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CHARACTERIZATION OF LOWER SEMICONTINUOUS

CONVEX FUNCTIONS ON RIEMANNIAN MANIFOLDS

S. HOSSEINI*

Abstract. In this paper, an upper subderivative of a lower semicontinuous

function on a Riemannian manifold is introduced. Then, an approximate mean
value theorem for the upper subderivative on a Hadamard manifold is pre-

sented. Moreover, the results are used for characterization of convex functions

on Riemannian manifolds.

1. introduction

This paper is concerned with characterization of lower semicontinuous convex
functions on Hadamard manifolds via the monotonicity of their subdifferentials.
Subdifferential calculus was started with convex functions on Rn. Rockafellar de-
fined the subdifferential for such functions and characterized it in terms of one-sided
directional derivatives; see [26]. F. H. Clarke in his thesis demonstrated how the
definition of the subdifferential could be extended to arbitrary lower semicontinuous
functions in such a way that it is the same as the subdifferential of convex analysis
when the function is convex. He also characterized the subdifferential of a locally
Lipschitz function by a generalized directional derivative; see [15]. In [27], Rock-
afellar replaced the class of locally Lipschitz functions by classes of noncontinuous
functions and characterized the subdifferential in terms of a directional derivative
called the upper subderivative. In [29], a mean value theorem for a lower semi-
continuous function on a Banach space using the upper subderivative defined by
Rockafellar, was proved. This mean value theorem has many applications in suf-
ficient optimality conditions and characterizations of convex lower semicontinuous
functions; see [16, 29].

Convexity of functions and sets plays an important role in economics, man-
agement science, and mathematical theories, etc. Therefore, the study of convex
functions and other concepts related to convexity are essential from both the theo-
retical and practical points of view. First-order characterizations for the convexity
of extended real-valued functions via the monotonicity of the Fréchet derivative and
the monotonicity of the Fréchet subdifferential mapping or the limiting subdiffer-
ential mapping can be found, e.g., in [19] and [24, Theorem 3.56]. The convexity
can be characterized also by using first-order directional derivatives; see e.g. [19]
and the references therein.

Key words and phrases. Riemannian manifolds, Subdifferential, Lower semicontinuous func-
tions, Locally Lipschitz functions.
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Extension of concepts of nonsmooth analysis to Riemannian manifolds are nec-
essary due to the fact that nonsmooth functions on manifolds have a lot of applica-
tions, such as in computer vision, signal processing, motion and structure estima-
tion; see [2, 3]. Some other works and applications include those by Absil, Mahony
and Sepulchre [1], Azagra, Ferrera, López-Mesas, Sanz [6, 7, 8, 9] and references
therein. Furthermore, some attempts have been made to develop the concepts of
convex functions and monotone vector fields on Riemannian manifolds; [10, 25].

In [20], a notion of the Clarke subdifferential for locally Lipschitz functions de-
fined on Riemannian manifolds was introduced, a calculus for nonsmooth functions
on these manifolds was established and its applications were discussed. These mo-
tivated us to replace the class of locally Lipschitz functions on manifolds by lower
semicontinuous functions to develop the results in [16, 27, 29] to manifold settings.

This paper is devoted to the study of the Rockafellar subdifferential for lower
semicontinuous functions defined on Riemannian manifolds. We develop a basic
calculus result for this subdifferential. Then, we prove an approximate mean value
theorem for the upper subderivative on Hadamard manifolds. It is worthwhile to
mention that our proof is based on the convexity of the distance function on mani-
folds, hence we have to work on Hadamard manifolds. Moreover, a characterization
of lower semicontinuous convex functions on manifolds by the monotonicity of its
subdifferential is presented.

In this paper, we use the standard notations and known results of Riemannian
manifolds, see, e.g. [28].

Throughout this paper M is a finite dimensional manifold endowed with a Rie-
mannian metric gx(., .) on the tangent space TxM

1. A Riemannian metric is there-
fore a smooth assignment of an inner product to each tangent space. It is usual to
write

gx(v, w) = 〈v, w〉x, for all v, w ∈ TxM.

A Riemannian metric allows us to compute the length of any vector (as well as
the angle between two vectors with the same base point). Let us recall the length
of a piecewise C1 curve.2

Definition 1.1. Let γ : [a, b] → M be a piecewise C1 curve, then its length is
defined by

L(γ) :=

∫ b

a

‖γ′(t)‖dt =

∫ b

a

〈γ′(t), γ′(t)〉 12 dt.

For two points x, y ∈M , we define

d(x, y) := inf{L(γ) : γ is a piecewise C1 curve joining x to y}.
Then, d is a distance (called g−distance) on M , which defines the same topology
as the one M naturally has as a manifold.

The tangent bundle of a manifold M is the disjoint union of the tangent spaces
of M , i.e., TM = tx∈MTxM, where TxM denotes the tangent space to M at the
point x.

Given a manifold M , a vector field on M is an assignment of a tangent vector
to each point in M . More precisely, a vector field F is a mapping from M into the
tangent bundle TM such that π ◦ F is the identity mapping, where π denotes the

1TxM = {v| ∃γ : (−ε, ε)→M, γ(0) = x, γ′(0) = v }.
2A function f is said to be of class Ck if the derivatives f ′, f ′′, ..., f (k) exist and are continuous.
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projection map, i.e, π : TM → M is defined by π(x, v) := x. The collection of all
smooth vector fields is also denoted by X(M).

Let M be a Riemannian manifold. Then an affine connection3 is called a Levi-
Civita connection if
(1) it preserves the metric, i.e., ∇g = 0.
(2) it is torsion-free, i.e., ∇XY −∇YX = XY − Y X, for any vector fields X and
Y in X(M).

On any Riemannian manifold M there exists a unique Levi-Civita connection.
A vector field defined along a differentiable curve γ : I →M is a differentiable map
V : I → TM such that V (t) ∈ Tγ(t)M for all t ∈ I. A vector field V defined along
a differentiable curve γ : I → M is called parallel when ∇γ′(t)V = 0 for all t ∈ I.
We also recall that a geodesic is a C∞ smooth curve γ satisfying the equation

∇γ′(t)γ
′(t) = 0.

The existence theorem for ordinary differential equations implies that for every
x ∈M and (x, v) ∈ TM , there exist an open interval J containing 0 and exactly one
geodesic γv : J →M with γ′v(0) = v and γv(0) = x. Recall a Riemannian manifold
M is called geodesically complete if the maximum interval of the definition of every
geodesic in M is R.

The exponential mapping expx : U ⊂ TxM → M is then defined as expx(v) =
γv(1).

We identify (via the Riemannian metric) the tangent space of M at a point x
with the cotangent space at x, denoted by TxM

∗. We recall that a simply con-
nected complete Riemannian manifold of nonpositive sectional curvature is called
a Hadamard manifold. Also, let S be a nonempty closed subset of a Riemannian
manifold M , we define dS : M −→ R by

dS(x) := inf{d(x, s) : s ∈ S },
where d is the Riemannian distance on M .

Recall that the set S in a Riemannian manifold M is called to be convex if every
two points x1, x2 ∈ S can be joined by a unique geodesic whose image belongs to S.
Also, f defined on a Riemannian manifold M is called to be convex provided that
f◦γ : I ⊂ R→ R is convex for every geodesic γ : I → R. It is worth mentioning that
convexity depends on Riemannian connection, therefore a function may be convex
with respect to one Riemannian connection but not to another; for examples see
[21, page 294].

A real-valued function f defined on a Riemannian manifold M is said to satisfy a
Lipschitz condition of rank K on a given subset S of M if | f(x)−f(y) |≤ Kd(x, y)
for every x, y ∈ S, where d is the Riemannian distance on M . A function f is said
to be Lipschitz near x ∈ M , if it satisfies the Lipschitz condition of some rank on
an open neighborhood of x. A function f is said to be locally Lipschitz on M , if f
is Lipschitz near x, for every x ∈M .

3An affine connection on M is a bilinear map

∇ : X(M)× X(M)→ X(M)

defined by

(X,Y ) 7→ ∇XY

such that for all smooth real functions f defined on M and all vector fields X,Y on M :
(1)∇fXY = f∇XY ,

(2)∇XfY = X(f)Y + f∇XY .
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Now we start with some definitions of nonsmooth analysis on Riemannian man-
ifolds; for more details see [4, 6, 8, 20]. The following definition has appeared for
the first time in [18]; see also [5].

Definition 1.2. Let M be a Riemannian manifold, x ∈M and f : M → (−∞,+∞]
be a lower semicontinuous function. The proximal subdifferential of f at x, denoted
by ∂P f(x), is defined as ∂P (f ◦ expx)(0x).

As a consequence of the definition of ∂P (f ◦ expx)(0x) one has, ξ ∈ ∂P f(x) if
and only if there is σ > 0 such that

f(y) ≥ f(x) + 〈ξ, exp−1
x (y)〉x − σd(x, y)2 (1.1)

for every y in a neighborhood of x, [20].

The Fenchel subdifferential of a function f defined on a Hadamard manifold M
at a point x ∈M such that f(x) ∈ R is the set

∂cf(x) := {v ∈ TxM | f(expx(d))− f(x) ≥ 〈v, d〉x for all d ∈ TxM}.
If x /∈ dom(f), then we define ∂cf(x) := ∅.
Definition 1.3. Let f : M → (−∞,+∞] be a lower semicontinuous function. The
Fréchet subdifferential of f at a point x ∈ domf = {x ∈M : f(x) <∞} is defined
as the set ∂F f(x) of all ξ ∈ TxM with the property that

lim inf
v→0‖v‖6=0

‖v‖−1(f ◦ expx(v)− f(x)− 〈ξ, v〉x) ≥ 0.

One can deduce that ∂F f(x) = ∂F (f ◦ expx)(0x).
The following lemma is another interesting characterization of the Fréchet sub-

differential. It is the definition of the subdifferential most often present in the
literature on viscosity solution of differential equations, and the Fréchet subdiffer-
ential is sometimes referred to as the “viscosity subdifferential”; see [14, 6].

Lemma 1.4. Let f : M → (−∞,+∞] be a lower semicontinuous function defined
on a Riemannian manifold M .

∂F f(x) = {Dϕ(x)|ϕ ∈ C1(M,R), f − ϕ attains a local minimum at x}.
Using the previous lemma and by Corollary 2.4 of [7], we can prove that

∂P f(x) = {Dϕ(x)|ϕ ∈ C2(M,R), f − ϕ attains a local minimum at x}.
Consequently, the following corollary can be proved easily.

Corollary 1.5. Let f : M → (−∞,+∞] be a lower semicontinuous function de-
fined on a Riemannian manifold M . Then

∂P f(x) ⊂ ∂F f(x).

Note that the expression y →f x means that

y → x, f(y)→ f(x).

Definition 1.6. Suppose that f : M → (−∞,+∞] is a lower semicontinuous
function on a Riemannian manifold M . Then, the upper subderivative of f at x in
the direction v′ ∈ TxM denoted by f↑(x; v′) is defined as follows

f↑(x; v′) = lim sup
y→fx, t↓0

inf
v→v′

f ◦ ϕ−1(ϕ(y) + tDϕ(x)(v))− f ◦ ϕ−1(ϕ(y))

t
,

(1.2)
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where (ϕ,U) is a chart at x.

Indeed, f↑(x; v′) := (f ◦ ϕ−1)
↑
(ϕ(x);Dϕ(x)(v′)). Note that this definition does

not depend on charts.
Considering 0x ∈ TxM , we have

f↑(x; v′) = (f ◦ expx )↑(0x; v′). (1.3)

The subdifferential ∂f(x) of f at x ∈ dom(f) is defined by

∂f(x) = {x∗ ∈ TxM | 〈x∗, v〉x ≤ f↑(x; v) for all v ∈ TxM}.

If x /∈ dom(f), then we define ∂f(x) = ∅.
Therefore, we can deduce that ∂f(x) = ∂(f ◦ expx)(0x).

Lemma 1.7. Let f : M → (−∞,+∞] be a lower semicontinuous function defined
on a Hadamard manifold M . Then

∂cf(x) ⊂ ∂P f(x) ⊂ ∂F f(x) ⊂ ∂f(x).

Proof. Assume that ξ ∈ ∂cf(x), then for every d ∈ TxM

f(expx(d))− f(x) ≥ 〈ξ, d〉x.

Moreover, exp−1
x is diffeomorphism on M . Therefore, for every y in M and σ > 0,

f(y)− f(x) ≥ 〈ξ, exp−1
x (y)〉x ≥ 〈ξ, exp−1

x (y)〉x − σd(x, y)2,

which implies ξ ∈ ∂P f(x). By Corollary 1.5, ∂P f(x) ⊂ ∂F f(x). Due to the fact
that ∂f(x) = ∂(f ◦ expx)(0x), ∂F f(x) = ∂F (f ◦ expx)(0x) and Property 2.7 in [16],
we can conclude that ∂F f(x) ⊂ ∂f(x). �

For the next lemme see [20, Lemma 4.8].

Lemma 1.8. If f : M → R is locally Lipschitz on a Riemannian manifold M , then

∂f(x) = clconv{ lim
i→∞

ξi : ξi ∈ ∂P f(yi), yi → x},

where clconv denotes the closed convex hull of the set .

We recall the definition of the Clarke generalized directional derivative; see [6].
It is worth mentioning that an equivalent definition has appeared in [12].

Definition 1.9. Suppose that f : M → R is a locally Lipschitz function on a
Riemannian manifold M . Then, the generalized directional derivative of f at x ∈M
in the direction v ∈ TxM , denoted by f◦(x; v), is defined as

f◦(x; v) := lim sup
y→x, t↓0

f ◦ ϕ−1(ϕ(y) + tDϕ(x)(v))− f ◦ ϕ−1(ϕ(y))

t
,

(1.4)

where (ϕ,U) is a chart at x.

Indeed, f◦(x; v) := (f ◦ ϕ−1)
◦
(ϕ(x);Dϕ(x)(v)).

Considering 0x ∈ TxM , we have

f◦(x; v) = (f ◦ expx )◦(0x; v). (1.5)

The following two theorems can be proved using (1.3), (1.5) and results in [26].
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Theorem 1.10. Let f : M → R be locally Lipschitz on a Riemannian manifold M ,
then the upper subderivative of f reduces to the Clarke generalized directional deriv-
ative. Moreover, if f is convex and locally Lipschitz, then the upper subderivative
of f at x ∈M in the direction of v ∈ TxM is equal to

lim
t↓0

f(γ(t))− f(x)

t
,

where γ is a geodesic starting at x with γ′(0) = v.

Theorem 1.11. Let f : M → (−∞,+∞] be lower semicontinuous and finite at x.
(a) The function v → f↑(x; v) is positively homogeneous.
(b) One has ∂f(x) = ∅ if and only if f↑(x; 0) = −∞, otherwise

f↑(x; v) = sup{〈x∗, v〉x| x∗ ∈ ∂f(x)} for all v ∈ TxM.

(c) If f attains at x a local minimum, then

f↑(x; v) ≥ 0 for all v ∈ TxM,

and

0 ∈ ∂f(x).

(d) Suppose that g is a real-valued locally Lipschitz function defined on M . Then

∂(f + g)(x) ⊂ ∂f(x) + ∂g(x),

(f + g)↑(x; v) ≤ f↑(x; v) + g↑(x; v) for all v ∈ TxM.

(e) The set {(v, α) ∈ TxM × R| α ≥ f↑(x; v)} is convex and closed.

Example 1.12. Let Sn be the linear space of real n × n symmetric matrices and
Sn++ be the space of symmetric positive definite real n × n matrices. We consider
the manifold M := Sn++ with a Riemannian metric on the tangent space TXM = Sn
defined by

〈A,B〉X := trace (Bφ′′(X)A) = trace (BX−1AX−1),

where trace denotes the trace of a matrix, A,B ∈ TXM , X ∈ M , φ(X) :=
− ln detX and φ′′ denotes the Euclidean Hessian of φ. We assume that Ω is an
open convex subset of M and I = {1, . . . ,m}. Let Fi : Ω → R be a continuously
differentiable function on Ω, for i ∈ I. If we define F (X) := maxi∈I Fi(X), then F
is locally Lipschitz on Ω and

∂F (X) = conv{grad Fi(X) : i ∈ I(X)},

where grad Fi(X) denotes the unique vector in TXM which satisfies

〈grad Fi(X), ξ〉 = DFi(X)(ξ) for all ξ ∈ TXM.

and I(X) = {i ∈ I : F (X) = Fi(X)}; see Lemma A.3 in [13].

Theorem 1.13. Let f : M → (−∞,+∞] be a lower semicontinuous function on
a Riemannian manifold M . Then, ∂f is nonempty in a dense subset of dom(f).
Moreover, if f is locally Lipschitz, then dom(∂f) = M .

Proof. Since the domain of the Fréchet subdifferential of a lower semicontinuous
function f defined on a Riemannian manifold M is dense in dom(f); see [6, Theorem
4.4], and ∂F f(x) ⊂ ∂f(x), we can deduce that ∂f is nonempty in a dense subset of
dom(f).
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For the second part of the theorem, we assume that x is an arbitrary point in
M , by Theorem 10 in [5] there exists a sequence yi ∈ dom(∂P f) convergent to
x. Therefore, ∂P f(yi) 6= ∅ and there exists some ξi ∈ ∂P f(yi). Since f is locally
Lipschitz and yi → x, there exists a subsequence of ξi convergent to some ξ. By
Lemma 1.8, ξ ∈ ∂f(x) 6= ∅. �

2. Approximate mean value Theorem and characterization of convex
functions

The purposes of this section are twofold. First, we give a mean value theorem
for a lower semicontinuous function f on a Hadamard manifold M . Then, we use
this mean value theorem to characterize lower semicontinuous convex functions on
Hadamard manifolds. It is worth pointing out that in this mean value theorem the
function f is assumed to be lower semicontinuous, however the mean value theorem
for the proximal subdifferential proved by Azagra and Ferrera in [5] was for locally
Lipschitz functions. At the first step, we need to present some obvious properties
of the distance function on a Riemannian manifold.

Lemma 2.1. Let C be a compact subset of a Riemannian manifold M . If a sequence
(xk) in M satisfies

lim
k→∞

dC(xk) = 0,

then there exists a subsequence (xkn) which converges to c ∈ C.

Proof. Since limk→∞ dC(xk) = 0, there exists N ∈ N such that for k > N , dC(xk) <
1/k. Moreover, there exists ck ∈ C such that d(ck, xk) ≤ 1/k. Since C is compact,
we can choose a subsequence (ckn) which converges to some c in C. Furthermore,

d(xkn , c) ≤ d(ckn , xkn) + d(ckn , c),

which proves that xkn converges to c. �

In the following lemma, we need to use convexity of the distance function, therefore
we assume that M is a Hadamard manifold.

Lemma 2.2. Let M be a Hadamard manifold, a, b ∈ M , and γ : [0, d(a, b)]→ M
be the unique geodesic connecting a, b. Then, for every x ∈M

d↑Img(γ)(x; exp−1
x (b)) ≤ −dImg(γ)(x),

where Img(γ) denotes the image of γ in M .

Proof. Since Img(γ) is convex in M , by Lemma 5.2 of [23] one can deduce that
dImg(γ) is convex. Assume that σ : [0, 1] → M is a geodesic connecting x and b,
then for every t ∈ [0, 1],

dImgγ(σ(t)) ≤ (1− t)dImgγ(x) + tdImgγ(b) = (1− t)dImgγ(x).

Hence, Theorem 1.10 implies that

d↑Img(γ)(x; exp−1
x (b)) = lim

t↓0

dImg(γ)(σ(t))− dImg(γ)(x)

t
≤ −dImg(γ)(x).

�

Lemma 2.3. If f : M → (−∞,+∞] is lower semicontinuous on a Riemannian
manifold M , a, b ∈ dom(f) and γ is a geodesic connecting a and b, then there is
ε > 0 such that f is bounded from below on the set {x ∈M | dImg(γ)(x) ≤ ε}.
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The distance function is differentiable at (x, y) ∈ M ×M if and only if there is a
unique length minimizing geodesic from x to y. Furthermore, the distance function
is smooth in a neighborhood of (x, y) if and only if x and y are not conjugate points
along this minimizing geodesic. Therefore the distance function is nondifferentiable
at (x, y) if and only if x = y or x and y are the conjugate points. Let the distance
function be differentiable at (x, y), then

∂d

∂x
(x, y) =

− exp−1
x (y)

d(x, y)
.

In the next lemma we assume that x = y, and find a formula for the subdifferential
of the distance function.

Lemma 2.4. Let M be a complete Riemannian manifold. If dx : M → R is defined
by dx(y) = d(x, y), then

∂dx(x) = B,

where B is the closed unit ball of TxM.

Before proving the lemma, let us recall a definition of the normal cone and the
tangent cone to a closed convex subset of a Riemannian manifold; for more details
see [20]. Let S be a closed convex subset of a Riemannian manifold M , the normal
cone to S at x denoted by NS(x) and the tangent cone to S at x denoted by TS(x)
are defined by

NS(x) = {ξ ∈ TxM |〈ξ, exp−1
x (y)〉x ≤ 0 for every y ∈ S}.

TS(x) := {ξ ∈ TxM |〈ξ, v〉x ≤ 0 ∀v ∈ NS(x)}.
Assume that S = {x}, then NS(x) = TxM.

Proof. Let M = Rn and S be a closed convex subset of M , we claim that for every
x ∈ S, ∂dS(x) = NS(x) ∩B.

Let ξ ∈ NS(x)∩B. For every y ∈M , there exists z ∈ S such that dS(y) = d(z, y).
By the definition of the normal cone

〈ξ, y − x〉 ≤ 〈ξ, z − x〉+ 〈ξ, y − z〉 ≤ 0 + ‖ξ‖‖y − z‖ ≤ d(z, y),

which implies 〈ξ, y − x〉 ≤ dS(y)− dS(x), and ξ ∈ ∂dS(x).
Now assume that ξ ∈ ∂dS(x), so by [20, Theorem 4.10] d◦(x, v) ≤ 0 for every

v ∈ TS(x). Moreover, by the definition of the support function, 〈ξ, v〉x ≤ 0, which
means ξ ∈ NS(x).

Now we assume that M is a Riemannian manifold, S = {x}. First, we prove that
∂dx(x) = ∂d∗0x

(0x), where d, d∗ are respectively the Riemannian distance on M and
the usual distance on TxM. By Proposition 2.5 in [20], ξ ∈ ∂dx(x) if and only if
ξ ∈ ∂(dx ◦ expx)(0x) if and only if 〈ξ, v〉x ≤ dx ◦ expx(v)− dx ◦ expx(0x), for every
v ∈ TxM , if and only if 〈ξ, v〉x ≤ ‖v‖ for every v ∈ TxM , which means 〈ξ, v〉x ≤
d∗0x

(v) − d∗0x
(0x) for every v ∈ TxM, and by the definition of the subdifferential

ξ ∈ ∂d∗0x
(0x). Hence, ∂dx(x) = ∂d∗0x

(0x).
It is worthwhile to mention that by Proposition 4.3 in [20], Nx(x) = N0x

(0x).
Therefore, by the claim,

Nx(x) ∩B = N0x
(0x) ∩B = ∂d∗0x

(0x) = ∂dx(x).

As it was mentioned before Nx(x) = TxM, so ∂dx(x) = B. �
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Now, we can prove the approximate mean value theorem for lower semicontinuous
functions on Hadamard manifolds.

Theorem 2.5. Let f : M → (−∞,+∞] be a lower semicontinuous function on a
Hadamard manifold M . Assume that f is finite at a and b, and γ is the unique
geodesic connecting these two points. Then for every b 6= x ∈ Img(γ) with

f(x) +
f(b)− f(a)

d(a, b)
d(x, b) ≤ f(y) +

f(b)− f(a)

d(b, a)
d(y, b) ∀y ∈ Img(γ),

(2.1)

there exist sequences (xk) in M and (x∗k) in Txk
M such that

lim
k→∞

xk = x. (2.2)

lim sup
k→∞

f(xk) ≤ f(a) +
f(b)− f(a)

d(b, a)
d(x, a), (2.3)

x∗k ∈ ∂f(xk) for every k, (2.4)

lim inf
k→∞

〈x∗k, exp−1
xk

(b)〉xk
≥ f(b)− f(a)

d(b, a)
d(b, x). (2.5)

Proof. By Lemma 2.3, there is ε > 0 such that f is bounded from below on the set
A := {x ∈M | dImg(γ)(x) ≤ ε}. Define a function g on M by

g(y) = f(y) +
f(b)− f(a)

d(b, a)
d(y, b).

Assume that x ∈ Img(γ) satisfies in (2.1). Therefore, g(x) ≤ g(y) for all y ∈ Img(γ).
Now, define a sequence of functions on M by

gj,k(y) = jdImg(γ)(y) + g(y) +
d(y, x)

k
.

Since gj,k is lower semicontinuous, so is bounded from below on A. By Ekeland
variational principle on complete Riemannian manifolds [6], there exists a sequence
(yj,k) in A such that

gj,k(yj,k) ≤ g(x) for all j, k, (2.6)

and

gj,k(y)− gj,k(yj,k) ≥ d(y, yj,k)

−k
for all y ∈ A and j, k. (2.7)

Note that g is bounded from below on A, so by (2.6)

lim
j→∞

dImg(γ)(yj,k) = 0 for all k.

Therefore, Lemma (2.1) implies that there exists a subsequence (yjn,k) which con-
verges to (yk) ∈ Img(γ). Note that g(x) ≤ g(yk) for all k. Moreover, (2.6) and the
lower semicontinuity of g imply that

g(yk) +
d(yk, x)

k
≤ g(x) for all k.

Thus

g(x) ≤ g(yk) +
d(yk, x)

k
≤ g(x) for all k,
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which shows yk = x. We can assume that xk = yjnk
,k for all k, where jnk

is

increasing, then limk→∞ xk = x. Since g(x) ≤ g(y) for all y ∈ Img(γ), b ∈ Img(γ)
and g(b) = f(b), we conclude that g(x) ≤ f(b). Therefore, by (2.6) we have

f(xk) ≤ f(b)− f(b)− f(a)

d(b, a)
d(xk, b) for all k.

Hence,

lim sup
k→∞

f(xk) ≤ f(b)− f(b)− f(a)

d(b, a)
d(x, b).

Note that x is on the unique minimal geodesic connecting a and b, therefore
d(x, a) = d(a, b)− d(x, b), and

f(b)− f(b)− f(a)

d(b, a)
d(x, b) = f(a) +

f(b)− f(a)

d(b, a)
d(x, a),

which implies

lim sup
k→∞

f(xk) ≤ f(a) +
f(b)− f(a)

d(b, a)
d(x, a).

Now consider the function y → gjnk
,k(y) + d(y,xk)

k . This function attains a local
minimum at xk, therefore

0 ∈ ∂f(xk) +
f(b)− f(a)

d(b, a)
∂db(xk) + jnk

∂dImg(γ)(xk) +
∂dx(xk)

k
+
∂dxk

(xk)

k
.

Hence, there are (x∗k), (u∗k), (v∗k), (w∗k), (z∗k) in Txk
M such that x∗k ∈ ∂f(xk),

u∗k ∈
f(b)−f(a)
d(b,a) ∂db(xk), v∗k ∈ jnk

∂dImg(γ)(xk), w∗k ∈
∂dx(xk)

k , z∗k ∈
∂dxk

(xk)

k for all k

and

x∗k + u∗k + v∗k + w∗k + z∗k = 0 for all k.

From Lemma 2.2, 〈v∗k, exp−1
xk

(b)〉xk
≤ 0 for all k. Note that u∗k = f(b)−f(a)

d(b,a)d(xk,b)
(− exp−1

xk
(b)),

therefore, 〈u∗k, exp−1
xk

(b)〉xk
= − f(b)−f(a)

d(b,a) d(xk, b). By Lemma 2.4,

〈x∗k, exp−1
xk

(b)〉xk
≥ f(b)− f(a)

d(b, a)
d(xk, b)− 2

d(xk, b)

k
.

Therefore,

lim inf
k→∞

〈x∗k, exp−1
xk

(b)〉xk
≥ f(b)− f(a)

d(b, a)
d(b, x).

�

In the sequel, we always assume that M is a Hadamard manifold. Let X(M)
denote the set of all set-valued vector fields A : M ⇒ TM such that A(x) ⊂ TxM
for each x ∈M . The following definition extends the concepts of monotonicity for
operators on Hilbert spaces to set-valued vector fields on Hadamard manifolds.

Definition 2.6. Let A : M ⇒ TM be a set-valued vector field, it is said to be
monotone iff for any x, y ∈ dom(A), we have

〈u, exp−1
x (y)〉x ≤ 〈v,− exp−1

y (x)〉y for every u ∈ A(x) and v ∈ A(y).
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Example 2.7. Let x be in a Hadamard manifold M . We consider dx : M → R
defined by dx(y) := d(x, y). This function is locally Lipschitz and convex on M .
Therefore, by Theorem 4.2 in [11], the set-valued vector field ∂dx : M ⇒ TM
defined by

∂dx(y) =

{
− exp−1

y (x)/d(x, y) if x 6= y
B if x = y

where B is the closed unit ball in TyM , is monotone.

Now, we characterize convex lower semicontinuous functions on Hadamard man-
ifolds in terms of the monotonicity of their subdifferential mappings. This result
extends in some sense Theorem 2 of [17] and Theorem 4.2 in [11].

Theorem 2.8. Let f : M → (−∞,+∞] be a proper lower semicontinuous function
on a Hadamard manifold M . Then f is convex if and only if the set-valued mapping
∂f : M ⇒ TM is monotone.

Proof. If f is convex, then ∂f(x) = ∂cf(x) = ∂F f(x) = ∂P f(x) for all x ∈ dom(f).
Hence, it is enough to prove the monotonicity of ∂cf . For any x, y ∈ dom(∂cf),
there exists a unique geodesic γ(t) = expx(td) defined on [0, 1] connecting x and y,
so there exists d such that expx(d) = y. Moreover, there exists a unique geodesic
σ(t) = expy(tg) defined on [0, 1] connecting y and x, which implies the existence of
a vector g ∈ TyM such that expy(g) = x. For any u ∈ ∂cf(x),

f(y)− f(x) ≥ 〈u, exp−1
x (y)〉x.

Moreover, for every v ∈ ∂cf(y),

f(x)− f(y) ≥ 〈v, exp−1
y (x)〉y.

By adding these two inequalities, we conclude that

〈u, exp−1
x (y)〉x ≤ 〈v,− exp−1

y (x)〉y.

For the converse, first we define the Moreau-Yosida proximal approximation corre-
sponding to λ > 0 for the function f as

fλ(x) := inf
y∈M
{f(y) +

1

2λ
d(x, y)2}.

Then we prove the following statements:
(i) if ∂f is monotone, then ∂f(x) = ∂cf(x) for all x ∈M .
(ii) if ∂f is monotone, then ∂fλ is always nonempty.
(iii) if ∂f monotone, then ∂fλ is monotone.
(iv) if dom(∂fλ) = M and ∂fλ monotone, then fλ is convex.
Eventually, since f(x) = supλ>0 fλ(x), f is also convex; see Theorem 11 in [5].

(i) If ∂f(x) = ∅, then the equality is true. Assume that ∂f(x) 6= ∅, therefore
f(x) ∈ R, and from the approximate mean value theorem for each d in TxM such
that f(expx(d)) ∈ R, there exist a sequence vk → d, a sequence tk → t ∈ (0, 1] and
x∗k ∈ ∂f(expx(tkvk)) such that

f(expx(d))− f(x) ≥ t−1 lim sup
k→∞

〈x∗k,− exp−1
expx(tkvk)(x)〉xk

.

Since ∂f is monotone, we have for all x∗ ∈ ∂f(x),

〈x∗, exp−1
x (expx(tkvk))〉x ≤ 〈x∗k,− exp−1

expx(tkvk)(x)〉xk
.
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Hence,

f(expx(d))− f(x) ≥ t−1 lim sup
k→∞

〈x∗, exp−1
x (expx(tkvk))〉x = 〈x∗, d〉x.

This shows that x∗ ∈ ∂cf(x), that is, ∂f(x) ⊂ ∂cf(x) which together with Lemma
1.6 proves our claim.

(ii) Assuming that ∂f is monotone, we conclude that ∂f(x) = ∂cf(x) for every
x ∈ M . Therefore by Theorem 1.13, ∂P f is nonempty in a dense subset of domf .
Hence [5, Theorem 11] proves that fλ is finite and locally Lipschitz. Then using
Theorem 1.13 we have that ∂fλ is always nonempty. Therefore dom(∂fλ) = M .

(iii) If ∂f monotone, we prove ∂fλ is monotone. Indeed we first show that
∂P fλ is monotone and then by Lemma 1.8, we get that ∂fλ is monotone. Assume
that x∗ ∈ ∂P fλ(x) and y∗ ∈ ∂P fλ(y), by [5, Theorem 11] fλ is differentiable at
x and y and x∗ = Dfλ(x), y∗ = Dfλ(y); see [5, Proposition 9]. Furthermore,
Lxx̄(Dfλ(x)) ∈ ∂P f(x̄), where Lxx̄ is the parallel transport from x to x̄ along the
unique minimal geodesic connecting x and x̄ and

fλ(x) = f(x̄) +
1

2λ
d(x, x̄)2.

Moreover, 1
λ exp−1

x̄ (x) = Lxx̄(Dfλ(x)). Similar relations are also true if we replace
x by y and x̄ by ȳ. Note that

〈x∗,− exp−1
x (y)〉x + 〈y∗,− exp−1

y (x)〉y ≥ 〈Lxx̄(x∗),− exp−1
x̄ (ȳ)〉x̄ + 〈Lyȳ(y∗),− exp−1

ȳ (x̄)〉ȳ
+ 〈x∗,−Lx̄x(exp−1

x̄ (ȳ))− exp−1
x (y)〉x

+ 〈y∗,−Lȳy(exp−1
ȳ (x̄))− exp−1

y (x)〉y.

Since ∂f is monotone and ∂P f(x) ⊂ ∂f(x) for every x ∈ domf , we conclude that
∂P f is monotone, which implies

〈Lxx̄(x∗),− exp−1
x̄ (ȳ)〉x̄ + 〈Lyȳ(y∗),− exp−1

ȳ (x̄)〉ȳ ≥ 0.

We also know that d2 : M ×M → R is smooth and convex. Moreover,

D(d2)(x, x̄) = (−2 exp−1
x (x̄),−2 exp−1

x̄ (x)).

D(d2)(y, ȳ) = (−2 exp−1
y (ȳ),−2 exp−1

ȳ (y)).

This shows that

〈x∗,−Lx̄x(exp−1
x̄ (ȳ))− exp−1

x (y)〉x + 〈y∗,−Lȳy(exp−1
ȳ (x̄))− exp−1

y (x)〉y ≥ 0.

Therefore ∂P fλ is monotone and by Lemma 1.8 ∂fλ is monotone.
(iv) Now, assume that x, y are two arbitrary points in M and γ defined by

γ(t) = expx(t exp−1
x (y)) is the unique geodesic connecting them, therefore for every

t0 ∈ [0, 1] and u ∈ ∂fλ(γ(t0)),

fλ(x)− fλ(γ(t0)) ≥ 〈u, exp−1
γ(t0)(x)〉γ(t0), (2.8)

fλ(y)− fλ(γ(t0)) ≥ 〈u, exp−1
γ(t0)(y)〉γ(t0). (2.9)

If we define σ(s) = γ((1 − s)t0), then σ is a geodesic connecting γ(t0) and x.

Therefore, σ(s) = expγ(t0)(s exp−1
γ(t0)(x)) and exp−1

γ(t0)(x) = −t0γ
′
(t0). If we define

η(s) = γ((1 − s)t0 + s), then η is a geodesic connecting γ(t0) and y. Therefore,
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η(s) = expγ(t0)(s exp−1
γ(t0)(y)) and exp−1

γ(t0)(y) = (1 − t0)γ
′
(t0). Hence, (2.8) and

(2.9) imply that

(1−t0)fλ(x)+t0fλ(y)−fλ(γ(t0)) ≥ 〈u,−t0(1−t0)γ
′
(t0)+t0(1−t0)γ

′
(t0)〉γ(t0) = 0,

which shows that fλ is convex. �

3. application and example

In this section, an example of a nonconvex function defined on the Poincaré half
plane H, which is a Hadamard manifold, is presented. By Theorem 2.8, we then
conclude that the subdifferential set-valued map is not monotone. Moreover, a
convex function on this Hadamard manifold is defined, then as a result of Theorem
2.8 its subdifferential map is monotone. These information can help us in choosing
a suitable method to find minimizers of functions defined on Riemannian manifolds.
Assume that we aim to find minimizers of a function h on H. If ∂h is monotone,
then we can apply Algorithm (4.3) in [22] to find (u, v) ∈ H such that 0 ∈ ∂h(u, v).
Indeed, finding zeros of the set-valued map ∂h is equivalent to solving the following
problem,

min
(u,v)∈H

h(u, v). (3.1)

Consider the Poincaré upper half plane H = {(u, v) ∈ R2 : v > 0} endowed with
the Riemannian metric defined for every (u, v) ∈ H by

gij(u, v) =
1

v2
δij ,

for i, j = 1, 2. The pair (H, g) is a Hadamard manifold with constant sectional
curvature -1. It can be shown that the geodesics in H are the semi-lines and the
semicircles orthogonal to the line v = 0; see [21, page 20].

The Riemannian distance between two points (u1, v1), (u2, v2) in H is given by

d((u1, v1), (u2, v2)) = arccosh
(
1 +

(u2 − u1)2 + (v2 − v1)2

2v1v2

)
.

We define C := {(u, v) ∈ H : u2 + v2 ≤ 3} which is a closed and convex subset of
H. Let f : H→ (−∞,+∞] be defined by

f(u, v) =

{
|u|+ v4 − 2u2 − 2v2 + 3, if (u, v) ∈ C;
+∞ if (u, v) /∈ C.

One can show that f is bounded from below and lower semicontinuous, but it is
not a convex function on C. Now, we define a lower semicontinuous convex function
h as follows

h(u, v) =

{
1/v, if (u, v) ∈ C;
+∞ if (u, v) /∈ C.

By Theorem 2.8, ∂f is not monotone, however ∂h is a monotone set-valued map.
For finding minimizers of f on H, we cannot use Algorithm (4.3) in [22], because
∂f is not monotone. But we have all the necessary conditions to use Algorithm
(4.3) in [22] to find minimizers of h on H. It worth mentioning that none of the
two functions are locally Lipschitz on their domains.
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