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OVERSAMPLING FOR THE MULTISCALE FINITE ELEMENT
METHOD∗
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Abstract. This paper reviews standard oversampling strategies as performed in the multiscale
finite element method (MsFEM). Common to those approaches is that the oversampling is performed
in the full space restricted to a patch including coarse finite element functions. We suggest, by
contrast, performing local computations with the additional constraint that trial and test functions
be linear independent from coarse finite element functions. This approach reinterprets the variational
multiscale method in the context of computational homogenization. This connection gives rise to a
general fully discrete error analysis for the proposed multiscale method with constrained oversampling
without any resonance effects. In particular, we are able to give the first rigorous proof of convergence
for an MsFEM with oversampling.
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1. Introduction. The numerical treatment of partial differential equations with
rapidly varying and strongly heterogeneous coefficient functions is still a challenging
area of present research, especially with regard to applications such as porous media
flow or the transport of solutes in groundwater. In such problems, the occurring
permeabilities and hydraulic conductivities have rapidly changing features due to
different types of soil, microscopic inclusions in the bottom, or porous subsurface rock
formations. Any meaningful numerical simulation of relevant physical effects has to
account for these highly heterogeneous fine scale structures in the whole computational
domain. This means that the underlying computational mesh has to be sufficiently
fine to resolve microscopic details. If pore scale effects become relevant or if domains
spread over kilometers, then the computational load becomes extremely large and in
several applications even too large to treat the problem with standard finite element
or finite volume methods. This is just one instance of a so-called multiscale problem
as it arises in hydrology, physics, or industrial engineering.

In recent years, many numerical methods have been designed to deal with these
computational issues that come along with multiscale problems. Most of them aim
to decouple the global fine scale problem into localized subproblems which can be
treated independently from each other plus some global coarse problem. The list of
proposed multiscale methods, meanwhile, is long. Amongst the most popular methods
are the finite element heterogeneous multiscale method (HMM), initially introduced
by E and Engquist [9] (see also [10, 11, 1]), the variational multiscale method (VMM)
by Hughes [29] and Hughes et al. [30] (see also [32, 33, 34]), the approaches by Owhadi
and Zhang [35, 36], or that of Babuska and Lipton [2].
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In this paper, we deal with another popular method: the multiscale finite element
method (MsFEM) proposed by Hou and Wu [26] and further investigated in several
contributions [27, 16, 15, 28]. There is an ongoing development of the method to apply
it to various fields and equations. For instance, an MsFEM for nonlinear elliptic
problems is proposed in [13], a formulation for two phase flow problems in porous
media is presented in [12], advection diffusion problems are treated in [8], and an
application to elliptic interface problems with high contrast coefficients is presented
in [7]. A survey on the method is given in the book by Efendiev and Hou [14].
There is a vast literature devoted to the method, but there are still open questions of
strong interest. The most relevant issue is a rigorous error analysis of the method, in
particular in the case of nonperiodic microstructures.

The MsFEM is related to some common finite element space with an underlying
coarse grid. The essential idea is to modify the corresponding basis functions in
such a way that fine scale variations on finer scales are sufficiently well captured.
More specifically, local fine scale computations are performed to determine so-called
corrector functions. These corrector functions can be added as local perturbations to
the original set of basis functions of the coarse finite element space.

However, it is well known that the classical MsFEM suffers from so-called reso-
nance errors, which are typically of order O( ε

H ), where ε denotes a characteristic size
of the small scale and where H denotes the mesh size of the coarse grid (cf. [27, 28]).
This implies that the numerical error becomes large in regions where the coarse grid
size is close to the characteristic length scale of the microscopic oscillations. There
are two different explanations for this error. The first one is a mismatch between
the boundary conditions imposed for the local fine scale problems and global behav-
ior of the oscillatory exact solution (cf. [16]). The second explanation is due to the
size and geometry of the sampling patch (cf. [28]). The averaged behavior in such a
patch should be “representative” so that we can speak about a perfect sample size.
If this is not the case, the final approximation might be distorted. In the periodic
setting, for instance, the sampling domain should be some multiple of the periodic
cell. On triangular patches with cathetuses of the length of a period, this patch is
only half a periodic cell (i.e., the patch has bad size and geometry) and lacks essential
information. This yields a completely wrong approximation (cf. [21]). In the periodic
setting considerable improvements were obtained by Gloria [19, 20], who proposed a
regularization of the local (patch) problems by adding a zero-order term. With this
strategy, both sources of the oversampling error could be significantly reduced (cf.
[19, Theorem 3.1] and [20, sections 5.3 and 5.4]).

In a lot of applications, such as oil reservoir simulations or the transport of solutes
in groundwater, a characteristic microscopic length scale ε is unknown, cannot be
identified, or does not exist at all. In scenarios without a clear scale separation it is
often impossible to predict whether or not we are in the regime of resonance errors.
It is very likely to actually hit the problematic regime. Hence, the quality of the
final approximation cannot be determined unless resonance errors are eliminated. For
this purpose, different oversampling strategies have been proposed. The fundamental
idea of each of these techniques is to extend the local problems to larger patches
and perform the computation on these oversampling domains but feed the coarse
scale equation only with the information obtained within the original smaller patches.
This reduces the effect of wrong boundary conditions and bad sampling sizes. In
this paper, we present the two major strategies for oversampling and discuss their
advantages and disadvantages. On the basis of these considerations we propose a new
strategy that overcomes the issues of the existing strategies. The new approach is
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closely related to the VMM-type method presented in [34]. We prove quantitative
error estimates for the corresponding multiscale approximations under very general
assumptions on the diffusion coefficient.

This contribution is structured as follows: In section 2 we recall the classical
formulation of the MsFEM without oversampling. The most popular approaches for
oversampling are discussed in section 3. In section 4 we propose a new strategy for
which we present a quantitative error analysis. Numerical experiments are presented
in section 5. The paper closes with a short conclusion.

2. The multiscale finite element method. In this section, we state the set-
ting of this paper and we establish the required notation. We recall the classical
multiscale finite element method (MsFEM) as initially proposed by Hou and Wu [26].

2.1. Setting and notation. Consider a bounded Lipschitz domain Ω ⊂ R
d

with a piecewise flat boundary and some matrix-valued coefficient A ∈ L∞(Ω,Rd×d
sym)

with uniform spectral bounds γmin > 0 and γmax ≥ γmin,

(2.1) σ(A(x)) ⊂ [γmin, γmax] for almost all x ∈ Ω.

Given f ∈ L2(Ω), we seek the weak solution of

−∇ · A∇u = f in Ω,

u = 0 on ∂Ω;

i.e., we seek u ∈ H1
0 (Ω) := {v ∈ H1(Ω) | v|∂Ω = 0 in the sense of traces} that satisfies

(2.2) a (u, v) :=

∫
Ω

A∇u · ∇v =

∫
Ω

fv =: F (v) for all v ∈ H1
0 (Ω).

We consider two discretization scales H ≥ h > 0. The coarse scale H is arbitrary,
whereas the small scale parameter h may be constrained by the problem. Typically,
it is assumed to be smaller than the characteristic length scales of the variations of
the diffusion coefficient A.

Let TH , Th denote corresponding subdivisions of Ω into (closed) triangles (for
d = 2) and tetrahedra (for d = 3), i.e., Ω̄ =

⋃
t∈Th

t =
⋃

T∈TH
T . We assume that

TH , Th are regular in the sense that any two elements are either disjoint or share
exactly one face or share exactly one edge or share exactly one vertex. For simplicity
we assume that Th is derived from TH by some regular, possibly nonuniform, mesh
refinement.

For T = TH , Th, let

P1(T ) = {v ∈ C0(Ω) | ∀T ∈ T , v|T is a polynomial of total degree ≤ 1}

denote the set of continuous and piecewise affine functions.
Accordingly, Vh := P1(Th) ∩ H1

0 (Ω) denotes the “high resolution” finite element
space and the “coarse space” is given by VH := P1(TH) ∩H1

0 (Ω) ⊂ Vh. For any given
subset ω ⊂ Ω we define the restriction of Vh to ω with a zero boundary condition by
V̊h(ω) := Vh ∩H1

0 (ω). The nonconforming fine space Vh,TH is defined by

Vh,TH := {vh | ∀T ∈ TH , (vh)|T ∈ Vh ∩H1(T )}.

A general function in v ∈ Vh,TH may jump across edges of the coarse mesh TH and,
hence, does not belong to H1

0 (Ω). However, the TH -piecewise gradient ∇Hv, with
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(∇Hv)|T = ∇(v|T ) for all T ∈ TH , exists. Typically, MsFEM approximations obtained
with oversampling are nonconforming approximations of the exact solution in the
sense that they do not belong to H1

0 (Ω).
In the following xT ∈ T denotes an arbitrary point, for instance the barycenter

of T . For ΦH ∈ VH and T ∈ TH , the affine extension operator ET : VH → P1(Ω) is
given by

ET (ΦH)(x) := (x− xT ) · ∇ΦH(xT ) + ΦH(xT ).

Finally, by χT we denote the characteristic (or indicator) function with χT (x) = 1 for
x ∈ T and χT (x) = 0 elsewhere.

For the sake of simplicity, all fine scale computations are performed in subspaces
of the fine scale finite element space Vh. The Galerkin solution uh ∈ Vh which satisfies

(2.3) ah(uh, v) = F (v) for all v ∈ Vh

may, hence, be considered as a reference approximation. Note that we never solve
this large scale equation. The function uh serves as a reference solution to compare
our multiscale approximations with. The underlying assumption is that the mesh Th
is chosen sufficiently fine so that uh is sufficiently accurate.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces is
employed and a � b abbreviates an inequality a ≤ C b with some generic constant
0 ≤ C <∞ that may depend on the shape regularity of finite element meshes and the
contrast γmax/γmin but not on the mesh sizesH , h and the regularity or the variations
of the diffusion matrix A; a ≈ b abbreviates a � b � a.

2.2. The classical MsFEM and reformulation. We first present the classical
MsFEM without oversampling as originally stated by Hou and Wu [26], and similarly
by Brezzi et al. [3]. They proposed the strategy to enrich the set of standard finite
element basis functions by fine scale information. The information is determined by
solving local problems on the fine scale. We briefly recall the method and reformulate
it in terms of a correction operator Qh and a corresponding corrector basis.

Let N denote the dimension of the coarse space VH , and let {Φi | 1 ≤ i ≤ N}
denote the usual nodal basis of VH . Given some basis function Φi, the corresponding
MsFEM basis function ΦMsFEM

i ∈ Vh is uniquely determined by the condition that for

all T ∈ TH and for all φh ∈ V̊h(T ) it holds that∫
T

A(x)∇ΦMsFEM

i (x) · ∇φh(x) dx = 0 and ΦMsFEM

i = Φi on ∂T.(2.4)

The span of these MsFEM functions is called the MsFEM solution space

V MsFEM

H := span{ΦMsFEM

i | 1 ≤ i ≤ N}.

This space is conforming in the sense of V MsFEM

H ⊂ Vh ⊂ H1
0 (Ω), because the set

{ΦMsFEM

i | 1 ≤ i ≤ N} defines a conforming set of basis functions. The classical
MsFEM in the Petrov–Galerkin (PG) formulation due to [28] reads as follows.

Definition 2.1 (MsFEM without oversampling). The MsFEM approximation
uMsFEM

H ∈ V MsFEM

H is defined as the solution of∫
Ω

A(x)∇uMsFEM

H (x) · ∇ΦH(x) dx =

∫
Ω

f(x)ΦH(x) dx for all ΦH ∈ VH .(2.5)
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In [26], the MsFEM was originally proposed in the Galerkin formulation; i.e., the
test functions ΦH ∈ VH in (2.5) are replaced by test functions ΦMsFEM

H ∈ V MsFEM

H .
Observe that due to the orthogonality property (2.4) both formulations are almost
identical (in the absence of oversampling). For structural reasons we used the PG
version to introduce the MsFEM.

With regard to the general framework for oversampling that we present in the
subsequent sections, we note that the MsFEM can be rewritten in the following way.

Remark 2.2. If uMsFEM

H ∈ V MsFEM

H denotes the MsFEM approximation stated in
Definition 2.1, then we have uMsFEM

H = uH +Qh(uH), where uH ∈ VH solves∫
Ω

A (∇uH +∇Qh(uH)) · ∇ΦH =

∫
Ω

fΦH for all ΦH ∈ VH ,(2.6.a)

with

Qh(ΦH)(x) :=
∑

T∈TH

d∑
i=1

∂xiΦH(xT )wT,i(x),(2.6.b)

and wT,i ∈ V̊h(T ) is the unique solution of∫
T

A∇wT,i · ∇φh = −
∫
T

Aei · ∇φh for all φh ∈ V̊h(T ).(2.6.c)

The set of all functions wT,i is what we are going to call a local corrector basis. From
the computational point of view, it seems at first glance to be cheaper to compute
the corrector basis given by (2.6.c) instead of directly computing the set of multiscale
basis functions given by (2.4). The latter formally involves more problems to solve.
For instance, if d = 2, the assembling of the corrector basis {wT,i | T ∈ TH , i = 1, 2}
requires the solution of 2 · |TH | local problems, whereas the solutions of 3 · |TH | local
problems are required to assemble {ΦMsFEM

i | 1 ≤ i ≤ N} by using the gradients of
coarse basis functions (for which we have 3 per coarse element). Still, it is possible to
use the partition of unity property of the basis functions to equally decrease the costs
of the original version of the MsFEM from d · |TH | to (d − 1) · |TH |. In particular,
restricted to T , the gradients of (d− 1) basis functions associated with (d− 1) corners
of the element T span the gradient of the missing dth basis function on T .

The equivalence between the formulations (2.5) and (2.6) can be easily verified
by the relation ΦMsFEM

i = Φi + Qh(Φi). Observe that for every i, for every T ∈ TH ,

and for every φh ∈ V̊h(T ),∫
T

A(x) (∇Φi(x) +∇Qh(Φi)(x)) · ∇φ(x) dx

=

d∑
i=1

∂xiΦH(xT )

∫
T

A(x)
(
ei +∇wi

T (x)
)
· ∇φ(x) dx = 0

and Φi +Qh(Φi) = Φi on ∂T , which is the definition of ΦMsFEM

i .
A symmetric formulation of (2.6.a) is given by the following: find uH ∈ VH with∫

Ω

A (∇uH +∇Qh(uH)) · (∇ΦH +∇Qh(ΦH)) =

∫
Ω

fΦH for all ΦH ∈ VH .(2.7)

Note that (2.6.a) and (2.7) are identical, because∫
T

A (∇uH +∇Qh(uH)) · ∇φh = 0 for all φh ∈ V̊h(T ).
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3. Oversampling strategies. As already discussed in the introduction, the
classical MsFEM in Definition 2.1 can be strongly affected or even dominated by
resonance errors (cf. [14]). In the absence of scale separation or any knowledge about a
suitable sample size for the local problems, the classical MsFEM needs a modification.
Oversampling is considered to be a remedy to this issue. Oversampling means that the
local problems (2.6.a) are solved on larger domains, but only the interior information
(i.e., we restrict the gained fine scale information to T ) is communicated to the coarse
scale equation (2.6.a).

There is no unique way of extending the local problems (2.6.a) to larger patches.
Different extensions lead to different oversampling strategies. In this section, we
present the two common approaches for oversampling. We rephrase both approaches
so that they fit into a common framework. We discuss the advantages and disadvan-
tages of the methods, and then we propose our new oversampling strategy. Note that
each of the subsequent strategies is a generalization of the case without oversampling.

We shall introduce some additional notation.
Definition 3.1 (admissible patch). For T ∈ TH , we call U(T ) an admissible

patch of T if it is nonempty, open, and connected, if T ⊂ U(T ) ⊂ Ω, and if it is the
union of elements of Th, i.e.,

U(T ) = int
⋃

τ∈T ∗
h

τ, where T ∗
h ⊂ Th.

A given set of admissible patches is given by U , i.e.,
U := {U(T ) | T ∈ TH and U(T ) is an admissible patch},

where U contains one and only one patch U(T ) for each T ∈ TH . The set U(T ) \ T is
called an oversampling layer. The thickness of the oversampling layer is denoted by
dU ,T := dist(T, ∂U(T )). Furthermore, we define

dmin

U := min
T∈TH

dU ,T and dmax

U := max
T∈TH

dU ,T

as the minimum and maximum thickness.
In the spirit of (2.6.a) and (2.7), we now define the coarse scale equation for an

arbitrary MsFEM with a chosen oversampling strategy. As we will see later on, all
MsFEM realizations differ only in the correction operator Qh that determines the
oversampling strategy.

Definition 3.2 (framework for oversampling strategies). Let α = 1, 2, 3 denote
the index of the oversampling strategy to be specified later on, and let

{wU ,α
h,T,i | 1 ≤ i ≤ d, T ∈ TH}

denote a given local corrector basis that depends on the chosen strategy α (see (2.6.a)–
(2.6.c) for the trivial case of such a basis). Then, a (not necessarily conforming)

correction operator QU ,α
h : VH → Vh,TH is defined by

QU ,α
h (ΦH)(x) :=

∑
T∈TH

χT (x)
d∑

i=1

∂xiΦH(xT )w
U ,α
h,T,i(x) for ΦH ∈ VH .(3.1)

The MsFEM approximation uαH +QU ,α
h (uαH) obtained with strategy α in the PG for-

mulation reads as follows: find uαH ∈ VH such that∑
T∈TH

∫
T

A
(
∇uαH +∇QU ,α

h (uαH)
)
· ∇ΦH =

∫
Ω

fΦH for all ΦH ∈ VH .(3.2)
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The MsFEM approximation uα,symH + QU ,α
h (uα,symH ) obtained with strategy α and a

(not necessarily equivalent) symmetric formulation is given by the following: find
uα,symH ∈ VH with∑

T∈TH

∫
T

A
(
∇uα,symH +∇QU ,α

h (uα,symH )
)
·
(
∇ΦH +∇QU ,α

h (ΦH)
)

(3.3)

=

∫
Ω

f(ΦH +QU ,α
h (ΦH))

for all ΦH ∈ VH . Observe that strategies can differ only in the choice of the corrector
basis. The remaining structure of the methods is always the same.

In the subsequent sections, we demonstrate how existing oversampling strategies
fit into the framework presented in Definition 3.2.

3.1. Classical strategy initially introduced by Hou and Wu. The classi-
cal oversampling strategy was proposed by Hou and Wu [26] and further used and
investigated in several works (cf. [13, 6, 14]).

Let T ∈ TH be fixed, and let {ΦT
1 ,Φ

T
2 , . . . ,Φ

T
d+1} ⊂ VH denote the basis functions

that belong to the d+ 1 nodal points in T . Hou and Wu [26] proposed the following
oversampling strategy: solve for Φ̃T

j ∈ Vh(U(T )) with∫
U(T )

A∇Φ̃T
j · ∇φh = 0 for all φh ∈ V̊h(U(T ))(3.4)

and the boundary condition Φ̃T
j = ET (Φ

T
j ) on ∂U(T ), where ET (Φ

T
j ) denotes the

affine extension of (ΦT
j )|T . Then, for a given coarse function ΦH ∈ VH , ΦMsFEM

H is
defined by

ΦMsFEM

H =

d+1∑
j=1

cjΦ̃
T
j ,

where the cj are such that ΦMsFEM

H (xj) = ΦH(xj) for all d + 1 coarse nodes xj of
T . The final coarse scale equation in the PG formulation reads as follows: find
u1,MsFEM

H ∈ Vh,TH with ∫
Ω

A∇Hu
1,MsFEM

H · ∇ΦH =

∫
Ω

fΦH(3.5)

for all ΦH ∈ VH . Observe that uMsFEM

H is a nonconforming approximation of u. In
[28, 16], a slightly different condition is used to define the coefficients ci. However, it
turns out that this modified condition leads to nothing but Oversampling Strategy 2
below.

We shall rephrase this multiscale method with oversampling strategy in the frame-
work of Definition 3.2. Let QT (ΦH) := ΦMsFEM

H − ET (ΦH) define the local corrector,
i.e., an operator that communicates fine scale information to the coarse scale equation.
The corresponding reduced fine scale space V̊ r

h (U(T )) is given by

V̊ r
h (U(T )) := V̊h(U(T )) \ span{ΦT

1 ,Φ
T
2 , . . . ,Φ

T
d+1}(3.6)

with nodal basis functions {ΦT
1 ,Φ

T
2 , . . . ,Φ

T
d+1} ⊂ VH . Since

QT (ΦH)(xi) = ΦMsFEM

H (xi)− ΦH(xi) = 0 for all nodes xi in T ,
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QT (ΦH) ∈ V̊ r
h (U(T )). Moreover, by the definition of ΦMsFEM

H , QT (ΦH) ∈ V̊ r
h (U(T ))

satisfies ∫
U(T )

A (∇ΦH(xT ) +∇QT (ΦH)) · ∇φh

=

∫
U(T )

A (∇ET (ΦH) +∇QT (ΦH)) · ∇φh

=
d∑

i=1

ci

∫
U(T )

A∇Φ̃T
i · ∇φh = 0

for all φh ∈ V̊ r
h (U(T )). Since∇ΦH(xT ) is a constant in U(T ), we may rewriteQT (ΦH)

in terms of a corrector basis. This gives us the first definition of oversampling within
our framework.

Oversampling Strategy 1. Let V̊ r
h (U(T )) denote the reduced fine scale space

given by (3.6), and let wU ,1
h,T,i ∈ V̊ r

h (U(T )) (for i ∈ {1, 2, . . . , d}) denote the solution
of ∫

U(T )

A∇wU ,1
h,T,i · ∇φh = −

∫
U(T )

Aei · ∇φh for all φh ∈ V̊ r
h (U(T )).(3.7)

For ΦH ∈ VH we define the corrector QU ,1
h (ΦH) ∈ Vh,TH by

QU ,1
h (ΦH) :=

∑
T∈TH

χT (x)

d∑
i=1

∂xiΦH(xT )w
U ,1
h,T,i(x).

Let u1H ∈ VH be the solution of (3.2), i.e.,∑
T∈TH

∫
T

A
(
∇u1H +∇QU ,α

h (u1H)
)
· ∇ΦH =

∫
Ω

fΦH for all ΦH ∈ VH .

Then, u1,MsFEM

H := u1H + QU ,1
h (u1H) defines the MsFEM approximation obtained with

Oversampling Strategy 1. Obviously, u1,MsFEM

H solves (3.5).
Remark 3.3. The explicit boundary condition for the local problems (3.4) is often

missing in the literature (cf. [26, 14]). However, it seems that these computations
were performed for the case described above; i.e., the solution Φ̃T

i of (3.4) takes the
values of an affine function on ∂U(T ) (cf. [16, 28], which also refer to the numerical
experiments in [26]). In some works (cf. [13]) the local problems (3.4) are formulated
with the boundary condition Φ̃T

i = ΦT
i on ∂U(T ). This seems to be a mistake, because

the new basis functions will be equal to zero whenever U(T ) is larger than the support
of the original basis functions.

3.2. Oversampling motivated from homogenization theory. The second
type of oversampling is motivated from numerical homogenization theory. Assume
that we regard

find uε ∈ H1
0 (Ω) with

∫
Ω

Aε∇uε · ∇Φ =

∫
Ω

fΦ for all Φ ∈ H1
0 (Ω),

and assume that Aε is uniformly bounded and coercive in ε, that Aε is H-convergent
to some matrix A0, and that uε ⇀ u0 in H1(Ω), where u0 ∈ H1

0 (Ω) is called the
homogenized solution.
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Then, a numerical approximation of the homogenized solution u0 can be obtained
by discretizing a more convenient equation (see (3.8) below). For this purpose, let
B(x, η) denote an open ball centered at x ∈ Ω with radius η > 0, and let N(x, η)
denote an open neighborhood of x ∈ Ω with a Lipschitz boundary. It is assumed that
there exist 0 < c ≤ C so that for all η > 0 and all x ∈ Ω there holds c|B(x, η)| ≤
|N(x, η)| ≤ C|B(x, η)|. We seek uε,η,ζ ∈ H1

0 (Ω) that solves

(3.8)

∫
Ω

|N(x, η)|−1

∫
N(x,η)

Aε(y)
(
∇uε,η,ζ(x) +∇yQ(uε,η,ζ)(x, y)

)
· ∇Φ(x) dy dx

=

∫
Ω

f(x)Φ(x) dx

for Φ ∈ H1
0 (Ω), where for given Ψ ∈ H1

0 (Ω) the correctorQ(Ψ)(x, ·) ∈ H1
0 (N(x, η+ζ))

is determined by∫
N(x,η+ζ)

Aε(y) (∇Ψ(x) +∇yQ(Ψ)(x, y)) · ∇φ(y) dy = 0 for all ψ ∈ H1
0 (N(x, η + ζ)).

If ζ = ζ(η) and limη→0
ζ(η)
η = 0, then it holds that

lim
η,ζ→0

lim
ε→0

‖u0 − uε,η,ζ‖H1(Ω) = 0.

As a consequence thereof, we get that

lim
η,ζ→0

lim
ε→0

‖uε − uε,η,ζ‖L2(Ω) = 0.

This result was shown by Gloria [17, 18] in a general nonlinear setting. Since uε,η,ζ

yields a good approximation of uε, the result suggests looking at discretizations of
(3.8). This was exploited, for instance, in [23]. A general numerical framework that
can be seen as a discretization of (3.8) was proposed in [24]. Particularly, the HMM
and the MsFEM are recovered from the framework, which leads to a straightforward
oversampling strategy. This strategy can be formulated as follows (cf. [18, 24, 25]).

Oversampling Strategy 2. For i ∈ {1, 2, . . . , d}, let wU ,2
h,T,i ∈ V̊h(U(T )) solve∫

U(T )

A∇wU ,2
h,T,i · ∇φh = −

∫
U(T )

Aei · ∇φh for all φh ∈ V̊h(U(T )),(3.9)

and for ΦH ∈ VH , let QU ,2
h (ΦH) ∈ Vh,TH denote the corrector given by (3.1). If u2H ∈

VH is the solution of (3.2), then u2H +QU ,2
h (u2H) defines the MsFEM approximation

obtained with Oversampling Strategy 2. We therefore denote

u2,MsFEM

H := u2H +QU ,2
h (u2H).

We immediately see that Oversampling Strategies 1 and 2 differ only in the fine
scale trial space for the local problems and that they are identical for U(T ) = T ,
even though Oversampling Strategy 2 was formulated independently of Oversampling
Strategy 1. In [28, 16], Oversampling Strategy 2 is written in terms of an asymp-
totic expansion in the periodic case. Also note that this second approach is closely
related to the finite element HMM, where the same type of oversampling is used (cf.
[9, 10, 11, 22]). Notably, the HMM and the MsFEM can be reinterpreted in a com-
mon homogenization framework (cf. [17, 18]) and in a common numerical framework
(cf. [24]).
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3.3. Discussion of the strategies. As we just discussed, there are two widely
used strategies for oversampling for the MsFEM. However, the difference between
both approaches is only minor and the behavior of the resulting approximations ap-
pears to be qualitatively the same. The small difference in the local trial spaces
does not seem to have a significant impact. At least, the error estimates available
for Oversampling Strategies 1 and 2 are very similar. The literature does not even
distinguish between these strategies. For instance, [6] (using Oversampling Strategy
1) claims to generalize the results of [16] (using Oversampling Strategy 2). Such a
mixture of strategies can be observed in several works on this topic. To the best of our
knowledge, even though both approaches seem to behave identically, a rigorous proof
of this conjecture is still missing. Oversampling Strategy 1 suggests fixing the correc-
tor Q1

T (Φ) in the corners of the coarse grid element T (forcing it to zero), whereas
the corrector proposed by Oversampling Strategy 2 does not have such a restriction
leaving it completely free in these corners.

Remark 3.4. As already mentioned, the MsFEM might also be considered in a
symmetric formulation (cf. [16]); i.e., the coarse scale equation reads as follows: find
uH ∈ VH with

∑
T∈TH

∫
T

A
(
∇uαH +∇QU ,α

h (uαH)
)
·
(
∇ΦH +∇QU ,α

h (ΦH)
)

=

∫
Ω

f(ΦH +QU ,α
h (ΦH))

for all ΦH ∈ VH and where QU ,α
h is defined either with Oversampling Strategy 1 or

2. However, the theoretical and numerical results in [28] show that this version of the
method still suffers from resonance errors. One explanation was suggested by Gloria
[18], who proposed a simple computation:∫

T

A
(
∇uαH +∇QU ,α

h (uαH)
)
·
(
∇ΦH +∇QU ,α

h (ΦH)
)

=

∫
T

A
(
∇uαH +∇QU ,α

h (uαH)
)
· ∇ΦH

+

∫
T

A
(
∇uαH +∇QU ,α

h (uαH)
)
· ∇QU ,α

h (ΦH)

=

∫
T

A
(
∇uαH +∇QU ,α

h (uαH)
)
· ∇ΦH

+

∫
U(T )\T

A
(
∇uαH +∇QU ,α

h (uαH)
)
· ∇QU ,α

h (ΦH).

This means that the effective MsFEM bilinear forms in the PG and non-PG formu-
lations differ in the term∑

T∈TH

∫
U(T )\T

A
(
∇uαH +∇QU ,α

h (uH)
)
· ∇QU ,α

h (ΦH),

which still seems to contain the problematic boundary layers that we tried to get rid
of. Observe that we integrate over the layer U(T )\T . This is exactly the region where

we encounter unpleasant boundary effects of the correctors QU ,α
h (uH) and QU ,α

h (ΦH).
This might imply that preference should be given to the PG formulation. Note,
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however, that uniqueness and existence of discrete solutions have not been proved for
general oversampling so far.

Let us review the two essential results concerning the convergence of MsFEM
approximations with oversampling. The first result is due to Gloria and is the most
general result currently available for Oversampling Strategy 2.

Theorem 3.5. Let f ∈ L2(Ω) and Aε ∈ L∞(Ω,Rd×d) be a sequence of (possibly
nonsymmetric) matrices with uniform spectral bounds γmin > 0 and γmax ≥ γmin,

(3.10) σ(Aε(x)) ⊂ [γmin, γmax] for almost all x ∈ Ω and for all ε > 0,

and assume that Aε is H-convergent. Furthermore, let uεH ∈ VH denote the corre-
sponding MsFEM approximation obtained with Oversampling Strategy 2, and let

diam(U(T ))− diam(T )

diam(T )
→ 0 for H → 0.

Then we have

lim
H→0

lim
ε→0

‖uε − uεH‖L2(Ω) = 0.

The proof for general nonsymmetric coefficients is given in [20, Theorem 5], and
the case of nonlinear problems is presented in [18, Theorem 6 and Remark 7]. At
first glance the result appears counterintuitive in the sense that it suggests letting
the oversampling converge to zero. However, the first limit is in ε, which makes the
relative thickness ε

dmin
U

of the oversampling layer grow to infinity. Hence, the correct

interpretation is that for fixed ε the computational domains should blow up to infinity.
In this case, the optimal corrector problem is an equation formulated on the whole
R

d. These corrector problems are exactly the cell problems known from periodic and
stochastic homogenization theory. In the periodic setting the classical cell problems
can be extended to the Rd by periodicity, and in the stochastic setting they are directly
formulated in R

d to obtain the correct stochastic average (cf. [31]).
Theorem 3.5 gives a clear message in the case of extremely small microscopic

variations. If ε (the characteristic length scale of the fine scale oscillations) is (glob-
ally) sufficiently small, then the resulting MsFEM approximation yields very good
approximations. This is a very important result, but it is purely qualitative. For
example, it does not answer the question of how (thick) to choose an oversampling
patch. We cannot predict how the method behaves if there is a large spectrum of
oscillations without a scale separation. For instance, we might encounter variations,
where it is hard to tell which of them are macroscopic and which are microscopic (i.e.,
“ε-dependent”). In practice, we do not construct an artificial sequence in ε; we have
only a given scenario and a given set of data.

The next theorem due to Hou, Wu, and Zhang is much more restrictive, but it
gives a more quantitative answer than Theorem 3.5.

Theorem 3.6. Assume that d = 2, f ∈ L2(Ω), and A is a bounded, elliptic,
symmetric, and ε-periodic C3-matrix, i.e., A(x) = Ap(

x
ε ), with Ap ∈ C3([0, 1]d,Rd×d

sym)
being periodic. Let uεH ∈ Vh,TH denote the MsFEM approximation obtained with
Oversampling Strategy 2. Then

‖uεH − uε‖L2(Ω) ≤ C

(
ε

dmin

U
+H + ε(logH)

1
2

)
,

( ∑
T∈TH

‖∇uεH −∇uε‖2L2(Ω)

) 1
2

≤ C

(
ε

dmin

U
+H + ε

1
2

)
.
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A proof of this theorem is given in [28]. The assumption d = 2 seems to be
essential for their strategy. Note that in [28] the theorem is formulated without the

1
dmin
U

contribution. Instead, the authors make the assumption that the oversampling

layer is sufficiently large. Following their proofs one can easily see that the generalized
estimate reads as above (cf. [14] for the case dmin

U = CH). In particular, the ε
dmin
U

-term

describes the decay of the error between the exact corrector and the corrector with
wrong boundary conditions in a coarse element T . The decay turns out to be inversely
proportional to the thickness of the layer. Because of the ε scaling of the solution,
the effective term becomes ε

dmin
U

. This seems to be a sharp estimate for the decay due

to the findings in [16, 5]. A proof of Theorem 3.6 for Oversampling Strategy 1 can
be achieved in the same fashion as in [28]. Theorem 3.6 predicts the following: if
locally O(H)=O(ε), the patch size of the local problems must not be of order O(H)
to preserve convergence. Still, the theorem gives only an answer of how to choose the
oversampling patches U if ε is a known parameter.

If the thickness of the oversampling layer is of order O(h), both estimates in Theo-
rem 3.6 receive an order O( εh) term and the right-hand sides remain large. In general,
the thickness dmin

U must be large in comparison to ε. Analytically, this implies that
O(H)-oversampling might be not enough in regions where we deal with resonance
errors due to O(H)=O(ε). This seems to show up in the numerical experiments in
[28], where the authors observe a stagnation in the convergence of the H1-error for
H entering the region with O(H)=O(ε). The effect on the L2-error is less strong.
However, the value of dmin

U is missing in the experiments in [28], so we can assume
only that dmin

U is of order H . Otherwise the computation of the MsFEM basis func-
tions becomes quite expensive. However, we note that there also exists a modification
of Oversampling Strategy 2 proposed by Gloria (cf. [19, Theorem 3.1] and [20, para-
graphs 5.3 and 5.4]) where the local problems are regularized by adding the term

κ−1(wU ,2
h,T,i, φh)L2(U(T )) (for large κ > 0) to the left-hand side of problem (3.9). Using

this modified strategy, the Theorem 3.6–type estimates can be improved enormously,
even without restrictions on space dimensions and much weaker assumptions on the
regularity of Aε.

Remark 3.7. In [16], the symmetric version (3.3) of the MsFEM is considered.
Here, the derived L2-estimate reads as

‖uεH − uε‖L2(Ω) ≤ C

(
ε+H2 + ε(logH) +

ε

dmin

U
+ Cr

( ε
H

)2)
,

where uεH denotes the MsFEM approximation of the symmetric problem (3.3) de-
termined with Oversampling Strategy 1. Due to the numerical experiments in [16],
Cr seems to have a considerable size so that this term is dominating the estimate
if locally O(ε)=O(H). We notice that the estimate is worse than the L2-estimate
for the PG version of the method, because the last term cannot be reduced even for
large dmin

U . These observations are consistent with Remark 3.4. However, this leads
to an additional problem of the MsFEM with Oversampling Strategy 1 or 2. On
the one hand, the PG version should be preferred over the symmetric version (see
the estimates). On the other hand, the existence and uniqueness of the corresponding
MsFEM approximations have not been established so far, not to mention the stability.
For the symmetric version, we can simply exploit the ellipticity of A to conclude that
the method is well posed and stable. For the PG version there is no such argument.
The only result is a perturbation result due to Gloria [18], saying that if the over-
sampling size is small enough (i.e., if the difference between the PG formulation and
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symmetric formulation is small enough), then we still have existence and uniqueness.
The lack of knowledge regarding the general well-posedness of the PG MsFEM with
Oversampling Strategies 1 and 2 is a big issue of these approaches.

The ε-terms in the estimates that cannot be reduced with H � ε should be
seen as fixed modeling errors. They describe the error between exact solution and
homogenized solution. In a general nonperiodic nonstochastic scenario they cannot
be quantified.

In conclusion we have two findings. First, in general, both approaches do not
show clear asymptotics for a convergence to the exact solution (for H � ε). There
is always a remainder of order ε, even if U(T ) = Ω. In particular, this is a problem
if ε is unknown or if the microstructure is heterogeneous. Second, if the modeling
error of order ε is negligible, Theorem 3.6 still suggests that linear convergence (with
respect to H) can be achieved only if the oversampling thickness scales with O(1),
which makes the local problems prohibitively expensive. Since the estimate for the
decay rate ε

dmin
U

of the corrector error is sharp (in the periodic setting), we cannot

hope for much improvement of the final error estimates stated in Theorem 3.6.
We may summarize the following issues, which we address to solve with our new

oversampling strategy to be proposed in the next section:
(a) elimination of resonance errors of any kind,
(b) clear prediction for the size of oversampling patches without explicit knowl-

edge about the microstructure or scale separation,
(c) construction of a conforming approximation in H1

0 (Ω),
(d) a quantitative error analysis in H without restrictive regularity assumptions

on the coefficients and for all space dimensions,
(e) a priori error estimation in the fully discrete setting (previous results were

obtained under the assumption that the local problems are solved exactly),
(f) formulation of a stable approach for which we can guarantee existence and

uniqueness of the resulting MsFEM approximation, and
(g) prevention of unstable splittings due to point evaluations as, e.g., required

to implement the constraint in Oversampling Strategy 1 (cf. the definition of
V̊ r
h (U(T )) in (3.6)).

Note that points (d) and (e) could be done in the periodic setting for Oversampling
Strategies 1 and 2 by using, e.g., the techniques presented in [19, 20].

4. Constrained oversampling. In this section we introduce a third oversam-
pling strategy for which we derive a quantitative a priori error estimate. The results
are presented in subsection 4.1, and a corresponding proof is given in subsection 4.2.
All the results require solely the assumptions stated in section 2.1 to be satisfied, i.e.,
A ∈ L∞(Rd×d

sym) uniformly positive definite and f ∈ L2(Ω).

4.1. New strategy and quantitative error estimates. In the following, let
NH denote the set of interior vertices of the coarse grid TH . For a given node z ∈ NH ,
Φz ∈ VH denotes the corresponding nodal basis function as before.

Our new approach is based on some multiscale decomposition of the space Vh,

(4.1) Vh = VH ⊕Wh,

where the space Wh contains the “fine scale” functions of Vh, i.e., functions that
are not captured by VH . More precisely, we choose Wh to be the kernel of some
Clément-type quasi-interpolation operator IH : H1

0 (Ω) → VH ,

Wh := {v ∈ Vh | IH(v) = 0}.(4.2)
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Several choices for IH are possible. We refer the reader to [34] for an axiomatic charac-
terization. In this paper, for the sake of simplicity, we choose the particular operator
introduced in [4]. Given v ∈ H1

0 (Ω), IHv :=
∑

z∈NH
(IHv)(z)Φz is determined by the

nodal values

(4.3) (IHv)(z) :=

∫
Ω vΦz∫
Ω
Φz

for z ∈ NH .

The nodal values are weighted averages of the function over nodal patches ωz :=
suppΦz. The operator is linear, surjective, bounded, and invertible on the finite
element space VH . Hence, the decomposition (4.1) exists and is stable; it is even
orthogonal in L2(Ω).

Recall the (local) approximation and stability properties of the interpolation op-
erators IH [4]: There exists a generic constant C such that for all v ∈ H1

0 (Ω) and for
all K ∈ TH it holds that

(4.4) H−1
T ‖v − IHv‖L2(K) + ‖∇(v − IHv)‖L2(K) ≤ C‖∇v‖L2(ωK),

where ωK := ∪{K ′ ∈ TH | K ′ ∩ K �= ∅}. The constant C depends on the shape
regularity of the finite element mesh TH but not on the local mesh sizeHT := diam(T ).

Remark 4.1 (nodal interpolation). Since we consider a fully discrete setting,
where corrector problems are solved in the fine scale finite element space Vh, we
could have chosen nodal interpolation instead of Clément-type interpolation. The
subsequent definitions and results will be almost verbatim the same. However, nodal
interpolation does not satisfy the estimate (4.4) with an h-independent constant if
d > 1. The best constantC = Cd(h) reads as C2(h) = log(H/h) and C3(h) = (H/h)−1

depending on the spatial dimension d (cf. [38]). Since this constant enters basically all
error estimates below, we would end up with an h-dependence of the multiplicative
constants in the final error estimates. In two dimensions this can still be acceptable,
because the dependence on h is only logarithmic.

With the decomposition (4.1) we do not search the local correctors in the full fine
scale space Vh but only in the constrained space Wh. The advantage is the following:
as stated in the previous section for Oversampling Strategies 1 and 2, the standard
decay for the difference between the local correctors and the global “exact” corrector
is of order 1

dmin
U

(see Theorem 3.6), but in the constrained space Wh we can achieve

an exponential-type decay (cf. Lemma 4.9 below).
We now propose our new oversampling strategy.
Oversampling Strategy 3 (constrained oversampling). Let Wh denote the

space given by (4.2), and define

(4.5) W̊h(U(T )) := {vh ∈Wh | vh|Ω\U(T ) = 0}.

The local correctors wU ,3
h,T,i ∈ W̊h(U(T )) (for i ∈ {1, 2, . . . , d}) are defined as the

(unique) solutions of∫
U(T )

A∇wU ,3
h,T,i · ∇φh = −

∫
T

Aei · ∇φh for all φh ∈ W̊h(U(T )).(4.6)

For general ΦH ∈ VH we define the correction operator QU ,3
h : VH → Vh by

QU ,3
h (ΦH)(x) :=

∑
T∈TH

d∑
i=1

∂xiΦH(xT )w
U ,3
h,T,i(x).
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The global coarse scale approximation u3H ∈ VH is the solution of (3.3); i.e., it solves

A3(u3H ,ΦH) :=

∫
Ω

A
(
∇u3H +∇QU ,3

h (u3H)
)
·
(
∇ΦH +∇QU ,3

h (ΦH)
)

=

∫
Ω

f(ΦH +QU ,3
h (ΦH)) for all ΦH ∈ VH .(4.7)

The corresponding MsFEM approximation is given by

u3,MsFEM

H := u3H +QU ,3
h (u3H).

Using the above definition of the localized space W̊h(U(T )) does not assure that
our new method boils down to the classical MsFEM in the case without oversampling.
Nevertheless, this can be achieved by introducing a localized interpolation operator.

Given some element T ∈ TH and an admissible patch U(T ), we can define I
U(T )
H to

be the Clément-type quasi-interpolation operator with respect to the domain U(T )
(with extension by zero in Ω \ U(T )). Then, the localized space W̊h(U(T )) can be

defined in analogy to Wh with I
U(T )
H replacing IH . With this modification we obtain

the classical MsFEM for U(T ) = T . This is only a subtle detail, and all results still
remain valid for these modified local spaces; however, this version would generate
some technicalities in the proofs later on, which is why we decided to work with the
definition (4.5).

Remark 4.2. The crucial differences between the classical Oversampling Strate-
gies 1 and 2 and Oversampling Strategy 3 are the following:

(a) The variational problem for the local corrector in Oversampling Strategy 3
is posed in the constrained space W̊h(U(T )), whereas the classical corrector
problem seeks the local corrector in the full space V̊h(U(T )) restricted to the
patch.

(b) The support of the integrals on the right-hand sides in (3.7) and (3.9) is U(T ).
In our new version we use only the element T . This allows us to exploit
nice summation properties of the local projectors, without using indicator
functions χT that lead to discontinuities.

(c) In the classical setting, the local correctors are restricted to the corresponding
elements to derive the global corrector. For Oversampling Strategy 3, we
simply sum up (weighted by the coefficients of the finite element function)
the local contributions to get the global corrector. Note that our global
corrector is conforming in the sense that its image is a subset of Vh ⊂ H1

0 (Ω),
whereas the classical setup leads to a nonconforming corrector.

(d) In Oversampling Strategy 3, we do not use a PG formulation for the global
problem (4.7). Since A is assumed symmetric, a symmetric discretization
appears more natural. Furthermore, we immediately inherit coercivity for the
global bilinear form A3. This gives us the existence and uniqueness of u3H ,
and the arising MsFEM approximation is well posed and the method stable.
The typical disadvantage of the symmetric version, which still suffers from
resonance errors (which is why the PG formulation is typically preferred),
does not remain for our strategy.

(e) In contrast to Oversampling Strategies 1 and 2, the corrector QU ,3
h (ΦH) does

not preserve the support of ΦH . In other words, the set of multiscale basis
functions Φz +QU ,3

h (Φz) with z ∈ NH has an extended support. This results
in a loss of sparsity in the stiffness matrix that corresponds with the global



1164 PATRICK HENNING AND DANIEL PETERSEIM

problem (4.7). In order to still assemble the stiffness matrix in an efficient
way, one might store the intersection domain for each two given oversampling
patches (in storage types with low memory requirements). This can be easily
done at the same time the grids for the local patches are being generated.
Once all intersection domains are available, the matrix can be assembled
efficiently. A quadrature rule that resolves the microstructure is needed for
each of the strategies.

Remark 4.3 (perturbation of the right-hand side). We might also replace the
right-hand side of (4.7) by the term

∫
Ω
fΦH . This introduces only a perturbation of

order ‖Hf‖L2(Ω) in the H1-error.
Remark 4.4 (nonsymmetric formulation). As for the classical strategies, one

might also consider the nonsymmetric PG formulations: find u3H ∈ VH such that∫
Ω

A
(
∇(u3H +QU ,3

h (u3H))
)
· ∇ΦH =

∫
Ω

fΦH for all ΦH ∈ VH

or ∫
Ω

A
(
∇u3H

)
· ∇(ΦH +QU ,3

h (ΦH)) =

∫
Ω

fΦH for all ΦH ∈ VH .

In the spirit of homogenization theory, one might pose the question of whether
Theorem 3.5 still holds for MsFEM approximations obtained with Oversampling
Strategy 3. At least, this seems to be likely. The reason is that Theorem 3.5 in
particular covers the case without oversampling (see also [17]), and the proof given
in [18] goes back to the arguments used for the case without oversampling. But for
U = TH (no oversampling), Oversampling Strategies 1 and 2 are identical, and Over-
sampling Strategy 3 is at least close to the classical approach. Especially concerning
Oversampling Strategy 3, if the thickness of the oversampling layer decreases faster
than the coarse mesh size, we are almost in the case of Oversampling Strategy 1, up

to a small perturbation of the source term that is of order maxT∈TH

|U(T )\T |
|T | and that

converges to zero under the assumptions of Theorem 3.5. However, such arguments
still need a detailed investigation. In this sense, one might carefully study whether
Oversampling Strategy 3 also covers the homogenization setting established by Glo-
ria, with u3H converging to the homogenized solution as in Theorem 3.5. This might
be an interesting result to ensure that Oversampling Strategy 3 is not worse than the
classical strategies with respect to a homogenization setting.

Besides the advantages of our new strategy mentioned previously, e.g., its confor-
mity, stability, and unique solvability, we formulate the main error estimate, which is
proved in subsection 4.2.

Theorem 4.5 (quantitative a priori error estimates). Assume that we have
A ∈ L∞(Ω,Rd×d

sym) and f ∈ L2(Ω) as in the general assumptions in section 2.1. Let
TH be a given coarse triangulation, and let U denote a corresponding set of admissible
patches, with the property dmin

U � H log(H−1). By Th we denote a sufficiently accurate
fine triangulation of Ω and by uh the associated finite element solution of (2.3). If
u3,MsFEM

H is the MsFEM approximation determined with Oversampling Strategy 3 and
if u3H denotes the corresponding coarse part, then the following a priori error estimates
holds true for arbitrary mesh sizes H ≥ h:

‖∇uh −∇u3,MsFEM

H ‖L2(Ω) ≤ CH,

‖uh − u3,MsFEM

H ‖L2(Ω) ≤ CH2,

‖uh − u3H‖L2(Ω) ≤ CH.
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Here, C denotes generic constants that depend on f , γmin, and γmax but not on H, h,
the regularity of the exact solution, or the variations of A. Details on the constants
are given in Theorems 4.13 and 4.15.

4.2. Proof of the main result. Before we prove the error estimates for the
MsFEM with the correctors presented in Oversampling Strategy 3, we introduce some
simplifying notation for this subsection.

Definition 4.6 (notation for Oversampling Strategy 3). Let wU ,3
h,T,i ∈ W̊h(U(T ))

denote the local corrector basis given by (4.6), let QU ,3
h denote the corresponding cor-

rector operator from Oversampling Strategy 3, and let u3H denote the arising (coarse)
MsFEM approximation. In the following, we skip the redundant indices and use the
following notation:

wi
T := wU ,3

h,T,i, Qh := QU ,3
h , uH := u3H , and uMsFEM := uH +Qh(uH).

The first lemma treats the (unpractical) case of maximal oversampling.
Lemma 4.7 (error estimate for maximal oversampling). Let U(T ) = Ω for all

T ∈ TH . Then the multiscale approximation uH that solves (4.7) satisfies the error
estimate

‖∇uh −∇(uH +Qh(uH))‖L2(Ω) � γ−1
min‖Hf‖L2(Ω),

where uh solves the reference problem (2.3).
If, moreover, (f, wh)L2(Ω) = 0 for all fine scale functions wh ∈ Wh, then uH +

Qh(uH) = uh.
Proof. For U(T ) = Ω, Qh maps onto the fine scale space Wh. Given ΦH ∈ VH , it

is easily checked that Qh(ΦH) =
∑

T∈TH

∑d
i=1 ∂xiΦH(xT )w

i
T satisfies

a(Qh(ΦH), φh) =

∫
Ω

A∇
( ∑

T∈TH

d∑
i=1

∂xiΦH(xT )w
i
T (x)

)
· ∇φh

=

∫
Ω

A

( ∑
T∈TH

d∑
i=1

∂xiΦH(xT )∇wi
T (x)

)
· ∇φh

=
∑

T∈TH

d∑
i=1

∂xiΦH(xT )

∫
Ω

A∇wi
T (x) · ∇φh

= −
∑

T∈TH

d∑
i=1

∂xiΦH(xT )

∫
T

Aei · ∇φh

= −
∑

T∈TH

∫
T

A∇ΦH · ∇φh

= −a(ΦH , φh)

for all φh ∈Wh. This means that Qh is the orthogonal projection of ΦH onto the fine
scale space Wh with respect to the scalar product a(·, ·). This yields the orthogonal
decomposition

Vh = ṼH ⊕⊥a Wh, where ṼH := {ΦH +Qh(ΦH) | ΦH ∈ VH}.(4.8)
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Moreover, Galerkin orthogonality holds; i.e., for eh := uh − (uH + Qh(uH)) and for
arbitrary ΦH +Qh(ΦH) ∈ ṼH ,

a(eh,ΦH +Qh(ΦH)) = a(uh,ΦH +Qh(ΦH))− a(uH +Qh(uH),ΦH +Qh(ΦH))

(4.7)
= 0.(4.9)

The combination of (4.8) and (4.9) shows that eh ∈ Wh, and therefore IH(eh) = 0.
We obtain

γmin‖∇eh‖2L2(Ω) ≤ a(eh, eh) = a(uh, eh) =

∫
Ω

feh =

∫
Ω

f(eh − IH(eh)).

The application of the Cauchy–Schwarz inequality on the element level and the esti-
mate (4.4) for the interpolation error yield the assertion.

Corollary 4.8. The new MsFEM is exact (up to the discretization error on the
fine scale and oscillations ‖Hf‖L2(Ω) of the right-hand side f) in the limit of maximal
oversampling. This results holds true independent of the upper spectral bound γmax

and the variations of A. This is the next difference from the previous Oversampling
Strategies 1 and 2.

Although the error estimate in Lemma 4.7 is encouraging, maximal oversampling
is not feasible. We shall study the decay of the correctors away from element they are
associated with. For all T ∈ TH , define element patches in the coarse mesh TH by

(4.10)
U0(T ) := T,

Uk(T ) := ∪{T ′ ∈ TH | T ′ ∩ Uk−1(T ) �= ∅} k = 1, 2, . . . .

Lemma 4.9 (decay of the ideal correctors). Let U(T ) = Ω for all T ∈ TH in
Oversampling Strategy 3, and let wi

T denote the corresponding local correctors defined
in Definition 4.6 (and (4.6)). Then, for all T ∈ TH and all k ∈ N,

‖A1/2∇wi
T ‖L2(Ω\Uk(T )) � e−rk‖A1/2∇wi

T ‖L2(Ω),

where r is a positive constant that depends on the square root of the contrast but not
on the mesh size or the variations of A.

The proof of Lemma 4.9 requires the definition of cutoff functions and an addi-
tional lemma. For T ∈ TH and �, k ∈ N with k > �, define ηT,k,	 ∈ P1(TH) with nodal
values

(4.11)

ηT,k,	(z) = 0 for all z ∈ NH ∩ Uk−	(T ),

ηT,k,	(z) = 1 for all z ∈ NH ∩ (Ω \ Uk(T )) , and

ηT,k,	(z) =
m

�
for all x ∈ NH ∩ ∂Uk−	+m(T ), m = 0, 1, 2, . . . , �.

For a sketch in one dimension, see Figure 4.1.
Given some w ∈ Wh, the product ηT,k,	w is not in Wh in general. However, the

distance of ηT,k,	w and Wh is small in the following sense.
Lemma 4.10. Given w ∈ Wh and some cutoff function ηT,k,	 ∈ P1(TH) as in

(4.11), there exists some w̃ ∈ W̊h(Ω \ Uk−	−1(T )) ⊂Wh such that

‖∇(ηT,k,	w − w̃)‖L2(Ω) � �−1‖∇w‖L2(Uk+2(T )\Uk−�−2(T )).

Proof. Fix some T ∈ TH and k ∈ N, and let η	 := ηT,k,	. The operator Ih :
H1

0 (Ω) ∩ C(Ω̄) → V h denotes the nodal interpolant with respect to the mesh Th.
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Fig. 4.1. Sketch of ηT,k,� (red curve) in one dimension for k = 5 and � = 3. ηT,k,� is equal to
zero on T and also on the first 2 (= k − �) coarse grid layers around T . Then it grows linearly on
the layers � = 3 until k = 5. On the remaining layers ηT,k,� is constantly equal to 1.

Recall that for all quadratic polynomials p and all t ∈ Th, Ih fulfills the (local)
approximation and stability estimates

(4.12) ‖∇(p− Ihp)‖L2(t) � ht‖∇2p‖L2(t) and ‖∇(Ihp)‖L2(t) � ‖∇p‖L2(t).

We will use this estimate for the Th-piecewise quadratic function p = η	w. Since
∇2η	 = ∇2w = 0 in every t ∈ Th, we have that ∇2

hη	w = ∇η	 · ∇w in t.
According to [34, Lemma 1], there exists some v ∈ V h such that

(4.13)
IHv = IHIh(η	w), ‖∇v‖L2(Ω) � ‖∇IHIh(η	w)‖L2(Ω), and supp(v) ⊂ Ω \ Uk−	−1(T ).

Hence, w̃ := Ih(η	w)− v ∈ W̊h(Ω \ Uk−	−1(T )). Since IHIh(cw) = cIHw = 0 for any
c ∈ R, we set c	K := |ωK |−1

∫
ωK

η	 for K ∈ TH and get

(4.14)

‖∇IHIh(η	w)‖2L2(Ω)

(4.11)
=

∑
K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

∥∥∇IHIh ((η	 − c	K
)
w
)∥∥2

L2(K)

(4.12),(4.4)

�
∑

K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

∥∥∇ ((η	 − c	K
)
w
)∥∥2

L2(ωK)

(4.2)

�
∑

K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

‖(∇η	)(w − IHw)‖2L2(ωK) +
∥∥(η	 − c	K

)
∇w
∥∥2
L2(ωK)

(4.11)

�
∑

K∈TH :

K⊂Uk(T )\Uk−�(T )

‖(∇η	)(w − IHw)‖2L2(K) +
∑

K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

∥∥(η	 − c	K
)
∇w
∥∥2
L2(ωK)
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� ‖H∇η	‖2L∞(Ω)‖∇w‖2L2(Uk+1(T )\Uk−�−1(T )) +
∑

K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

∥∥(η	 − c	K
)
∇w
∥∥2
L2(ωK)

� ‖H∇η	‖2L∞(Ω)‖∇w‖2L2(Uk+2(T )\Uk−�−2(T )).

In the last step, we used the Lipschitz bound

‖η	 − c	K‖2L∞(ωK) � H2‖∇η	‖2L∞(ωK).

In summary we get with the previous computations

‖∇(η	w − w̃)‖2L2(Ω)

(4.13)

� ‖∇(η	w − Ih(η	w))‖2L2(Ω) + ‖∇IHIh(η	w)‖2L2(Ω)

(4.12),(4.14)

� ‖h∇η	 · ∇w‖2L2(Ω) + ‖H∇η	‖2L∞(Ω)‖∇w‖2L2(Uk+2(T )\Uk−�−2(T ))

(4.11)

�
(
‖h∇η	‖2L∞(Ω) + ‖H∇η	‖2L∞(Ω)

)
‖∇w‖2L2(Uk+2(T )\Uk−�−2(T ))

(4.11)

� �−2‖∇w‖2L2(Uk+2(T )\Uk−�−2(T )).

This proves the assertion.
Proof of Lemma 4.9. The proof exploits some recursive Caccioppoli argument as

in [34]. We fix some T ∈ TH and k ∈ N. Given � ∈ N with � < k − 1, let η	 :=
ηT,k−2,	−4 ∈ VH be some cutoff function as in (4.11). Lemma 4.10 shows that there
exists some w̃i

T ∈Wh such that ‖∇(η	w
i
T − w̃i

T )‖L2(Ω) � �−1‖∇wi
T ‖L2(Uk(T )\Uk−�(T )).

Since w̃i
T ∈ W̊h(Ω \ Uk−	+1(T )) and, hence, w̃

i
T |T = 0, it holds that∫

Ω\Uk−�(T )

A∇wi
T · ∇w̃i

T =

∫
Ω

A∇wi
T · ∇w̃i

T = −
∫
T

Aei · ∇w̃i
T = 0.(4.15)

The definition of η	, the product rule, (4.6), and (4.2) yield∫
Ω\Uk(T )

A∇wi
T · ∇wi

T ≤
∫
Ω\Uk−�(T )

η	A∇wi
T · ∇wi

T

=

∫
Ω\Uk−�(T )

A∇wi
T ·
(
∇(η	w

i
T )− wi

T∇η	
)

(4.15)
=

∫
Ω\Uk−�(T )

A∇wi
T ·

⎛
⎝∇(η	w

i
T − w̃i

T )− (wi
T − IH(wi

T )︸ ︷︷ ︸
=0

)∇η	

⎞
⎠ .

Observe that, by (4.11), ‖∇η	‖L∞(K) = |∇η	(xK)| � �−1H−1
K for all K ∈ TH . This

and the estimate (4.4) for the interpolation error show that

‖(wi
T − IH(wi

T ))∇η	‖2L2(K) � ‖∇η	‖2L∞(K)‖wi
T − IH(wi

T )‖2L2(K)

� H2
K‖∇η	‖2L∞(K)‖∇wi

T ‖2L2(ωK)

� �−2‖∇wi
T ‖2L2(ωK)

for any K ∈ TH . The combination of the previous estimates and Cauchy–Schwarz
inequalities proves that there is some constant C1 > 0 independent of T , �, k, and the
oscillations of A such that

(4.16) ‖A1/2∇wi
T ‖L2(Ω\Uk(T )) ≤ C1�

−1/2‖A1/2∇wi
T ‖L2(Ω\Uk−�−1(T )).
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The choice � := �C1 e� and the recursive application of (4.16) readily yield the asser-
tion.

This exponential decay justifies the approximation of the correctors on local
patches Uk(T ) as proposed in (4.10). We denote by Qk

h the corrector that corre-
sponds to the choice U(T ) = Uk(T ) in Oversampling Strategy 3 and by QΩ

h the one
for U(T ) = Ω.

Corollary 4.11 (truncation/localization error). Let U(T ) = Ω for all T ∈ TH
in Oversampling Strategy 3. Then, for all T ∈ TH and all k ∈ N,

‖A1/2∇(wi
T − wi,k

T )‖L2(Ω\Uk(T )) � e−r·k‖A1/2ei‖L2(T ),

where r > 0 is as in Lemma 4.9 (independent of the variations of A or the mesh size).
Proof. Galerkin orthogonality yields

‖A1/2∇(wi
T −wi,k

T )‖2L2(Ω) ≤ ‖A1/2∇(wi
T − w̃)‖2L2(Uk−1(T ))+ ‖A1/2∇wi

T ‖2L2(Ω\Uk−1(T )),

where w̃ ∈Wh is the fine scale function that corresponds to (1−ηT,k−1,1)w
i
T and which

is constructed in the same way as w̃ in the proof of Lemma 4.10. Here, ηT,k−1,1 is
some cutoff function as in (4.11). Since supp(w̃) ⊂ supp((1−ηT,k−1,1)w

i
T ) ⊂ Uk−1(T ),

we have that w̃ ∈ W̊h(Uk(T )) and the use of Galerkin orthogonality is justified.
Proceeding as in Lemma 4.10 shows that

‖A1/2∇(wi
T − wi,k

T )‖2L2(Ω) � ‖A1/2∇wi
T ‖2L2(Ω\Uk−2(T )),

and the application of Lemma 4.9 yields the assertion.
The proof of the main theorem requires one technical result.
Lemma 4.12. Let k ∈ N>0, and let ΦH ∈ VH ; then

(4.17)∥∥∥A1/2∇(QΩ
h −Qk

h)ΦH

∥∥∥2
L2(Ω)

� kd
∑

T∈TH

d∑
i=1

|∂xiΦH(xT )|2
∥∥∥A1/2∇(wi

T − wi,k
T )
∥∥∥2
L2(Ω)

.

Proof. Let ηT,k,1 be as in (4.11), and define z := (QΩ
h − Qk

h)ΦH ∈ Wh. We
decompose the error as follows:∥∥∥A1/2∇(QΩ

h −Qk
h)ΦH

∥∥∥2
L2(Ω)

= a(z, z)

=
∑

T∈TH

d∑
i=1

∂xiΦH(xT )a(w
i
T − wi,k

T , z(1− ηT,k,1))

︸ ︷︷ ︸
=:I

+
∑

T∈TH

d∑
i=1

∂xiΦH(xT )a(w
i
T − wi,k

T , zηT,k,1)

︸ ︷︷ ︸
=:II

.

For the first term we get

|I| �
∑

T∈TH

d∑
i=1

|∂xiΦH(xT )|‖A
1
2∇(wi

T − wi,k
T )‖L2(Ω)‖∇ (z(1− ηT,k,1)) ‖L2(Uk+1(T )),
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where with IH(z) = 0

‖∇ (z(1− ηT,k,1)) ‖L2(Uk+1(T )) ≤ ‖∇z‖L2(Uk+1(T )) + ‖z∇ (1− ηT,k,1) ‖L2(Uk+1(T )\Uk(T ))

� ‖∇z‖L2(Uk+1(T )) +
1

H
‖z − IH(z)‖L2(Uk+1(T )\Uk(T ))

� ‖∇z‖L2(Uk+2(T )),

and therefore

|I| �
∑

T∈TH

d∑
i=1

|∂xiΦH(xT )|‖A
1
2∇(wi

T − wi,k
T )‖L2(Ω)‖∇z‖L2(Uk+2(T ))

� k
d
2

( ∑
T∈TH

d∑
i=1

|∂xiΦH(xT )|2‖A
1
2∇(wi

T − wi,k
T )‖2L2(Ω)

) 1
2

‖∇z‖H1(Ω).

To estimate the second term, we use Lemma 4.10, which gives us the existence of
some z̃ ∈ W̊h(Ω \ Uk−2(T )) with a(w

i
T − wi,k

T , z̃) = 0 (as in (4.15)) and the property
‖∇(zηT,k,1 − z̃)‖L2(Ω) � ‖∇z‖L2(Uk+2(T )). This yields

|II| =
∣∣∣∣∣ ∑
T∈TH

d∑
i=1

∂xiΦH(xT )a(w
i
T − wi,k

T , zηT,k,1 − z̃)

∣∣∣∣∣
≤
∑

T∈TH

d∑
i=1

|∂xiΦH(xT )|‖A
1
2∇(wi

T − wi,k
T )‖L2(Ω)‖∇z‖L2(Uk+2(T ))

� k
d
2

( ∑
T∈TH

d∑
i=1

|∂xiΦH(xT )|2‖A
1
2∇(wi

T − wi,k
T )‖2L2(Ω)

) 1
2

‖∇z‖H1(Ω).

Combining the estimates for I and II and dividing by ‖∇z‖H1(Ω) � a(z, z)
1
2 yields the

assertion.
Theorem 4.13 (H1–error estimate). Given k ∈ N, let U(T ) = Uk(T ) for all

T ∈ TH in Oversampling Strategy 3. Then the multiscale approximation ukH that
solves (4.7) satisfies the error estimate

‖∇uh −∇(ukH +Qk
h(u

k
H))‖ � γ−1

min‖Hf‖L2(Ω) + k
d
2 e−rk‖f‖H−1(Ω),

where uh is the reference solution from (2.3) and r > 0 as in Lemma 4.9.
Remark 4.14 (relation to the results in [34]). In the case of maximal oversam-

pling, the new MsFEM with constrained oversampling coincides with the ideal version
(without localization) of the VMM presented in [34]. The localized versions are differ-
ent and allow similar, but not identical, error estimates. The upper bound obtained
in [34] reads (up to some multiplicative constant) as

‖Hf‖L2(Ω) +H−1e−rk‖f‖H−1(Ω).

Our new localization strategy allows for an improved estimate in the sense that the
unpleasant factor H−1 does not appear. Note that the proof of the error estimate in
Theorem 4.13 does not generalize to the localization strategy used in [34] and must
therefore be seen independently. The reason is that the structure of the local problems



OVERSAMPLING FOR THE MsFEM 1171

(4.6) gives us a nice summation property which we were able to exploit but which is
not available in [34]. This observation indicates that better numerical approximations
for equal sizes of oversampling patches are possible with our new approach. This will
be investigated in future works.

Proof of Theorem 4.13. Using the fact that Galerkin approximation minimizes
the error in the energy norm, we obtain with the definitions of ukH and uh that for all
ΦH ∈ VH
(4.18)
‖A1/2(∇uh −∇(ukH +Qk

h(u
k
H)))‖L2(Ω) ≤ ‖A1/2(∇uh −∇(ΦH +Qk

h(ΦH)))‖L2(Ω).

Let uH be the solution of (4.7) with the ideal corrector Qh = QΩ
h . Then

‖A1/2(∇uh −∇(ukH +Qk
h(u

k
H)))‖L2(Ω)

(4.18)

≤ ‖A1/2(∇uh −∇(uH +Qk
h(uH)))‖L2(Ω)

≤ ‖A1/2(∇uh −∇(uH +QΩ
h (uH)))‖L2(Ω)

+ ‖A1/2(∇(uH +QΩ
h (uH))−∇(uH +Qk

h(uH)))‖L2(Ω)

� γ
−1/2
min ‖Hf‖L2(Ω) + ‖A1/2∇((QΩ

h −Qk
h)(uH))‖L2(Ω).

By Corollary 4.11, we get

‖A1/2∇((QΩ
h −Qk

h)(uH))‖2L2(Ω)

=

∥∥∥∥∥ ∑
T∈TH

d∑
i=1

∂xiuH(xT )A
1
2∇(wi

T − wi,k
T )

∥∥∥∥∥
2

L2(Ω)

(4.17)

� kd
∑

T∈TH

d∑
i=1

|∂xiuH(xT )|2
∥∥∥A 1

2∇(wi
T − wi,k

T )
∥∥∥2
L2(Ω)

� kde−2r·k
∑

T∈TH

d∑
i=1

|∂xiuH(xT )|2‖A1/2ei‖2L2(T )

� kde−2r·k
∑

T∈TH

d∑
i=1

‖A1/2∇uH‖2L2(T )

� kde−2rk‖f‖2H−1(Ω).

In the last step we have used that uH = IH(uH +QΩ
h (uH)), the stability of IH , and

the energy estimate ‖A1/2∇(uH +QΩ
h (uH)‖L2(T ) � γ

−1/2
min ‖f‖H−1(Ω).

Theorem 4.15 (L2-estimates). Given k ∈ N, let U(T ) = Uk(T ) for all T ∈ TH
in Oversampling Strategy 3. Then the multiscale approximation ukH that solves (4.7)
satisfies the error estimates

‖uh − (ukH +Qk
h(u

k
H))‖L2(Ω) � (γ−1

min‖H‖L∞(Ω) + kd/2e−rk)2‖f‖L2(Ω)

and

‖uh − ukH‖L2(Ω) � min
vH∈VH

‖uh − vH‖L2(Ω) + (γ−1
min‖H‖L∞(Ω) + kd/2e−rk)2‖f‖L2(Ω),

where uh is the reference solution from (2.3) and r is a positive constant.
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Proof. A standard Aubin–Nitsche duality argument yields the first estimate. The
second estimate follows from the first one and the quasi optimality and stability of
the interpolation IH in L2(Ω).

Remark 4.16 (smooth coefficient with known smallest scale ε). Let Ω be convex,
and let f ∈ L2(Ω) with ‖f‖L2(Ω) � 1, A ∈ W 1,∞(Ω) with ‖∇A‖L∞(Ω) � ε−1 with
some small scale parameter ε > 0. Choose uniform meshes TH and Th withH � ε � h.
Under these assumptions, the error of the reference solution uh ∈ Vh is bounded as
follows:

‖∇(u− uh)‖ � hε−1.

We refer the reader to [37] for details. If k � log(H−1), Theorems 4.13 and 4.15 yield
the error bounds

‖∇(u− ukH −Qk
h(u

k
H))‖L2(Ω) � H + h

ε ,

‖u− ukH −Qk
h(u

k
H)‖L2(Ω) � H2 +

(
h
ε

)2
,

‖u− ukH‖L2(Ω) � H +
(
h
ε

)2
.

5. Numerical experiments. In this section we present numerical experiments
to confirm the derived error estimates and to compare the numerical accuracies of
Oversampling Strategies 1, 2, and 3. Here we use Oversampling Strategies 1 and 2 in
the PG formulation (due to the findings in [28]) and Oversampling Strategy 3 in the
symmetric formulation. We consider the following model problem.

Model problem. Let Ω :=]0, 1[2 and ε = 5 · 10−2. We define

u(x1, x2) := sin(2πx1)sin(2πx2) +
ε

2
cos(2πx1)sin(2πx2)sin

(
2π
x1
ε

)
,

which is the exact solution of the problem

−∇ · (A∇u) = f in Ω,

u = 0 on ∂Ω,

where A is given by

A(x1, x2) :=
1

8π2

(
2(2 + cos(2π x1

ε ))−1 0
0 1 + 1

2cos(2π
x1

ε )

)

and f by

f(x) := −∇ · (A(x)∇u(x)) ≈ sin(2πx1)sin(2πx2).

In Table 5.1 we depict the results for h = 2−6 and various combinations of H with
different numbers of oversampling layers. For a better illustration we state the number
of fine grid layers and the number of coarse grid layers (k) that corresponds with
that. The results in Table 5.1 match nicely with the analytically predicted behavior.
In Table 5.2 we state a comparison between the L2- and H1-errors for the three
oversampling strategies obtained for identical values of H , h, and U . We observe that
our oversampling strategy, in contrast to the classical ones, does not suffer from a loss
in accuracy when H is close to the microscopic parameter ε. Moreover, the accuracy
obtained for Oversampling Strategy 3 is very promising in general.
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Table 5.1

Computations made for h = 2−6. k denotes the number of coarse layers. uh denotes the
fine scale reference given by (2.3), and u3,MsFEM

H denotes the MsFEM approximation obtained with

Oversampling Strategy 3. The table depicts various errors between uh and u3,MsFEM

H .

H Fine layers k ‖uh − u3,MsFEM

H ‖L2(Ω) ‖uh − u3,MsFEM

H ‖H1(Ω)

2−1 16 0.5 0.490063 4.49575

2−2 8 0.5 0.09491 1.66315

2−2 24 1.5 0.06376 1.08960

2−3 4 0.5 0.033691 1.017150

2−3 8 1 0.007125 0.406317

2−3 12 1.5 0.007115 0.331458

2−3 16 2 0.003241 0.165703

2−4 2 0.5 0.012808 0.655269

2−4 4 1 0.004164 0.348814

2−4 6 1.5 0.004029 0.329306

2−4 8 2 0.001451 0.162747

2−4 12 2.5 0.000850 0.114040

2−4 16 3 0.000696 0.096378

Table 5.2

Computations made for h = 2−6. k denotes the number of coarse layers. uh denotes the

fine scale reference given by (2.3), and ui,MsFEM

H denotes the MsFEM approximation obtained with

Oversampling Strategy 1. The error is denoted by ei := uh − ui,MsFEM

H . The second column depicts
the number of fine grid layers.

Oversampling Strategy 1 Oversampling Strategy 2 Oversampling Strategy 3

H k ‖e1‖L2 ‖e1‖H1 ‖e2‖L2 ‖e2‖H1 ‖e3‖L2 ‖e3‖H1

2−2 1 0.1399 1.9812 0.1399 1.9812 0.0638 1.0896

2−3 1 0.0594 1.6250 0.0594 1.6250 0.0071 0.4063

2−3 2 0.0593 1.6250 0.0593 1.6250 0.0032 0.1657

2−4 1 0.0166 0.8067 0.0172 0.8048 0.0042 0.3488

2−4 2 0.0160 0.8057 0.0168 0.7955 0.0015 0.1628

2−4 3 0.0153 0.8016 0.0152 0.7937 0.0007 0.0964

6. Conclusion. In this work, we proposed a new oversampling strategy for the
MsFEM, which generalizes the original method without oversampling. The new strat-
egy is based on an additional constraint for the solution spaces of the local problems.
The error analysis shows that oversampling layers of thickness H log(H−1) suffice to
preserve the common convergence rates with respect to H without any preasymp-
totic effects. Moreover, this choice prevents resonance errors even for general L∞

coefficients without any assumptions on the geometry of the microstructure or the
regularity of A. In this respect, the method is reliable. The method is also efficient in
the sense that structural knowledge about the coefficient, e.g., (local) periodicity or
scale separation, may be exploited to reduce the number of corrector problems con-
siderably. Whether the oversampling can be reduced to very small layers in the case
of, e.g., periodicity should be investigated numerically and/or analytically in future
works.
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