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Abstract. This paper presents a descent direction method for finding ex-

trema of locally Lipschitz functions defined on Riemannian manifolds. To this
end we define a set-valued mapping x → ∂εf(x) named ε-subdifferential which

is an approximation for the Clarke subdifferential and which generalizes the

Goldstein-ε-subdifferential to the Riemannian setting. Using this notion we
construct a steepest descent method where the descent directions are com-

puted by a computable approximation of the ε-subdifferential. We establish

the global convergence of our algorithm to a stationary point. Numerical ex-
periments illustrate our results.

1. introduction

This paper is concerned with the numerical solution of optimization problems
defined on Riemannian manifolds where the objective function may be nonsmooth.
Such problems arise in a variety of applications, e.g., in computer vision, signal
processing, motion and structure estimation, or numerical linear algebra; see for
instance [2, 3, 30, 39].

In the linear case is well known that ordinary gradient descent, when applied
to nonsmooth functions, typically fails by converging to a non-optimal point. The
fundamental difficulty is that most interesting nonsmooth objective functions as-
sume their extrema at points where the gradient is not defined. This has led to
the introduction of the generalized gradient of convex functions defined on a linear
space by Rockafellar in 1961 and subsequently for locally Lipschitz functions by
Clarke in 1975; [40, 15]. Their use in optimization algorithms began soon after
their appearance. Since the Clarke generalized gradient is in general difficult to
compute numerically, most of algorithms which are based on it can be efficient only
for certain types of functions; see for instance [7, 26, 49].

The paper [22] is among the first works on optimization of Lipschitz functions on
Euclidean spaces. In that article a new set valued mapping named ε−subdifferential
∂εf of a function f was introduced, and several properties of this map, which are
useful for building optimization algorithms of locally Lipschitz functions on linear
spaces, were presented. For the numerical computation of the ε−subdifferential
various strategies have been proposed in the literature.
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The gradient sampling algorithm (GS), introduced and analyzed by Burke, Lewis
and Overton [13, 14], is a method for minimizing an objective function f that is
locally Lipschitz and continuously differentiable in an open dense subset of Rn.
At each iteration, the GS algorithm computes the gradient of f at the current
iterate and at m ≥ n + 1 randomly generated nearby points. This bundle of
gradients is used to find an approximate ε-steepest descent direction as the solution
of a quadratic program, where ε denotes the sampling radius. A standard Armijo
line search along this direction produces a candidate for the next iterate, which is
obtained by perturbing the candidate, if necessary, to stay in the set Ω where f is
differentiable; the perturbation is random and small enough to maintain the Armijo
sufficient descent property. The sampling radius may be fixed for all iterations or
may be reduced dynamically.

The discrete gradient method (DG) approximates ∂εf(x) by a set of discrete
gradients. In this algorithm, the descent direction is iteratively computed, and
in every iteration the approximation of ∂εf(x) is improved by adding a discrete
gradient to the set of discrete gradients; see [7].

In [34], ∂εf(x) is approximated by an iterative algorithm. The algorithm starts
with one element of ∂εf(x) in the first iteration, and in every subsequent iteration,
a new element of ∂εf(x) is computed and added to the working set to improve
the approximation of ∂εf(x). The results of the algorithm presented in [34] as
compared to those obtained by the GS is more efficient, and as compared to those
by the DG is more accurate, [34].

The extension of the aforementioned optimization techniques to Riemannian
manifolds are the subject of the present paper. A manifold, in general, does not
have a linear structure, hence the usual techniques, which are often used to study
optimization problems on linear spaces cannot be applied and new techniques need
to be developed.

The development of smooth and nonsmooth Riemannian optimization algorithms
is primarily motivated by their large-scale applications in robust, sparse, structured
principal component analysis, statistics on manifolds (e.g. median calculation of
positive semidefinite tensors), and low-rank optimization (matrix completion, col-
laborative filtering, source separation); see [28, 46, 47, 45]. Furthermore, these
algorithms have a lot of applications in image processing, computer vision, con-
strained optimization problems on linear spaces; [4, 12, 18].

Contributions. Our main contributions are twofold. First, we define a Rie-
mannian generalization of the ε-subdifferential defined in [22]. This is nontrivial
since the linear definition of ∂εf(x), x ∈ Rn involves subgradients of f at points
y ∈ Rn different from x. In the linear case this is not an issue since tangent
spaces at different points can be identified. In the nonlinear case, with M being
a Riemannian manifold and f : M → R, we move these subgradients at points
y ∈ M to the tangent space in x via the derivative of the logarithm mapping in
order to obtain a workable definition of the ε-subdifferential; see Definition 3.1
below. In Section 3.1, we prove several basic properties of the novel Riemannian
ε-subdifferential which subsequently enables us to formulate conditions for descent
directions in Section 3.2. Using these basic properties of the ε-subdifferential, we
are able to generalize (GS) and the algorithm in [34] to the Riemannian setting.
In Section 3.3, we present the details for the generalization of [34] which yields the
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second main contribution of the present paper, namely a proof of global conver-
gence of the proposed algorithm. Finally, our proposed algorithm is implemented
in MATLAB environment and applied to some nonsmooth problems with locally
Lipschitz objective functions.

Previous Work. For the optimization of smooth objective functions many
classical methods for unconstrained minimization, such as Newton-type and trust-
region methods have been successfully generalized to problems on Riemannian man-
ifolds [1, 3, 16, 33, 38, 43, 44, 50]. The recent monograph by Absil, Mahony and
Sepulchre discusses, in a systematic way, the framework and many numerical first-
order and second-order manifold-based algorithms for minimization problems on
Riemannian manifolds with an emphasis on applications to numerical linear alge-
bra, [2].

In considering optimization problems with nonsmooth objective functions on
Riemannian manifolds, it is necessary to generalize concepts of nonsmooth analysis
to Riemannian manifolds. In the past few years a number of results have been
obtained on numerous aspects of nonsmooth analysis on Riemannian manifolds,
[5, 6, 23, 24, 25, 32].

Recently, some mathematicians have started developing nonsmooth optimization
algorithms to manifold settings. It is worth noting that while they presented gradi-
ent based and proximal point algorithms on manifolds, their numerical experiments
are limited to some special test functions whose subdifferential either are singleton
or can be computed explicitly. This might be because of the difficulty of finding the
subdifferential of the functions; see [9, 10, 17, 20, 37]. Finally, it is worth mention-
ing the paper [18], which presents a survey on Riemannian geometry methods for
smooth and nonsmooth constrained optimization as well as gradient and subgradi-
ent descent algorithms on a Riemannian manifold. In that paper, the methods are
illustrated by applications from robotics and multi antenna communication.

2. preliminaries

In this paper, we use the standard notations and known results of Riemannian
manifolds; see, e.g. [29]. Throughout this paper, M is an n-dimensional complete
manifold endowed with a Riemannian metric 〈., .〉 on the tangent space TxM . We
identify (via the Riemannian metric) the tangent space of M at a point x, denoted
by TxM , with the cotangent space at x, denoted by TxM

∗. As usual we denote
by B(x, δ) the open ball centered at x with radius δ, by intN(clN) the interior
(closure) of the set N . Also, let S be a nonempty closed subset of a Riemannian
manifold M , we define distS : M −→ R by

distS(x) := inf{dist(x, s) : s ∈ S },

where dist is the Riemannian distance on M . Recall that the set S in a Riemannian
manifold M is called convex if every two points p1, p2 ∈ S can be joined by a unique
geodesic whose image belongs to S. For the point x ∈ M, expx : Ux → M will
stand for the exponential function at x, where Ux is an open subset of TxM . Recall
that expx maps straight lines of the tangent space TxM passing through 0x ∈ TxM
into geodesics of M passing through x.

We will also use the parallel transport of vectors along geodesics. Recall that,
for a given curve γ : I →M, number t0 ∈ I, and a vector V0 ∈ Tγ(t0)M, there exists
a unique parallel vector field V (t) along γ(t) such that V (t0) = V0. Moreover, the
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map defined by V0 7→ V (t1) is a linear isometry between the tangent spaces Tγ(t0)M
and Tγ(t1)M, for each t1 ∈ I. In the case when γ is a minimizing geodesic and
γ(t0) = x, γ(t1) = y, we will denote this map by Lxy, and we will call it the parallel
transport from TxM to TyM along the curve γ. Note that, Lxy is well defined when
the minimizing geodesic which connects x to y, is unique. For example, the parallel
transport Lxy is well defined when x and y are contained in a convex neighborhood.
In what follows, Lxy will be used wherever it is well defined. The isometry Lyx
induces another linear isometry L∗yx between TxM

∗ and TyM
∗, such that for every

σ ∈ TxM∗ and v ∈ TyM, we have 〈L∗yx(σ), v〉 = 〈σ, Lyx(v)〉. We will still denote
this isometry by Lxy : TxM

∗ → TyM
∗.

By iM (x) we denote the injectivity radius of M at x, that is the supremum of
the radius r of all balls B(0x, r) in TxM for which expx is a diffeomorphism from
B(0x, r) onto B(x, r). Note that if U is a compact subset of a Riemannian manifold
M and i(U) := inf{iM (x) : x ∈ U}, then 0 < i(U); see [27].

A retraction on a manifold M is a continuously differentiable map R : TM →M
with the following properties. Let Rx denote the restriction of R to TxM .

• Rx(0x) = x, where 0x denotes the zero element of TxM .
• With the canonical identification T0xTxM ≈ TxM , dRx(0x) = idTxM where

idTxM denotes the identity map on TxM .

In the present paper, we are concerned with the minimization of locally Lipschitz
functions which we now define.

Definition 2.1 (Lipschitz condition). Recall that a real valued function f defined
on a Riemannian manifold M is said to satisfy a Lipschitz condition of rank k on
a given subset S of M if | f(x)− f(y) |≤ kdist(x, y) for every x, y ∈ S, where dist
is the Riemannian distance on M . A function f is said to be Lipschitz near x ∈M
if it satisfies the Lipschitz condition of some rank on an open neighborhood of x. A
function f is said to be locally Lipschitz on M if f is Lipschitz near x, for every
x ∈M .

Let us continue with the definition of the Clarke generalized directional derivative
for locally Lipschitz functions on Riemannian manifolds; see [23, 25].

Definition 2.2 (Clarke generalized directional derivative). Suppose f : M → R is a
locally Lipschitz function on a Riemannian manifold M . Let φx : Ux → TxM be an
exponential chart at x. Given another point y ∈ Ux, consider σy,v(t) := φ−1y (tw), a
geodesic passing through y with derivative w, where (φy, y) is an exponential chart
around y and d(φx◦φ−1y )(0y)(w) = v. Then, the Clarke generalized directional
derivative of f at x ∈ M in the direction v ∈ TxM , denoted by f◦(x, v), is defined
as

f◦(x;v) = lim sup
y→x, t↓0

f(σy,v(t))− f(y)

t
.

If f is differentiable in x ∈ M , we define the gradient of f as the unique vector
grad f(x) ∈ TxM which satisfies

〈grad f(x), ξ〉 = df(x)(ξ) for all ξ ∈ TxM.

Using the previous definition of a Riemannian Clarke generalized directional de-
rivative we can also generalize the notion of the subdifferential to a Riemannian
context.
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Definition 2.3 (Subdifferential). We define the subdifferential of f at x, denoted
by ∂f(x), as the subset of TxM with support function given by f◦(x; .), i.e., for
every v ∈ TxM ,

f◦(x; v) = sup{〈ξ, v〉 : ξ ∈ ∂f(x)}.
It can be proved [23] that

∂f(x) = conv{ lim
i→∞

grad f(xi) : {xi} ⊆ Ωf , xi → x},

where Ωf is a dense subset of M on which f is differentiable.

It is worthwhile to mention that lim grad f(xi) in the previous definition is ob-
tained as follows. Let ξi ∈ TxiM , i = 1, 2, ... be a sequence of tangent vectors of
M and ξ ∈ TxM . We say ξi converges to ξ, denoted by lim ξi = ξ, provided that
xi → x and, for any smooth vector field X, 〈ξi, X(xi)〉 → 〈ξ,X(x)〉.

Using the notion of subdifferential, we can now define stationary points of a
locally Lipschitz mapping f .

Definition 2.4 (Stationary point, Stationary set). A point x is a stationary point
of f if 0 ∈ ∂f(x). Z is a stationary set if each z ∈ Z is a stationary point.

Proposition 2.5. A necessary condition that f achieve a local minimum at x is
that 0 ∈ ∂f(x).

Proof. If f has a local minimum at x, then for every v ∈ TxM , f◦(x;v) ≥ 0 which
implies 0 ∈ ∂f(x). �

3. The Riemannian ε-Subdifferential

In smooth optimization, there exist minimization methods, which, instead of us-
ing the gradient, use its approximations through finite differences (forward, back-
ward, and central differences). In [31], a very simple convex nondifferentiable func-
tion was presented, for which these finite differences may give no information about
the subdifferential. It follows that these finite-difference estimates of the gradient
cannot be used for the approximation of the subgradient of the nonsmooth func-
tions. In [22] a set valued mapping named ε-subdifferential, to approximate the
subdifferential of locally Lipschitz functions defined on Rn was introduced.

The present section generalizes the concept of the ε-subdifferential of locally
Lipschitz functions to functions defined on a Riemannian manifold, generalizing the
corresponding Euclidean concept introduced in [22]. The definition is as follows.

Definition 3.1 (ε-subdifferential). Let f : M → R be a locally Lipschitz function on
a Riemannian manifold M , and θk be any sequence of positive numbers converging
downward to zero. For each ε > 0 with ε + θk < iM (x) for almost every k, the
ε−subdifferential at x is defined by

∂εf(x) := conv
⋂
k

cl{d exp−1x (y)(grad f(y)) : y ∈ clB(x, ε+ θk) ∩ Ωf},

where the intersection is taken over all k for which ε+ θk < iM (x).

Clearly this definition is independent of the choice of the sequence θk.
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3.1. Basic Properties. In the present subsection, we establish some basic prop-
erties of the ε-subdifferential as defined above in Definition 3.1; see [22] for similar
results in the linear case. We select ε small enough that f is Lipschitz on B(x, 2ε)
and expx is a diffeomorphism from B(0x, 2ε) onto B(x, 2ε).

Lemma 3.2. For every y ∈ B(x, ε),

d exp−1x (y)(∂f(y)) ⊂ ∂εf(x).

Proof. For every ξ = limi→∞ grad f(yi), where grad f(yi) exists and yi → y, we
have

d exp−1x (y)(ξ) = lim
i→∞

d exp−1x (yi)(grad f(yi)),

hence there exists N ∈ N, such that for every i ≥ N , yi ∈ B(x, ε) and

lim
i→∞

d exp−1x (yi)(grad f(yi)) ∈
⋂
k

cl{d exp−1x (y)(grad f(y)) : y ∈ clB(x, ε+θk)∩Ωf},

which means

d exp−1x (y)({ lim
i→∞

grad f(yi) : {yi} ⊆ Ωf , yi → y})

is a subset of
⋂
k cl{d exp−1x (y)(grad f(y)) : y ∈ clB(x, ε+ θk)∩Ωf}, which implies

d exp−1x (y)(∂f(y)) ⊂ ∂εf(x).

�

Lemma 3.3. ∂εf(x) is a nonempty compact and convex subset of TxM .

Proof. By the Lipschitzness of f and the smoothness of the exponential map,

Sk = cl{d exp−1x (y)(grad f(y)) : y ∈ clB(x, ε+ θk) ∩ Ωf}
is a closed bounded subset of TxM and Sk+1 ⊂ Sk. Hence

⋂
k Sk is compact and

nonempty, and convex hull of a compact set in TxM is compact. The convexity of
∂εf(x) is deduced by the definition. �

Lemma 3.4.

∂εf(x) = conv{ lim
i→∞

d exp−1x (yi)(grad f(yi)) : lim
i→∞

yi = y ∈ clB(x, ε), (yi) ∈ Ωf}.

Proof. We start with the inclusion

∂εf(x) ⊃ conv{ lim
i→∞

d exp−1x (yi)(grad f(yi)) : lim
i→∞

yi = y ∈ clB(x, ε), (yi) ∈ Ωf}.

Let yi be a sequence in Ωf converging to some point y ∈ clB(x, ε) and v =
limi→∞ d exp−1x (yi)(grad f(yi)). For any sequence of positive numbers θk converg-
ing downward to zero, we have clB(x, ε) ⊂ B(x, θk + ε). Therefore, for any k,
there exists Nk such that for i ≥ Nk, yi ∈ B(x, θk + ε). We set (zkj )j = (yNk+j)j ∈
B(x, θk+ε). Now it is clear that for every k, v = limj→∞ d exp−1x (zkj )(grad f(zkj )) ∈
cl{d exp−1x (y)(grad f(y)) : y ∈ clB(x, ε+θk)∩Ωf}, which proves the first inclusion.

For the converse, let

w ∈
⋂
k

cl{d exp−1x (y)(grad f(y)) : y ∈ clB(x, ε+ θk) ∩ Ωf}.

Then, for every k ∈ N with θk + ε < iM (x), we have

w ∈ cl{d exp−1x (y)(grad f(y)) : y ∈ clB(x, ε+ θk) ∩ Ωf},
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Therefore, we can find a sequence yi ∈ clB(x, ε+ θi) ∩ Ωf such that

lim
i→∞

‖d exp−1x (yi)(grad f(yi))− w‖ = 0

and (if necessary after passing to a subsequence),

lim
i→∞

yi = y ∈ clB(x, ε),

as required. �

Using the previous lemma one can prove the following characterization of the
Riemannian ε-subdifferential.

Lemma 3.5. We have

∂εf(x) = conv{d exp−1x (y)(∂f(y)) : y ∈ clB(x, ε)}.

Proof. Assume that η ∈ ∂εf(x), Lemma 3.4 implies η = Σnk=1tkξk where

ξk = lim
ik→∞

d exp−1x (yik)(grad f(yik)),

yik ∈ Ωf , limik→∞ yik = yk ∈ clB(x, ε). Hence

ξk = d exp−1x (yk)( lim
ik→∞

grad f(yik)).

Set ηk = (d exp−1x (yk))
−1

(ξk) in ∂f(yk), then

η = Σnk=1tkd exp−1x (yk)(ηk) ∈ conv{d exp−1x (y)(∂f(y)) : y ∈ clB(x, ε)}.
For the converse, let

A = {d exp−1x (y)(∂f(y)) : y ∈ clB(x, ε)}
and ξ ∈ A, then ξ = d exp−1x (y)(η), where η = limi→∞ grad f(yi), yi ∈ Ωf ,
limi→∞ yi = y. Hence

ξ = lim
i→∞

d exp−1x (yi)(grad f(yi))

which implies A ⊂ ∂εf(x), and the property of convex hull completes the proof. �

The following remark is required in the sequel.

Remark 3.6. Let M be a Riemannian manifold. An easy consequence of the
definition of the parallel translation along a curve as a solution to an ordinary
linear differential equation, implies that the mapping

C : TM → Tx0M, C(x, ξ) = Lxx0(ξ),

when x is in a neighborhood U of x0, is well defined and continuous at (x0, ξ0),
that is, if (xn, ξn) → (x0, ξ0) in TM then Lxnx0

(ξn) → Lx0x0
(ξ0) = ξ0, for every

(x0, ξ0) ∈ TM ; see [5, Remark 6.11].

Remark 3.7. Note that for small enough ε > 0, ∂f(x) ⊂ ∂εf(x). If ε1 > ε2, then
∂ε2f(x) ⊂ ∂ε1f(x). Therefore, ∂f(x)⊆ limεk↓0 ∂εkf(x) =

⋂
εk
∂εkf(x). We claim

that
⋂
εk
∂εkf(x) ⊆ ∂f(x). To prove the claim, we assume on the contrary that

there exists ξ ∈
⋂
εk
∂εkf(x) \ ∂f(x). Since ∂εkf(x) is a sequence of compact and

nested subsets of TxM , we have

ξ ∈ ∩εk∂εkf(x) = conv ∩εk {d exp−1x (y)(∂f(y)) : dist(y, x) ≤ εk}.
Hence, ξ = Σmk=1tkξk, where ξk ∈ ∩εk{d exp−1x (y)(∂f(y)) : dist(y, x) ≤ εk}, and
Σmk=1tk = 1. Therefore, there exists wki ∈ ∂f(yki) such that dist(yki , x) ≤ εk with
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ξk = d exp−1x (yki)(wki). Since M is complete, it follows that {yki} has a subse-
quence convergent to x in M . By Theorem 2.9 of [23], Lyki

x(wki) has a subsequence

convergent to some vector ξ̃ ∈ ∂f(x). Since Lyki
x(wki) = Lyki

x((d exp−1x (yki))
−1(ξk))

converges to ξk, then ξ̃ = ξk ∈ ∂f(x) and since ∂f(x) is convex, ξ ∈ ∂f(x) which is
a contradiction.

We recall that a set valued function F : X → Y , where X, Y are topological
spaces, is said to be upper semicontinuous at x, if for every open neighborhood U
of F (x), there exits an open neighborhood V of x, such that

y ∈ V =⇒ F (y) ⊆ U.

Assume that F has compact values, then there is a sequential characterization for
the set valued upper semicontinuity as follows: F is upper semicontinuous at x,
if and only if for each sequence {xn} ⊂ X converging to x and each sequence
{yn} ⊂ F (xn) converging to y; y ∈ F (x).

Lemma 3.8. Let U be a compact subset of M and ε < i(U), then for every open
neighborhood W in U , the set valued mapping ∂εf : W → TM is upper semicontin-
uous.

Proof. For every arbitrary fixed x ∈W , let r be a positive number with r < ε. We
define F : B(x, r) ∩W → TxM by

F (z) = Lzx({d exp−1z (y)(∂f(y)) : y ∈ clB(z, ε)}).

First, we prove F is upper semicontinuous at x.
Let {xk} ⊂ B(x, r) ∩W and {vk} ⊂ TxM be two sequences converging, respec-

tively, to x and v, where vk ∈ F (xk). Hence vk = Lxkx(d exp−1xk
(yk)(ξk)) where

ξk ∈ ∂f(yk) and yk ∈ clB(xk, ε).
Note that M is complete, therefore {yk} has a subsequence convergent to some

point y in M . Moreover, f is Lipschitz on B(x, ε), by Theorem 2.9 of [23] we
deduce that Lyky(ξk) has a subsequence convergent to some vector ξ ∈ ∂f(y).
Thus, v = d exp−1x (y)(ξ), where ξ ∈ ∂f(y). Since dist(xk, yk) ≤ ε by the continuity
of the distance function dist(x, y) ≤ ε, which means v ∈ F (x) and F is upper
semicontinuous at x. Note that F has compact values, consequently the set valued
function convF : B(x, r) ∩W → TxM defined by

convF (z) = Lzx(conv{d exp−1z (y)(∂f(y)) : y ∈ clB(z, ε)}).

is upper semicontinuous at x.
Now, we prove the upper semicontinuity of ∂εf at x. Let {xk} ⊂ B(x, r) ∩W

and {vk} ⊂ TM be two sequences converging, respectively, to x and v, where
vk ∈ ∂εf(xk). Then Lxkx(vk) ∈ convF (xk) and by Remark 3.6, Lxkx(vk) converges
to v and by upper semicontinuity of convF at x, v ∈ convF (x) = ∂εf(x).

�

Lemma 3.9. Let B be a closed ball in a complete Riemannian manifold M , f :
M → R be locally Lipschitz, Z be the set of all stationary points of f in B and
Bδ := {x ∈ B : distZ(x) ≥ δ > 0}. Then there exist ε > 0 and σ > 0 such that
0 /∈ ∂εf(x) and min{‖v‖ : v ∈ ∂εf(x)} ≥ σ, for all x ∈ Bδ.

Proof. Since B is compact, it follows that there exists ε > 0 such that ∂εf is well-
defined on Bδ. Assume that x ∈ Bδ, consequently 0 /∈ ∂f(x). We claim that there
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exists ε > 0 such that 0 /∈ ∂εf(x). On the contrary, suppose that 0 ∈ ∂ 1
i
f(x), for

i = N,N + 1, ..., 1/N < iM (x). Since ∂ 1
i
f(x) is a sequence of compact and nested

subsets of TxM , we have

0 ∈ ∩∞i=N∂ 1
i
f(x) = conv ∩∞i=N {d exp−1x (y)(∂f(y)) : dist(y, x) ≤ 1

i
}.

Hence, 0 = Σmk=1tkξk, where ξk ∈ ∩∞i=N{d exp−1x (y)(∂f(y)) : dist(y, x) ≤ 1
i }.

Therefore, there exists wki ∈ ∂f(yki) such that dist(yki , x) ≤ 1
i+N with ξk =

d exp−1x (yki)(wki). Since M is complete, it follows that {yki} has a subsequence
convergent to x in M . By Theorem 2.9 of [23], Lyki

x(wki) has a subsequence con-

vergent to some vector ξ ∈ ∂f(x). Since Lyki
x(wki) = Lyki

x((d exp−1x (yki))
−1(ξk))

converges to ξk, then ξ = ξk ∈ ∂f(x) and since ∂f(x) is convex, 0 ∈ ∂f(x) which is
a contradiction.

To prove the second part of the lemma; note that ∂εf(x) is a compact subset of
TxM , and the norm function is continuous, therefore there exists 0 6= w ∈ ∂εf(x)
such that ‖w‖ = min{‖v‖ : v ∈ ∂εf(x)}. Assume on the contrary, that for every
i ∈ N, there exists xi ∈ Bδ provided that ‖wi‖ = min{‖v‖ : v ∈ ∂εf(xi)} and
0 < ‖wi‖ < 1/i. Therefore, there exist convergent subsequences of xi and wi with
respective limits x ∈ Bδ and 0 ∈ ∂εf(x), which is a contradiction. �

3.2. Descent Directions. In the present section, we treat the problem of finding
directions w0 ∈ ∂εf(x) such that with suitable step lengths t > 0 the objective
function f affords a decrease along the geodesic expx(−tw0

‖w0‖ ). The next result shows

that, whenever one has full knowledge of the ε-subdifferential, a suitable descent
direction can be obtained by solving a simple quadratic program. We will use the
following theorem; for its proof see [23].

Theorem 3.10. (Lebourg’s Mean Value Theorem) Let M be a finite dimen-
sional Riemannian manifold, x, y ∈ M and γ : [0, 1] −→ M be a smooth path
joining x and y. Let f be a Lipschitz function around γ[0, 1]. Then there exist
0 < t0 < 1 and ξ ∈ ∂f(γ(t0)) such that

f(y)− f(x) = 〈ξ, γ
′
(t0)〉.

The next theorem can be proved using a property of the exponential map called
radially isometry.

Definition 3.11. Assume that R : TM →M is a retraction on M , we say R is a
radial isometry if for each x ∈M there exists ε > 0 such that for all v, w ∈ B(0x, ε),
we have

〈dRx(v)(v), dRx(v)(w)〉 = 〈v, w〉.

By Gauss’s lemma, we know that the exponential map is a radial isometry.

Theorem 3.12. Assume ε > 0 and δ are given from Lemma 3.9 so that 0 /∈ ∂εf(x)
for all x ∈ Bδ. Let x ∈ Bδ and consider an element of ∂εf(x) with minimum norm,

w0 := argmin{‖v‖ : v ∈ ∂εf(x)},

and get g0 := − w0

‖w0‖ . Then g0 affords a uniform decrease of f over B(x, ε), i.e.,

f(expx(εg0))− f(x) ≤ −ε‖w0‖.
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Proof. By Lebourg’s mean value theorem [23], there exist 0 < t0 < 1 and ξ ∈
∂f(γ(t0)) such that f(expx(εg0))− f(x) = 〈ξ, γ′(t0)〉, where γ(t) := expx(tεg0) is a
geodesic starting at x by initial speed εg0. Since expx is a radial isometry, therefore
we have that

f(expx(εg0))− f(x) = 〈ξ, d expx(εt0g0)(εg0)〉
= ε〈d expx(εt0g0)(d exp−1x (expx(εt0g0))(ξ)), d expx(εt0g0)(g0)〉
= ε〈d exp−1x (expx(εt0g0))(ξ), g0〉.

Since dist(expx(εt0g0), x) = t0ε ≤ ε, it follows that d exp−1x (expx(εt0g0))(ξ) ∈
∂εf(x). We claim that ‖w0‖2 ≤ 〈φ,w0〉 for every φ ∈ ∂εf(x), which implies 〈φ, g0〉 ≤
−‖w0‖. Hence, we can deduce that f(expx(εg0))− f(x) ≤ −ε‖w0‖.

Proof of the claim: assume on the contrary; there exists φ ∈ ∂εf(x) such that
〈φ,w0〉 < ‖w0‖2 and consider w := w0 + t(φ− w0) ∈ ∂εf(x), then

‖w0‖2 − ‖w‖2 = −t(2〈w0, φ− w0〉+ t〈φ− w0, φ− w0〉),
we can assume that t is small enough such that ‖w0‖2 > ‖w‖2, which is a contra-
diction. �

Remark 3.13. Instead of using the differential of the inverse exponential map to
transport the subgradients of the cost function at the point y to the point x, we
can choose the differential of the inverse of a retraction R : TM → M , however
by the proof of the previous theorem we have to restrict ourselves to the class of
retractions that are radially isometric; see [1]. For example as parallel transport can
be considered as the differential of the inverse of a retraction, therefore it might
be used to transport the subgradients of the cost function at the point y to the
point x; see [38]. It is worth mentioning that if the differential of the inverse of a
retraction R : TM → M is selected to transport the vectors, then the retraction
R must also be used to take a step in the direction of a tangent vector . Using a
good retraction amounts to finding an approximation of the exponential mapping
that can be computed with low computational cost while not adversely affecting
the behavior of the optimization algorithm.

Definition 3.14 (Descent direction). Let f : M → R be a locally Lipschitz function
on a complete Riemannian manifold M , w ∈ TxM , g = − w

‖w‖ is called a decent

direction at x, if there exists α > 0 such that

(3.1) f(expx(tg))− f(x) ≤ −t‖w‖, ∀t ∈ (0, α).

In the construction of the previous theorem, g0 is a descent direction of f at
x, because along the same lines as the proof, we can deduce that for g0 and every
t ∈ (0, ε),

f(expx(tg0))− f(x) ≤ −t‖w‖.
It is clear that we can choose the mentioned descent direction in order to move

along a geodesic starting from an initial point toward a neighborhood of a minimum
point.

3.3. Approximation of the ε-subdifferential. For general nonsmooth optimiza-
tion problems it may be difficult to give an explicit description of the full subdiffer-
ential set. In the present section, we generalize ideas of [34] to obtain an iterative
procedure to approximate the ε-subdifferential. We start with the subgradient of
an arbitrary point nearby x and move the subgradient to the tangent space in x
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via the derivative of the logarithm mapping, and in every subsequent iteration, the
subgradient of a new point nearby x is computed and moved to the tangent space
in x to add to the working set to improve the approximation of ∂εf(x). Indeed,
we do not want to provide a description of the entire ε-subdifferential set at each
iteration, what we do is to approximate ∂εf(x) by the convex hull of its elements.
In this way, let Wk := {v1, ..., vk} ⊆ ∂εf(x), then we define

wk := argmin
v∈convWk

‖v‖.

Now if we have

(3.2) f(expx(εgk))− f(x) ≤ −cε‖wk‖, c ∈ (0, 1)

where gk = − wk

‖wk‖ , then we can say convWk is an acceptable approximation for

∂εf(x). Otherwise, we add a new element of ∂εf(x) \ convWk to Wk.

Lemma 3.15. Let v ∈ ∂εf(x) such that 〈v, gk〉>− ‖wk‖, then v /∈ convWk.

Proof. It can be proved along the same lines as the proof of the claim of Theorem
3.12. �

The following lemma proves that if Wk is not an acceptable approximation for
∂εf(x), then there exists vk+1 ∈ ∂εf(x) such that 〈vk+1, gk〉 ≥ −c‖wk‖ > −‖wk‖,
therefore we have from the previous lemma that vk+1 ∈ ∂εf(x) \ convWk.

Lemma 3.16. Let Wk = {v1, ..., vk} ⊂ ∂εf(x), 0 /∈ convWk and

wk = argmin{‖v‖ : v ∈ convWk}.

If we have f(expx(εgk)) − f(x) > −cε‖wk‖, where c ∈ (0, 1) and gk = −wk

‖wk‖ , then

there exist θ0 ∈ (0, ε] and v̄k+1 ∈ ∂f(expx(θ0gk)) such that

〈d exp−1x (expx(θ0gk))(v̄k+1), gk〉≥ − c‖wk‖,

and vk+1 :=d exp−1x (expx(θ0gk))(v̄k+1) /∈ convWk.

Proof. We prove this lemma using Lemma 3.1 and Proposition 3.1 in [34]. Define

h(t) := f(expx(tgk))− f(x) + ct‖wk‖, t ∈ R,

and a new locally Lipschitz function G : B(0x, iM (x)) ⊂ TxM → R by G(g) =
f(expx(g)), then h(t) = G(tgk) − G(0) + ct‖wk‖. Assume that h(ε) > 0, then
by Proposition 3.1 of [34], there exists θ0 ∈ [0, ε] such that h is increasing in a
neighborhood of θ0. Therefore, by Lemma 3.1 of [34] for every ξ ∈ ∂h(θ0), one has
ξ ≥ 0. By [23, Proposition 3.1]

∂h(θ0) ⊆ 〈∂f(expx(θ0gk)), d expx(θ0gk)(gk)〉+ c‖wk‖.

If v̄k+1 ∈ ∂f(expx(θ0gk)) such that

〈v̄k+1, d expx(θ0gk)(gk)〉+ c‖wk‖ ∈ ∂h(θ0),

then

〈d exp−1x (expx(θ0gk))(v̄k+1), gk〉+ c‖wk‖ ≥ 0.

Now, Lemma 3.15 implies that

vk+1 :=d exp−1x (expx(θ0gk))(v̄k+1) /∈ convWk,

which proves our claim. �
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Now we present Algorithm 1 to find a vector vk+1 ∈ ∂εf(x) which can be added
to the set Wk in order to improve the approximation of ∂εf(x). It is easy to prove
by Proposition 3.2 and Proposition 3.3 of [34] that this algorithm terminates after
finitely many iterations. Practically, applying Algorithm 1 is not costly. We have
observed that, as h does not usually have a local extremum on (0, ε) for ε small,
the algorithm terminates after one iteration.

Algorithm 1 An h-increasing point algorithm; v = Increasing(x, g, a, b).

1: Input x ∈M, g ∈ TxM,a, b ∈ R.
2: Let t = b.
3: repeat
4: select v ∈ ∂f(expx(tg)) such that 〈v, d expx(tg)(g)〉+ c‖w‖ ∈ ∂h(t)
5: if 〈v, d expx(tg)(g)〉+ c‖w‖ < 0 then
6: t = a+b

2
7: if h(b) > h(t) then
8: a = t
9: else

10: b = t
11: end if
12: end if
13: until 〈v, d expx(tg)(g)〉+ c‖w‖ ≥ 0

Then we give Algorithm 2 for finding a descent direction. Moreover, Theorem
3.17 proves that Algorithm 2 terminates after finitely many iterations.

Algorithm 2 A descent direction algorithm; (gk, k) = Decent(x, δ, c, ε).

1: Input x ∈M ; δ, c, ε ∈ (0, 1).
2: Let g1 ∈ TxM such that ‖g1‖ = 1.
3: if f is differentiable on expx(εg1), then

v = d exp−1x (expx(εg1))(grad f(expx(εg1)))
4: else select arbitrary v ∈ d exp−1x (expx(εg1))(∂f(expx(εg1)))
5: Set W1 = {v} and let k = 1
6: end if
7: Step 1: (Compute a descent direction)
8: Solve the following minimization problem and let wk be its solution:

min
v∈convWk

‖v‖.

9: if ‖wk‖ ≤ δ then stop
10: else let gk+1 = − wk

‖wk‖ .

11: end if
12: Step 2: (Stopping condition)
13: if f(expx(εgk+1))− f(x) ≤ −cε‖wk‖, then stop.
14: end if
15: Step 3: v = Increasing(x, gk+1, 0, ε).
16: Set vk+1 = v, Wk+1 = Wk ∪ {vk+1} and k = k + 1. Go to step 1.
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Theorem 3.17. Let for the point x1 ∈M, the level set N = {x : f(x) ≤ f(x1)} be
bounded, then for each x ∈ N, Algorithm 2 terminates after finitely many iterations.

Proof. Now we claim that either after a finite number of iterations the stopping
condition is satisfied or for some m,

‖wm‖ ≤ δ,
and the algorithm terminates. If the stopping condition is not satisfied and ‖wk‖ >
δ, then by Lemma 3.16 we find vk+1 /∈ convWk such that

〈vk+1, wk〉 ≤ c‖wk‖2.
Note that d exp−1x on clB(x, ε) is bounded by some m1 ≥ 0 and by the Lipschitz-

ness of f of the constant L, Theorem 2.9 of [23] implies that for every ξ ∈ ∂εf(x),
‖ξ‖ ≤ m1L. Now, wk+1 ∈ conv{vk+1} ∪ Wk has the minimum norm, so for all
t ∈ (0, 1),

(3.3)

‖wk+1‖2 ≤ ‖tvk+1 + (1− t)wk‖2

≤ ‖wk‖2 + 2t〈wk, (vk+1 − wk)〉+ t2‖vk+1 − wk‖2

≤ ‖wk‖2 − 2t(1− c)‖wk‖2 + 4t2L2m2
1

≤ (1− [(1− c)(2Lm1)−1δ]2)‖wk‖2,

where the last inequality is obtained by assuming t = (1− c)(2Lm1)−2‖wk‖2 ∈
(0, 1), δ ∈ (0, Lm1) and ‖wk‖ > δ. Now considering r = 1− [(1− c)(2Lm1)−1δ]2, it
follows that

‖wk+1‖2 ≤ r‖wk‖2 ≤ ... ≤ rk(Lm1)2.

Therefore, after a finite number of iterations ‖wk+1‖ ≤ δ. �

Finally, Algorithm 3 is the minimization algorithm which finds a descent direc-
tion in any iteration.

Algorithm 3 A minimization algorithm; xk = Min(f, x1, θε, θδ, ε1, δ1, c).

1: Input: f (A locally Lipschitz function defined on a complete Riemannian man-
ifold M); x1 ∈M (a starting point); c, θε, θδ, ε1, δ1 ∈ (0, 1); k = 1.

2: Step 1 (Set new parameters) s = 1 and xsk = xk.
3: Step 2. (Descent direction) (gsk, n

s
k) = Decent(xsk, δk, c, εk)

4:

‖wsk‖ = min{‖w‖ : w ∈ convW s
k}.

5: if ‖wsk‖ = 0 then stop

6: else let gsk = − ws
k

‖ws
k‖

be the descent direction.

7: end if
8: if ‖wsk‖ ≤ δk then set εk+1 = εkθε, δk+1 = δkθδ, xk+1 = xsk, k = k + 1. Go to

Step 1.
9: else

σ = argmax{σ ≥ εk : f(expxs
k
(σgsk))− f(xsk) ≤ −cσ‖wsk‖}

and construct the next iterate xs+1
k = expxs

k
(σgsk). Set s = s+ 1 and go to Step

2.
10: end if
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Theorem 3.18. If f : M → R is a locally Lipschitz function on a complete Rie-
mannian manifold M , and

N = {x : f(x) ≤ f(x1)}

is bounded, then either Algorithm 3 terminates after a finite number of iterations
with ‖wsk‖ = 0, or every accumulation point of the sequence {xk} belongs to the set

X = {x ∈M : 0 ∈ ∂f(x)}.

Proof. Note that there exists ε < i(N) such that ∂εf on N is well-defined. If the
algorithm terminates after finite number of iterations, then xsk is an ε−stationary
point of f . Suppose that the algorithm does not terminate after finitely many
iterations. Assume that gsk is a descent direction, since σ ≥ εk, we have

f(xs+1
k )− f(xsk) ≤ −cεk‖wsk‖ < 0,

for s = 1, 2, ..., therefore, f(xs+1
k ) < f(xsk) for s = 1, 2, .... Since f is Lipschitz and

N is bounded, it follows that f has a minimum in N . Therefore, f(xsk) is a bounded

decreasing sequence in R, so is convergent. Thus f(xsk)− f(xs+1
k ) is convergent to

zero and there exists sk such that

f(xsk)− f(xs+1
k ) ≤ cεkδk,

for all s ≥ sk. Thus

(3.4) ‖wsk‖ ≤
f(xsk)− f(xs+1

k )

cεk
≤ δk, s ≥ sk.

Hence after finitely many iterations, there exists sk such that

xk+1 = xskk ,

and

min{‖v‖ : v ∈ convW sk
k } ≤ δk.

Since M is a complete Riemannian manifold and {xk} ⊂ N is bounded, there exists

a subsequence {xki} converging to a point x∗ ∈ M . Since convW
ski

ki
is a subset of

∂εki
f(x

ski

ki
), then

‖wki‖ = min{‖v‖ : v ∈ ∂εki
f(x

ski

ki
)} ≤ δki .

Hence limki→∞ ‖wki‖ = 0. Note that wki ∈ ∂εki
f(x

ski

ki
), hence by Lemma 3.8 and

Remark 3.7, 0 ∈ ∂f(x∗). �

4. Numerical Experiments

We close this article by giving several numerical experiments. We set the pa-
rameters as follows: c = 0.2, δ1 = 10−5, ε1 = 0.1, and θδ = 1. In Algorithm 3, for
all values of k ≤ 4, we set θε = 0.1 and for k > 4, we set θε = 0.8. Algorithm 3
terminates when εk < 10−7. We assume that the Armijo parameter c = 0.2, and
use the simple line search strategy,

σ = argmax{σ ≥ εk : f(expxs
k
(σgsk))− f(xsk) ≤ −cσ‖wsk‖}.

Indeed, we start with σ = 1 and backtrack with a factor γ = 0.5. It is worth
pointing out that in Algorithm 2, we generate g1 randomly, therefore our algorithm
has a stochastic behavior.
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4.1. Denoising on a Riemannian manifold. We are going to solve the one di-
mensional total variation problem for functions which map into a manifold. There-
fore, assume that M is a manifold, consider the minimization problem

(4.1) min
u∈BV ([0,1];M)

{F (u) := dist2(f, u)2 + λ‖∇u‖1},

where f : [0, 1] → M is the given (noisy) function, u is a function of bounded
variation from [0, 1] to M , dist2 is the distance on the function space L2([0, 1];M),
and λ > 0 is a Lagrangian parameter, [41]. Note that for every w ∈ [0, 1], ∇u(w) :
R → Tu(w)M and ‖∇u‖1 =

∫
[0,1]
‖∇u(w)‖dw. Now we can formulate a discrete

version of the problem (4.1) by restricting the space of functions to VMh which is
the space of all geodesic finite element functions for M associated with a regular
grid on [0, 1]; see [42, 21]. We refer to [42] for the definition of geodesic finite
element spaces VMh .

Using the nodal evaluation operator ε : VMh →Mn, (ε(vh))i = vh(xi), where xi
is the i-th vertex of the simplicial grid on [0, 1], one can find an equivalent problem
defined on Mn as follows,

(4.2) min
u∈Mn

{F∗(u) := dist∗(ε(f), u)2 + λ‖∇(ε−1(u))‖1},

where dist∗ is the Riemannian distance on Mn.

Theorem 4.1. Let M be a Hadamard manifold. If F∗ is defined as in (4.2), then
F∗ is convex as a function defined on Mn.

Proof. It is enough to prove that ‖∇(ε−1(u))‖1 is convex. Thus, we should prove
that

∫
[0,1]
‖∇vhu(w)‖dw, where vhu is the geodesic finite element function corre-

sponding to u, is convex. To do this, assume that u1, u2 are two arbitrary points in
Mn and γ = (γ1, ..., γn) is a geodesic connecting them. We first show that for every
arbitrary fix w ∈ [0, 1], f(t) = ‖∇vhγ(t)(w)‖, as a function of t, is convex. Define

g(t) = 1/2〈∇vhγ(t)(w),∇vhγ(t)(w)〉.

Assume that Γ is a grid on [0, 1] and (si, si+1) ∈ Γ is such that w ∈ (si, si+1),
moreover, σit is a minimizing geodesic parametrized by arc length connecting γi(t)
and γ(i+1)(t). Since σit is a geodesic with a constant speed, we have that

g(t) = 1/2〈∇σit(w),∇σit(w)〉 =
1

2

∫ 1

0

〈∇σit(x),∇σit(x)〉dx.

Now we define another smooth function G : [0, 1]× [0, 1]→M by

G(t, x) = σit(x).

We put V (t, x) := ∂G
∂t (t, x) and usually write ∇σit(x) = ∇G = ∂G

∂x dx. Consider the

vector bundle T ([0, 1]× [0, 1])∗⊗G−1TM over [0, 1]× [0, 1], which admits a natural
fiber metric and a standard connection ∇ compatible with the metric. Under the
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natural identification, we denote ∇x = ∇(0, ∂
∂x ) and ∇t = ∇( ∂

∂t ,0)
. Therefore,

1/2
∂2

∂2t
〈∂G
∂x

dx,
∂G

∂x
dx〉 =

∂

∂t
〈∇t

∂G

∂x
dx,

∂G

∂x
dx〉

=
∂

∂t
〈∇x

∂G

∂t
dx,

∂G

∂x
dx〉

= 〈∇t∇x
∂G

∂t
dx,

∂G

∂x
dx〉+ 〈∇x

∂G

∂t
dx,∇x

∂G

∂t
dx〉

= 〈∇x∇t
∂G

∂t
dx,

∂G

∂x
dx〉+ 〈R(

∂G

∂t
,
∂G

∂x
)
∂G

∂t
dx,

∂G

∂x
dx〉

+ 〈∇xV dx,∇xV dx〉
Since ∇ is metric,

0 =

∫ 1

0

∂

∂x
〈∇t

∂G

∂t
,
∂G

∂x
dx〉dx =∫ 1

0

〈∇x∇t
∂G

∂t
dx,

∂G

∂x
dx〉dx.

Hence,

g′′(t) =

∫ 1

0

‖∇V ‖2 − trace〈R(∇G,V )V,∇G〉.

Since M is a Hadamard manifold, it follows that g′′(t) ≥ 0 which implies g is convex.
By definition of g, it is clear that g(t) = 1/2f2(t). We assume that f(t) 6= 0, then

f ′′(t) =
g′′(t)f2(t)− (g′(t))2

f3(t)
.

Hence,

f ′′(t) =
1

f3(t)
{
∫ 1

0

(‖∇V ‖2)〈∇vhγ(t)(w),∇vhγ(t)(w)〉

−trace〈R(∇G,V )V,∇G〉〈∇vhγ(t)(w),∇vhγ(t)(w)〉
−〈∇V,∇vhγ(t)(w)〉2} ≥ 0,

which is obtained by the Cauchy-Schwarz inequality and the negativity of the sec-
tional curvature. Thus, we proved that for every w ∈ [0, 1], f(t) = ‖∇vhγ(w)‖ is
convex, hence

‖∇vhγ(t)(w)‖ ≤ t‖∇vhu1
(w)‖+ (1− t)‖∇vhu2

(w)‖,
which implies∫

[0,1]

‖∇vhγ(t)(w)‖dw ≤ t
∫
[0,1]

‖∇vhu1(w)‖dw + (1− t)
∫
[0,1]

‖∇vhu2(w)‖dw,

which means
∫
[0,1]
‖∇vhu(w)‖ = ‖∇(ε−1(u))‖1 is convex.

Note that if M is a Hadamard manifold, dist2 is also a convex function on Mn.
Hence we can conclude that F∗ is convex on Mn. �

Let ε(f) = (p1, ...., pn), then F∗ : Mn → R can be defined by

F∗(u1, ..., un) = Σni=1dist(pi, ui)
2 + λΣn−1i=1 dist(ui, ui+1),

where dist is the Riemannian distance on M . In order to find the subdifferential
of F , we have to find the subdifferential of the distance and squared distance func-
tions. The distance function is differentiable at (p, q) ∈M ×M if and only if there
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is a unique length minimizing geodesic from p to q. Furthermore, the distance
function is smooth in a neighborhood of (p, q) if and only if p and q are not conju-
gate points along this minimizing geodesic. Consequently, the distance function is
nondifferentiable at (p, q) if and only if p = q or p and q are the conjugate points.
Let the distance function be differentiable at (p, q), then

∂dist

∂p
(p, q) =

− exp−1p (q)

dist(p, q)
,
∂dist2

∂p
(p, q) = −2 exp−1p (q).

The following lemma is a direct consequence of Definition 2.3, the fact that distp
is smooth on U \ {p}, where U is a sufficiently small open neighborhood of p, and
expp is near 0 ∈ TpM a radial isometry.

Lemma 4.2. Let M be a complete Riemannian manifold. If distp : M → R is
defined by distp(q) = dist(p, q), then

∂distp(p) = B,

where B is the closed unit ball of TpM.

In our numerical examples, we consider a two dimensional sphere S2 and the
space of positive-definite matrices which is known as a Hadamard manifold. There-
fore, F∗ is convex on the space of positive definite matrices, while F∗ is not a
convex function on every sphere; see [48]. We first recall the properties of these two
Riemannian manifolds.

The unit sphere S2 is the smooth compact manifold

S2 = {x ∈ R3 : ‖x‖ = 1},
and the global coordinates on S2 are naturally given by this embedding into R3.
The tangent space at a point x ∈ S2 is

TxS
2 = {v ∈ R3 : 〈x, v〉 = 0}.

The inner product on TxS
2 is defined by

〈v, w〉TxS2 = 〈v, w〉R3 .

The exponential map

expx : TxS
2 → S2

is defined by

expx(v) = cos(‖v‖)x+ sin(‖v‖) v

‖v‖
.

Moreover, if x ∈ S2, then

exp−1x : S2 → TxS
2

is defined by

exp−1x (y) =
θ

sin(θ)
(y − x cos(θ)),

where θ = arccos〈x, y〉. The Riemannian distance between two points x, y in S2 is
given by

dist(x, y) = arccos〈x, y〉.
Let t→ γ(t) be a geodesic on S2, and let u = γ◦(0)

‖γ◦(0)‖ . The parallel translation of a

vector v ∈ Tγ(0)S2, along the geodesic γ, is given by [2]

Lγ(0)γ(t)(v) = −γ(0) sin(‖γ◦(0)‖t)u′v + u cos(‖γ◦(0)‖t)u′v + (I − uu′)v.
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Utilizing the properties of the exponential map on a Riemannian manifold, for fixed
point x ∈ S2, and for each ε > 0, we may find number δx > 0 such that

‖d(exp−1x )(y)− Lyx‖ ≤ ε, provided that dist(x, y) < δx.

It is worthwhile to mention that on any sphere antipodal points are conjugate
points, but without loss of generality we can assume that ui and ui+1 are not
conjugate. In fact we use more than two nodal points for discretization of the
function F , therefore it can be assumed that there is a nodal point between every
two antipodal points.

The set of symmetric positive definite matrices, as a Riemannian manifold, is
the most studied example of manifolds of nonpositive curvature. The space of all
n × n symmetric, positive definite matrices will be denoted by P (n). The tangent
space to P (n) at any of its points P is the space TPP (n) = {P}×S(n), where S(n)
is the space of symmetric n×n matrices. On each tangent space TPP (n), the inner
product is defined by

〈A,B〉TPP (n) = tr(P−1AP−1B).

The Riemannian distance between P,Q ∈ P (n) is given by

dist(P,Q) = (Σni=1 ln2(λi))
(1/2),

where λi, i = 1, ..., n are eigenvalues of P−1Q. The exponential map

expP : S(n)→ P (n)

is defined by

expP (v) = P 1/2 exp(P−1/2vP−1/2)P 1/2.

Moreover, if P ∈ P (n), then

exp−1P : P (n)→ S(n)

is defined by

exp−1P (Q) = P 1/2 log(P−1/2QP−1/2)P 1/2,

where log, exp, denote the logarithm and exponential functions on matrix space;
for more details see [35].

First, we assume that M = S2. We need to define a function from [0, 1] to S2

to get the original image. Afterward, we add a Gaussian noise to the image to get
the noisy image. Finally we apply algorithm 5 to the function F∗ defined on M100

to get the denoised image, see Figure 1.
For another example, we assume that M = P (2). We add a Guassian noise to an

original image on P (2). Then we apply algorithm 5 to F∗ on M100 to denoise the
noisy image. In Figure 2, we present the results regarding to the minimization of
F∗ on M100. Note that every symmetric positive definite matrix A ∈ P (2) defines
an ellipse. The principal axes are given by the eigenvectors of A and the square
root of the eigenvalues are the radii of the corresponding axes.

4.2. Riemannian geometric median on the Sphere S2. Let M be a Riemann-
ian manifold. Given points p1, ..., pm in M and corresponding positive real weights
w1, ..., wm, with

∑m
i=1 wi = 1, define the weighted sum of distances function

f(q) =

m∑
i=1

widist(pi, q),
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Figure 1. TV regularization on S2.
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Figure 3. ε-subgradient descent for Riemannian geometric median on S2.
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Figure 4. ε-subgradient descent for Rayleigh quotients on S2.

where dist is the Riemannian distance function on M . We define the weighted
geometric median x, as the minimizer of f . When all the weights are equal, wi =
1/m, we call x simply the geometric median. Now, we assume that M = S2.
In Figure 3 the results of the ε-subgradient algorithm for Riemannian geometric
median on S2 are plotted. Algorithm 2 terminated after only one iteration.

4.3. Rayleigh quotients on S2. We consider the maximum of m Rayleigh quo-
tients on the sphere S2, i.e.,

(4.3) f(x) = max
i=1,...,m

1

2
x′Aix,

Ai ∈ S(3). Our aim is to find a minimum of f . In Figure 4, the results of the
ε-subgradient algorithm for Rayleigh quotients on S2 are plotted. We have seen
that for ε > 0 small, Algorithm 2 terminates after one iteration. Indeed, generally
we don’t meet points where several x′Aix achieve the maximum simultaneously.
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4.4. Sphere packing on Grassmannians. We assume that the Grassmannian
Gr(n, k) is the set of all k-dimensional linear subspaces of Rn. In this section, we
consider the problem of the packing of m spherical balls on Gr(n, k) with respect
to the chordal distance. Let B(P, r) denote the ball in Gr(n, k) with respect to
chordal distance. Then we would like to find m points P1, ..., Pm in Gr(n, k) such
that

(4.4) max{r| ∀i 6= j : B(Pi, r) ∩B(Pj , r) = ∅},
is maximized. This problem has been solved in [18] using a subgradient method.

Indeed, Gr(n, k) can be identified with the set {P ∈ S(n)| P 2 = P, tr(P ) = k}.
Moreover, the tangent space of the Grassmannian at the point P , denoted by
TPGr(n, k), is the following set

TPGrass(n, k) = {PΩ− ΩP | Ω ∈ so(n)},
where

so(n) = {Ω ∈ Rn×n| Ω′ = −Ω}.
As Gr(n, k) is a subset of the Euclidean vector space S(n), the scalar product
〈P,Q〉 := tr(PQ) induces a Riemannian metric on it. Therefore the chordal distance
on Gr(n, k), denoted by dist(P,Q), is defined by

dist(P,Q) =

√
1

2
‖P −Q‖F ,

where ‖.‖F denotes the Frobenius norm. On Gr(n, k) with the induced Riemannian
metric, the geodesic γ emanating from P in the direction η ∈ TPGrass(n, k) is
defined by

γ(t) = exp(t(ηP − Pη))P exp(−t(ηP − Pη)).

The problem (4.4) is equivalent to the minimizing the following nonsmooth function;

(4.5) F (P1, ..., Pm) := max
i 6=j

tr(PiPj),

on Gr(n, k)× ...×Gr(n, k); see [18].
In Table 1, we illustrate the results of the nonsmooth subgradient (SB) method

and our method for the sphere packing in Gr(16, 2) with m = 10 after 80 iterations
with the same arbitrary starting points for both methods and the same step lengths.
The computation time for both methods is the same. Our results show that the both
methods have similar performance for this example. However, the ε-subgradient
algorithm is more general, because in this algorithm we do not need to have an
explicit formula for the subdifferential and it can be computed approximately.

5. Conclusions

We have presented a practical algorithm in the context of ε-subgradient methods
for nonsmooth problems on Riemannian manifolds. To the best of our knowledge,
this is the first practical paper on approximating the subdifferential of locally Lip-
schitz functions on Riemannian manifolds. Using the algorithms presented in this
paper, one can solve all nonsmooth locally Lipschitz minimization problems on
Riemannian manifolds. The main result is the global convergence property of our
minimization algorithm which is stated in Theorem 3.18. Moreover, comparing
with subgradient algorithm [18], the ε-subgradient algorithm is much more gen-
eral, because in this algorithm we do not need to have an explicit formula for the
subdifferential and it can be computed approximately. An implementation of our
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Table 1. Numerical results in terms of number of function evaluations
and the final obtained value of the function for sphere packings on Grass-

mannians

No. Minimal distance in our method nfeval Minimal distance in SB nfeval
1 1.853 605 1.853 601
2 1.682 230 1.683 231
3 1.775 1101 1.775 1109
4 1.872 1128 1.872 1123
5 1.801 237 1.801 234
6 1.813 1608 1.813 1609
7 1.872 1205 1.872 1209
8 1.874 891 1.874 890
9 1.719 1400 1.718 1409
10 1.789 989 1.789 980
11 1.708 425 1.708 430
12 1.804 1236 1.804 1230
13 1.897 1674 1.897 1679
14 1.676 2344 1.676 2340
15 1.631 1300 1.631 1306

proposed minimization algorithm is given in Matlab environment and tested on
some problems.
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