r)

or equivalently
A(r, r̃)−A(r̃, r) = 1

4rr̃ ln(r)− 1
4rr̃ ln(r̃).
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Among two possible choices for A(r, r̃), these are −1
4rr̃ ln(r̃) and 1

4rr̃ ln(r), it is only the first one
which maps into a smooth function in the kernel of the bi-Laplace operator. According to Eq. (4.24)
and the preceding discussion, we can therefore obtain al classical Green’s function, for 2 < γ < 3,
by adding the Green operators

G0 u =

∫ ∞
0

1
4

(
r2 ln(r) + r̃2 ln(r̃)

)
P0u r̃dr̃,

G1 u = −
∫ ∞

0

1
4rr̃ ln(r̃)P1u r̃

2dr̃,

whereby the kernel function of P +G0 +G1 becomes9

K̃4(r, φ|r̃, φ̃) =

(
1

4

(
r2
> + r2

<

)
ln(r>) +

1

4
r2
<

)
p0 −

[
1

4
r<r> ln(r>) +

1

16

r3
<

r>

]
p1

+
1

8

∞∑
`=2

(
r<
r>

)`( r2
>

`(`− 1)
−

r2
<

`(`+ 1)

)
p`. (4.27)

Taking the limit limr̃→0 in (4.27), one recovers the fundamental solution 1
4r

2 ln(r)p0, which means
that we eventually obtained a Green’s function G4(x, x̃) of the bi-Laplace operator in a separable
form given by a generalized Laplace expansion, i.e.,

G4(·, x̃) :=

{
Pf. K̃4(·|r̃, φ̃) for x̃ = ϕ(r̃, φ̃) 6= 0

limr̃→0 Pf. K̃4(·|r̃, φ̃) for x̃ = 0
.

Furthermore, we can impose homogeneous Dirichlet boundary conditions

∆2∆2u = f, u|∂BR = 0,

on an open ball BR(0) of radius R, by the method of images. By substituting r → R and r̃ → rr̃
R in

(4.27), the image kernel function is given by

I4(r, φ|r̃, φ̃) =

[
1

4

(r<r>
R

)2 (
ln(R) + 1

)
+

1

4
R2 ln(R)

]
p0 −

[
1

4
r<r> ln(R) +

1

16

(r<r>
R

)3 1

R

]
p1(φ, φ̃)

+
1

8

∞∑
`=2

(r<r>
R2

)`( R2

`(`− 1)
−
(r<r>

R

)2 1

`(`+ 1)

)
p`(φ, φ̃).

such that the kernel function

K̂4(r, φ|r̃, φ̃) := K̃4(r, φ|r̃, φ̃)− I4(r, φ|r̃, φ̃)

satisfies
K̂4(r, φ|R, φ̃) = K̂4(R,φ|r̃, φ̃) = 0.

Additionally, we want to impose Neumann boundary conditions, such that the radial derivative of
the kernel function vanishes. Taking the radial derivative of K̂4(r, φ|r̃, φ̃) at r = R, we get

∂rK̂4(r, φ|r̃, φ̃)
∣∣∣
r=R

=
1

4R

(
R2 − r̃2

)[
1 + ln

(
R2
)]
p0 −

(
R2 − r̃2

) ∞∑
`=1

1

4`R`+1
r̃`p`(φ, φ̃).

9Comparison with (4.22) reveals, that this kernel function agrees with the Green’s function G4 up to the term
− 1

8
r<r>p1, which however is irrelevant, because it maps into a smooth function in the kernel of the bi-Laplace

operator.
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From this expression and taking into account the permutational symmetry of the kernel function
with respect to r and r̃ one gets the term10

H4(r, φ|r̃, φ̃) :=
1

8R2
(R2−r2)(R2− r̃2)

[
1+ln

(
R2
)]
p0−

1

8R2
(R2−r2)(R2− r̃2)

∞∑
`=1

(r<r>
R2

)` 1

`
p`(φ, φ̃),

which has to be added to K̂(r, φ|r̃, φ̃) and eventually derive an kernel function

Ǩ4(r, φ|r̃, φ̃) := K̂4(r, φ|r̃, φ̃)− I4(r, φ|r̃, φ̃) +H4(r, φ|r̃, φ̃)

which satisfies

Ǩ4(r, φ|R, φ̃) = Ǩ4(R,φ|r̃, φ̃) = 0 and ∂rǨ4(r, φ|r̃, φ̃)
∣∣∣
r=R

= ∂r̃K̂4(r, φ|r̃, φ̃)
∣∣∣
r̃=R

= 0.

and represents the unique Green’s function for the bi-Laplace operator with Dirichlet and Neumann
boundary conditions on B(R).

The previous calculations for the Laplace and bi-Laplace operator demonstrate the feasibility
of our approach to obtain classical Green’s functions from a pseudo-differential calculus on the
cone. However, in contrast to the cases in dimensions ≥ 3 considered in [10], our approach this
time required some additional fine-tuning concerning the kernel functions of the parametrices. The
reason behind are poles of order > 1 in the spectral decomposition of the operator valued symbols
of the parametrices (4.5) and (4.17). Our treatment of such poles, i.e. by adding appropriate Green
operators, could be performed within the pseudo-differential calculus, but nevertheless it asks for a
better conceptual understanding. Actually, it demands for a theory which identifies relationships
between classical Green’s functions and pseudo-differential parametrices in a more general setting
and not only by means of concrete examples.

5 Numerical examples for the Laplace operator

In order to demonstrate possible improvements due to our approach in numerical calculations, we
consider the Laplace operator and a boundary value problem of mixed type a) and b) on the bounded
domain Ω := (0, 1)× (0, 1) ⊂ R2, i.e.,

∆2u = κ+
m∑
i=1

δ(· − ξi), u|∂Ω = g

with ξi ∈ Ω and κ ∈ R. In our examples, we take the ansatz

ũ(0) =
1

2π

m∑
i=1

ln | · −ξi|,

as a global defect correction (2.14) in Ω.
In the first example we want to consider a boundary value problem where an exact solution is

known. For this we choose κ = 4, ξ1 = (0.2, 0.5), ξ2 = (0.8, 0.5) and the artificial boundary condition

g(x) =
(
ũ(0)(x) + 1 + |x|2

)
|∂Ω, (5.1)

such that the exact solution becomes u∗(x) = ũ(0)(x) + 1 + |x|2. In Fig. 1, we compare the relative
errors with respect to u∗ of the standard FEM solution and our improved defect corrected FEM

10Obviously, H2 is consistent with homogeneous Dirichlet boundary conditions. It can be easily seen, that functions
of the type r`p`(φ, φ̃) and r2+`p`(φ, φ̃) belong to the kernel of the bi-Laplace operator. Therefore H2 can be added to
the kernel function K̃ without further complications.
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Figure 1: (left figure): Comparison of the standard FEM solution, improved defect corrected FEM
solution and exact solution for the boundary value problem (5.1), with κ = 4, ξ1 = (0.2, 0.5),
ξ2 = (0.8, 0.5), along a line parallel to the x-axes at y = 0.5. (right figure) Relative error with
respect to the exact solution of the standard FEM solution and improved defect corrected FEM
solution.

solution. It can be seen, that along a line parallel to the x-axes at y = 0.5, the errors at the singular
points ξ1,2 are significantly reduced.

Our second example corresponds to the first example with homogeneous Dirichlet boundary
conditions. The difference between the standard FEM solution and our improved defect corrected
FEM solution along a line parallel to the x-axes at y = 0.5 is shown in Fig. 2. A significant deviation
between both solutions at the singular points ξ1,2 can be clearly recognized.

6 Conclusions and outlook

Taking into account the asymptotic behaviour at singularities in numerical simulations provides
an alternative to adaptive refinement schemes which require a posteriori error estimates and corre-
sponding modifications of the underlying global grid. In particular for point-like isolated singularities
one might not be willing to change the global grid and modify the corresponding underlying data
structures of the numerical algorithm. The LDC approach offers an attractive alternative in such a
case either by a global subtraction of the singular part of the solution or by a local subtraction with
additional grid refinement in the vicinity of the singularity.

Within the present work, we tried to tackle the basic obstacle of such kind of approach which
consists of a lack of knowledge concerning the asymptotic behaviour of the exact solution in the
vicinity of the singularity. In particular this is true for models where fundamental solutions or
Green’s functions are required like for the plate theories discussed in the present work. Classical
Green’s functions are explicitly known in the literature only for a few special cases. The general
scheme for the construction of Green’s functions, based on methods from singular analysis, outlined
in the present work might be a way out of this dilemma. For the models problems under consideration
we could demonstrate the feasibility of our approach. This opens the possibility to construct Green’s
functions for models where explicit expressions for these functions are presently not available. A
particularly promising application are plates of variable thickness, where Laplace and bi-Laplace
like operators with varialble coefficients appear, see e.g. [3] for further details. Such kind of partial
differential operators require an asymptotic parametrix construction [8] which has been already
sucessfully applied to shifted Laplace and Schrödinger operators [10] in dimensions ≥ 3. This will
be subject of our future work.
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Figure 2: Comparison of the standard FEM solution and improved defect corrected FEM solution
for homogeneous Dirichlet boundary conditions, with κ = 4, ξ1 = (0.2, 0.5), ξ2 = (0.8, 0.5), along a
line parallel to the x-axes at y = 0.5.
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Appendices

A Laplace expansion for the (bi)-Laplace operator

Because of lack of an appropriate reference, we give a brief derivation of the corresponding expansion
for the classical Green’s function G2 of the Laplace operator in R2, i.e.,

G2(x, x̃) = 1
2π ln |x− x̃|

let r< := min{r, r̃}, r> := max{r, r̃}, ∆φ := φ− φ̃ and h := r</r>. Using polar coordinates (r, φ),
we obtain

G2(x, x̃) = 1
4π

[
ln(r2

>)− 2 ln
(
1 + h2 − 2h cos(∆φ)

)− 1
2

]
. (A.1)

Next, we use the expansions, cf. [28, p. 303ff],

ln
(
1+h2−2h cos(∆φ)

)− 1
2 = ln

(
1+ 1

2he
i∆φ+ 1·3

2·4h
2ei2∆φ+ · · ·

)
+ ln

(
1+ 1

2he
−i∆φ+ 1·3

2·4h
2e−i2∆φ+ · · ·

)
and

ln(1 + a) =

∞∑
k=1

(−1)k−1a
k

k

for a ∈ C with |a| < 1. One gets

ln
(
1 + 1

2he
i∆φ + 1·3

2·4h
2ei2∆φ + · · ·

)
= 1

2he
i∆φ + 1

4h
2ei2∆φ + 1

6h
3ei3∆φ + · · ·

and its complex conjugate, which inserted into (A.1) yields the Laplace expansion

G2(x, x̃) = ln(r>) p0 −
1

2

(
r<
r>

)
p1 −

1

4

(
r<
r>

)2

p2 − · · · (A.2)

The previous caculation can be easily modified in order to obtain the corresponding expansion
for the bi-Laplace operator in R2, where the fundamental solution is given by

G2(x, x̃) = 1
8π |x− x̃|

2 ln |x− x̃|.

In polar coordinates, one gets

G2(x, x̃) = 1
8π r

2
>

(
1 + h2 − 2h cos(∆φ)

) [
ln(r2

>)− 2 ln
(
1 + h2 − 2h cos(∆φ)

)− 1
2

]
which yields the generalized Laplace expansion for the bi-Laplace operator

G2(x, x̃) =

(
1

4

(
r2
> + r2

<

)
ln(r>) +

1

4
r2
<

)
p0 (A.3)

−
(

1

4
r<r> ln(r>) +

1

8
r<r> +

1

16

r3
<

r>

)
p1

+
1

8

(
r<
r>

)2(1

2
r2
> −

1

6
r2
<

)
p2

+
1

8

(
r<
r>

)3(1

6
r2
> −

1

12
r2
<

)
p3

...
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B Analytic continuation of Green’s functions

In Section 4.1 we have seen that within our approach, the Laplace operator in 2 dimensions behaves
differently from Laplace operators in dimensions ≥ 3. The special status of 2 dimensions can be
also seen by considering the analytic continuation of the Green’s function Gκ for the shifted Laplace
operator ∆2−κ2. Taking the limit κ→ 0 of Gκ in dimensions ≥ 3 one recovers the Green’s function
of the corresponding Laplace operator, cf. [10]. Due to the non-analyticity of the fundamental
solution, with respect to the parameter κ, at κ = 0 this is not the case for the Laplace operator in 2
dimensions. However as we will see in the following, this non-analyticity only affects the ` = 0 term
in the spectral resolution (4.3).

A fundamental solution of the shifted Laplace operator ∆−κ2, see e.g. Schwartz [25][Section II,
§3], is given by

uκ = Pf.
[
−(2π)−1K0(κr)

]
, (B.1)

where K0 denotes the modified Bessel function of the second kind and the corresponding Green’s
function is given by

Gκ(x, x̃) = −(2π)−1K0(κ|x− x̃|).

We have, cf. [1],
K0(κr) = −

[
ln(1

2κr
)

+ γ
]
I0(κr) +Q0(κr)

with γ the Euler constant and power series

I0(z) = 1 +
1
4
z2

(1!)2 +

(
1
4
z2
)2

(2!)2 + · · · ,

Q0(z) =
1
4
z2

(1!)2 +
(
1 + 1

2

)( 1
4
z2
)2

(2!)2 + · · ·

Due to the logarithm, the limit κ → 0 doesn’t exist. To gain some insight into this divergent
behaviour, it is instructive to consider the generalized Laplace expansion in the shifted case. For
this, we apply Mehler’s formula, cf. [28][p. 383],

K0(z) =

∫ ∞
0

tJ0(tz)

1 + t2
dt

with κ > 0 (J0 Bessel functions of the first kind), and get

K0(κz) =

∫ ∞
0

sJ0(sz)

κ2 + s2
ds.

Let us take z = |x− x̃| =
√
r2 + r̃2 − 2rr̃ cos(θ) and apply the expansion, cf. [28][p. 380], to get

J0(sz) = J0(sr)J0(sr̃) + 2

∞∑
n=1

Jn(sr)Jn(sr̃) cos(nθ),

here Jn, n = 1, 2, . . . denote Bessel functions of the first kind. We get the generalized Laplace
expansion of the Green’s function

Gκ(x, x̃) = Pf. [−K0(κz)]

= Pf.

[∫ ∞
0

sJ0(sr)J0(sr̃)

κ2 + s2
ds+ 2

∞∑
n=1

∫ ∞
0

sJn(sr)Jn(sr̃) cos(nθ)

κ2 + s2
ds

]
. (B.2)

Taking into account, J0(0) = 1 and Jn(z) ∼
(

1
2z)

n/Γ(n+ 1) for z → 0 and

Jn(z) =

√
2

πz
cos(z − 1

2nπ −
1
4π) +O(z−1) for z →∞
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it can be seen that it is only the first integral, corresponding to n = 0, which diverges in the limit
κ→ 0. Therefore we get

lim
κ→0

PnGκ(x, x̃) = Pf.

∫ ∞
0

Jn(sr)Jn(sr̃)

s
ds cos(nθ), for n ≥ 1

The remaining indefinite integral is of Weber and Schafheitlin type, cf. [27][Chap. XIII, Section
13.4], and yields ∫ ∞

0

Jn(sr)Jn(sr̃)

s
ds =

1

2n

(
r<
r>

)n
2F1

(
n, 0, n+ 1,

(
r<
r>

)2)
=

1

2n

(
r<
r>

)n
were we used [1][15.2.1]. This shows that terms with n ≥ 1 agree in the limit κ → 0 with the
corresponding terms in the expansion of the Laplace operator (4.12).

C Some explicit calculations

In the following we want to calculate integrals with respect to distributional derivatives of kernel
pseudofunctions in R2. The kernels are given in terms of a spectral resolution with respect to
eigenfunctions of ∆S1 . Therefore it is necessary to consider appropriate subspaces of test functions

D`(R2) := {u ∈ D(R2) | P`u = u}

Proposition 2. A test function w ∈ D`(R2) can be represented in an open ball BR of radius R,
centred at the origin, by a Taylor approximation

w(x) =

q∑
k=0

ck√
2π
r2k +

∑
|β|=2q+1

Rβ(x)xβ for ` = 0, (C.1)

and

w(x) =

q∑
k=0

r2k
(
c

(1)
k r`y(1)(`φ) + c

(2)
k r`y(2)(`φ)

)
+

∑
|β|=2q+`+1

Rβ(x)xβ for ` ≥ 1, (C.2)

with y(1)(·) := 1√
π

cos(·), y(2)(·) := 1√
π

sin(·) and Rβ ∈ C∞(BR,R).

Proof. We consider only the case ` ≥ 1, the case ` = 0 follows analogously. A function w ∈ D(R2)
can be represented in BR by a Taylor approximation

w(x) =
∑

|α|≤2q+`

∂αw(0)

α!
xα +

∑
|β|=2q+`+1

R̃β(x)xβ,

with Rβ ∈ C∞(R2,R). Introducing polar coordinates x =
(
r cos(φ), r sin(φ)

)
, it can be converted

into

w(x) =

2q+`∑
k=0

[
ck,0√

2π
rk +

k∑
m=1

rk−m
(
c

(1)
k,mr

my(1)(mφ) + c
(2)
k,mr

my(2)(mφ)
)]

+
∑

|β|=2q+`+1

R̃β(x)xβ, (C.3)
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where the coefficients ck,0 are non zero only for k even, and similarly c
(1)
k,m, c

(2)
k,m are non zero only

for k −m even, which follows from the smoothness of the Taylor polynomial. For w ∈ D`(R2), we
have to impose the additional constraint P`w = w, which applied to (C.3) yields

w(x) =

2q+`∑
k=`

rk−`
(
c

(1)
k,`r

`y(1)(`φ) + c
(2)
k,`r

`y(2)(`φ)
)

+
∑

|β|=2q+`+1

P`
(
R̃β(x)xβ

)
,

with c
(1)
k,`, c

(2)
k,` non zero only for k−` even. The latter expression is obviously equivalent to (C.2).

Remark 1. When we consider for w ∈ D`(R2), ` = 0, 1, . . ., expressions of the form ∆2w or
∆2∆2w in integrals, we can replace them, after changing to polar coordinates, by the corresponding
expressions ∆̃2w or ∆̃2∆̃2w . It follows from Proposition 2 that ∆̃2w(r, φ) and ∆̃2∆̃2w(r, φ) are
O(r`).

C.1 Laplace operator

Let us check Eqs. (4.9) and (4.10), for x̃ 6= 0, by an explicit calculation. For this purpose let
u ∈ D(R2) and P0u = u, i.e., the test functions depend on the radial variable only. Depending on
the choice of γ, we get for 1

2 < γ < 1

∫
R2

u(x)∆x Pf.K2(x, x̃) dx =

∫
R2

(
∆xu(x)

)
K2(x, x̃) dx

= −
∫ ∞

0

(
1
r2 (−r∂r)2u(r)

)
Θ(r̃ − r) ln

(r
r̃

)
rdr

=

∫ r̃

0
∂r
(
(−r∂r)u(r)

)
ln
(r
r̃

)
dr

=

∫ r̃

0
∂ru(r) dr

= u(r̃)− u(0)

and for 1 < γ < 3
2

∫
R2

u(x)∆x Pf.K2(x, x̃) dx =

∫
R2

(
∆xu(x)

)
K2(x, x̃) dx

=

∫ ∞
0

(
1
r2 (−r∂r)2u(r)

)
Θ(r − r̃) ln

(r
r̃

)
rdr

= −
∫ ∞

0
∂r
(
(−r∂r)u(r)

)
ln
(r
r̃

)
dr +

∫ r̃

0
∂r
(
(−r∂r)u(r)

)
ln
(r
r̃

)
dr

= − ln(r̃)

∫ ∞
0

∂r
(
(r∂r)u(r)

)
dr +

∫ ∞
0

∂r
(
(r∂r)u(r)

)
ln(r)dr + u(r̃)− u(0)

= u(r̃)
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C.2 Bi-Laplace operator

Let û ∈ D(R2)0, i.e., P0û = û, and u(r) := û(x), for r = |x|, with u ∈ C∞(R+,R). For 1 < γ < 3,
we get

∫
R2

û(x)∆x∆x Pf.K2(x, x̃) dx =

∫
R2

(
∆x∆xû(x)

)
K2(x, x̃) dx

=

∫ r̃

0

[
1

r2

(
−r ∂

∂r

)2 1

r2

(
−r ∂

∂r

)2

u(r)

]
1

4
r2
[
1− ln

(r
r̃

)]
rdr

∫ ∞
r̃

[
1

r2

(
−r ∂

∂r

)2 1

r2

(
−r ∂

∂r

)2

u(r)

]
1

4
r̃2

[
1− ln

(
r̃

r

)]
rdr

= −
∫ r̃

0

[
∂

∂r

(
−r ∂

∂r

)
1

r2

(
−r ∂

∂r

)2

u(r)

]
1

4
r2
[
1− ln

(r
r̃

)]
dr

−
∫ ∞
r̃

[
∂

∂r

(
−r ∂

∂r

)
1

r2

(
−r ∂

∂r

)2

u(r)

]
1

4
r̃2

[
1− ln

(
r̃

r

)]
dr

=

∫ r̃

0

[(
−r ∂

∂r

)
1

r2

(
−r ∂

∂r

)2

u(r)

]
1

4
r
[
1− 2 ln

(r
r̃

)]
dr

+

∫ ∞
r̃

[(
−r ∂

∂r

)
1

r2

(
−r ∂

∂r

)2

u(r)

]
1

4
r̃2

[
1

r

]
dr

=

∫ r̃

0

[
1

r2

(
−r ∂

∂r

)2

u(r)

] [
−r ln

(r
r̃

)]
dr

=

∫ r̃

0

[
∂

∂r

(
−r ∂

∂r

)
u(r)

]
ln
(r
r̃

)
dr

= −
∫ r̃

0

[(
−r ∂

∂r

)
u(r)

]
1

r
dr

=

∫ r̃

0
∂ru(r)dr

= u(r̃)− u(0)

= û(x̃)− u(0)

Let û ∈ D(R2)1, i.e., P1û = û, and w.l.o.g. assume û(x) = 1√
π
u(r) cos(φ), with u ∈ C∞(R+,R).

For 1 < γ < 2, we get

G2(x, x̃)−K2(x, x̃)|`=1 = Pf.
(
−1

4 ln(r)− 1
8

)
rr̃p1
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which gives

∫
R2

û(x)∆x∆x Pf.
(
G2(x, x̃)−K2(x, x̃)

)
dx

=

∫
R2

(
∆x∆xû(x)

)(
G2(x, x̃)−K2(x, x̃)

)
dx

= −
∫ ∞

0

{
1

r2

[(
−r ∂

∂r

)2

− 1

]
1

r2

[(
−r ∂

∂r

)2

− 1

]
u(r)

}[
1

4
ln(r) +

1

8

]
r2 dr

1√
π
r̃ cos(φ̃)

=

∫ ∞
0

{(
r
∂

∂r

)
1

r2

[(
−r ∂

∂r

)2

− 1

]
u(r)

}[
1

4
ln(r) +

3

8

]
dr

1√
π
r̃ cos(φ̃)

+

∫ ∞
0

{
1

r2

[(
−r ∂

∂r

)2

− 1

]
u(r)

}[
1

4
ln(r) +

1

8

]
dr

1√
π
r̃ cos(φ̃)

= −
∫ ∞

0

{
1

r2

[(
−r ∂

∂r

)2

− 1

]
u(r)

}[
1

4
ln(r) +

5

8

]
dr

1√
π
r̃ cos(φ̃)

+

∫ ∞
0

{
1

r2

[(
−r ∂

∂r

)2

− 1

]
u(r)

}[
1

4
ln(r) +

1

8

]
dr

1√
π
r̃ cos(φ̃)

= −1

2

∫ ∞
0

{
1

r2

[(
−r ∂

∂r

)2

− 1

]
u(r)

}
dr

1√
π
r̃ cos(φ̃)

= −1

2

∫ ∞
0

[
∂

∂r

(
r
∂

∂r

)(
u(r)

r

)
+ 2

∂

∂r

(
u(r)

r

)]
dr

1√
π
r̃ cos(φ̃)

= lim
r→0

(
u(r)

r

)
1√
π
r̃ cos(φ̃)

= lim
x→0

(
û(x)

|x|

)
1√
π
x̃

where we have used in the second last line the identity

1

r2

[(
−r ∂

∂r

)2

− 1

]
w(r) =

∂

∂r

(
r
∂

∂r

)(
w(r)

r

)
+ 2

∂

∂r

(
w(r)

r

)
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For 2 < γ < 3, we get∫
R2

û(x)∆x∆x Pf.
(
G2(x, x̃)−K2(x, x̃)

)
dx

=

∫
R2

(
∆x∆xû(x)

)(
G2(x, x̃)−K2(x, x̃)

)
dx

= −
∫ ∞

0

{
1

r2

[(
−r ∂

∂r

)2

− 1

]
1

r2

[(
−r ∂

∂r

)2

− 1

]
u(r)

}
r2 dr

[
1

4
ln(r̃) +

1

8

]
1√
π
r̃ cos(φ̃)

=

∫ ∞
0

{(
r
∂

∂r

)
1

r2

[(
−r ∂

∂r

)2

− 1

]
u(r)

}
dr

[
1

4
ln(r̃) +

1

8

]
1√
π
r̃ cos(φ̃)

+

∫ ∞
0

{
1

r2

[(
−r ∂

∂r

)2

− 1

]
u(r)

}
dr

[
1

4
ln(r̃) +

1

8

]
1√
π
r̃ cos(φ̃)

= −
∫ ∞

0

{
1

r2

[(
−r ∂

∂r

)2

− 1

]
u(r)

}
dr

[
1

4
ln(r̃) +

1

8

]
1√
π
r̃ cos(φ̃)

+

∫ ∞
0

{
1

r2

[(
−r ∂

∂r

)2

− 1

]
u(r)

}
dr

[
1

4
ln(r̃) +

1

8

]
1√
π
r̃ cos(φ̃)

= 0
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