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KERNEL INTERPOLATION ON GENERALIZED SPARSE GRIDS

MICHAEL GRIEBEL, HELMUT HARBRECHT, AND MICHAEL MULTERER

Abstract. We consider scattered data approximation on product regions of equal and
different dimensionality. On each of these regions, we assume quasi-uniform but unstruc-
tured data sites and construct optimal sparse grids for scattered data interpolation on
the product region. For this, we derive new improved error estimates for the respective
kernel interpolation error by invoking duality arguments. An efficient algorithm to solve
the underlying linear system of equations is proposed. The algorithm is based on the
sparse grid combination technique, where a sparse direct solver is used for the elementary
anisotropic tensor product kernel interpolation problems. The application of the sparse
direct solver is facilitated by applying a samplet matrix compression to each univariate
kernel matrix, resulting in an essentially sparse representation of the latter. In this way,
we obtain a method that is able to deal with large problems up to billions of interpolation
points, especially in case of reproducing kernels of nonlocal nature. Numerical results
are presented to qualify and quantify the approach.

1. Introduction

Scattered data approximation using kernels is popular in many areas, ranging from
approximation theory to statistics. The approach facilitates the estimation of missing
values in a dataset or to make predictions for new data sites based on the available data.
Scattered data approximation is particularly applied in imaging processing, surface recon-
struction and machine learning, see for example [13, 41, 44, 45] and the references therein.
However, the naive computation of the kernel approximate is known to suffer from the
so-called curse of dimensionality when the data dimension increases.

Various concepts exist to overcome the curse of dimensionality to a certain extent.
A prominent approach is offered by sparse grids or more general sparse tensor product
spaces, where the dimensions only mildly enter in the cost estimates through a dimension-
dependent power of a logarithmic factor, see [4, 43, 46] for example. In this article, we
aim at the construction and implementation of suitable sparse grids for the approximation
of tensor product kernels. Interpreting kernel approximation in the context of Gaussian
process learning, see [37], the approach under consideration amounts to a multi-fidelity
fusion model, see e.g. [14, 34], where the hierarchy of surrogate models is given by kernel
approximates on a hierarchy of subspaces. A fundamental contribution to sparse grids
for kernel approximation has recently been provided by [30, 31]. While the sparse grid
construction therein relies on a multilevel approach invoking level dependent correlation
lengths of the kernel function under consideration, we use here a kernel function of fixed
correlation length to construct the sparse grid interpolant. Especially, we discuss the
optimality of the underlying sparse tensor product spaces and provide improved error
estimates based on results in [39, 42].

The starting point for our construction is a tensor product Hilbert space

H =
m⊗
i=1

H(i),
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formed by a finite collection of reproducing kernel Hilbert spaces H(i) with reproducing
kernels κi, i = 1, . . . ,m, defined on a collection of bounded, Lipschitz-smooth regions
Ωi ⊂ Rdi of relatively small and possibly different dimensions di ∈ N. Associated to the
tensor product reproducing kernel Hilbert space H, we consider the product kernel

κ(x,y) =

m∏
i=1

κi(xi, yi).

The kernel is the reproducing kernel of the space H and renders it itself a reproducing
kernel Hilbert space defined on the product region Ω =×m

i=1Ωi. Models of this type are
applicable to multivariate interpolation problems, where only scattered data are available
within the unidirectional regions. Examples are environmental monitoring, multidimen-
sional image and volume reconstruction, such as magnetic resonance imaging, as well as
simulation based uncertainty quantification.

For the above setup, we construct an optimized sparse tensor product space to compute
the kernel interpolant with respect to the underlying sparse grid. Employing results from
[18, 19, 42], we are able to derive improved error estimates for the sparse grid approxima-
tion error and related complexity bounds. To this end, we assume for each of the regions
Ωi sets of quasi-uniform data sites. We propose a simple algorithm to coarsen these sets
in order to construct the necessary multilevel hierarchy of approximation spaces for the
sparse grid. The implementation of the sparse grid and the computation of the sparse
grid interpolant is then based on the sparse grid combination technique as introduced in
[20, 43]. This approach is known to successively compose the respective solution from
the solutions to certain anisotropic standard tensor product interpolation problems, see
[28, 30, 31]. We provide the details on the implementation of the sparse grid combination
technique as well as the storage and solution of the tensor product subproblems. To solve
the latter, we suggest the use of a direct solver that combines samplet matrix compres-
sion with a sparse direct solver as proposed in [24, 25]. This way, the approach becomes
computationally feasible, especially in case of nonlocal reproducing kernels. We present
extensive numerical studies to qualify and quantify the approach.

The rest of the article is structured as follows: In Section 2, we introduce reproducing
kernel Hilbert spaces and their basic theory. Then, in Section 3, we define generalized
sparse grids and discuss their optimality concerning their complexity. The numerical
implementation and related algorithms are described in Section 4. In Section 5, we perform
numerical experiments which validate the present theory. Finally, in Section 6, we draw
some conclusions.

Throughout this article, to avoid the repeated use of unspecified generic constants, we
write A ≲ B if A is bounded by a uniform constant times B, where the constant does not
depend on any parameters which A and B might depend on. Similarly, we write A ≳ B
if and only if B ≲ A. Finally, if A ≲ B and B ≲ A, we write A ∼ B. Furthermore, the
inequality a ≤ b between two vectors has to be understood componentwise, i.e., ai ≤ bi
for all i. Likewise, a < b means ai < bi for all i.

2. Preliminaries

2.1. Reproducing kernel Hilbert spaces. Let Ω ⊂ Rd, d ∈ N, be a Lipschitz-smooth
region, which we assume to be bounded for the sake of simplicity. We start with the
following definition:

Definition 2.1. A reproducing kernel for a Hilbert space H of functions u : Ω→ R with
inner product (·, ·)H is a function κ : Ω× Ω→ R such that

(1) κ(·, y) ∈ H for all y ∈ Ω,
(2) u(y) =

(
u, κ(·, y)

)
H for all u ∈ H and all y ∈ Ω.
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A Hilbert space H with reproducing kernel κ : Ω × Ω → R is called reproducing kernel
Hilbert space (RKHS).

A continuous kernel κ : Ω× Ω→ R is called positive semidefinite on Ω ⊂ Rd if

(2.1)
N∑

i,j=1

αiαjκ(xi, xj) ≥ 0

holds for all all mutually distinct points x1, . . . , xN ∈ Ω and all α1, . . . , αN ∈ R, for any
N ∈ N. The kernel is even positive definite if the inequality in (2.1) is strict whenever at
least one αi is different from 0.

Given a set X = {x1, . . . , xN} of N mutually distinct data sites, we introduce the kernel
translates ϕj := κ(·, xj) for j = 1, . . . , N . If the kernel κ is positive definite, these kernel
translates span the N -dimensional subspace

HX := span{ϕ1, . . . , ϕN} ⊂ H.

The best approximation fX ∈ HX of a function f ∈ H with respect to H amounts to
its H-orthogonal projection onto HX . The latter can be obtained as the solution of the
variational formulation

(2.2) find fX ∈ HX , such that (fX , v)H = (f, v)H for all v ∈ HX .

In view of the reproducing property, i.e., the second property from Definition 2.1, the
ansatz fX =

∑N
i=1 αiϕi leads to the linear system of equations

Kα = f

with the kernel matrix

K =

κ(x1, x1) · · · κ(x1, xN )
...

. . .
...

κ(xN , x1) · · · κ(xN , xN )


and the right-hand side f = [f(x1), . . . , f(xN )]T .

In particular, we observe that the resulting system of equations coincides with the one
for the generalized Vandermonde matrix for the interpolation at the data sites in X, i.e.

u(xj) =
N∑
i=1

αiϕi(xj)
!
= f(xj) for j = 1, . . . , N.

This means that, within the RKHS framework, the best approximation u ∈ HX of a
function f ∈ H is given by the interpolant for the data sites X. This is also referred to
as kernel interpolation. Since kernel interpolation works on arbitrarily unstructured sets
of data sites, it is often used to approximate scattered data. Such scattered data can be
found in computer graphics, but also in machine learning of high-dimensional data sets,
see e.g., [13, 45].

2.2. Error estimates. Having fixed the kernel of interest, we consider the problem of
function approximation. We are interested in recovering an unknown function f ∈ H,
given only a finite data set

{(x1, f1), . . . , (xN , fN )} ⊂ Ω× R.

We collect the data sites in the set X := {x1, . . . , xN} ⊂ Ω. Associated to this set, we
define two characteristic quantities, namely the fill distance

hX,Ω := sup
x∈Ω

min
xi∈X

∥x− xi∥2
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and the separation distance
qX := min

i̸=j
∥xi − xj∥2.

For the theoretical results presented later, we require that the set of data sites is quasi-
uniform, i.e., there is a constant cqu > 0 such that qX ≤ hX,Ω ≤ cquqX . But note that
the subsequent error estimates do not require quasi-uniformity of X. Quasi-uniformity is
merely required to bound the complexity, since then a comparison of volumes yields for
the number |X| = N of data sites the relation N ∼ h−d

X,Ω, see, e.g., [45, Proposition 14.1].

If the norm in H is isomorphic to the norm in Sobolev space Hs(Ω) with s > d/2, i.e.,
if there holds ∥f∥H ∼ ∥f∥Hs(Ω) for all f ∈ H, then we have the following error estimate

(2.3) ∥f − fX∥L2(Ω) ≲ hsX,Ω∥f∥Hs(Ω),

compare [45]. If there even holds

(2.4) (u, v)H ≲ ∥u∥L2(Ω)∥v∥H2s(Ω)

for all u ∈ H and v ∈ H2s(Ω), then using [42, Theorem 1] we may double the rate of
convergence with respect to L2(Ω), when the data provide additional smoothness in terms
of f ∈ H2s(Ω). For the reader’s convenience, we recall the proof of the respective estimate
here.

Lemma 2.2. Let Ω ⊂ Rd be sufficiently smooth and let fX be the solution to (2.2) with
respect to HX ⊂ H. Then, there holds

(2.5) ∥f − fX∥L2(Ω) ≲ h2sX,Ω∥f∥H2s(Ω)

whenever f ∈ H2s(Ω).

Proof. We apply (2.3) to g := f −fX and note that it belongs to H since f ∈ H2s(Ω) ⊂ H
and fX ∈ HX ⊂ H. In view of (2.3), we find

∥g − gX∥L2(Ω) ≲ hsX,Ω∥g∥H.
Since gX = fX − fX = 0, this implies

∥f − fX∥L2(Ω) ≲ hsX,Ω∥f − fX∥H.
We now conclude by the Galerkin orthogonality f − fX ⊥H HX that

∥f − fX∥2L2(Ω) ≲ h2sX,Ω∥f − fX∥2H
= h2sX,Ω(f − fX , f)H

≲ h2sX,Ω∥f − fX∥L2(Ω)∥f∥H2sΩ).

The result follows now by dividing by the factor ∥f − fX∥L2(Ω). □

In what follows, we shall assume without loss of generality that H is equipped with
an inner product such that (2.4) holds.1 Then, from (2.4) and (2.5), we can also derive
an error estimate with respect to the energy space H. By using again the orthogonality
f − fX ⊥H HX , we conclude

∥f − fX∥2H = (f − fX , f)H

≲ ∥f − fX∥L2(Ω)∥f∥H2s(Ω)

≲ h2sX,Ω∥f∥2H2s(Ω),

which implies the desired error estimate with respect to the energy space, i.e.,

(2.6) ∥f − fX∥H ≲ hsX,Ω∥f∥H2s(Ω).

1An inner product that satisfies (2.4) is constructed in Appendix A. Nonetheless, the analysis presented
in the following also applies with obvious modifications to the situation that (2.4) does not hold. We refer
the reader to Section 6 for the final result which is then obtained.
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In view of (2.3), (2.5), and (2.6), we may employ standard interpolation arguments to
summarize the above error estimates in accordance with

(2.7) ∥f − fX∥Ht(Ω) ≲ ht
′−t
X,Ω∥f∥Ht′ (Ω), 0 ≤ t ≤ s ≤ t′ ≤ 2s.

2.3. Multilevel sequences. We consider a sequence of quasi-uniform sets of data sites

(2.8) X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Ω

such that hj := hXj ,Ω ∼ 2−j and, consequently, |Xj | ∼ 2jd. Associated to the sequence of
sets of data sites, we obtain the multilevel hierarchy of finite dimensional approximation
spaces

H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ H,
where we write Hj := HXj for the sake of simplicity.

Let

(2.9) Pj : H → Hj

denote the H-orthogonal projection onto Hj and define the detail projection

(2.10) Qj := Pj − Pj−1,

where we set P−1 := 0, i.e., Q0 = P0. Fixing a maximum level J ∈ N, the detail projections
Qj give rise to the H-orthogonal decomposition

HJ =
J⊕

j=0

Wj , where Wj := Qj(H).

Especially, the error estimate (2.7) implies

(2.11)
∥Qjf∥Ht(Ω) ≤ ∥f − Pjf∥Ht(Ω) + ∥f − Pj−1f∥Ht(Ω)

≲ ht
′−t
j ∥f∥Ht′ (Ω),

for all 0 ≤ t ≤ s ≤ t′ ≤ 2s provided that f ∈ Ht′(Ω).

3. Multivariate setting

3.1. Tensor product spaces. We considerm ∈ N possibly distinct RKHSH(1), . . . ,H(m)

with reproducing kernels κ1(x1, y1), . . . , κm(xm, ym) and associated regions Ω1 ⊂ Rd1 , . . . ,
Ωm ⊂ Rdm , respectively. We are interested in the efficient approximation of functions in
the tensor product space

H :=

m⊗
i=1

H(i).

Of course, this is again an RKHS with reproducing kernel in product form

κ(x,y) := κ1(x1, y1) · · ·κm(xm, ym),

where x = (x1, . . . , xm),y = (y1, . . . , ym) ∈ Ω with Ω := Ω1 × · · · × Ωm denoting the
m-fold product region.

For each i = 1, . . . ,m, we assume the existence of a nested sequence of sets of data sites,
i.e.,

X
(i)
0 ⊂ X

(i)
1 ⊂ X

(i)
2 ⊂ · · · ⊂ Ωi,

such that h
(i)
j := h

X
(i)
j ,Ωi

∼ 2−j . This yields associated multiscale hierarchies of finite

dimensional approximation spaces

H(i)
0 ⊂ H

(i)
1 ⊂ H

(i)
2 ⊂ · · · ⊂ H

(i), i = 1, . . . ,m,
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with H(i)
j := H(i)

X
(i)
j

. Given a multi-index j = [j1, . . . , jm] ∈ Nm
0 , we can define the tensor

product grid

Xj := X
(1)
j1
× · · · ×X

(m)
jm
⊂ Ω

with associated tensor product approximation space

Hj := span{κ(·,x) : x ∈Xj} = H
(1)
j1
⊗ · · · ⊗ H(m)

jm
⊂H.

Given a function f ∈ H, the kernel interpolant fj ∈ Hj with respect to the tensor
product grid Xj is retrieved by solving the linear system of equations

(3.1) Kjαj = f j .

Herein, the kernel matrix Kj is defined as the Kronecker product

Kj := K
(1)
j1
⊗ · · · ⊗K

(m)
jm

of the univariate kernel matrices

K
(i)
ji

= [κi(xk, yk)]xk,yk∈X
(i)
ji

,

while the right hand side is defined as f j = [f(xk)]xk∈Xj
. Since the kernel interpolant

is the best approximation in each of the univariate subspaces, it is evident that uj is the
best approximation of u ∈ H in the subspace Hj with respect to the norm in H. Since
the number of interpolation points

|Xj | =
m∏
i=1

∣∣X(i)
ji

∣∣ = m∏
i=1

2jidi

grows exponentially in m, the computation of αj suffers from the curse of dimension.

3.2. Sparse tensor product spaces. A way to mitigate the curse of dimension is to
employ sparse tensor product approximation. To this end, we introduce the Hj-orthogonal
detail projections, cf. (2.10),

Qj : H→Hj , Qj := Q
(1)
j1
⊗ · · · ⊗Q

(m)
jm

, j ≥ 0.

We assume that the univariate spaces H(i) are equivalent to Sobolev spaces Hsi(Ωi) for
all i = 1, . . . ,m and for the vector of Sobolev indices s = [s1, . . . , sm]T . Moreover, for
t = [t1, . . . , tm]T ≥ 0, we introduce the tensor product Sobolev space

Ht(Ω) := Ht1(Ω1)⊗ · · · ⊗Htm(Ωm).

This tensor product Sobolev space is frequently also called Sobolev space of functions with
dominating mixed derivatives.

In view of (2.11), we conclude by standard tensor product arguments the decay estimate

(3.2) ∥Qjf∥Ht(Ω) ≲ ht′−t
j ∥f∥

Ht′ (Ω)
, 0 ≤ t ≤ s ≤ t′ ≤ 2s,

where

ht′−t
j :=

(
h
(1)
j1

)t′1−t1 · · ·
(
h
(m)
jm

)t′m−tm ,

as usual for powers of vectors with matching dimensions.
Next, we define sparse tensor product spaces. To this end, we introduce a weight vector

0 < w = [w1, . . . , wm]T such that ∥w∥∞ = 1. The (weighted) sparse tensor product space
of level J ∈ N is then defined by

Ĥ
w

J =
⊕

jTw≤J

Wj , where Wj := Qj(H).
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Corresponding to Ĥ
w

J , we define the sparse grid projection

P̂
w

J : H→ Ĥ
w

J , P̂
w

J f =
∑

jTw≤J

(
Q

(1)
j1
⊗ · · · ⊗Q

(m)
jm

)
f,

which yields the sparse grid kernel interpolant ûwJ = P̂
w

J f ∈ Ĥ
w

J of a given function
f ∈H.

3.3. Error estimates. In [18, 19], the construction of generalized sparse tensor product
spaces has been considered. Following the theory provided therein, we derive the following
results:

Theorem 3.1 (Convergence). Let 0 ≤ t < s < t′ ≤ 2s and f ∈ Ht′(Ω). Then, there
holds the error estimate

(3.3)
∥∥f − P̂

w

J f
∥∥
Ht(Ω)

≲ 2
−J min{ t′1−t1

w1
,...,

t′m−tm
wm

}
JP−1∥f∥

Ht′ (Ω)
.

Here, P ∈ N counts how often the minimum is attained in the exponent.

Proof. We have by the triangle inequality and by (3.2) that∥∥f − P̂
w

J f
∥∥
Ht(Ω)

≤
∑

jTw>J

∥Qjf∥Ht(Ω) ≲
∑

jTw>J

ht−t′

j ∥f∥Ht(Ω).

Due to h
(i)
ji
∼ 2−j for all i = 1, 2, . . . ,m and hence hj ∼ 2−|j|, we can now follow line-by-

line the proof of [19, Theorem 4.3] and obtain the desired estimate. □

Remark 3.2. Estimate (3.3) remains valid without the logarithmic factor JP−1 in the case
t = t′ = s due to the Galerkin orthogonality in accordance with∥∥f − P̂

w

J f
∥∥2
H =

∑
jTw>J

∥Qjf∥2H ≤ ∥f∥2H.

As a consequence, if t = s and s < t′, the logarithmic factor in (3.3) is only J (P−1)/2.

Likewise, by applying the Aubin-Nitsche lemma, one concludes only the factor J (P−1)/2 if
t < s and s = t′, which improves the result of [30, 31].

We shall next count the degrees of freedom, i.e., the dimension, of the sparse tensor

product space Ĥ
w

J .

Theorem 3.3 (Complexity). For any w > 0, the dimension of the sparse tensor product

space Ĥ
w

J is proportional to 2J max{d1/w1,...,dm/wm}JR−1, where R ∈ N counts how often
the maximum is attained.

Proof. In view of dimH(i)
ji

= 2jidi for all i = 1, 2, . . . ,m, the assertion follows by nearly

verbatim rewriting the proof of [19, Theorem 4.1]. □

As shown in [19], the combination of Theorems 3.1 and 3.3 yields the following estimate

on the cost-complexity of the approximation in the sparse tensor product space Ĥ
w

J :

Theorem 3.4 (Cost-complexity rate). Let 0 ≤ t < s < t′ ≤ 2s and f ∈ Ht′(Ω).

Furthermore, denote by N := dim Ĥ
w

J the number of degrees of freedom in the sparse

tensor product space Ĥ
w

J and set

β :=
min{(t′1 − t1)/w1, . . . , (t

′
m − tm)/wm}

max{d1/w1, . . . , dm/wm}
.
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Assume that the minimum in the enumerator is attained P ∈ N times and the maximum
in the denominator is attained R ∈ N times. Then, the sparse grid kernel interpolant in

Ĥ
w

J satisfies the error estimate

(3.4)
∥∥f − P̂

w

J f
∥∥
Ht(Ω)

≲ N−β(logN)(P−1)+β(R−1)∥f∥
Ht′ (Ω)

in terms of the degrees of freedom N .

It has been shown in [19, Lemma 5.1] that there holds

β ≤ β⋆ := min

{
t′1 − t1
d1

, . . . ,
t′m − tm

dm

}
for all w > 0. Moreover, if the above minimum is attained for the index 1 ≤ ℓ ≤ m, then
we achieve the maximum rate β = β⋆ in (3.4) for all w > 0 such that

(3.5)
t′ℓ − tℓ
t′i − ti

≤ wℓ

wi
≤ dℓ

di
for all i = 1, 2, . . . ,m.

Natural choices of the parameter w > 0 are:

(i.) To equilibrate the accuracy in the extremal univariate spacesH(i)
J/wi

, i = 1, 2, . . . ,m,

we obtain the condition

2−J(t′1−t1)/w1 = 2−J(t′2−t2)/w2 = · · · = 2−J(t′m−tm)/wm .

This means that we have to choose w̃i := t′i − ti for all i = 1, 2, . . . ,m and then
rescale w := w̃/∥w̃∥∞. This choice corresponds to the lower bound in (3.5).

(ii.) To equilibrate the number of degrees of freedom in the extremal univariate spaces

H(i)
J/wi

, i = 1, 2, . . . ,m, we obtain the condition

2Jd1/w1 = 2Jd2/w2 = · · · = 2Jdm/wm .

This condition is satisfied if w̃i := di for all i = 1, 2, . . . ,m and then setting
w := w̃/∥w̃∥∞. This choice yields the upper bound in (3.5).

(iii.) Following the idea of an equilibrated cost-benefit rate (see [4]), we get the condition

2j1(d1+t′1−t1) · 2j2(d2+t′2−t2) · · · 2jm(dm+t′m−tm) = 2J ·const.

for all jTw = J . For const. = 1, we find w̃i = di + t′i − ti for all i = 1, 2, . . . ,m.
By setting again w := w̃/∥w̃∥∞ we derive a weight w which is between the lower
and upper bound in (3.5) provided that these differ from each other.

We like to emphasize that the equilibration of the degrees of freedom is the only choice
which gives always the highest rate β⋆ (except for polylogarithmic factors), independent
of the kernel under consideration or the particular smoothness of the function to be ap-
proximated. We refer the reader to [19] for a more detailed discussion.

3.4. Comparison of sampling rates. We now want to put our result into perspective.
In the regular sparse grid case on the unit m-cube Ω = [0, 1]m and a product kernel that
belongs to an RKHS being equivalent to Hs([0, 1]), i.e.

d1 = d2 = · · · = dm = 1, s1 = s2 = · · · = sm = s,

the upper and lower bound coincide and the only optimal weight is

w1 = w2 = · · · = wm = 1.

It is well known that the standard Smolyak construction without exploiting orthogonality
gives ∥∥f − fSmolyak

N

∥∥
L2(Ω)

≲ N−s(logN)(s+1)(m−1)∥f∥Hs(Ω),

see [43]. But we can now exploit the orthogonality with respect to the RKHS in the error
estimate as outlined in Remark 3.2. Hence, (3.3) has only the logarithmic power (P −1)/2
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instead of P − 1 for t = 0 and t′ = s. Thus, since P = R = m and β = s, the respective
cost-complexity rate for a function f ∈Hs(Ω) is

(3.6)
∥∥f − P̂

w

J f
∥∥
L2(Ω)

≲ N−s(logN)(s+1/2)(m−1)∥f∥Hs(Ω).

Note at this point that it is known from [10] that there exists a set of N points such that
the best possible sampling rate would be given by∥∥f − fbest

N

∥∥
L2(Ω)

≲ N−s(logN)s(m−1)∥f∥Hs(Ω).

This approach is however not constructive and such optimal point sets are not yet com-
putable. The currently best point sets which are constructable provide the rate

(3.7)
∥∥f − f constructive

N

∥∥
L2(Ω)

≲ N−s(logN)s(m−1)+1/2∥f∥Hs(Ω).

compare [3]. This rate can be seen from (1.8) in [3] and the linear widths for Sobolev
spaces of bounded mixed derivatives Hs(Ω) in [12, p. 46]. We should emphasize that such
point sets have to be computed in an offline phase that has runtime O(N3).

The cost-complexity rate (3.7) is the same as for our sparse grid point sets in (3.6) for
the case m = 2 and is indeed better for m > 2 by an additive factor (m − 2)/2 in the
exponent of the logarithmic term. However, the huge practical advantage of sparse grid
points over more general point sets is that the point distributions are structured which
can be exploited to speed-up computations considerably. Moreover, the parallelization of
the implementation based on the sparse grid combination technique is straightforward.

3.5. Sparse grid combination technique. Due to the Galerkin orthogonality, it is easy
to see that the detail projections satisfy

(Qju,Qj′v)H = 0 for j ̸= j′ and any u, v ∈H.

Therefore, the subspaces Wj and Wj′ are H-perpendicular. Thus, since the kernel under
consideration is of product type, the theory of [28] tells us that we can compute the kernel

interpolant in the sparse tensor product space Ĥ
w

J by means of the combination technique.
With this in mind, we define the tensorized version of the orthogonal projections (2.9)

given by

P j : H→Hj , P j := P
(1)
j1
⊗ · · · ⊗ P

(m)
jm

,

and note that there holds the identity

P j =
∑
ℓ≤j

Qℓ.

Moreover, in accordance with [7, 8, 20, 23, 43], we introduce the (weighted) combination
technique index set

(3.8) Jw
J :=

{
j ∈ Nm

0 : J − |w| < jTw ≤ J
}
.

With these definitions set at hand, one has the identity

(3.9) P̂
w

J =
∑

j∈Jw
J

cwj P j , where cwj :=
∑

j′∈{0,1}m
(j+j′)Tw≤J

(−1)|j
′|.

Hence, the sought sparse grid kernel interpolant ûwJ = P̂
w

J f ∈ Ĥ
w

J is composed by the
tensor product kernel interpolants uj = P jf from different full tensor product spaces Hj .
Each of these tensor product kernel interpolants uj can now be computed in accordance
with Subsection 3.1.
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4. Implementation

4.1. Construction of nested point sets. In this section, we comment on our imple-
mentation of the sparse grid kernel interpolation. We first describe how we generate the
multilevel sequence (2.8) from a given set of quasi-uniform data sites X ⊂ Ω. Then, since
each particular term in the sparse grid combination technique amounts to the solution of a
dense linear system of equations which is of tensor product structure, we apply tensoriza-
tion methods. Moreover, we use a fast method for nonlocal operators for each subproblem
that is associated to direction i, where i = 1, . . . ,m. As we will demonstrate by numeri-
cal experiments, we altogether obtain a very efficient method to compute the sparse grid
kernel interpolant.

Figure 1. Visualization of the subsampling procedure starting from a set
of 1000 uniformly chosen random points on [0, 1]2.

Different sophisticated algorithms for the construction of nested subsets from a given
set of data sites have been proposed in the literature, see, e.g., [6, 9, 40]. Nonetheless,
for our our purposes, the simple algorithm described below is sufficient. To construct
a multilevel sequence (2.8) for a given set of quasi-uniform data sites X and a given
maximum level J ∈ N, we assume without loss of generality that Ω ⊂ [0, 1]d. Otherwise,
Ω can be mapped into [0, 1]d by an affine transform and the subsequent procedure has to
be adapted accordingly.

We apply the following top-down algorithm: For each level j = 0, 1, . . . , J , we subdivide
[0, 1]d equidistantly into 2jd cuboids of edge length 2−j . To determine the point set Xj ,
we start from Xj−1 and add points that are not already contained in this set. To that
end, from all points that are in a given cuboid, the point which is closest to the midpoint
of the cuboid is chosen (in case of nonuniqueness, one randomly chooses one of the closest
points). Thus, if each cuboid’s intersection with the region Ω contains at least one point,
a fill distance hXj ,Ω ∼ 2−j is guaranteed. We remark that this is already achieved by
taking any point within each cuboid. But choosing the point closest to the midpoint has
the advantage of improving the separation distance. A visualization of the subsampling
procedure for j = 0, 1, 2, 3, starting from a set of 1000 uniformly chosen random points on
[0, 1]2, is given in Figure 1.

An implementation can be found in Algorithm 1. It updates a given index set I by
selecting associated points as described above which are not already in I. Starting from
I = ∅ and iterating then for j = 0, . . . , J results in the desired multilevel hierarchy. The
cost of the algorithm for each level j is linear in the cardinality of X.

4.2. Computing the sparse grid kernel interpolant. For the computation of the
sparse grid kernel interpolant, we rely on the combination technique (3.8). For each
multi-index j ∈ Jw

J , we have to solve the tensor product linear system

(4.1) Kjαj = f j with Kj = K
(1)
j1
⊗ · · · ⊗K

(m)
jm

,

compare (3.1). To exploit the tensor product structure of the linear system (4.1), we
need a suitable representation of the quantities αj and f j in the computer. Moreover,
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Algorithm 1 Uniform Subsample

1: function uniformSubsample(I, X, j)
2: Ic ← [1, . . . , |X|] \ I
3: Inew ← ∅
4: for all p ∈ Ic do
5: m← 2−j(⌊2jxp⌋+ 0.5)
6: if pc ∈ Inew then
7: if ∥xpc −m∥ > ∥xp −m∥ then
8: pc ← p
9: else

10: pc ← p
11: Inew ← Inew ∪ {pc}
12: return I ∪ Inew

we need to be able to unfold the tensor linear system (4.1) to conventional linear systems

K
(i)
ji
α

(i)
ji

= f
(i)
ji

which belong to the directions i = 1, . . . ,m, and are to be solved succes-

sively. Finally, we need a backtransform of the resulting solutions α
(i)
j,i to their associated

tensor representation α
(i)
j . Such tensor methods have become important tools in the recent

years, see [22] for example, and can be applied in our context.
The class Tensor in Algorithm 2 provides an implementation of an elementwise seri-

alization of a given tensor in main memory by means of the method toScalarIndex.
Given a multi-index k ∈ {0, n1}× · · ·×{0, nm}, the function assigns a unique linear index
p = toScalarIndex(k,n) ∈ {0, . . . ,

∏m
i=1 ni}. This is achieved by a mixed radix repre-

sentation, with the basis generated by the method strides. The corresponding inverse
mapping from a scalar index to a multi-index is given by toMultiIndex, which amounts
to the Euclidean division algorithm.

Now, mapping each entry of a tensor α ∈ Rn by toScalarIndex yields the serializa-
tion

Tensor(n).serialize(α) ∈ R
∏m

i=1 ni .

To efficiently solve the linear system (4.1), we require all possible matricizations M ∈
Rni×

∏
o̸=i no of αj . The elementwise matricization is again based on the Euclidean division

algorithm and a possible implementation is found in matricize. With a slight abuse of
notation, we refer to the entire matricization as

M = Tensor(n).matricize(α, i) ∈ Rni×
∏

o̸=i no .

The complete computation of the sparse grid kernel interpolant is presented in Algorithm 3.

4.3. Fast solution of the linear system of equations. It remains to provide an effi-

cient solver for each of the kernel matricesK
(i)
ji
, i = 1, . . . ,m and each multi-index j ∈ Jw

J ,

occurring in line 7 of Algorithm 3. For this, we compute a sparse approximation to K
(i)
ji

by employing the samplet-based kernel matrix compression, see [24, 27], in combination
with the sparse direct solver CHOLMOD, see [5]. Of course, other approaches would be also
possible here such as low-rank methods [36], adaptive low-rank methods like the multi-
pole method or H-matrices [17, 21], fast Fourier techniques [35], and kernel slicing [29].
We decided for the samplet matrix compression as it is known to be extremely memory
efficient and a direct solver is available. We give a brief summary of is method and refer
the reader to [24] for details.

Samplets are a multiresolution basis of localized discrete signed measures with vanishing
moments, which have a natural embedding into RKHS by means of the Riesz isometry.
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Algorithm 2 Class Tensor

1: function toScalarIndex(k,n ∈ Nm
0 )

2: b← strides(n)
3: p← 0
4: for i = 1, . . . ,m do
5: p← p+ kibi
6: return p

7: function toMultiIndex(p ∈ N0,n ∈ Nm
0 )

8: b← strides(n)
9: k← 0

10: for i = 1, . . . ,m do
11: (ki, p)← (p/bi, p mod bi)
12: return k

13: function matricize(k ∈ N0, o, p ∈ N,n ∈ Nm
0 )

14: b← strides(n)
15: z ← 0
16: r ← p
17: for i = 1, . . . , k − 1 do
18: s← bi/nk

19: (c, r)← (⌊r/s⌋, r mod s)
20: z ← z + cbi
21: r ← r + obk
22: for i = k + 1, . . . ,m do
23: (c, r)← (⌊r/bi⌋, r mod bi)
24: z ← z + cbi
25: return z

26: function strides(n)
27: b = 0
28: for i = 1, . . . ,m do
29: bi ←

∏m
o=i+1 no

30: return b

Let K
Σ,(i)
ji

denote the kernel matrix K
(i)
ji

in samplet coordinates and let η > 0 be a fixed
parameter. Then, there holds,

(4.2)
∥∥∥KΣ,(i)

ji
− K̃

Σ,(i)

ji

∥∥∥
F
≤ C(cη)−2(q+1)

∥∥∥KΣ,(i)
ji

∥∥∥
F
,

where q + 1 is the number of vanishing moments, and C, c > 0 are constants. The matrix

K̃
Σ,(i)

ji is obtained from K
Σ,(i)
ji

by setting all entries to zero, whose associated samplets

have supports τ, τ ′ that satisfy

dist(τ, τ ′) ≥ ηmax{diam(τ), diam(τ ′)}, η > 0.

The compressed matrix has O(N logN) remaining entries. The error estimate (4.2) is
valid for asymptotically smooth kernels, especially for the Matérn class of kernels. For such
kernels, the samplet compressed kernel matrices can be computed efficiently with loglinear
cost-complexity by means of a multipole method, see [17]. In contrast to this early work,
we follow [16] and useH2-matrices and interpolation of the kernel under consideration. We
refer the reader to [26] for the description of the implementation of the particular multipole
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method we use. To further reduce the number of entries, an a-posteriori thresholding of

small entries in K̃
Σ,(i)

ji may be performed once the samplet compressed matrix has been

assembled. Figure 2 illustrates the samplet compressed matrix K̃
Σ,(i)

ji , its nested dissection
reordering (see [15] for details), and the resulting Cholesky factor in case of the exponential
kernel on the unit square for 300 000 uniform random data sites.

bins: 1000, n: 300000, binsize: 300, nnz: 124315914 bins: 1000, n: 300000, binsize: 300, nnz: 124315914 bins: 1000, n: 300000, binsize: 300, nnz: 520644319

Figure 2. Sparsity patterns of the samplet compressed exponential ker-
nel on the unit square (left) for 300 000 data sites, the nested dissection
reordering (middle), and the Cholesky factor (right). Each dot represents
a matrix block of size 300× 300. The number of entries per block is color
coded, where lighter blocks have less entries.

The sparse direct solver mitigates to some extent the computational cost for the numer-
ical solution caused by the ill-conditioning of the kernel matrices for increasing numbers of
points. Note here that the increasing condition number requires a corresponding increase
in compression error accuracy to maintain a fixed overall consistency error. We refer to
[2] for a detailed discussion on this matter.

Algorithm 3 Compute Sparse Grid Kernel Interpolant

1: function Compute([Kj ]j∈Jw
J
, [f j ]j∈Jw

J
)

2: for all j ∈ Jw
J do

3: nj ←
[∣∣X(1)

j1

∣∣, . . . , ∣∣X(m)
jm

∣∣]T
4: αj ← Tensor(nj).serialize(f j)
5: for i = 1, . . . ,m do
6: M ← Tensor(nj).matricize(αj , i)

7: M ←
(
K

(i)
ji

)−1
M

8: αj ← Tensor(nj).serialize(M)
9: return [αj ]j∈Jw

J

4.4. Evaluation of the sparse grid kernel interpolant. Given sets of evaluation

points X
(1)
eval ⊂ Ω1, . . . , X

(m)
eval ⊂ Ωm, the evaluation of the sparse grid kernel interpolant on

the tensor product grid×m
i=1X

(i)
eval is similar to the solution of the interpolation problems

in the sparse grid combination technique. The linear solver just needs to be replaced by

a matrix-vector multiplication with the kernel matrices K
(i)

X
(i)
eval,X

(i)
ji

. The evaluation of the

sparse grid interpolant is summarized in Algorithm 4. The matrix-vector multiplication
therein can either be performed directly, in case of a relative small number of points in

X
(i)
ji

or X
(i)
eval, or can be sped up by means of the fast multipole method.
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Algorithm 4 Evaluate Sparse Grid Kernel Interpolant

1: procedure Evaluate([αj ]j∈Jw
J
, X

(1)
eval, . . . , X

(m)
eval)

2: u← 0
3: for all j ∈ Jw

J do

4: nj ←
[∣∣X(1)

j1

∣∣, . . . , ∣∣X(m)
jm

∣∣]T
5: for i = 1, . . . ,m do
6: M ← Tensor(nj).matricize(αj , i)

7: M ←K
(i)

X
(i)
eval,X

(i)
ji

M

8: uj ← Tensor(nj).serialize(M)
9: u← u+ cwj Tensor(nj).serialize(uj)

10: return u

5. Numerical results

5.1. General setup. In our numerical experiments, we employ the Matérn kernels or
Sobolev splines κν : Rd × Rd → R, which are dependent on the smoothness parameter
ν > d/2. They are defined by

κν(x,y) :=
21−ν

Γ(ν)
rν−

d
2Kν− d

2
(r), r :=

1

σ
∥x− y∥2,(5.1)

where Γ is the Riemannian gamma function and Kβ is the modified Bessel function of the
second kind, see [32] for example. These kernels are known to be nonlocal and are hence not
straightforward to deal with numerically since standard discretizations result in densely
populated system matrices. Nonetheless, they are the reproducing kernels of the Sobolev
spaces Hν+d/2(Rd), equipped with the canonical inner product that satisfies (2.4), and
hence of great importance in practice. Although the Matérn kernels cannot be expected
to be also reproducing kernels of Hν+d/2(Ω) with an inner product that satisfies (2.4), it
turned out that they work in our numerical experiments provided that the interpolant is
not evaluated too close to the boundary of Ω.

Throughout our experiments, we always interpolate the data generating process f ≡
1. At first glance, this may appear like a very simple problem. However, for kernel
interpolation it is nontrivial, since the ansatz spacesHX under consideration do not include
polynomials. On the other hand, the function f ≡ 1 is arbitrarily smooth and does not
depend on the dimensionality, which makes it a perfect test case. As mentioned in the
previous section, the compression of smoother kernels poses a particular challenge in terms
of accuracy. In particular for d = 1, we employ samplets with q+1 = 9 vanishing moments
and set the parameter for the cut-off criterion to η = 5, compare [24]. In addition,
an a-posteriori compression with threshold 10−15 relative to the Frobenius norm of the
compressed kernel matrix is performed. For d = 2, 3, samplets with q + 1 = 4 vanishing
moments and the parameter of the cut-off criterion set to η = 2 have been sufficient to
maintain the overall consistency error. The threshold in the a-posteriori compression has
been chosen as 10−6, compare Section 4.3. The length scale parameter of the kernels is
set to σ = 2

√
d in our examples.

All computations have been carried out on a compute server with two AMD EPYC
7763 CPUs (64 cores each) with 2TB of main memory and using up to 16 OpenMP threads
if not stated otherwise. The implementation of the samplet matrix compression as well as
of the sparse grid combination technique are open source and available online at https:
//github.com/muchip/fmca.

5.2. Tensor product of the unit interval. We first consider the situation

Ω1 = Ω2 = · · · = Ωm = [0, 1],

https://github.com/muchip/fmca
https://github.com/muchip/fmca
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i.e., the unit hypercube×m
i=1Ωi = [0, 1]m and d1 = d2 = · · · = dm = 1. To this end, we

use the tensor product kernel

κ :=
m⊗
i=1

κ,

where κ is the Matérn-17/16 kernel. The corresponding univariate RKHS is isomorphic

to the Sobolev space H25/16(0, 1), that is, we have s1 = s2 = · · · = sm = 25
16 . Hence, the

expected univariate convergence rate with respect to L2(0, 1) is 25/8 = 3.125 provided
that the given data are smooth. Especially, the upper and lower bound in (3.5) coincide
and we have to choose

w1 = w2 = · · · = wm = 1.

We use the equidistant grid points

Xj =
{
2−(j+1)k : k = 1, 2, . . . , 2j+1 − 1

}
, j ≥ 0,

in the univariate directions, such that our construction computes the kernel interpolant
with respect to the traditional m-variate sparse grid (without points at the boundary).

We first provide a benchmark on the runtime of our implementation. Figure 3 shows the
cumulative times for the setup of the direct solver in samplet coordinates, computation of
the combination technique index set, the computation of the coefficients and the evaluation
of the interpolant at the single point [1/3, . . . , 1/3]T ∈ Rm form = 3, 6, 9, 12, 18 dimensions
and J = 1, 2, . . . , 10 levels. The combination technique index set (3.8) is computed up
front using a single thread, as the computing time is negligible compared to the loops in
line 2 of Algorithm 3 and in line 3 of Algorithm 4, respectively. We remark that both
loops are trivial to parallelize. The reported times in this paragraph have been computed
by using 64 OpenMP threads with dynamic load balancing.

The computation of all univariate direct solvers, which takes approximately 1.6 seconds
for J = 10, is dominating the overall computation time until roughly N = 105 sparse
grid points. For larger N , the cost for the computation of the coefficients of the sparse
grid kernel interpolant and its evaluation become dominant. As can be seen in Figure 3,
the computation times almost match the theoretical loglinear rate that is caused by the
loglinear growth number of nonzero coefficients of the samplet compressed kernel matrices
and the matrix factors used for the forward- and backward substitution, respectively.

100 101 102 103 104 105 106 107 108 1091010
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number N of sparse grid points
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m = 3
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N logN

Figure 3. Computation times for the canonical sparse grid on the unit
hypercube (0, 1)m and m = 3, 6, 9, 12, 15, 18.

In Figure 4, we show the convergence of the interpolant in the L2-norm, exemplarily for
m = 1, . . . , 6. The L2-norm of the error is approximated by using a tensorized four point
Gauss-Legendre quadrature, which exhibits 4m quadrature points and, hence, becomes
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Figure 4. Convergence of the kernel interpolant on the canonical sparse
grid in (0, 1)m.

very costly in higher dimensions. We indeed observe the theoretical convergence behaviour
N−β logm−1N with β = 25/8 as predicted by Theorem 3.4 for t′i = 25/8 and ti = 0.
Nonetheless, we also see that the constant in front of the approximation rate increases
as the spatial dimension m increases, which is a well known observation for sparse grid
constructions.

5.3. Tensor product of unit hypercubes in 1+ 2+ 3 dimensions. Next, we consider
kernel interpolation on the unit hypercube [0, 1]6 by splitting it into the product Ω1×Ω2×
Ω3 with

Ω1 = [0, 1], Ω2 = [0, 1]2, Ω3 = [0, 1]3.

The tensor product kernel, which we consider, is

κ := κ1 ⊗ κ2 ⊗ κ3,

where κd : Rd×Rd → R is the Matérn-
(
25
16−

d
2

)
kernel, d = 1, 2, 3. Thus, each corresponding

d-variate RKHS is isomorphic to the Sobolev space H25/16
(
[0, 1]d

)
. Hence, the highest

convergence rate in a particular direction Ωi is 25/8 = 3.125.
We use a regular grid for each of the subregions, i.e., the interpolation points

X
(1)
j :=

{
2−(j+1)k : k = 0, 1, . . . , 2j+1

}
, j ≥ 0,

on Ω1 are chosen equidistantly, while X
(2)
j :=

(
X

(1)
j

)2
and X

(3)
j :=

(
X

(1)
j

)3
. Therefore,

we have
∣∣X(i)

j

∣∣ = (2j+1 + 1)i points per level j for i = 1, 2, 3. In particular, there holds

hX,Ωi = 2−(j+1)
√
i and qX = 2−j for i = 1, 2, 3 by construction.

After the kernel interpolant has been computed, it is evaluated at 100 uniform random
points for each subregion Ωi, located in a hypercube of distance 0.1 from the respective
subregion’s boundary. We refer to Figure 5 for a visualization of the presented setup.
Therein, the evaluation points are indicated in red.

Next, we consider the d-variate approximation for d = 1, 2, 3 to validate the appropriate
choice of the number of vanishing moments of the samplets and the compression param-
eter η for the matrix compression, and thus for our solver for the different subproblem
directions. The convergence of the approximant with respect to each particular subregion
Ωi is shown in Figure 6. Indeed, we observe the convergence rate h−3.125

j in all three case
as predicted, so that we can be sure that the compression works correctly.



KERNEL INTERPOLATION ON GENERALIZED SPARSE GRIDS 17

Figure 5. Sketch of the regular grid points (blue) and the evaluation
points (red) on the unit interval, the unit square, and the unit cube.
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Figure 6. Convergence of the d-variate kernel approximation in case of
the hypercube [0, 1]d for d = 1, 2, 3.
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Figure 7. Convergence rates of the kernel approximant with respect to
different sparse grids on (0, 1)× (0, 1)2 × (0, 1)3.

We next consider the kernel interpolation of the respective sparse grid. For the present
setting, we can summarize the parameters as

(5.2) d1 = 1, d2 = 2, d3 = 3, s1 = s2 = s3 =
25

16
.
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Figure 8. Sketch of the quasi-uniform points (blue) and evaluation points
(red) on the unit interval, the unit sphere, and the Stanford bunny.

Therefore, choosing the weights

(5.3) w1 = w2 = w3 = 1

for the sparse grid construction equilibrates the accuracies in the particular directions,
while choosing the weights

(5.4) w1 = 1/3, w2 = 2/3, w3 = 1

equilibrates their degrees of freedom. For the equlibration of the cost-benefit-rate, we have
to choose

(5.5) w1 = 33/49, w2 = 33/41, w3 = 1.

The resulting convergence rates with respect to the number N of the degrees of freedom
are given in Figure 7. The expected rate of convergence is N−β with β = 25/24 ≈ 1.04
up to polylogarithmic terms. Indeed, after some preasymptotic regime, we observe the
predicted convergence rate of N−1,04.

5.4. Tensor product of general regions in 1+ 2+ 3 dimensions. In our final nu-
merical experiment, we consider the tensor product of uniformly chosen random points on
the unit interval Ω1 = [0, 1], of uniformly chosen random points on the sphere Ω2 = S2, and
the nodal points of a tetrahedral mesh of a rabbit Ω3 ⊂ R3 (involving three-dimensional
points at the surface of the well-known Stanford bunny and in the interior of the bunny).
We refer to Figure 8 for an illustration of this geometrical situation.

Table 1 lists the number of points per level for each of the geometries and all considered
combinations. As can be seen, when proceeding from level j to j + 1, the number of
points approximately doubles on the interval. For the sphere, which is a two-dimensional
manifold, i.e., d2 = 2, we asymptotically observe the factor four. Moreover, the number
of points of the rabbit grows with a factor about 6–8.

On the particular subregions Ωi, we have unstructured, quasi-uniform data sites, which
we coarsen by employing Algorithm 1 as given in Subsection 4.1. On the unit interval, we
start from a point set with 4 319 030 points, a separation distance of 5.32 · 10−14 and a fill
distance of 2.62 ·10−6, while on the sphere, we start from a point set with 2 879 320 points,
a separation distance of 8.13·10−7 and a fill distance of 5.09·10−3, and finally on the rabbit,
we start from a point set with 1 439 610 points, a separation distance of 5.25 · 10−4 and a
fill distance of 8.93 · 10−3. It can be seen from Table 2 that the fill distance hXj ,X , which
we consider an approximation of hXj ,Ω, approximately halves with respect to the level
in each particular example, as desired. On the other hand, the separation distance stays
proportional to the fill distance. For the sphere we remark that the separation distance
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and the fill distance have been approximated using the Euclidean norm. Therefore, we

have a nested sequence of sets X
(i)
j of data sites which satisfy

∣∣X(i)
j

∣∣ ∼ 2ji, i = 1, 2, 3.
Moreover, after the sparse grid kernel interpolant is computed, it is evaluated at the

product of randomly distributed points X
(i)
eval ⊂ Ωi. These are, in case of the interval and

the rabbit, again chosen with a certain distance from the boundary. We refer again to
Figure 8 for a visualization. The convergence of the univariate solvers is shown in Figure 9.
As can be seen, all of them achieve the expected convergence rate of h−3.125

j .

Interval Sphere Rabbit
j = 0 1 1 1
j = 1 3 9 9
j = 2 7 65 58
j = 3 15 337 326
j = 4 31 1497 1933
j = 5 63 6246 12482
j = 6 127 24952 88489
j = 7 255 97224 —
j = 8 511 — —
j = 9 1023 — —
j = 10 2047 — —
j = 11 4095 — —
j = 12 8191 — —
j = 13 16383 — —
j = 14 32767 — —
j = 15 65535 — —
j = 16 131071 — —
j = 17 262143 — —

Table 1. Numbers N of points per level that enter the sparse grid con-
struction for the interval (d = 1), the sphere (d = 2), and the rabbit
(d = 3).

The parameters for the construction of the sparse grid are the same as in the previous
experiment, i.e., the parameters are given as in (5.2) for the underlying approximation
spaces. Therefore, the accuracy-equilibrated sparse grid is given by the weights in (5.3),
the degrees-of-freedom-equilibrated sparse grid is given by the weights in (5.4), and finally
the cost-benefit-equilibrated sparse grid is given by the weights in (5.5). As can be inferred
from Figure 10, the different settings produce essentially the same convergence rate, which
indeed shows the N−1.04 behavior as the number N of sparse grid points increases.

Interval Sphere Rabbit
qXj hXj ,XJ

qXj hXj ,XJ
qXj hXj ,XJ

j = 0 — 4.92 · 10−1 — 2.00 — 8.34 · 10−1

j = 1 2.50 · 10−1 2.50 · 10−1 5.55 · 10−1 1.16 3.57 · 10−1 4.83 · 10−1

j = 2 1.25 · 10−1 1.25 · 10−1 7.94 · 10−4 4.51 · 10−1 2.49 · 10−2 2.41 · 10−1

j = 3 6.25 · 10−2 6.25 · 10−2 6.23 · 10−4 2.42 · 10−1 5.11 · 10−3 1.22 · 10−1

j = 4 3.12 · 10−2 3.12 · 10−2 4.22 · 10−5 1.09 · 10−1 4.04 · 10−3 6.43 · 10−2

j = 5 1.56 · 10−2 1.56 · 10−2 4.22 · 10−5 5.52 · 10−2 2.87 · 10−3 3.41 · 10−2

j = 6 7.81 · 10−3 7.81 · 10−3 4.22 · 10−5 2.92 · 10−2 1.99 · 10−3 1.83 · 10−2

Table 2. Separation distance and fill distance for the different geometries.
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Figure 9. Convergence of the kernel interpolant on the interval (d = 1),
the sphere (d = 2), and the rabbit (d = 3).
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Figure 10. Convergence rates of the kernel approximant with respect to
different sparse grids on the product of general subregions in 1 + 2 + 3
dimensions.

6. Conclusion

In the present article, we have considered kernel interpolation on sparse grids in Sobolev
spaces of dominating mixed derivatives. We have discussed the optimal construction of the
sparse grid in case of product regions of arbitrary dimension and of arbitrary smoothness
with respect to the particular regions. Especially, we derived improved estimates on the
approximation error, using duality arguments, provided that the function to be interpo-
lated exhibits additional smoothness. Our convergence analysis is based entirely on the
doubling trick. If the doubling trick does not apply, we are only allowed to choose t′ = s
in Section 3. Our analysis, however, can be adopted to this case by obvious modifications.
Specifically, the result of Theorem 3.1 becomes∥∥f − P̂

w

J f
∥∥
Ht(Ω)

≲ 2
−J min{ s1−t1

w1
,..., sm−tm

wm
}
JP−1∥f∥Hs(Ω), 0 ≤ t < s.

Consequently, Theorem (3.4) then reads∥∥f − P̂
w

J f
∥∥
Ht(Ω)

≲ N−β(logN)(P−1)+β(R−1)∥f∥Hs(Ω), 0 ≤ t < s,
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with

β :=
min{(s1 − t1)/w1, . . . , (sm − tm)/wm}

max{d1/w1, . . . , dm/wm}
.

For the numerical solution of the interpolation problem, we have proposed an efficient
algorithm that combines the sparse grid combination technique with a fast direct solver for
nonlocal operators on the subproblems. We presented the results of numerical experiments
in up to 18 dimensions and with billions of degrees of freedoms in the sparse grid, which
validate the presented theory. We emphasize that the problem size would have been
restricted seriously without the application of an efficient method for dealing with the
nonlocal kernel matrices,

We finally point out that the proposed sparse grid kernel interpolation is also applicable
with straightforward modification when dimension weights are present. In this case, the
logarithmic factors might be removed and even dimension-robustness can be achieved
provided that the weights decay sufficiently fast. Such a situation is typically found in
uncertainty quantification or machine learning, see [11, 33] for example.

Appendix A. An inner product for the doubling trick

We construct here an inner product in Hs(Ω) which satisfies the assumption (2.4). The
resulting reproducing kernel then enables the doubling trick from Lemma 2.2 that we
exploit in the analysis of Section 3.

Lemma A.1. Let Ω ⊂ Rd be a Lipschitz domain. Then, there exists an inner product
(·, ·)E on Hs(Ω) such that

(u, v)E ≲ ∥u∥L2(Ω)∥v∥H2s(Ω)

for all u ∈ Hs(Ω) and v ∈ H2s(Ω).

Proof. Let E : Hr(Ω)→ Hr(Rd), 0 ≤ r ≤ 2s, be a uniform extension operator, i.e.,

∥Eu∥Hr(Rd) ≤ C∥u∥Hr(Ω) for all 0 ≤ r ≤ 2s

for some C > 0. A suitable extension operator is the one introduced by Rychkov in [38]
for example. We set

(u, v)E := (Eu,Ev)Hr(Rd) for all 0 ≤ r ≤ 2s.

Especially, we have

(u, v)E ≤ ∥Eu∥Hr(Rd)∥Ev∥Hr(Rd) ≤ C2∥u∥Hr(Ω)∥v∥Hr(Ω).

Therefore, the bilinear form is continuous. Similarly, we find by the monotonicity of the
integral that

∥u∥2Hr(Ω) ≤ ∥Eu∥2Hr(Rd) = (Eu,Eu)Hr(Rd) = (u, u)E

due to Eu|Ω = u, which shows the ellipticity. As a consequence, the bilinear form (·, ·)E
defines an inner product on Hr(Ω) for 0 ≤ r ≤ s and an equivalent norm. Finally, there
holds by Plancherel’s theorem that

(u, v)E = (Eu,Ev)Hs(Rd) =

∫
Rd

ÊuÊv(1 + ∥ξ∥22)s dξ

≤

√∫
Rd

∣∣Êu
∣∣2 dξ√∫

Rd

∣∣Êv
∣∣2(1 + ∥ξ∥22)2s dξ

= ∥Eu∥L2(Rd)∥Ev∥H2s(Rd) ≤ C2∥u∥L2(Ω)∥v∥H2s(Ω).

□
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In view of the previous lemma, the operator A := E⋆E : Hs(Ω)→ Hs(Ω) is a symmetric,
elliptic and continuous operator with

(u, v)E = (Au, v)Hs(Ω).

With respect to the (·, ·)E inner product, we obtain for the reproducing kernel

u(y) =
(
κ(·, y), u

)
E
=

(
Aκ(·, y), u

)
Hs(Ω)

and, therefore,
κ(·, y) = A−1Rδy,

where R : [Hs(Ω)]′ → Hs(Ω) is the Riesz isometry with respect to the Hs(Ω)-inner prod-
uct.
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