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Abstract. A version of Lagrange multipliers rule for locally Lipschitz func-

tions is presented. Using Lagrange multipliers, a sufficient condition for x to
be a global minimizer of a locally Lipschitz function defined on a Riemannian

manifold, is proved. Then, a necessary and sufficient condition for feasible
point x to be a global minimizer of a concave function on a Riemannian man-

ifold is obtained.

1. introduction

Nonsmooth optimization refers to the general problem of minimizing (or max-
imizing) functions that are typically not differentiable at their minimizers (maxi-
mizers). Since the classical theory of optimization presumes certain differentiability
and strong regularity assumptions upon the functions to be optimized, it cannot
be directly utilized. However, due to the complexity of the real world, functions
involved in practical applications are often nonsmooth. That is, they are not nec-
essarily differentiable.

Nonsmooth optimization problems, in general, are difficult to solve, especially
when they are constrained. In last decades global optimization problems were
studied intensively, [12, 14, 17], because there exists a large number of real-life
applications where it is necessary to solve such problems; see [8, 9].

Optimization on nonlinear spaces finds also a lot of applications, such as in
computer vision, signal processing, motion and structure estimation; see [1, 2, 24].
A manifold, in general, does not have a linear structure, hence the usual techniques,
which are often used to study optimization problems on linear spaces, cannot be ap-
plied. Therefore, new techniques are needed for dealing with optimization problems
posed on manifolds. Tools from Riemannian geometry have been used in mathe-
matical programming to obtain both theoretical results and practical algorithms;
see [5, 6, 7, 11, 25]. In considering optimization problems with nonsmooth objective
functions on Riemannian manifolds, generalization of the concepts of nonsmooth
analysis on Riemannian manifolds are of essential importance. In the past few
years, a number of results have been obtained on numerous aspects of nonsmooth
analysis on Riemannian manifolds; [3, 4, 18, 20, 21].

The goal of this paper is to get optimality conditions for global minima of non-
convex functions on Riemannian manifolds. First, we present Lagrange multipliers
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rule for the following optimization problem with equality and inequality constraints;

min g0(x), (1)

subject to x ∈ C, gi(x) ≤ 0, hj(x) = 0, i ∈ I, j ∈ J,
where gi : M → R and hj : M → R are locally Lipschitz functions on a com-
plete Riemannian manifold M , I = {1, ..., n}, J = {1, ...,m}, m, n ∈ N and C
is a nonempty closed convex subset of M . This Lagrange multipliers rule is a
generalization of the one in [19], which requires that the objective function and
the inequality constraints be Fréchet differentiable and the equality constraints be
continuously differentiable. In this paper, multipliers rule is generalized in the direc-
tion of replacing the usual gradient by certain generalized gradients under Lipschitz
assumptions. Using Lagrange multipliers, we provide a sufficient condition for a lo-
cally Lipschitz function to have a general minimum on a closed convex subset of
a complete Riemannian manifold. It is worthwhile to mention that a necessary
optimality condition for global minimization of a locally Lipschitz function defined
on a Riemannian manifold was obtained in [19]. Moreover, we prove a necessary
and sufficient condition for a global minimum of a concave function on a Riemann-
ian manifold. It is worth pointing out that our key tool is Ekeland’s variational
principle, hence we shall work only with complete Riemannian manifolds.

2. preliminaries

In this paper, we use the standard notations and known results of Riemannian
manifolds, see, e.g. [13, 23, 22]. Throughout this paper, M is an n-dimensional
complete manifold endowed with a Riemannian metric 〈., .〉 on the tangent space
TxM . As usual we denote by Bδ(x) the open ball centered at x with radius δ, by
intN(clN) the interior (closure) of the set N , by convN the convex hull of the set
N . Also, let S be a nonempty closed subset of a Riemannian manifold M , we define
dS : M −→ R by

dS(x) := inf{d(x, s) : s ∈ S },
where d is the Riemannian distance on M . Recall that the set S in a Riemannian
manifold M is called convex if every two points p1, p2 ∈ S can be joined by a
unique geodesic whose image belongs to S. For the point x ∈ M, expx : Ux → M
will stand for the exponential function at x, where Ux is an open subset of TxM .
Recall that expx maps straight lines of the tangent space TxM passing through
0x ∈ TxM into geodesics of M passing through x.

In the present paper, we are concerned with the minimization of locally Lipschitz
functions which we now define.

Definition 2.1 (Lipschitz Condition). Recall that a real valued function f defined
on a Riemannian manifold M is said to satisfy a Lipschitz condition of rank k on
a given subset S of M if | f(x) − f(y) |≤ kd(x, y) for every x, y ∈ S, where d is
the Riemannian distance on M . A function f is said to be Lipschitz near x ∈ M
if it satisfies the Lipschitz condition of some rank on an open neighborhood of x .
A function f is said to be locally Lipschitz on M if f is Lipschitz near x, for every
x ∈M .

Let us continue with the definition of the Clarke generalized directional deriva-
tive for locally Lipschitz functions on Riemannian manifolds; see [18, 21].
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Definition 2.2 (Clarke generalized directional derivative). Suppose f : M → R is
a locally Lipschitz function on a Riemannian manifold M . Let φx : Ux → TxM be
an exponential chart at x. Given another point y ∈ Ux, consider σy,v(t) := φ−1y (tw),
a geodesic passing through y with derivative w, where (φy, y) is an exponential chart
around y and D(φxoφ

−1
y )(0y)(w) = v. Then, the generalized directional derivative

of f at x ∈M in the direction v ∈ TxM , denoted by f◦(x; v), is defined as

f◦(x; v) = lim sup
y→x, t↓0

f(σy,v(t))− f(y)

t
.

If f is differentiable in x ∈ M , we define the gradient of f at x as the unique
vector grad f(x) ∈ TxM which satisfies

〈grad f(x), ξ〉 = df(x)(ξ) for all ξ ∈ TxM.

Using the previous definition of a Riemannian Clarke derivative we can also gener-
alize the notion of subdifferential to a Riemannian context.

Definition 2.3 (Subdifferential). We define the subdifferential of f , denoted by
∂f(x), as the subset of TxM whose support function is f◦(x; .). It can be proved
[18] that

∂f(x) = conv{ lim
i→∞

grad f(xi) : {xi} ⊆ Ωf , xi → x},

where Ωf is a dense subset of M on which f is differentiable.

It is worthwhile to mention that lim grad f(xi) in the previous definition is ob-
tained as follows. Let ξi ∈ TxiM , i = 1, 2, ... be a sequence of tangent vectors of
M and ξ ∈ TxM . We say ξi converges to ξ, denoted by lim ξi = ξ, provided that
xi → x and, for any smooth vector field X, 〈ξi, X(xi)〉 → 〈ξ,X(x)〉.

Note that function f : M → R is convex if and only if, for any geodesic segment
γ, the composition f ◦ γ is convex (in the usual sense). Given x ∈ M , a vector
s ∈ TxM is said to be a subgradient of a convex function f at x, iff for any geodesic
segment γ with γ(0) = x and every t in domain γ,

(f ◦ γ)(t) ≥ f(x) + t〈s, γ◦(0)〉.
The set of all subgradients of f at x is called the subdifferential of f at x.

Definition 2.4 (Regular function). Let f : M → R be a locally Lipschitz function
defined on a Riemannian manifold. If the directional derivative of f at x in the
direction v ∈ TxM , defined by

f ′(x; v) = lim
t↓0

f ◦ expx(tv)− f(x)

t
,

exists and f◦(x; v) = f ′(x; v) for every v ∈ TxM, then f is regular.

Now, we recall definitions of the tangent and normal cones to a closed subset of
a Riemannian manifold.

Definition 2.5 (Clarke tangent Cone). Let S be a nonempty closed subset of a
Riemannian manifold M , x ∈ S and (ϕ,U) be a chart of M at x. Then the
(Clarke) tangent cone to S at x, denoted by TS(x) is defined as follows;

TS(x) := Dϕ(x)−1[Tϕ(S∩U)(ϕ(x))],

where Tϕ(S∩U)(ϕ(x)) is the tangent cone to ϕ(S ∩ U) as a subset of Rn.

Obviously, 0x ∈ TS(x) and TS(x) is closed and convex.
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Remark 2.6. The definition of TS(x) does not depend on the choice of the chart
ϕ at x, [18]. Hence, for any normal neighborhood U of x, we have that

TS(x) = Texp−1
x (S∩U)(0x). (2)

In the case of submanifolds of Rn, the tangent space and the normal space are
orthogonal to one another. In an analogous manner, for a closed subset S of a
Riemannian manifold, the normal cone to S at x, denoted NS(x), is defined as the
(negative) polar of the tangent cone TS(x), i.e.

NS(x) := TS(x)◦ := {ξ ∈ TxM : 〈ξ, z〉 ≤ 0 ∀z ∈ TS(x)}.

Let S be a closed convex subset of a Riemannian manifold M , the normal cone to
S at x ∈ S, denoted by NS(x), is as follows;

NS(x) = {ξ ∈ TxM : 〈ξ, exp−1x (y)〉 ≤ 0 for every y ∈ S}.

Reader can refer to [18, 20, 21] for more details about the normal cone and the
tangent cone.

Lemma 2.7. [15] Let M be a complete Riemannian manifold. If dp : M → R is
defined by dp(q) = d(p, q), then

∂dp(p) = B,

where B is the closed unit ball of TpM.
The differentiability of d2 on all M × M is equivalent to the condition that

any two points of M have a unique minimal geodesic connection and this is equiv-
alent to the condition “points have a unique geodesic connection”. Examples for
manifolds of this type are simply connected complete Riemannian manifolds with
nonpositive sectional curvature, the so-called Hadamard manifolds. But it is not
true that all manifolds with unique geodesic connection for any two given points,
are Hadamard manifolds. There exist examples of complete manifolds with unique
geodesic connection for any two given points, where the sectional curvature changes
sign; see [16, 26]. Note that if C is a convex closed subset of a complete Riemannian
manifold, then for every p ∈ C, d2p : C → R is differentiable and

grad
1

2
d2p(q) = − exp−1q (p).

Moreover, dp : C \ {p} → R is differentiable and

grad dp(q) = −
exp−1q (p)

d(p, q)
.

We finish this section with Ekeland’s variational principle on complete Riemannian
manifolds; see [3].

Theorem 2.8. Let M be a complete Riemannian manifold, and let f : M →
R∪{−∞} be a proper upper semicontinuous function, which is bounded above. Let
ε > 0 and x0 ∈ M such that f(x0) > sup{f(x) : x ∈ M } − ε. Then, for every
λ > 0 there exists a point z ∈ dom(f) = {s ∈M : f(s) > −∞} such that
(i) ε

λd(z, x0) ≤ f(z)− f(x0)
(ii) d(z, x0) ≤ λ
(iii) ε

λd(x, z) + f(z) > f(x) whenever x 6= z.
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3. main results

The classical Lagrange multipliers rule on linear spaces usually needs that the
objective function and the inequality constraints be Fréchet differentiable and the
equality constraints be continuously differentiable. Most extensions of the classical
Lagrange multipliers on linear spaces are obtained under two different assumptions:
differentiability and Lipschitz continuity. On one hand, the classical multipliers rule
was given in the direction of eliminating the smoothness assumption while keeping
the differentiability assumption. On the other hand, the classical multipliers rule
was generalized with replacing the usual gradient by certain generalized gradients
under Lipschitz assumptions such as in [10].

In [19], a generalization of the classical Lagrange multipliers rule, which requires
differentiability of the objective function and constraints on a Riemannian manifold
M was presented. In this paper, we show a generalization of the classical Lagrange
multipliers rule by replacing the usual gradient by subdifferential of Lipschitz func-
tions.

Let C be a closed and nonempty subset of a complete Riemannian manifold
M . For given nonnegative integers n and m, we denote I = {1, 2, ..., n} and J =
{1, 2, ...,m}. We assume that the following locally Lipschitz functions are given;

gi : M → R, i ∈ I ∪ {0},

hj : M → R, j ∈ J.
Now, we consider the following problem with constraints on a complete Riemannian
manifold M ;

min g0(x), (3)

subject to x ∈ C, gi(x) ≤ 0, hj(x) = 0, i ∈ I, j ∈ J.

Theorem 3.1. If x solves (3) locally, then there exist numbers r0, ri, sj, i ∈ I,j ∈ J
not all zero and a vector ξ ∈ TxM such that
(a) r0 ≥ 0, ri ≥ 0, i ∈ I.
(b) rigi(x) = 0, i ∈ I.
(c) ξ ∈ r0∂g0(x) + Σi∈Iri∂gi(x) + Σj∈Jsj∂hj(x).
(d) −ξ ∈ NC(x).

Proof. Assume that ε > 0 is so small that expx : Bε(0x)→ Bε(x) is diffeomorphism
and x is a solution of (3) on Bε(x) ∩ C. We consider the following minimization
problem;

min g0 ◦ expx(v), (4)

subject to v ∈ exp−1x (C ∩Bε(x)),

gi ◦ expx(v) ≤ 0, hj ◦ expx(v) = 0, i ∈ I, j ∈ J.
Hence, x solves (3) locally if and only if 0x solves (4) locally. By Lagrange multipli-
ers rule for locally Lipschitz functions defined on linear spaces; see[10], there exist
numbers r0, ri, sj , i ∈ I, j ∈ J not all zero and a vector ξ ∈ TxM such that
(a’) r0 ≥ 0, ri ≥ 0, i ∈ I.
(b’) rigi ◦ expx(0x) = 0, i ∈ I.
(c’) ξ ∈ r0∂(g0 ◦ expx)(0x) + Σi∈Iri∂(gi ◦ expx)(0x) + Σj∈Jsj∂(hj ◦ expx)(0x).
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(d’) −ξ ∈ Nexp−1
x (C∩Bε(x))

(0x),

and the proof is complete. �

Example 3.2. Let us consider the set Pos2(R) of symmetric positive definite 2×
2 matrices and the set Sym2(R) of symmetric 2 × 2 matrices endowed with the
Frobenius metric 〈U, V 〉X = tr(X−1UX−1V ), where X ∈ Pos2(R) and U, V ∈
TX(Pos2R) = Sym2(R). The set Pos2(R) is a Hadamard manifold; see[22]. Consider
the following problem on Pos2(R);

(P1) min g0(X) = |x1 − 1|,
s.t. g(X) = |x2|+ |x3| − 7 ≤ 0

h(X) = −x1 + 1 ≤ 0

C = {A ∈ Pos2(R) : det(A) = 1}.

X =

[
x1 x2
x2 x3

]
∈ Pos2(R),

It is easy to check that

X̄ =

[
1 2
2 5

]
,

is a global optimal solution for (P1). Moreover, we have

∂g0(X̄) = {
[

t 0
0 0

]
, t ∈ [−1, 1]}.

Note that

gradh(X̄) =

[
−1 0
0 0

]
.

It is trivial that for r0 = 1, r1 = 0, s1 = 1, we have 0 ∈ ∂g0(X̄)+r1∂g(X̄)+s1∂h(X̄),
moreover 0 ∈ NC(X̄).

Now by means of the notion of the subdifferential and Lagrange multipliers, we
present a sufficient condition of optimality for the problem;

min
x∈C

f(x),

where f : M → R is a locally Lipschitz function and C is an arbitrary nonempty
closed convex subset of a Riemannian manifold M . It is worthwhile to mention that
a necessary condition for a feasible point x to be a global minimizer of a locally
Lipschitz function on a Riemannian manifold was presented in [19].

Theorem 3.3 (Sufficient condition for a global minimum). Consider the
following minimization problem;

min f(x), (5)

subject to x ∈ C,
where f : M → R is a locally Lipschitz function, C is a nonempty closed convex
subset of a complete Riemannian manifold M and f−1(c) = {y ∈ C : f(y) = c}. If

∂f(y) ∩NC(y) = ∅ ∀ y ∈ f−1(f(z)), (6)
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and

−∂f(y) ⊂ NC(y) ∀ y ∈ f−1(f(z)),

then z ∈ C is a global solution to Problem (5).

Proof. Assume that z is not a solution to Problem (5). Hence, there exists u ∈ C
such that f(u) < f(z). We define a closed subset D of M , by D := {x ∈ C : f(x) ≥
f(z)}. Note that u /∈ D, and ε =

1

2
dD(u) > 0. By Ekeland’s variational principle,

we obtain a point y ∈ D such that

g(y) ≤ g(x) + εd(x, y) ∀x ∈ D,

where g(x) =
1

2
d(x, u)2. Thus, y is a solution for the following minimization prob-

lem;

min
1

2
d(x, u)2 + εd(y, x), (7)

subject to x ∈ C,

−f(x) ≤ −f(z).

By Theorem 3.1, there exist numbers r0, r1 ≥ 0 and a vector ξ ∈ TyM such that

r1(f(y)− f(z)) = 0, (8)

and

ξ ∈ r0∂(
1

2
d(., u)2 + εd(y, .))(y) + r1∂(−f)(y), (9)

− ξ ∈ NC(y). (10)

Hence, Proposition 3.1 in [18] and Lemma 2.7 imply the existence of η1 = − exp−1y (u),
η2 ∈ ∂dy(y) = B and η3 ∈ ∂f(y) such that

ξ = r0(η1 + εη2)− r1η3.

If r0 = 0, r1 > 0, then by (8), f(y) = f(z). Therefore, η3 = − 1
r1
ξ ∈ ∂f(y)∩NC(y),

which contradicts our assumption. Hence, r0 > 0. Assuming that r1 = 0, since
−ξ ∈ NC(y), we have 〈ξ,− exp−1y (u)〉 ≤ 0. Moreover,

0 ≥〈ξ,− exp−1y (u)〉
= r0(d(y, u)2 + ε〈η2,− exp−1y (u)〉)
≥ r0(d(y, u)2 − ε‖η2‖d(u, y))

≥ r0d(u, y)(dD(u)− ε)
> 0,

(11)

as a contradiction. Whence, we must have r1 > 0 and f(y) = f(z). We consider

η3 =
1

r1
(r0(η1 + εη2)− ξ).
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Then,

〈η3,− exp−1y (u)〉 =
1

r1
〈r0(η1 + εη2)− ξ,− exp−1y (u)〉

≥ r0
r1

(d(u, y)2 + ε〈η2,− exp−1y (u)〉)

≥ r0
r1

(d(u, y)2 − ε‖η2‖d(u, y))

≥ r0
r1
d(u, y)(d(u, y)− ε) > 0,

(12)

which is another contradiction and the proof is complete. �

Theorem 3.4 (Necessary and Sufficient condition for a global maximum
of a convex function). Consider the following maximization problem;

max f(x), (13)

subject to x ∈ C,
where f : M → R is a convex function, C is a nonempty closed convex subset of a
complete Riemannian manifold M and f−1(c) = {y ∈ C : f(y) = c}. Consider a
point x̄ ∈ C such that

−∞ ≤ inf
C
f < f(x̄).

Then, x̄ is a global maximum of f on C if and only if

∂f(x) ⊂ NC(x) for all x ∈ f−1(f(x̄)). (14)

Proof. Let x̄ be a global maximum of f on C and ξ ∈ ∂f(x), where x ∈ f−1(f(x̄)).
Hence, for the unique minimal geodesic γ(t) = expx(t exp−1x (x′)) connecting x and
an arbitrary point x′ ∈ C,

〈ξ, γ◦(0)〉 ≤ f(x′)− f(x).

Note that γ◦(0) = exp−1x (x′) and f(x) = f(x̄), hence f(x′) ≤ f(x). Consequently,
for every x′ ∈ C,

〈ξ, exp−1x (x′)〉 ≤ 0,

which implies ξ ∈ NC(x).
We claim that (14) is equivalent to saying for every x ∈ f−1(f(x̄)) and c ∈ C,

f ′(x, exp−1x (c)) ≤ 0.

Since if ξ ∈ ∂f(x) ⊂ NC(x),

〈ξ, exp−1x (c)〉 ≤ 0 ∀c ∈ C,
then by the definition of support function,

sup
ξ∈∂f(x)

〈ξ, exp−1x (c)〉 = f ′(x, exp−1x (c)) ≤ 0.

For the converse, assume that for every c ∈ C, f ′(x, exp−1x (c)) ≤ 0. Suppose
that the contrary holds; let ξ ∈ ∂f(x) \NC(x), then there exists c ∈ C such that

0 < 〈ξ, exp−1x (c)〉 ≤ f ′(x, exp−1x (c)) ≤ 0,

which is a contradiction and the claim is proved.
Now, we prove the sufficient condition. If x̄ is not a maximum of f on C. Then,

there exists z ∈ C such that
f(z) > f(x̄).
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Since infC f < f(x̄), there exists y ∈ C such that f(y) < f(x̄). Assume that γ
is the unique minimal geodesic connecting y and z, continuity of f ◦ γ implies the
existence of t0 such that f ◦γ(t0) = f(x̄). Convexity of f implies that f is increasing
along γ . Therefore, f ′(γ(t0), exp−1γ(t0)(z)) > 0, which is a contradiction. �
Following theorem gives a necessary and sufficient condition for a global maximum

of a regular function.

Theorem 3.5 (Necessary and Sufficient condition for a global maximum
of a regular function). Consider the following maximization problem;

max f(x), (15)

subject to x ∈ C,
where f : M → R is a regular function, C is a nonempty closed convex subset of a
complete Riemannian manifold M and f−1(c) = {y ∈ C : f(y) = c}. Consider a
point x̄ ∈ C such that for all x ∈ f−1(f(x̄)), there exists cx ∈ C,

f ′(x, exp−1x (cx)) < 0. (16)

Then, x̄ is a global maximum of f on C if and only if

∂f(x) ⊂ NC(x) for all x ∈ f−1(f(x̄)). (17)

Proof. Let x̄ be a global maximum of f and x ∈ f−1(f(x̄)). For each c ∈ C, assume
that γc is the unique minimal geodesic connecting x and c. Then f(γc(t)) ≤ f(x),
hence

f ′(x, γ◦c (0)) = lim
t↓0

f(γc(t))− f(x)

t
≤ 0.

Therefore, for every ξ ∈ ∂f(x), we have 〈ξ, γ◦c (0)〉 ≤ 0, which implies ∂f(x) ⊂
NC(x).

For the converse, assume that x̄ is not a global maximum of f . Hence, there
exists x̃ such that f(x̃) > f(x̄). We define D := {x ∈ C : f(x) ≤ f(x̄)}. By
Ekeland’s variational principle, for every ε > 0, we obtain a point yε ∈ D such that

g(yε) ≤ g(x) + εd(x, yε) ∀x ∈ D,

where g(x) =
1

2
d(x, x̃)2. First, we prove that for ε small enough with dD(x̃) ≥ ε > 0

f(yε) = f(x̄).
Assume on the contrary that there exists a sequence εk ↓ 0 such that yk = yεk

and f(yk) < f(x̄). Let γk be a minimal geodesic connecting yk and x̃. By convexity
of C, γk ∈ C and for t small enough

f(γk(t)) ≤ f(x̄).

Consequently, there exists tk such that for all positive t ≤ tk, γk(t) ∈ D. Moreover,

1

2
d(γk(t), x̃)2 + εkd(γk(t), yk) ≥ 1

2
d(yk, x̃)2 for all 0 < t ≤ tk.

Hence,

1

2
(1− t)2d(yk, x̃)2 + tεkd(x̃, yk) ≥ 1

2
d(yk, x̃)2 for all 0 < t ≤ tk.

Therefore,

d(yk, x̃) ≤ εk +
t

2
d(yk, x̃).
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By getting limit for t ↓ 0, we have d(yk, x̃) ≤ εk and yk → x̃, as k goes to ∞. By
continuity of f , f(x̃) ≤ f(x̄), which is a contradiction and the claim is proved.

Now assume ε is small enough that f(yε) = f(x̄). By the assumption

∂f(yε) ⊂ NC(yε).

We assume that yε ∈ D is such that

g(yε) ≤ g(x) + εd(x, yε) ∀x ∈ D,

where g(x) =
1

2
d(x, x̃)2. Thus, yε is a solution to the following minimization prob-

lem;

min
1

2
d(x, x̃)2 + εd(yε, x), (18)

subject to x ∈ C,

f(x) ≤ f(x̄).

By Theorem 3.1, there exist numbers r0, r1 ≥ 0 and a vector ξ ∈ TyεM such that

r1(f(yε)− f(x̄)) = 0, (19)

and

ξ ∈ r0∂(1/2d(., x̃)2 + εd(yε, .))(yε) + r1∂f(yε), (20)

− ξ ∈ NC(yε). (21)

Hence, Proposition 3.1 in [18] and Lemma 2.7 imply the existence of η1 = − exp−1yε (x̃),
η2 ∈ ∂dyε(yε) = B and η3 ∈ ∂f(yε) such that

ξ = r0(η1 + εη2) + r1η3.

If r0 = 0, r1 > 0, then by (19) f(yε) = f(x̄). Therefore, η3 = 1
r1
ξ ∈ ∂f(yε) ⊂

NC(yε), which means ξ and −ξ are in NC(yε) and for every c ∈ C, 〈ξ, exp−1yε (c)〉 =

0. Hence, we have f ′(yε, exp−1yε (c)) ≥ 0 for every c ∈ C, which contradicts our
assumption. Consequently, r0 > 0. Now assume that r1 = 0, since −ξ ∈ NC(yε),
we have 〈ξ,− exp−1yε (x̃)〉 ≤ 0. Moreover,

0 ≥〈ξ,− exp−1yε (x̃)〉
= r0(d(yε, x̃)2 + ε〈η2,− exp−1yε (x̃)〉)
≥ r0(d(yε, x̃)2 − ε‖η2‖d(x̃, yε))

≥ r0d(x̃, yε)(dD(x̃)− ε)
> 0,

(22)

as a contradiction. Therefore, we must have r1 > 0 and f(yε) = f(x̃). We consider

−η3 =
1

r1
(r0(η1 + εη2)− ξ).
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Then,

〈η3, exp−1yε (x̃)〉 =
1

r1
〈r0(η1 + εη2)− ξ,− exp−1yε (x̃)〉

≥ r0
r1

(d(x̃, yε)
2 + ε〈η2,− exp−1yε (x̃)〉)

≥ r0
r1

(d(x̃, yε)
2 − ε‖η2‖d(x̃, yε))

≥ r0
r1
d(x̃, yε)(d(x̃, yε)− ε) > 0,

(23)

but η3 ∈ ∂f(yε) ⊂ NC(yε) and 〈η3, exp−1yε (x̃)〉 ≤ 0 as another contradiction.
�

Following lemma proves that the qualification condition in (16) and (6) are equiv-
alent.

Lemma 3.6. Let f : M → R be a locally Lipschitz function on a complete
Riemannian manifold M , and C be a nonempty closed convex subset of M and
f−1(c) = {y ∈ C : f(y) = c}. If x̄ ∈ C, then for all x ∈ f−1(f(x̄)), there exists
cx ∈ C,

(−f)◦(x, exp−1x (cx)) < 0. (24)

if and only if for all x ∈ f−1(f(x̄)),

NC(x) ∩ ∂f(x) = ∅. (25)

Proof. ⇒) Suppose for contradiction, there exist x ∈ f−1(f(x̄)) and ξ ∈ ∂f(x) ∩
NC(x). Therefore, for every c ∈ C, 〈ξ,− exp−1x (c)〉 ≥ 0, by the definition of support
function and Proposition 2.4 in [18] f◦(x,− exp−1x (c)) = (−f)◦(x, exp−1x (c)) ≥ 0,
which is a contradiction.
⇐) Suppose for contradiction, there exists x ∈ f−1(f(x̄)) such that for every c ∈

C, f◦(x,− exp−1x (c)) ≥ 0, so there exists ξ ∈ ∂f(x) such that 〈ξ,− exp−1x (c)〉 ≥ 0,
which implies ξ ∈ NC(x), as a contradiction. �

References

[1] P. A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithm on Matrix Manifolds, Prince-
ton University Press, 2008.

[2] R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens, M. Shub, Newton’s method on
Riemannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal.,
22 (2002), 359-390.
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