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DERIVATION OF HIGHER ORDER GRADIENT CONTINUUM
MODELS FROM ATOMISTIC MODELS FOR CRYSTALLINE SOLIDS∗

M. ARNDT† AND M. GRIEBEL†

Abstract. We propose a new upscaling scheme for the passage from atomistic to continuum
mechanical models for crystalline solids. It is based on a Taylor expansion of the deformation function
and allows us to capture the microscopic properties and the discreteness effects of the underlying
atomistic system up to an arbitrary order. The resulting continuum mechanical model involves higher
order terms and gives a description of the specimen within the quasi-continuum regime. Furthermore,
the convexity of the atomistic potential is retained, which leads to well-posed evolution equations.
We numerically compare our technique to other common upscaling schemes for the example of an
atomic chain. Then we apply our approach to a physically more realistic many-body potential of
crystalline silicon. Here the above-mentioned advantages of our technique hold for the newly obtained
macroscopic model as well.
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1. Introduction. The behavior of material often involves quite different length
scales. Therefore mathematical models on different length scales have also been de-
rived. To this end, macroscopic effects can often be well described on the continuum
mechanical level. Here the stored energy density Φ(C),x : R

d×d → R of a solid at a
point x is usually assumed to be a function of the deformation gradient F = ∇y(x),
where y : Ω → R

d denotes the deformation function of the solid and Ω ⊂ R
d describes

the reference configuration. This leads to the overall energy

Φ(C)(y) =

∫
Ω

Φ(C),x(∇y(x)) dx.(1.1)

On the other hand, the solid can be described on the atomic level by a system
of interacting atoms. Such a model then includes microscopic effects, which give a
more accurate characterization of the solid on a finer length scale. However, the
simulation of the behavior on a coarse length scale usually cannot be performed for
the atomistic model due to computational limits. Therefore the question arises of how
a macroscopic description on the continuum mechanical level can be derived from a
microscopic description on the atomic level.1

One approach for the passage from the atomic to the continuum level is given by
the so-called scaling technique. Here the atomistic potential Φ(A)(·) is scaled as

εdΦ(A)(ε−1·),(1.2)
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1The atomic level is by far not the finest level on which a solid can be modeled. The atomistic

model should itself be rigorously derived from a quantum mechanical model. To this end, a whole
hierarchy of scales could be studied. In this article, we focus on the relation between the atomic and
the continuum mechanical level only.
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where ε > 0 gives the characteristic length. The limit ε → 0 then leads to a continuum
mechanical energy Φ(C) of the form (1.1). This approach has been studied by Blanc,
Le Bris, and Lions [5], E and Huang [16], and others.

For the continuum mechanical model which is obtained by the scaling technique,
the evolution is governed by the nonlinear wave equation

ρ
∂2y

∂t2
= div Φ(C),x′(∇y),(1.3)

where ρ is the mass density and Φ(C),x′ denotes the first derivative of the potential

energy density of the system. From the view of continuum mechanics, Φ(C),x′ describes
the stress. It is well known that the solution of such nonlinear hyperbolic equations
typically exhibits shocks after finite time. Furthermore, these equations then possess
no classical solutions, even for smooth initial data; see, e.g., [12]. Only solutions in a
weaker sense exist. This breakdown of the solution theory is in contrast to the discrete
system, which admits a solution for an infinite time horizon. The reason for this is
the discreteness of the atomistic system. It leads to a certain dispersion which has a
regularizing effect. This dispersion is not contained in the continuum model, because
the scaling technique describes the full continuum limit. It drives the number N of
atoms to infinity and therefore destroys all discreteness effects.

On the macroscale, further terms are often added to the continuum model, mostly
higher order contributions to the potential energy such as |∇2y|2. This regularizes
the problem as well. Also, further physical effects such as surface contributions or the
determination of the length scale can be captured phenomenologically in this way; see,
e.g., [3] for an example in the context of shape memory alloys. But these additional
terms are somewhat artificial. They are often chosen phenomenologically and are not
deduced from the atomistic model.

Higher order contributions in continuum mechanics have been used already in
1893 by Van der Waals (see [34] and [27] for the English translation) to describe cap-
illarity effects of fluids. In the context of elasticity theory of solids, they have been
studied, e.g., by Bardenhagen and Triantafyllidis [4] and Triantafyllidis and Barden-
hagen [32, 33]. The so-called gradient theory developed by Aifantis [2] postulates a
relationship of stress and strain in terms of higher order derivatives for elasticity, plas-
ticity, and dislocation dynamics problems. A systematic way to derive higher order
terms is given by the so-called direct expansion technique. It has first been proposed
by Kruskal and Zabusky [23] and Zabusky and Kruskal [37] and was further developed
by Rosenau [24] and Collins [10]. Numerical investigations have been performed by
Kevrekidis et al. [22]. The technique is based on a Taylor series expansion of the
discrete evolution equation. The atomistic system is considered for a large but fixed
finite number N of atoms without passing to the limit N → ∞. This is called the
quasi-continuum regime. However, the resulting evolution model is often ill posed.

In this paper, we propose the so-called inner expansion technique for the upscaling
from the atomic to the quasi-continuum level. It is based on a Taylor expansion of
the deformation gradient. Just as in the direct expansion technique, it leads to a
continuum mechanical potential such as (1.1) in which Φ(C),x additionally depends
on higher order derivatives of y. This allows us to capture the discreteness effects up
to an arbitrary order. But in contrast to the direct expansion technique, well-posed
evolution equations are obtained. Thus, our new technique avoids the disadvantages
of both the scaling technique and the inner expansion technique.

Beyond the above-mentioned upscaling methods, many other techniques have
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been developed. Without ambitions for completeness, let us note the work of Dreyer
and Guckel [15], Friesecke and James [18], Friesecke and Matthies [19], Friesecke and
Pego [20], and Friesecke and Theil [21]. Γ-limit techniques are studied by Braides
and Gelli [8]. A further technique which transforms the original atomistic system to
another discrete system with fewer degrees of freedom is given by the coarse-grained
molecular dynamics technique [28]. Renormalization group methods have recently
been investigated, e.g., in [11]. A classical reference for nonlinear lattice dynamics is
the book by Born and Huang [7].

At first glance it seems useless to describe the discreteness effects by a continuum
model, since the discrete atomistic model could be used directly instead. But this is
not true. An advantage of the continuum model is that it is accessible to analytical
techniques which allow us to further investigate its properties. For the numerical
treatment, the continuum mechanical model will be discretized again. This way,
i.e., via the continuum model and its successive discretization, the original discrete
atomistic model is transformed into another discrete model. The key point here is
that the mesh size can be arbitrarily chosen, in contrast to the fixed number of atoms
in the original atomistic system. Thus, the discretization error can be controlled.
Moreover, it can be balanced with the model error which depends on the degree of
approximation used in the derivation of the respective continuum mechanical system.
Altogether, the computational accuracy can thus be adjusted to the desired accuracy
of the solution. This permits an efficient implementation and makes it possible to
simulate larger systems. It even allows for adaptive techniques if necessary. In this
respect the continuum model serves as an averaging tool to pass from the atomistic
discretization size to an arbitrary discretization size.

This paper is organized as follows. First, the model on the atomic level is described
in section 2. The classical scaling technique is reviewed and analyzed in section 3.
In section 4, the direct expansion technique is shortly described, and it is shown how
it preserves higher order effects which are lost by the scaling technique. We then
come to our main result and present our inner expansion technique to derive a quasi-
continuum model in section 5. It is discussed how this technique avoids the deficiencies
of the direct expansion technique. Section 6 gives a numerical comparison of all three
methods. Here we use the simple model problem of an atomic chain in the spirit of
the famous work of Fermi, Pasta, and Ulam [17] to show the properties of the three
different techniques and to discuss its differences. In section 7, the inner expansion
technique is then applied to a realistic three-dimensional example, namely crystalline
silicon. First, in section 7.1, the quality of the approximation of the continuum energy
is analyzed in the stationary setting. This is done for a system of moderate size,
which allows a direct comparison with the atomistic system. From this, the optimal
order of approximation can be obtained for a reasonable error tolerance. The results
are then used in section 7.2 to simulate the elastic behavior of the crystal for the
corresponding evolution equation. The associated continuum system corresponds to
an atomistic system of 12 billion atoms, which has been impossible to treat directly
on the microscale with molecular dynamics techniques up to now.

2. Atomic level. On the atomic length scale, the specimen under consideration
is described by a system of N interacting atoms. Its behavior is determined by
the potential energy function Φ(A), which depends on the atom positions yi ∈ R

d,
i = 1, . . . , N :

Φ(A) = Φ(A)({yi}i=1,...,N ).(2.1)
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a2

a1

Fig. 1. Two-dimensional example of a lattice L with its base cell and its spanning vectors.

Here d ∈ N denotes the spatial dimension.
Now we choose a set of atom positions as the reference configuration in which the

atoms are arranged in form of a lattice L. Then the atom positions are given by

{yi}i=1,...,N = L ∩ Ω,(2.2)

where the domain Ω ⊂ R
d describes the form of the crystal. Here the lattice L is the

periodic infinite discrete set of atom positions

L := {x + Az | x ∈ Lcell, z ∈ Z
d},(2.3)

where A ∈ GL(d,R) is a matrix. The base cell Lcell ⊂ R
d is assumed to be nonempty

and to consist of a small, finite number of atoms. In other words, L is the periodic
continuation of Lcell along the parallelepiped which is spanned by the column vectors
a1, a2, . . . , ad ∈ R

d of the matrix A. Figure 1 gives a two-dimensional example.
Now we assume that the crystal undergoes a deformation in space. This can be

described by a function

y : L ∩ Ω → R
d,(2.4)

which maps the reference configuration to the deformed state. A point x ∈ L∩Ω from
the reference configuration is thus moved to y(x) under deformation, and y(L ∩ Ω)
describes the shape of the deformed crystal. The potential energy of the deformed
crystal can now be written as

Φ(A)({y(x)}x∈L∩Ω).(2.5)

Note that the positions of the atoms L ∩ Ω of the reference configuration act as an
index set.

Furthermore, we assume that the potential can be split into a sum of local inter-
actions Φ(A),x around some points x:

Φ(A)({y(x)}x∈L∩Ω) =
∑

x∈L∩Ω

Φ(A),x({y(x)}x∈L∩Ω).(2.6)

Almost all physically meaningful potentials allow such a localization. The points x
can be interpreted as the center points of the local interactions. For example, x can
be chosen as 1

2 (x + x̃) if Φ(A),x denotes the pair interaction of two atoms y(x) and
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Fig. 2. Atomic chain with springs and fixed boundary.

y(x̃). The precise location of the points x will be relevant later for the inner expansion
technique. For the other two techniques it suffices to treat the positions of the points
x just as an index set. Thus we postpone their exact choice to section 5.3. Since the
atom positions are arranged in the form of a lattice L ∩ Ω, it makes sense to assume
that this holds for the points x as well. The set of center points {x} then forms the
associated lattice L∩Ω. Note that the lattice L may, but need not, coincide with the
original lattice L.

Example 1. The most simple example is the atomic chain in one dimension.
Despite its simplicity, it serves quite well as a model problem. Many effects from
physically more complex situations can already be observed and studied with this
model. We consider the domain Ω = (0, L) for some integer L > 0 and place the
atoms at the points 1, 2, 3, . . . , L − 2, L − 1. The lattice is then given by L = Z.
We assume that adjacent particles are connected by a spring of length one in the
undeformed state. Furthermore, the chain is fixed at both ends; see Figure 2. The
springs are assumed to obey Hooke’s law with the spring constant normalized to one.
This gives rise to the potential

Φ(A)({y(x)}x∈L∩Ω) =

L∑
x=1

ϕ
(
y(x) − y(x− 1)

)
, where ϕ(r) =

1

2
(r − 1)2

(2.7)

for a deformation y. Here we assume y(x) = x for all lattice points outside Ω, that
is, for all x ∈ L \ Ω. This implements Dirichlet-like boundary conditions; i.e., the
specimen is subjected to the identity deformation at its boundary. Note that these
points outside Ω denote only “fixed particles” without any degree of freedom. They
help to express the potential in a short form but do not constitute particles of the
system.

We localize the potential by splitting it into the pair interactions. This leads to

Φ(A)({y(x)}x∈L∩Ω) =
∑

x∈L∩Ω

Φ(A),x({y(x)}x∈L∩Ω),(2.8)

where

Φ(A),x({y(x)}x∈L∩Ω) = ϕ
(
y
(
x + 1

2

)
− y
(
x− 1

2

))
(2.9)

with the associated lattice L = Z + 1
2 .

Example 2. We now consider the well-known Lennard–Jones potential

Φ(A)({y(x)}x∈L∩Ω) =
∑

x,x̃∈L, x<x̃
x∈Ω or x̃∈Ω

ϕ
(
y(x) − y(x̃)

)
, where ϕ(r) =

(σ
r

)12

−
(σ
r

)6

.

(2.10)

As in Example 1, the domain is given by Ω = (0, L), and the lattice is given by
L = Z. Once more we assume y(x) = x for all x ∈ L \ Ω to prescribe Dirichlet-
like boundary conditions. The side condition in the sum guarantees that each pair
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Fig. 3. Function ϕ with σ = 2−1/6 for the Lennard–Jones potential.

of particles from the infinite lattice is accounted for exactly once if it contributes to
Ω∩L at all. The choice of the associated lattice L∩Ω and the according localization
is not straightforward here. Therefore we postpone this issue to section 5, where it is
systematically investigated.

The parameter σ ∈ R
+ determines the lattice constant. The function ϕ possesses

a sole minimum at r = 21/6σ for positive arguments r; see Figure 3. For the choice
σ = 2−1/6 this minimum would be located at the lattice distance r = 1. Note, how-
ever, that this choice does not make the identity deformation y(x) = x a minimizer
of the potential energy of the system, since only adjacent particles are in the mini-
mum of ϕ, whereas all other particle pairs (with larger distances) contribute to the
potential energy by an attracting part. Therefore the minimum distance is a little bit
smaller. We compensate for this by choosing σ slightly larger such that the minimum
of the potential energy of the overall system is attained at r = 1. The corresponding
parameter σ can be computed as follows: The potential energy of a particle in an
infinite chain with lattice distance one is given by

1

2

∑
z∈Z\{0}

ϕ(z) =

∞∑
z=1

[(σ
z

)12

−
(σ
z

)6
]

= ζ(12)σ12 − ζ(6)σ6,(2.11)

where ζ denotes the Riemann ζ-function

ζ(s) =

∞∑
z=1

1

zs
.(2.12)

We require that the first derivative of (2.11) with respect to σ vanishes; hence we
choose

σ =

(
1

2

ζ(6)

ζ(12)

) 1
6

.(2.13)

The values ζ(6) and ζ(12) are given in Table 1. Since they are close to 1, the use of

σ as in (2.13) is only a small modification to the previous choice σ = 2−
1
6 .

Both the spring potential and the Lennard–Jones potential are pair potentials;
i.e., they can be written as a sum of terms, each of which depends only on the posi-
tions of two atoms. This restriction, however, prevents the modeling of many phys-
ical properties. It can be shown, for example, that each pair potential exhibits the
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Table 1

Values of the Riemann ζ-function.

s ζ(s)
6 1.01734306198444913971451792979 . . .
12 1.00024608655330804829863799805 . . .

symmetry relation C12 = C44 for the resulting elastic moduli, the so-called Cauchy
relation [14]. Physical measurements of the elastic moduli of real solids, however,
show that this symmetry is often not valid. Thus, pair potentials are not sufficient to
model solids. Physically more meaningful potentials have been developed for several
materials by Brenner [9], Stillinger and Weber [29], Abell [1], Tersoff [31], Daw and
Baskes (embedded-atom method) [13, 14], and many others. They involve many-body
interactions. Note that these potentials can also be localized as in (2.6) and are thus
suitable for the methods described in the following.

3. Scaling technique. Now we are interested in deriving a macroscopic contin-
uum mechanical model from a given atomistic system. A common method for this
is the so-called scaling technique. It has been used and further analyzed by Blanc,
Le Bris, and Lions [5], E and Huang [16], and many others.

3.1. Description of scheme. We consider a fixed domain Ω ⊂ R
d and a fixed

lattice L as in the previous section. Now we scale the lattice by some factor ε ∈ R
+

and replace L∩Ω in (2.2) by εL∩Ω. For ε < 1, this corresponds to a description of the
solid with more atoms. The original atomistic potential Φ(A) and the local potentials
Φ(A),x for x ∈ L ∩ Ω as defined in (2.6) are given on the length scale of the physical
lattice constant. We denote this length scale by one. Now the original potentials
cannot directly be applied to the length scale ε but must be rescaled properly. To
this end, we multiply the arguments of Φ(A),x with ε−1. If the points {y(x)}x∈εL∩Ω

denote the atom positions on the length scale ε, then the points {ε−1y(x)}x∈εL∩Ω

are atom positions on the length scale one. They now can be used for the physical
potential Φ(A),x. This way, the potential Φ(A),x,ε for the length scale ε is obtained
from Φ(A),x by

Φ(A),x,ε({y(x)}x∈εL∩Ω) := Φ(A),x({ε−1y(x)}x∈εL∩Ω).(3.1)

The total potential Φ(A),ε for the length scale ε is then given by the sum over
Φ(A),ε,x for all atoms x ∈ εL∩Ω. Since the number Nε = |εL∩Ω| of expansion points
on the length scale ε scales such as ε−d, i.e., Nε ≈ ε−dN1, we multiply this sum by
εd to keep the total potential energy at the order O(1). Altogether, we obtain

Φ(A),ε({y(x)}x∈εL∩Ω) := εd
∑

x∈εL∩Ω

Φ(A),ε,x({y(x)}x∈εL∩Ω)

= εd
∑

x∈εL∩Ω

Φ(A),x({ε−1y(x)}x∈εL∩Ω).(3.2)

Note that Φ(A),ε,x acts here as a discrete energy density.
An equivalent way of constructing Φ(A),ε is to replace the domain Ω by the scaled

domain ε−1Ω, to fill it with atoms by means of L ∩ ε−1Ω, and then to define Φ(A),ε

as εdΦ(A) on this set.
Now assume that the deformation y is not only given on the discrete sets L∩Ω or

εL∩Ω but continuously on the whole domain Ω, i.e., y : Ω → R
d. Then the potential
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energy of y can be defined for any length scale ε > 0 by restricting y to εL ∩ Ω, i.e.,

Φ(A),ε(y) := Φ(A),ε({y(x)}x∈εL∩Ω).(3.3)

Now the challenge is to determine the continuum limit

Φ(S)(y) := lim
ε→0

Φ(A),ε(y).(3.4)

The limit potential energy Φ(S) is then used in a model on the macroscale.
For simple pair potentials which satisfy a certain decay condition that ensures

finiteness of the sums, it can be shown that this limit is of the form (1.1); see [5]
for a rigorous proof. We expect that similar results also hold for more complicated
many-body potentials, though we are not aware of any proof in the literature. Note,
however, that the mere existence of the limit does not yet say anything about its
quality, i.e., which information from the microscale is kept on the macroscale and
which is not. This point will be examined in more detail in the next section.

3.2. Typical examples. We now analyze how the scaling technique performs
for typical sample problems. For the situation of Example 1, the following lemma
holds according to [5, Theorem 1].

Lemma 3.1. Let y ∈ C2(Ω). Then the continuum limit obtained from the scaling
technique for the atomic chain with the spring potential (2.7) is given by

Φ(S)(y) = lim
ε→0

Φ(A),ε(y) =

∫
Ω

ϕ(y′(x)) dx.(3.5)

For the proof, the difference y(x + 1
2 ) − y(x − 1

2 ) for some point x ∈ L ∩ Ω is
transformed under the scaling procedure to the difference quotient

y(x + ε 1
2 ) − y(x− ε 1

2 )

ε
,(3.6)

which nicely converges to y′(x). Furthermore, the sum ε
∑

x∈εL∩Ω is a Riemann sum
for the integral. The smoothness assumption on y then allows us to simultaneously
perform both limit processes.

Similarly, the scaling technique works fine for nonlocal interactions as given in
Example 2. Again [5, Theorem 1] provides us with the following lemma.

Lemma 3.2. Let y ∈ C2(Ω). Then the continuum limit obtained from the scaling
technique for the atomic chain with the Lennard–Jones potential (2.10) is given by

Φ(S)(y) = lim
ε→0

Φ(A),ε(y) =
1

2

∫
Ω

∑
z∈Z\{0}

ϕ(y′(x)z) dx.(3.7)

Here the infinite sum can be explicitly determined. It holds that

1

2

∑
z∈Z\{0}

ϕ(y′(x)z) =

∞∑
z=1

[(
σ

y′(x)z

)12

−
(

σ

y′(x)z

)6
]

=

(
σ

y′(x)

)12

ζ(12) −
(

σ

y′(x)

)6

ζ(6) = ϕ(y′(x)),(3.8)

where

ϕ(r) = ζ(12)
(σ
r

)12

− ζ(6)
(σ
r

)6

.(3.9)
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Hence the continuum energy (3.7) reads as

Φ(S)(y) =

∫
Ω

ϕ(y′(x)) dx.(3.10)

The function ϕ plays the role of an “effective Lennard–Jones potential.” It is close
to ϕ since ζ(6) and ζ(12) are close to 1. This resembles the fact that the far-field
interactions contribute to the overall potential only up to a small extent due to the
rapid decay of the Lennard–Jones potential.

Both the spring potential and the Lennard–Jones potential are relatively simple
potentials. Physically meaningful potentials of real solids are much more complex.
As already described above, it is often not sufficient to deal with pair potentials only;
instead one has to take into account many-body interactions as well. This, however,
can have adverse effects for the scaling technique, as will be seen from the next (still
simple) example of a three-body potential.

Example 3. Again we consider the atomic chain. Let L = L = Z, and replace
the spring potential of Example 1 by the following three-body interaction potential:

Φ(A)(y) =
∑

x∈L∩Ω

ϕ
(
y(x + 1) − 2y(x) + y(x− 1)

)
.(3.11)

Here ϕ can be any continuous function. We then have the following lemma.
Lemma 3.3. Let Ω ⊂ R be a bounded domain. Let y ∈ C2(Ω), and let ϕ be

continuous at 0. Then the continuum limit obtained from the scaling technique for
the atomic chain with potential (3.11) is given by

Φ(S)(y) =

∫
Ω

ϕ(0) dx.(3.12)

Proof. The scaled potential is given by

Φ(A),ε(y) = ε
∑

x∈εL∩Ω

ϕ

(
y(x + ε) − 2y(x) + y(x− ε)

ε

)
.(3.13)

The Taylor expansion of y(x + ε) and y(x− ε) around x gives

ϕ

(
y(x + ε) − 2y(x) + y(x− ε)

ε

)
= ϕ (εy′′(ξx))(3.14)

for some point ξx ∈ Ω. Now let vol Ω :=
∫
Ω

1 dx denote the volume of Ω, and let card
denote the cardinality of a set. We then obtain

(3.15)∣∣∣∣∣Φ(A),ε(y) −
∫

Ω

ϕ(0) dx

∣∣∣∣∣
=

∣∣∣∣∣∣ε
∑

x∈εL∩Ω

(
ϕ
(
εy′′(ξx)

)
− ϕ(0)

)
− ϕ(0)

(
vol Ω − ε card(εL ∩ Ω)

)∣∣∣∣∣∣
≤ ε card(εL ∩ Ω) max

x∈εL∩Ω

∣∣ϕ(εy′′(ξx)
)
− ϕ(0)

∣∣+ |ϕ(0)|
∣∣ vol Ω − ε card(εL ∩ Ω)

∣∣
ε→0−→ 0

since y′′ is bounded and ε card(εL ∩ Ω) → vol Ω as ε → 0.
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Hence Φ(S) is a constant functional and gives no information about the system at
all.

The continuum limit obtained by the scaling technique is completely useless for
this specific model problem. We admit that the interaction potential (3.11) is some-
what artificial and marks an extreme case. However, this example shows an effect
which can occur for the scaling technique if many-body potentials are used instead of
pair potentials.

The reason for this failure of the scaling technique will be examined in the fol-
lowing section.

3.3. Asymptotic analysis. Consider the Taylor series expansion of the defor-
mation function y around a point x̂ ∈ Ω. Without loss of generality we set x̂ = 0, and
the same behavior for general x̂ ∈ Ω is obtained after a translation. If we assume for
the moment that the series expansion exists and converges to y, we obtain

Φ(A),ε,0({y(x)}x∈εL∩Ω) = Φ(A),ε,0

({ ∞∑
k=0

1

k!
xky(k)(0)

}
x∈εL∩Ω

)

= Φ(A),0

({
ε−1

∞∑
k=0

1

k!
(εx)ky(k)(0)

}
x∈L∩ε−1Ω

)

= Φ(A),0

({ ∞∑
k=0

εk−1 1

k!
xky(k)(0)

}
x∈L∩ε−1Ω

)
.(3.16)

The terms with k = 0 would blow up to infinity as ε → 0. However, since every
physically reasonable potential is translation-invariant, these terms do not appear at
all. The terms with k = 1 are of order one. They are thus captured by the limit
process, and the first derivatives show up in the limit continuum energy. All higher
terms, i.e., those with k ≥ 2, disappear in the limit process because εk−1 → 0 as
ε → 0.

Therefore the continuum energy obtained by the scaling technique depends only
on the first derivatives. The scaling preserves the terms of the first nonvanishing order
k = 1. All higher order effects of the potential are lost by this type of scaling and the
limiting process. This is just what happened in Example 3, where the arguments of
the potential function formed a difference stencil for the second derivative.

4. Direct expansion technique. To preserve the higher order effects which are
lost by the scaling technique as described in the previous section, the so-called direct
expansion technique can be used. It has been proposed by Kruskal and Zabusky [23],
Zabusky and Kruskal [37], Collins [10], and Rosenau [24, 25, 26] and is based on the
Taylor expansion of the evolution equation of the atomistic system. This approach
leads to a quasi-continuum description, i.e., a continuum mechanical model for the
atomistic system for a fixed number N of atoms. The limiting process N → ∞ is
omitted, and thus the discreteness of the atomistic system is not destroyed. The
potential itself is not treated directly, but it is possible to reconstruct the continuum
potential afterwards.

The method will now be shortly described for the atomic chain with the spring
potential (2.7); for further details see [24]. According to Newton’s second law of
motion, the evolution reads as

m
∂2

∂t2
y(x) = ϕ′(y(x + 1) − y(x)

)
− ϕ′(y(x) − y(x− 1)

)
∀x ∈ L ∩ Ω,(4.1)



HIGHER ORDER GRADIENT CONTINUUM MODELS 541

where m denotes the mass of each atom. In terms of the discrete lattice width z(x) :=
y(x) − y(x− 1), it can be written as

m
∂2

∂t2
z(x) = ϕ′(z(x + 1)) − 2ϕ′(z(x)) + ϕ′(z(x− 1)).(4.2)

Taylor expansion of ϕ′ ◦ z around x leads to

m
∂2

∂t2
z(x) = L(ϕ′ ◦ z)(x)(4.3)

with the infinite series of differential operators

L = 4 sinh2

(
1

2

∂

∂x

)
=

∞∑
k=1

2

(2k)!

∂2k

∂x2k
=

∂2

∂x2
+

1

12

∂4

∂x4
+

1

360

∂6

∂x6
+ . . . ;(4.4)

L is then truncated at the desired order.
For a chain of linear springs, i.e., ϕ(r) = 1

2 (r − 1)2 as in Example 1, and a
truncation of L after the fourth derivative, this leads to

m
∂2

∂t2
z(x) =

∂2

∂x2
z(x) +

1

12

∂4

∂x4
z(x).(4.5)

Now the quasi-continuum potential energy Φ(D) can be reconstructed. For this pur-
pose, we have to find a potential function from which the evolution equation results
by computing the directional derivative and applying the discrete formula of partial
integration. This leads to

Φ(D)(z) =
∑

x∈L∩Ω

1

2
z′

2
(x) − 1

24
z′′

2
(x).(4.6)

Note that the atomistic evolution equation is rewritten in terms of the variable z
in this approach. Thus the resulting equations are expressed in terms of the changed
variable z, which plays the role of the deformation gradient: z ≈ ∂y/∂x. Hence (4.5)
does not correspond to an evolution equation for y but to an evolution equation for
its first spatial derivative.

In the example considered here, the simple pair potential depends on the difference
y(x)−y(x−1). Thus the change of variables from y(x) to z(x) = y(x)−y(x−1) allowed
us to express the potential and its derivative in terms of a single variable, which then
led to the formulations (4.5) and (4.6). In principle, any translation invariant N -body
potential can be written in terms of the differences of N − 1 pairs of atom position.
Thus, this approach should work for many-body potentials as well. However, the
corresponding equations can then become quite involved.

Furthermore, note that the coefficients of the series L of differential operators
depend on the number of atoms. To analyze this dependence, the evolution equation
(4.1) is scaled as in section 3:

εm
∂2

∂t2
y(x) = ϕ′

(
y(x + ε) − y(x)

ε

)
− ϕ′

(
y(x) − y(x− ε)

ε

)
∀x ∈ εL ∩ Ω.

(4.7)
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Here the mass of the atoms scales with ε to keep the total mass of the system constant.
The difference equation is then rewritten in terms of the normalized lattice width

z(x) := y(x)−y(x−ε)
ε as

m
∂2

∂t2
z(x) =

ϕ′(z(x + ε)) − 2ϕ′(z(x)) + ϕ′(z(x− ε))

ε2
.(4.8)

Then the Taylor expansion of ϕ′ ◦ z leads to (4.3) with the differential operator

L =
∞∑
k=1

2

(2k)!
ε2k−2 ∂2k

∂x2k
=

∂2

∂x2
+

ε2

12

∂4

∂x4
+

ε4

360

∂6

∂x6
+ · · · .(4.9)

Clearly, the principal part ∂2/∂x2 remains unaffected by the scaling, but the higher
order terms, i.e., the dispersion effects, are weighted by certain polynomials in ε.
Their influence now depends on the specific choice of ε and is substantially reduced
for ε < 1. They would completely vanish in the limit ε → 0, which is consistent with
the results of the scaling technique.

Let us note a major drawback of the direct expansion technique: The evolution
equation (4.5) is ill posed, since the right-hand side is not a negative semidefinite
operator in space. In other words, the equation lacks hyperbolicity. As a consequence,
the potential energy dramatically blows up during the time evolution. This leads to an
uncontrolled behavior of the solution if the corresponding evolution equation can be
solved at all. Contrary to this, the evolution equation of the original atomistic model
is well posed. The upscaling process by the direct expansion technique therefore
must have destroyed essential properties of the atomistic model. A closer look at the
continuum potential energy (4.6) shows that it is not bounded from below, although
this holds for the original atomistic potential (2.7). Furthermore, the continuum
potential is not convex, in contrast to its atomistic counterpart. Thus the direct
expansion technique does not preserve these two important properties. This leads to
the nonhyperbolicity of (4.5) and makes it ill posed.

Note that if the differential operator L is truncated after the sixth-order term,
the resulting evolution equation is well posed by chance. We conclude from these
observations that an arbitrary truncation of L is sometimes feasible but that it does
not lead in general to a well-posed evolution equation.

Several ways to overcome this problem have been proposed. If (4.5) would be
replaced by

m
∂2

∂t2
z(x) =

∂2

∂x2
z − 1

12

∂4

∂x4
z,(4.10)

i.e., if the sign of the fourth-order term would be altered, then the equation would be
well posed. This is known as the wrong sign problem, and (4.5) is denoted as the bad
Boussinesq equation; see [24]. Another way to overcome this problem is to replace
the Taylor series expansion of L by a more general Padé approximation; see, e.g., [36]
and [25, 26]. Sometimes these approximations lead to a well-posed evolution equation,
but sometimes they do not. Thus, these approaches also do not satisfactorily correct
the problems of the direct expansion technique.

5. Inner expansion technique. To remedy the disadvantages of the scaling
technique and the direct expansion technique as described in sections 3 and 4, re-
spectively, we propose a so-called inner expansion technique. This approach gives a
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description of the atomistic system within the quasi-continuum regime. It captures all
higher order terms up to a given order, conserves convexity, and leads to well-posed
evolution equations.

5.1. Inner expansion. In (2.6) we introduced the points x ∈ L ∩ Ω to localize
the overall potential energy Φ(A) by means of the sum

∑
x∈L∩Ω Φ(A),x. For each point

x, we now consider the Taylor series expansion of the deformation function y around
x up to some degree K ∈ N:

y(x) ≈
K∑

k=0

1

k!
∇ky(x) : (x− x)k.(5.1)

Here the colon denotes the higher-dimensional scalar product. The expansion (5.1)
then allows us to reformulate the local potential Φ(A),x from (2.6) in the following
way:

Φ(A),x({y(x)}x∈L∩Ω) ≈ Φ(A),x

({
K∑

k=0

1

k!
∇ky(x) : (x− x)k

}
x∈L∩Ω

)

= Φ(I),x
(
y(x),∇y(x),∇2y(x), . . . ,∇Ky(x)

)
,(5.2)

where Φ(I),x is defined by

Φ(I),x(d0, d1, d2, . . . , dK) := Φ(A),x

({
K∑

k=0

1

k!
dk : (x− x)k

}
x∈L∩Ω

)
.(5.3)

Thus we transformed the original potential Φ(A),x which depends on the deformation
y at all lattice points x ∈ L∩Ω to a representation which depends on the derivatives
of y only at the single point x. Note the similarity of this construction to expansion
(3.16) in section 3.3.

Summing up the local potentials Φ(I),x, we obtain the overall potential

Φ(I)(y) =
∑

x∈L∩Ω

Φ(I),x
(
y(x),∇y(x),∇2y(x), . . . ,∇Ky(x)

)
.(5.4)

5.2. Spatial averaging. The potential energy Φ(I) in representation (5.4) still
contains the finite sum over all expansion points x ∈ L ∩ Ω. This is in contrast
to common continuum mechanical energies in which an energy density is integrated
over the reference configuration Ω. The sum will now be approximated as follows:
Observe that (5.4) is a Riemann sum which is close to an integral. This justifies it to
interpolate Φ(I)(y) by passing to the integral representation

Φ(J)(y) =
1

|detA|

∫
Ω

Φ(I),x
(
y(x),∇y(x),∇2y(x), . . . ,∇Ky(x)

)
dx.(5.5)

The factor 1
| detA| stems from the volume of the base cell of the lattice; cf. (2.3).

Here the following remark is in order: The scaling technique is based on the
thermodynamic limit, which drives the number N of atoms to infinity. In this case
the limiting procedure N → ∞ includes the limit of the Riemann sum, and an integral
representation is directly obtained. In contrast to this approach, the number N of
atoms is kept fixed for both the direct expansion technique and the inner expansion
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technique. The passage from the Riemann sum to the integral representation (5.5)
is now an additional approximation step which does not correspond to the process of
letting the number N of atoms tend to infinity. The result is not a description for the
continuum limit but an interpolated description for the system with a fixed number
of atoms in the quasi-continuum regime, which still contains the discreteness effects
of the finite system.

5.3. Choice of expansion points. Now we consider the choice of the expansion
points x in more detail. In order to make the truncated Taylor series approximation
as accurate as possible, the remainder terms must be minimized. The latter strongly
depend on the choice of the expansion points; hence it is crucial to choose them
correctly.

The optimal choice can be given strictly in the important special case when the
local potential Φ(A),x depends on a linear combination of all components of all points
y(x). This means that the local potential can be written as

Φ(A),x({y(x)}x∈L∩Ω) = ϕ

( ∑
x∈L∩Ω

ax · y(x)

)
,(5.6)

where ϕ : R → R is a function and ax ∈ R
d are constants for all x ∈ L ∩ Ω. For

the sake of a simple description, we proceed with d = 1. Similar arguments hold for
higher space dimensions. Because of the crystal symmetry, we can assume that the
absolute values of the coefficients ax satisfy the symmetry relation

|ax| = |a2c−x|(5.7)

for a center point c ∈ Ω such that L = 2c− L. Then

∑
x∈L∩Ω

|ax|x =
1

2

∑
x∈L∩Ω

|ax|x + |a2c−x|(2c− x)

=
1

2

∑
x∈L∩Ω

|ax|x + |ax|(2c− x) =
∑

x∈L∩Ω

|ax|c.(5.8)

Thus the center point c can equivalently be characterized as the barycenter

c =

∑
x∈L∩Ω |ax|x∑
x∈L∩Ω |ax|

.(5.9)

The Taylor expansion of the potential Φ(A),x from (5.6) around x then reads as

ϕ

( ∑
x∈L∩Ω

axy(x)

)
= ϕ

( ∑
x∈L∩Ω

K∑
k=0

ax
k!

y(k)(x)(x− x)k

+
ax

(K + 1)!
y(K+1)(ξx)(x− x)K+1

)
(5.10)

for some points ξx ∈ Ω. Since a priori nothing is known about the behavior of y(K+1),
the best way is to minimize the simplified remainder term

R(x) :=
∑

x∈L∩Ω

|ax||x− x|K+1.(5.11)
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Lemma 5.1. The simplified remainder term (5.11) attains its minimum at the
barycenter c.

Proof. Since the function x → |x − x|K+1 is convex, we can bound R(x) from
below by

R(x) ≥
∑

x∈L∩Ω

|ax|
(
∂|x− x|K+1

∂x

∣∣∣∣
x=c

(x− c) + |x− c|K+1

)

=
∑

x∈L∩Ω

|ax||x− c|K+1 = R(c).(5.12)

Here, due to symmetry, the relation ∂|x−x|K+1

∂x

∣∣
x=c

= −∂|2c−x−x|K+1

∂x

∣∣
x=c

holds, and

the differential terms ∂|x−x|K+1

∂x disappear in the above sum.
Hence each point x should be chosen as the barycenter c of the local interaction

potential. The set L ∩ Ω is thus constructed by splitting the overall potential Φ(A)

into as many local interactions as possible. For each local interaction the barycenter
c is computed according to (5.9), and its value is assigned to the variable x. The set
of all such barycenters c then forms the set L ∩ Ω.

In the case of a more general potential which cannot be written as (5.6), many
remainder terms occur and are combined in a complex manner. Their interaction can
be very complicated and depends strongly on the type of the potential. It is unclear
what the minimization of the remainder terms in this case means. An individual
analysis is necessary for each such type of potential. Furthermore, the barycenter c
of the local interaction cannot be strictly defined due to the missing coefficients ax.
Nevertheless, in many cases it is possible to define some generalized barycenter. From
our experience it is best to choose x as such a center point.

5.4. Examples. We now apply the inner expansion technique to the already
introduced sample problems. First, we consider the atomic chain with the spring
potential (2.7) as given by Example 1. The barycenter for the interaction of the
particles y(x) and y(x + 1) is given by x + 1

2 ; hence the expansion points as given by
(2.9) already fit to this scheme. We apply our inner expansion method and obtain
from a straightforward calculation the following lemma.

Lemma 5.2. Let K ∈ N denote the order of approximation, and let y ∈ CK(Ω).
Then the quasi-continuum energy density obtained from the inner expansion technique
for the atomic chain with the spring potential (2.7) is given by

Φ(I),x(d0, . . . , dK) = ϕ

⎛
⎜⎜⎝

K∑
k=1
k odd

1

k!2k−1
dk

⎞
⎟⎟⎠ .(5.13)

Thus, for K = 1 and K = 2 we end up with the interpolated quasi-continuum
energy

Φ(J)(y) =
1

2

∫
Ω

(y′(x) − 1)2 dx.(5.14)

Note that it coincides with the outcome of the scaling technique and the direct ex-
pansion technique with truncation after the second-order term. Larger parameters K
result in additional discreteness terms. We obtain

Φ(J)(y) =
1

2

∫
Ω

(
y′(x) +

1

24
y′′′(x) − 1

)2

dx(5.15)
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for K = 3 and K = 4 and

Φ(J)(y) =
1

2

∫
Ω

(
y′(x) +

1

24
y′′′(x) +

1

1920
y′′′′′(x) − 1

)2

dx(5.16)

for K = 5 and K = 6.
Now we are interested in how the inner expansion technique performs in cases

where the scaling technique fails. To this end, we again consider the atomic chain
with the three-body potential (3.11) from Example 3. For this case we have the
following lemma.

Lemma 5.3. Let K ∈ N denote the order of approximation, and let y ∈ CK(Ω).
Then the quasi-continuum potential energy density obtained from the inner expansion
technique for the atomic chain with the potential (3.11) is given by

Φ(I),x(y) = ϕ

⎛
⎜⎜⎝

K∑
k=1

k even

2

k!
y(k)(x)

⎞
⎟⎟⎠ .(5.17)

For K = 2 and K = 3 this results in the potential energy

Φ(J)(y) =

∫
Ω

ϕ (y′′(x)) dx,(5.18)

and for K = 4 and K = 5 the potential energy

Φ(J)(y) =

∫
Ω

ϕ

(
y′′(x) +

1

12
y′′′′(x)

)
dx(5.19)

is obtained. We see that the expansion technique yields a meaningful continuum
energy also for the case where the scaling technique failed.

The inner expansion technique is certainly not limited to the case of quadratic
potentials and to local interactions. We demonstrate this for the Lennard–Jones
potential from Example 2. According to Lemma 5.1, we choose the barycenter x =
1
2 (x + x̃) for each term of the sum (2.10). This leads to L = 1

2Z ∩ Ω. To circumvent
an annoying formalism with the boundary, we treat all atoms to be contained in an
infinite bulk crystal. This is reasonable due to the rapid decay of the Lennard–Jones
potential. The atomistic potential is localized by

Φ(A),x({y(x)}x∈L∩Ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∑
z=1

ϕ
(
y(x + z) − y(x− z)

)
if x ∈ Z ∩ Ω,

∞∑
z=1

ϕ
(
y(x + z − 1

2 ) − y(x− z + 1
2 )
)

if x ∈ (Z + 1
2 ) ∩ Ω;

(5.20)

cf. also (2.6).
Then we substitute the Taylor series expansion (5.1) of y into (5.20) and refor-

mulate the potential according to (5.2). This leads to the following lemma.
Lemma 5.4. Let K ∈ N denote the order of approximation, and let y ∈ CK(Ω).

Then the interpolated quasi-continuum energy obtained from the inner expansion tech-
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nique for the atomic chain with the Lennard–Jones potential (2.10) is given by

Φ(J)(y) =

∫
Ω

∞∑
z=1

ϕ

⎛
⎜⎜⎝

K∑
k=1
k odd

2

k!
y(k)(x)zk

⎞
⎟⎟⎠+

∞∑
z=1

ϕ

⎛
⎜⎜⎝

K∑
k=1
k odd

2

k!
y(k)(x)

(
z − 1

2

)k

⎞
⎟⎟⎠ .

(5.21)

For K = 1 and K = 2, this results in

Φ(J)(y) =

∫
Ω

ϕ(y′(x)) dx,(5.22)

where ϕ is given by (3.9). This expression coincides with the continuum limit by the
scaling technique. For K = 3 and K = 4, we obtain

Φ(J)(y) =

∫
Ω

∞∑
z=1

ϕ

(
y′(x)z +

1

24
y′′′(x)z3

)
dx.(5.23)

For K ≥ 3, no closed form is known to us which avoids the sum over all z as in (5.22).
Again we see that in comparison to the scaling technique now higher order terms are
generated by the inner expansion technique.

6. Comparison of upscaling schemes. After the discussion of three different
methods to derive a continuum or quasi-continuum description of an atomistic model,
the question arises of how the corresponding continuum models and their solutions
differ or coincide. To this end, we numerically solve the corresponding evolution
equations and compare the results. Here the solution of the original atomistic system
serves as a reference solution. Furthermore, we show that convexity of the atomistic
model is preserved under the scaling technique and the inner expansion technique,
which leads to well-posed macroscopic evolution equations.

6.1. Comparison of evolution equations. For the atomistic system, the evo-
lution equation is given by Newton’s second law of motion, which states that the force
acting on each atom equals its mass times its acceleration. The force points towards
the direction of steepest descent of the potential energy, that is, its negative gradient
with respect to the coordinates of the respective atom. In the case of a continuum
potential of the form

Φ(C)(y) =

∫
Ω

Φ(C),x
(
y(x),∇y(x), . . . ,∇Ky(x)

)
dx(6.1)

as it is derived by the scaling technique, the direct expansion technique, and the inner
expansion technique, this generalizes to∫

Ω

ρ
∂2y

∂t2
v dx = −Φ(C)′(y; v)(6.2)

for all test functions v ∈ C∞
c (Ω). Here ρ = |detA|−1m denotes the mass density, and

Φ(C)′(y; v) denotes the derivative of Φ(C) at y in the direction v. We compute

Φ(C)′(y; v) =

∫
Ω

K∑
k=0

Φ
(C),x
,k (y,∇y, . . . ,∇Ky) : ∇kv dx

=

∫
Ω

K∑
k=0

(−1)k divk Φ
(C),x
,k (y,∇y, . . . ,∇Ky)v dx,(6.3)
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where Φ
(C),x
,k denotes the derivative of Φ(C),x with respect to the argument ∇ky. Since

this holds for any test function v ∈ C∞
c (Ω), the macroscopic evolution PDE reads as

ρ
∂2y

∂t2
=

K∑
k=0

(−1)k+1 divk Φ
(C),x
,k (y,∇y,∇2y, . . . ,∇Ky) in Ω.(6.4)

It has to be equipped with the initial values

y(x, 0) = y0(x) and
∂y

∂t
(x, 0) = y1(x) ∀x ∈ Ω(6.5)

and with the Dirichlet-like boundary conditions

y(x, t) = x, ∇νy(x, t) = ν, ∇2
νy(x, t) = · · · = ∇K−1

ν y(x, t) = 0 ∀x ∈ ∂Ω, t > 0.

(6.6)

The latter stem from the fixation of the specimen at its boundary. To this end, we
embed the specimen in an infinite undeformed crystal. This implies for the continuum
model that y and its normal derivatives coincide with the identity deformation and
its normal derivatives at the boundary.

Now we discretize the evolution equation (6.4) in time and space by finite differ-
ences. For the time discretization, an explicit Euler scheme with a three-point stencil
is sufficient. For the spatial discretization, we exploit the divergence structure of the

PDE by a two-stage scheme. In the first step, the derivatives Φ
(C),x
,k are computed.

In the second step, the divergence operators are applied. In both steps, a differ-
ence stencil of sufficiently high consistency order is necessary to resolve the spatial
derivatives. A stencil which is consistent only up to order one or two would introduce
higher order error terms. These would interfere with the higher order derivatives of
the continuum model which resemble the discreteness of the atomistic system. Since
we are interested in the discreteness effects of the PDE and not in the consistency
error of the finite difference discretization, we have to use stencils with sufficiently
high order. Therefore, in all numerical examples given below, eight-point stencils are
applied in both steps. Their consistency order is eight minus the order of the respec-
tive derivative. In all applications studied below, this results in a discretization error
of at least order four due to the two-stage scheme and a maximal order of eight of the
considered PDEs. Thus the spatial discretization errors of low order are eliminated,
and dispersion comes basically from the higher order terms of the PDE itself and not
from the finite difference discretization.2

In the following we study the behavior of the numerical solutions of the macro-
scopic evolution equations obtained from the scaling technique and the inner expan-
sion technique. The direct expansion technique with the truncation of L after the
fourth-order term is not considered because the corresponding evolution equation is
ill posed. We use the atomistic potentials given in Examples 1–3 from sections 2
and 3.

The domain is chosen as Ω = (0, 1000). This corresponds to a chain of 999 atoms
with lattice constant one. The initial values at time t = 0 are given by y(x, 0) =
x + p(x) and by ∂y

∂t (x, 0) = 0 for all x ∈ Ω. Here the function introduces a small

2To guarantee that roundoff errors do not destroy the high order of the respective scheme, a
mantissa size of 512 bits has been used for the numerical calculations.
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Table 2

Spatial error and convergence rates for the solution of (6.7) at t = 400.

Spatial res. Error Ratio log2(ratio)
1000 4.167261e-02
2000 5.864973e-03

7.105359 2.828903

4000 3.535252e-05
165.899726 7.374168

8000 1.489190e-07
237.394333 7.891142

16000 5.900347e-10
252.390197 7.979512

32000 2.302158e-12
256.296296 8.001769

Table 3

Spatial error and convergence rates for the solution of (6.8) at t = 20.

Spatial res. Error Ratio log2(ratio)
500 8.962375e-02

1000 1.081729e-02
8.285232 3.050542

2000 1.328105e-04
81.449043 6.347826

4000 8.599413e-06
15.444137 3.948987

8000 1.646067e-07
52.242194 5.707143

smooth perturbation around the center point x = 500. To be precise, p is a piecewise
21th-order polynomial such that p ≡ 0 on [0, 490] ∪ [510, 1000], p(500) = 1 and
p′(x) = p′′(x) = · · · = p(10)(x) = 0 for x = 490, 500, 510.

The Dirichlet conditions (6.6) on the left and on the right boundary are imple-
mented by additional ghost points outside of Ω whose values are kept fixed to the
identity deformation. This leads to a consistency order of one only. But since we
later consider sufficiently short time intervals such that the evolution of the initial
perturbation will not reach the boundary, this low consistency order at the boundary
is ineffective and will not destroy the high consistency order of the differential oper-
ator in the interior of the domain. Of course, if one is interested in calculating the
long-term behavior of solutions which includes boundary interactions, more involved
techniques must be used to really retain the high consistency order of the interior also
at the boundary and to simultaneously guarantee the stability of the discretization at
the boundary; see, e.g., [6].

First, we study the spring potential from Example 1. The mass is normalized to
one. For the inner expansion technique with K = 1 and K = 2, the scaling technique,
and the direct expansion technique with a truncation of L at the second-order term,
the resulting evolution equations all coincide and read as

∂2y

∂t2
=

∂2y

∂x2
.(6.7)

For the inner expansion technique with K = 3 and K = 4 the resulting evolution
equation is given by

∂2y

∂t2
=

∂2y

∂x2
+

1

12

∂4y

∂x4
+

1

576

∂6y

∂x6
.(6.8)

We now numerically solve the discretized equations as described above. The
convergence behavior of the spatial discretization is depicted in Tables 2 and 3. Here
the error was measured in the maximum norm. To this end, the numerical solution
with a spatial resolution of 64,000 and 16,000 for (6.7) and (6.8), respectively, was
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Fig. 4. Example 1: Solutions of the particle system (top), (6.7) (lower left), and (6.8) (lower
right).

used as reference. We used a time step of δt = 0.01 and δt = 0.001 for the solution
of (6.7) and (6.8), respectively. From Table 2 we see that the expected convergence
order eight3 is fully reached for model (6.7). For model (6.8) we roughly obtain the
expected order six.

The time evolution of the numerically computed solutions of (6.7) and (6.8) is
shown in Figure 4. To this end, the x-axis is plotted horizontally, and the t-axis
is plotted vertically going from top to bottom. Moreover, the color indicates the
quantity (y′)−1, which corresponds to the atom density of the atomistic model. Grey
denotes the equilibrium, whereas yellow and red denote regions with a high particle
density and blue denotes regions with a low particle density; cf. also the color bar in
Figure 4 (top right). The time evolution of the solution of the original particle system
is given in Figure 4 (top left) for reference.

In all cases, we can clearly observe the propagation of the initial perturbation
with constant speed to the left and to the right side. The propagation speed is
correctly reproduced for both continuum models. For the model (6.7), the initial
perturbation is propagated without changing its shape. This is in full agreement with
the established theory for the linear wave equation (6.7). However, this behavior does
not match that of the original atomistic system. Here a distinct amount of dispersion
due to the discreteness of the underlying atomistic system can be observed. The
absence of the dispersion is immanent to the scaling technique, because it describes
the thermodynamic limit N → ∞ and not the quasi-continuum behavior for a large

3The stencil guarantees a convergence order of at least seven. Due to symmetry the order
increases by one here.
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Table 4

Error of solution of the quasi-continuum model obtained by the direct expansion technique for
Example 1 at t = 400 with respect to solution of original particle system.

K 2-norm of error ∞-norm of error
1 1.9306179105e-1 7.2139674139e-2
3 1.0595174636e-2 3.0471826890e-3
5 4.3215088073e-3 9.2014282448e-4

but finite N . In the limit the dispersion vanishes; cf. (4.9). This dispersion, however,
is captured by the continuum model for K = 3, 4. Its solution coincides very well
with the solution of the original atomistic system. The dispersion is reproduced both
qualitatively and quantitatively to a high extent.

We also tested the inner expansion technique for K ≥ 5, which leads to quasi-
continuum models involving additional terms with higher derivatives than those in
(6.8). The resulting solutions (of course we then used finite difference stencils of
appropriate higher order) differ only slightly from those of (6.8). The difference is
not noticeable in a plot such as in Figure 4. The corresponding error with respect to
the solution of the original particle system is given in Table 4. Here we see that the
error is approximately 20 times smaller for K = 3 than for K = 1 but only two times
smaller for K = 5 than for K = 3. Thus, the expansion technique with K = 3 already
gives a very good quasi-continuum approximation of the model. The involved terms
up to the sixth-order derivative suffice to accurately describe the microscopic effects.

Now we turn to the Lennard–Jones potential of Example 2. We use the same
atomic chain with 999 atoms as in Example 1. The time step is chosen as δt = 0.01.
The main difference from the previous example is the nonlinearity of the evolution
equation. Thus we have to deal with shocks. The initial configuration is the same as
in Example 1, the only difference being that we have chosen a wider support (400) of
the perturbation function p to make the shocks more visible.

The time evolution of the numerically computed solutions of the original atom-
istic system and of the macroscopic models obtained by the inner expansion technique
with K = 1 and K = 3 are shown in Figure 5. For K = 1, the evolution equation
again coincides with the outcome of the scaling technique and of the direct expansion
technique with truncation at order two. We can observe essentially the same propaga-
tion of the initial perturbation towards both boundaries as in Example 1. Note that
now the propagation speed is no longer constant due to the nonlinearity; i.e., the per-
turbation changes its shape. After a certain time, sharp shock waves develop, which
can clearly be seen in all solutions. Furthermore, note that in the vicinity of the shock
waves the solution of the original atomistic model shows a distinct scattering. This
dispersive effect is disturbed on the macroscopic level for K = 1, but it is captured
to a very high extent for K = 3; see the enlarged parts of the respective solutions in
Figure 6.

Finally, we address Example 3. Again we use the same setting as for Example 1.
Only the atomistic potential is replaced by (3.11) with ϕ(r) = 1

2r
2. For this atomistic

potential, the scaling technique failed. Therefore we compare only the inner expansion
technique for K = 2 and K = 4. The macroscopic evolution equations are given by

∂2y

∂t2
= −∂4y

∂x4
for K = 2, 3(6.9)
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Fig. 5. Example 2: Solutions of the particle system (top) and quasi-continuum system for
K = 1 (lower left) and K = 3 (lower right). The indicated regions are enlarged in Figure 6.

Fig. 6. Example 2: Zoomed regions from Figure 5: the particle system (left) and quasi-
continuum system for K = 1 (center) and K = 3 (right).

and

∂2y

∂t2
= −∂4y

∂x4
− 1

6

∂6y

∂x6
− 1

144

∂8y

∂x8
for K = 4, 5,(6.10)

respectively.
The time evolution of the numerically computed solutions of the original atomistic

system and of (6.9) and (6.10) are shown in Figure 7. All three solutions are in good
agreement. The fanning out pattern is captured qualitatively very well. However,
a closer look reveals that the angles of the resulting striped delta shapes are not
correctly reproduced for K = 2. But for K = 4, they are very close to the ones of
the particle system. The width of the solution pattern at the last time step which
determines this angle is indicated in Figure 7. It measures about 725 particles for the
particle system, 900 particles for the continuum system with K = 2, and 750 particles
for K = 4.
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725

900 750

Fig. 7. Example 3: Solutions of the particle system (top), (6.9) (lower left), and (6.10) (right).

The evolution equation (4.5) governed by the direct expansion technique is not
included in our comparison, because it is ill posed and cannot be solved, as already
mentioned in section 4. We nevertheless tried to solve it numerically. This attempt
failed as expected. The solution behaved chaotically and exploded after a few time
steps. In the next section, we show that this cannot happen to continuum models
which are obtained by the scaling technique or our new inner expansion technique.

6.2. Hyperbolicity. The essential criterion for whether the evolution equations
studied here are well posed or ill posed is hyperbolicity. We call (6.4) hyperbolic if the
right-hand side is a negative semidefinite operator in space. This property holds if the
continuum potential is convex. Now, if the original atomistic potential already is not
convex, this cannot be expected to hold for the resulting continuum potential. But
if the original atomistic potential is convex, it still depends on the upscaling scheme
whether or not this property is carried over to the continuum level. Therefore it
is important to investigate which upscaling techniques preserve convexity and which
do not.

We already discussed in section 4 that the direct expansion technique in general
does not retain the convexity of the atomistic potential. Consequently, the right-
hand side of the corresponding evolution equation (4.5) needs not to be a negative
semidefinite operator, and the resulting macroscopic equation can be ill posed. This
problem is avoided by the scaling technique and the inner expansion technique. In
contrast to the direct expansion technique, they both retain the convexity of the
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atomistic potential. One immediately obtains from the description of the respective
schemes the following lemma.

Lemma 6.1. Let the atomistic potential Φ(A) be convex. Then the continuum
potentials Φ(I), Φ(J), and Φ(S) are convex as well.

As a consequence, the corresponding macroscopic evolution equations are hyper-
bolic and well posed.

Lemma 6.2. Assume that the continuum potential (6.1) is convex. Then the
corresponding evolution equation (6.3) is hyperbolic.

Proof. It has to be verified that the spatial operator of (6.3) is negative semidef-
inite. To this end, we test with y − id. By the mean value theorem we have for some
intermediate function ỹ = id + ϑ(y − id) with ϑ ∈ (0, 1):

−
∫

Ω

K∑
k=0

(−1)k divk Φ
(C),x
,k (y,∇y, . . . ,∇Ky)(y − id) dx

= −
∫

Ω

K∑
k=0

Φ
(C),x
,k (y,∇y, . . . ,∇Ky) : ∇k(y − id) dx

= −
∫

Ω

K∑
k=0

Φ
(C),x
,k (id, I, 0, . . . , 0) : ∇k(y − id) dx

−
∫

Ω

K∑
k,l=0

∇l(y − id) : Φ
(C),x
,k,l (ỹ,∇ỹ, . . . ,∇K ỹ) : ∇k(y − id) dx

= −Φ(C)′(id; y − id) − Φ(C)′′(ỹ; y − id, y − id).(6.11)

Here the boundary integrals which arise from the partial integration vanish

due to the boundary conditions. The first directional derivative Φ(C)′(id; y − id)
vanishes because id is an equilibrium configuration. The second directional derivative

Φ(C)′′(ỹ; y−id, y−id) is nonnegative, since the potential Φ(C) is assumed to be convex.
Hence the expression (6.11) is nonpositive.

Note that the Lennard–Jones potential is locally convex around the equilibrium
configuration but not globally convex. However, if the initial conditions are close to
the equilibrium, then the solution is close to the equilibrium as well. Thus, if the
initial conditions are chosen sufficiently small, the solution stays within this convex
region. Then the locally convex potential acts as a globally convex potential, and the
above argumentation works for this case as well.

7. Application to silicon. So far, we introduced the inner expansion technique,
studied it for a simple one-dimensional model problem, and compared it to the scaling
technique and the direct expansion technique. The inner expansion technique proved
to be a useful technique to obtain a quasi-continuum description of the atomistic
system, which avoids the drawbacks of the other methods. We now apply it to an
atomistic model of crystalline silicon to see whether its advantages hold for this more
realistic problem in three dimensions as well.

7.1. Approximation of potential energy. A widely used potential for the
atomistic simulation of silicon is given by Stillinger and Weber [29]. It consists of
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two- and three-body interactions and reads as

Φ(A)({y(x)}x∈L∩Ω) =
1

2

∑
x1,x2

ϕ2(|y(x2) − y(x1)|)(7.1)

+
1

2

∑
x1,x2,x3

ϕ3

(
|y(x2) − y(x1)|, |y(x3) − y(x1)|,

(y(x2) − y(x1)) · (y(x3) − y(x1))

|y(x2) − y(x1)||y(x3) − y(x1)|

)
.

Here the summation is over all x1, x2, x3 ∈ L ∩ Ω with x1 �= x2 �= x3 �= x1. The two-
and three-body terms are given by

ϕ2(r) = εA

(
B
σ4

r4
− 1

)
exp

σ

r − σb
,(7.2)

ϕ3(r12, r13,Θ) = ελ exp

(
γσ

r12 − σb
+

γσ

r13 − σb

)(
Θ +

1

3

)2

.(7.3)

For both types of interactions, the exponential terms serve as smooth cutoff functions,
which make the potential local. The pair interaction ϕ2 attains its minimum for
the nearest neighbor distance in the lattice and therefore stabilizes the equilibrium
distance of two adjacent atoms in the lattice. The variable Θ denotes the cosine of the
angle between y(x2)− y(x1) and y(x3)− y(x1). The triple term attains its minimum
for the angle arccos

(
− 1

3

)
≈ 109.47◦. The involved constants are

A = 7.049556277, λ = 21.0, σ = 0.20951 nm, b = 1.8,

B = 0.6022245584, γ = 1.2, ε = 50 kcal/mol.
(7.4)

Together the pair and triple interactions result in an overall potential which is
minimal just if the atoms are arranged in the so-called diamond structure. This is
the natural lattice structure of silicon. It consists of two nested fcc lattices. With the
notation of (2.3), it can be written as

Lcell =
a0

4

⎧⎨
⎩
⎛
⎝0

0
0

⎞
⎠ ,

⎛
⎝2

2
0

⎞
⎠ ,

⎛
⎝0

2
1

⎞
⎠ ,

⎛
⎝2

0
1

⎞
⎠ ,

⎛
⎝1

1
2

⎞
⎠ ,

⎛
⎝3

3
2

⎞
⎠ ,

⎛
⎝1

3
3

⎞
⎠ ,

⎛
⎝3

1
3

⎞
⎠
⎫⎬
⎭(7.5)

and A = a0I, where I denotes the 3× 3 unit matrix and a0 = 0.54309nm denotes the
lattice constant. Figure 8 shows a part of the lattice. Here pairs of nearest neighbor
atoms are connected by bonds.

We now apply the inner expansion technique in a straightforward but tedious
calculation to the potential of Stillinger and Weber. To this end, the overall potential
Φ(A) from (7.1) is split into all two-body and three-body interactions. The expansion
points x are chosen as x = 1

2 (x1+x2) for the two-body terms and as x = 1
3 (x1+x2+x3)

for the three-body terms. The Taylor series expansion with K = 3 of the term
y(x2) − y(x1) then reads as

y(x2) − y(x1) ≈ (x2 − x1) · ∇y(x) +
1

2

(
(x2 − x)2 − (x1 − x)2

)
: ∇2y(x)

+
1

6

(
(x2 − x)3 − (x1 − x)3

)
: ∇3y(x).(7.6)

For y(x3)−y(x1) we obtain an analogous expression. We now substitute z2 := x2−x1

and z3 := x3 − x1 to pass over to difference vectors. This way the expansion (7.6) is



556 M. ARNDT AND M. GRIEBEL

Fig. 8. Diamond structure of a silicon crystal.

x
1

x
2

x
3

Fig. 9. Deformation (7.12) for δ = 0.2.

transformed to

T 1
z2 := z2 · ∇y(x) +

1

6 · 22
z2

3 : ∇3y(x)(7.7)

for the two-body terms and to

T 2
z2,z3 := z2 · ∇y(x) +

1

18

(
(2z2 − z3)

2 − (z2 + z3)
2
)

: ∇2y(x)

+
1

162

(
(2z2 − z3)

3 + (z2 + z3)
3
)

: ∇3y(x),

T 3
z2,z3 := z3 · ∇y(x) +

1

18

(
(2z3 − z2)

2 − (z2 + z3)
2
)

: ∇2y(x)

+
1

162

(
(2z3 − z2)

3 + (z2 + z3)
3
)

: ∇3y(x)(7.8)

for the three-body terms. These expressions are substituted into the atomistic poten-
tial. We eliminate the boundary effects by replacing the sums

∑
z2,z3∈L∩Ω−x1

by the
sums

∑
z2,z3∈L over the full lattice. This leads to the continuum energy density

(7.9) Φ(I),x(∇y,∇2y,∇3y)

=
∑
z2∈L

ϕ2

(∣∣T 1
z2

∣∣)+
1

2

∑
z2,z3∈L

ϕ3

(∣∣T 2
z2,z3

∣∣ , ∣∣T 3
z2,z3

∣∣ , T 2
z2,z3 · T 3

z2,z3∣∣T 2
z2,z3

∣∣ ∣∣T 3
z2,z3

∣∣
)

and the interpolated potential

Φ(J)(y) =
1

a0
3

∫
Ω

Φ(I),x(∇y,∇2y,∇3y) dx.(7.10)

The corresponding evolution equation is then given by
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a0
3ρ

∂2y

∂t2
= div

∂Φ(I),x

∂∇y
− div2 ∂Φ(I),x

∂∇2y
+ div3 ∂Φ(I),x

∂∇3y
in Ω.(7.11)

To analyze how the quasi-continuum potential deviates from the original atom-
istic potential, we compute the potential energy on both the atomic level and the
continuum mechanical level for the same system. We choose an atomistic system of
32768 atoms, where the atoms are arranged in the form of the diamond lattice and
which is formed like a cube in the reference configuration. The system is embedded
in a larger system of fixed atoms to constitute the Dirichlet-like boundary conditions
as in the previous sections.

To obtain a nontrivial setting, the two opposite faces of the cube perpendicular
to the x1-axis are displaced by a shearing with a ratio δ ranging from 0 to 0.2. In
between, the deformation of the specimen is smoothly interpolated by

q(x1, x2, x3) = (x1, x2 + δp(x1), x3).(7.12)

Here p denotes the fifth-order polynomial such that p(0) = 0, p(L) = δ, and p′(0) =
p′′(0) = p′(L) = p′′(L) = 0, where L is the length of the cube edges. The deformation
is shown in Figure 9 for δ = 0.2.

Now the atomistic and the quasi-continuum potential for K = 1, 2, 3 is computed
for each parameter δ. This is done separately for the two-body and three-body inter-
actions. For the numerical quadrature of the integral in the quasi-continuum potential
(5.5), a simple trapezoid rule with the cell size equivalent to one atomic cell is used.
Of course, more sophisticated quadrature schemes with larger cell sizes could be em-
ployed for higher computational efficiency. But here the simple scheme corresponds
directly to the finite sum (5.4) and does not introduce an integration error. This al-
lows us to precisely evaluate the approximation quality of the expansion scheme and
separate it from any integration error.

Hence we obtain values Φ
(A)
B,δ, Φ

(I)
B,δ,K for K = 1, 2, 3, δ = 0, . . . , 0.2, and B = 2, 3,

where B = 2 denotes the two-body interactions and B = 3 the three-body interactions.
In Figure 10, the absolute errors

Φ
(I)
B,δ,K − Φ

(A)
B,δ(7.13)

are displayed. One can clearly see that the approximation for K = 3 is much better
than for K = 1 and K = 2. Furthermore, note that the curves for K = 1 and K = 2
coincide for the two-body potential. This is because the choice of the expansion point
x as barycenter completely inhibits the dependency on the second derivative ∇2y.
Figure 10 also shows the relative error

Φ
(I)
B,δ,K − Φ

(A)
B,δ

Φ
(A)
B,δ − Φ

(A)
B,0

.(7.14)

For K = 1 and K = 2, it is below 0.07% and 0.3%, respectively. For K = 3, it is
even below 0.003% and 0.004%. Especially the three-body angle terms profit from an
approximation order of K = 3, because bending effects are captured correctly then,
while they are in part lost for K ≤ 2.

Thus it seems reasonable to use an approximation order of K = 3 for the
Stillinger–Weber potential. Note, however, that the influence of the higher order
contributions depends on the size of the system. This influence gets successively
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Fig. 10. Absolute (top) and relative (bottom) errors of the Stillinger–Weber potential for the
inner expansion technique. Left: two-body interactions (7.2), right: three-body interactions (7.3).

smaller for an increasing number of atoms. For systems with a very high number of
atoms, it can even be appropriate to use K = 1, since the higher order contributions
are then negligibly small. But these contributions result in a qualitatively different
behavior in the evolution equation as we have already seen in section 6.1. Thus it
is justified to incorporate them despite their quantitatively small contribution to the
overall energy.

7.2. Dynamics of elastic response. Now we consider the time evolution of
a silicon crystal. According to the considerations in the previous subsection, we
use the approximation order K = 3. The evolution is then governed by (7.11).
We are interested in the elastic response of the crystal. To this end, we choose as
initial value the deformation q as given by (7.12) with the deformation ratio δ = 0.1,
together with an initial velocity of zero. The boundary values are chosen in such a
way that the specimen in embedded in an infinite bulk crystal which underwent the
same deformation. Analogously to (6.6), this reads as

y(x, t) = q(x), ∇νy(x, t) = ∇νq(x), ∇2
νy(x, t) = ∇2

νq(x) ∀x ∈ ∂Ω, t > 0.(7.15)

The spatial discretization is done by finite differences where we again exploit the
divergence structure of the PDE as in the last section. This is even more important in
the three-dimensional setting, since it considerably reduces the computational costs.
In a first step, the discrete derivatives up to order three are computed. Then, in a
second step, the discrete divergence operators are applied. For both steps, a difference
stencil formed as the tensor product of one-dimensional five-point stencils is used. The
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stencils are consistent of order four for the first and second derivative and of order two
for the third derivative. This ensures a sufficient accuracy. For the time discretization,
an explicit Euler scheme is applied.

The dimensions are chosen such that each grid point corresponds to 643 = 262,144
atoms after the finite difference discretization of the continuum mechanical system.
We use 363 = 46,656 grid points; hence the complete continuum system models
12,230,590,464 atoms. For the time step, a value of 0.2 ps turned out to be suffi-
cient for stability. This is substantially larger than the time step size of 1 fs which is
usually used for atomistic simulations.

Figure 11 shows the results of the simulation at different time steps. The plots
show a planar cross section through the specimen. The associated displacement of
the specimen is visualized using a mesh. It is magnified by a factor of eight for better
recognizability. The color indicates the velocity in the x1-direction.

One can clearly observe how the system relaxes from its stressed initial configu-
ration. The relaxation leads to eigenmode oscillations of the specimen. First, one can
observe a basically circular movement of the whole inner part of the specimen. Later
on, additional local oscillations with a higher frequency develop.

8. Conclusion. We proposed the inner expansion technique to derive quasi-
continuum models from atomistic systems for crystalline solids. This approach is
capable of capturing the material properties to a high extent, including those due to
nonlinear deformations such as bending. In contrast to classical continuum limits,
the discreteness effects of the underlying atomistic model are correctly reproduced.
We showed this numerically for the simple model problem of an atomic chain. Unlike
the direct expansion technique, which leads to a quasi-continuum description as well,
our approach retains convexity of the atomistic potential. Therefore hyperbolicity
and well-posedness of the resulting macroscopic evolution equations are guaranteed.
Furthermore, we applied our new technique to a silicon crystal and showed that the
higher approximation quality also holds for more complex potentials. Finally, we
presented the results of a numerical simulation of its elastic response.

The main advantages of a quasi-continuum model compared to an atomistic model
are as follows: Its numerical solution is much less costly, because the resolution of the
discretization can be freely controlled, whereas the already discrete atomistic model is
restricted to the physically given discreteness. This allows to use quite coarse grids for
the discretization of the macroscopic model without losing its atomistic discreteness
properties. Furthermore, much larger time step sizes than for the atomistic model
can be used. Moreover, advanced numerical techniques such as adaptivity can be em-
ployed if necessary, and analytical techniques for PDEs might be applied. Finally, the
rigorously derived higher order terms can be a good starting point to formulate im-
proved phenomenological models, which capture the essential properties and coincide
with the strictly derived ones to a good extent but might be easier to handle.

Furthermore, note that our method is also capable of reproducing boundary
effects, i.e., the possibly different behavior of the specimen in the vicinity of its
boundary. Although not exploited here, this can be important for potentials for
which these effects play a substantial role. Such effects are lost with the scaling
method, since the limiting procedure treats every inner point of the specimen as be-
ing surrounded by infinite bulk material, independently of its physical distance to the
boundary.

Classical continuum mechanics deals with systems in the order of 1023 atoms for
which the continuum limit often is a good description. But the advances in nanotech-
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t = 0 ps t = 20 ps t = 40 ps

t = 55 ps t = 70 ps t = 90 ps

t = 130 ps t = 160 ps t = 200 ps

Fig. 11. Elastic behavior of silicon. The cross section shows the displacement, magnified by
the factor 8. The color denotes the velocity in the horizontally plotted x1-direction.

nology in recent years make it necessary to consider systems with a substantially
smaller number of atoms for which the full continuum description clearly fails. On
the other hand, these systems are still not in the reach of conventional molecular
dynamics methods due to complexity reasons and the necessary small time step sizes
involved. In this respect a quasi-continuum approach becomes more and more im-
portant also for practical applications. Here, a well-understood transition from the
atomic level to the quasi-continuum level is essential for further developments towards
multiscale simulations, bridging techniques, and similar approaches involving models
on different scales; see, e.g., [30] and [35].
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