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1 ALM for participating life insurance policies

Much effort has been spent on the development of stochastic asset-liability manage-
ment (ALM) models for life insurance policies in the last years, see, e.g., Bacinello
(2001), Ballota et al. (2006), Briys, Varenne (1997), De Felice, Moriconi (2005),
Gerstner et al. (2007), Grosen, Jorgensen (2000), Miltersen, Persson (2003) and the
references therein. Such models are becoming more and more important due to new
regulations and a stronger competition. They are employed by insurance companies
to simulate the medium- and long-term development of all assets and liabilities of their
insurance portfolios. This way, the exposure of the company to financial, mortality
and surrender risks can be analysed. The results are used to support management
decisions regarding, e.g., the asset allocation, the bonus declaration or the design of
new profitable and competitive insurance products. The models are also applied to
obtain market-based, fair value accountancy standards as required by Solvency II and
the International Financial Reporting Standard.

Here, we consider the ALM model proposed in Gerstner et al. (2007). The main
focus of this model is to simulate the temporal development of the most important
balance sheet items for a portfolio of participating life insurance policies. Thereby, the
time horizon [0, T ] is decomposed into M periods (tk−1, tk], 0 ≤ k ≤ M , with equal
period length ∆t = T/M . Within this discrete time framework all terms can then
be calculated recursively and in a modular way which allows an easy implementation
and efficient simulation of the model.

At time tk, the asset side of the balance sheet is determined by the market value Ck

of the assets of the company which are invested in stocks and bonds. The temporal
dynamics of the stock prices are modelled by a geometric Brownian motion while
the short interest rates are obtained from a one-factor mean-reversion model, the so-
called Cox-Ingersoll-Ross (CIR) model which is coupled to the stock price model via a
constant correlation factor. This system, which is based on two independent standard
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Brownian motions W s(t) and W r(t), is then discretized according to the period length
∆t with an explicit Euler-Maruyama discretization yielding discrete stock prices and
short interest rates for each period k. The asset allocation in stocks and bonds is
dynamic. Here, the goal is to keep a certain percentage of the total capital invested
in stocks while the remaining part is invested in a buy-and-hold trading strategy into
zero coupon bonds whose market value is derived from the prevailing short interest
rate. This way, the portfolio return rate is specified which determines the development
of the asset base Ck of the company in each period.

On the liability side, the first item is the book value Dk of the actuarial reserve 1.
It depends on the development of the biometry and on the specific insurance products
under consideration. Here, mortality and surrender are assumed to be determinis-
tic and are modelled using experience-based tables. Different life insurance product
specifics are incorporated into the model via premium, benefit and surrender charac-
teristics in a fairly general and efficiently implementable framework. The second item
on the liability side are the allocated bonuses Bk which constitute the part of the
surpluses which have been credited to the policyholders. Their profit participation is
determined by a bonus declaration mechanism which is based on the reserve situation
of the company as proposed in Grosen, Jorgensen (2000). The next item, the free
reserve Fk, is a buffer account for future bonus payments. It consists of surpluses
which have not yet been credited to the individual policyholder accounts and is used
to smooth capital market oscillations and to achieve a stable and low-volatile return
participation of the policyholders. The last item is the company account Qk which
consists of the part of the surpluses which is kept by the shareholders of the company.

In a sensitivity analysis for example portfolios and parameters it was shown in
Gerstner et al. (2007) that this model captures the most important behaviour patterns
of the balance sheet development of life insurance products. Similar balance sheet
models have also been considered in, e.g., Bacinello (2001), Grosen, Jorgensen (2000)
and Miltersen, Persson (2003).

2 Deterministic simulation of the ALM model

The numerical simulation aspects of the ALM model from the previous section are
discussed in detail in Gerstner, Griebel, Holtz (2007). The simulation of one scenario
is based on the realisations of two Brownian motions W s(tk) and W r(tk) at the
discrete times tk, 0 ≤ k ≤ M . From these numbers, the development of the stock
prices, the term structure, the asset allocation, the bonus declaration, the shareholder
participation and the development of all involved accounts can then be derived. The
balance sheet items CM , BM , FM and QM at the end of period M can thus be
regarded as deterministic functions CM(x), BM(x), FM (x), QM(x): IR2M → IR which
depend on the realisations of 2 M independent normally distributed random numbers
x = (x1, . . . , x2M ) ∼ N(0, Id). As a consequence, the expected values of the balance
sheet items at the end of period M can be represented as 2 M-dimensional integrals,

1i.e., the guaranteed savings part of the policyholders after deduction of risk premium and ad-
ministrative costs.

2



e.g.,

E[QM ] =
∫
IR2M

QM(x)
e−x

T
x/2

(2π)M
dx (1)

for the equity account. Often, monthly discretizations of the capital market processes
are used. Then, typical values for the dimension d = 2M range from 60 − 600
depending on the time horizon of the simulation.

Due to the wide range of path-dependencies, guarantees and option-like features of
the insurance products and management rules, closed-form solutions for the integral
(1) are only available in special cases. As a consequence, in practice, the model is
usually simulated by the Monte Carlo method. This method is independent of the
dimension, robust and easy to implement but suffers from a relative low convergence
rate O(N−1/2) where N denotes the number of samples in the Monte Carlo algorithm.
This often leads to very long simulation times in order to obtain approximations
of satisfactory accuracy. Extensive sensitivity investigations or the optimisation of
product or management parameters, which require a large number of simulation runs,
are therefore often not possible.

In Gerstner, Griebel, Holtz (2007) the application of deterministic numerical inte-
gration schemes, such as quasi-Monte Carlo and sparse grid methods2 as alternatives
to Monte Carlo simulation is investigated. Like Monte Carlo, these methods can break
the curse of dimension to some extent. They often achieve higher convergence rates, in
particular, if the integrand is sufficiently smooth and of low effective dimension3. The
error of quasi-Monte Carlo methods is bounded with the Koksma-Hlawka inequality
by O(N−1(log N)d) for integrands of bounded variation. Sparse grids converge with
order O(N−s(log N)(d−1)(s−1)) if the integrand belongs to the space of functions which
have bounded mixed derivatives of order s. Thus, sparse grids can much better exploit
the smoothness of a problem than (quasi-) Monte Carlo methods and this way also
obtain convergence rates larger than one. In many cases, a substantial reduction of
the effective dimension and an improved performance of the deterministic integration
schemes can be achieved by the Brownian bridge or the principal component (PCA)
decompositions of the covariance matrix of the underlying multivariate Gaussian pro-
cess as it was proposed in Moskowitz and Calfisch (1996) and Ackworth et al. (1997)
for option pricing problems.

3 Effective dimension

For problems with high nominal dimension d, such as the ALM of life insurance
products, the classical error bounds of the previous section have no practical use to
control the numerical error of the approximation. However, it is known that many
nominally high-dimensional integrals arising from the pricing of options or bonds are
of low effective dimension, see, e.g., Moskowitz, Calfisch (1996), Wang, Fang (2003)
and Wang, Sloan (2005). In contrast to Monte Carlo simulation, quasi-Monte Carlo

2See, e.g., Glasserman (2003) for an introduction to (quasi-) Monte Carlo methods. The employed
sparse grid algorithms are based on Gerstner, Griebel (1998, 2003).

3Here, we focus on the effective dimension in the truncation sense defined in the next section.
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and sparse grid methods can take advantage of low effective dimensions and this way
produce substantially smaller errors than Monte Carlo methods even if the nominal
dimension is high. Quasi-Monte Carlo methods profit from low effective dimensions by
the fact that their integration points are usually more uniformly distributed in smaller
dimensions. Sparse grid methods exploit different weightings of different dimensions
by an dimension adaptive grid refinement, see Gerstner, Griebel (2003).

The effective dimension can by analysed by the ANOVA decomposition. Here, a
function f : IRd → IR is decomposed into 2d sub-terms fu with u ⊆ {1, . . . , d} which
only depend on variables xj with j ∈ u. Thereby, the fu describe the dependence of
the function f on the dimensions j ∈ u. The effective dimension in the truncation
sense4 of a function f : IRd → IR with variance σ2(f) is then defined as the smallest
integer dt, such that ∑

v⊆{1,...,dt}

σ2
v(f) ≥ 0.99 σ2(f)

where σ2
u(f) denote the variances of the sub-terms fu from the ANOVA decomposition

of the function f . For details and an efficient algorithm for the computation of the
effective dimension we refer to Wang, Fang (2003)5.

4 Numerical results

In this section, we determine the effective dimensions by the method described in
Wang, Fang (2003) for the ALM problem based on a representative model portfolio
of 500 endowment insurance policies which is described in detail in Gerstner et al.
(2007). The policies are equipped with an interest rate guarantee of 3%. Typical
parameters are assumed to specify the future behaviour of the policyholders and of
the company’s management. We consider two different capital market models:

• A geometric Brownian motion6 (GBM) with drift µ=0.08 and volatility σ=0.2.

• A Cox-Ingersoll-Ross process (CIR) with reversion rate κ = 0.1, mean reversion
level θ = 0.04 and volatility σ = 0.05.

In Figure 1, the effective dimensions dt are displayed which arise in the cases GBM
(left) and CIR (right) in the computation of the expected equity account (1) for the
above model specification. Thereby, different nominal dimensions d and different
discretizations of the underlying Gaussian process are considered.

One can see that the effective dimension dt is in all cases almost as large as the
nominal dimension d if the random walk discretization it used while it is much smaller

4The effective dimension in the truncation sense roughly describes the number of important
variables. Note that other notions of effective dimension have also been introduced in the literature.

5For the problems to price Basket options, Asian options and bonds in the Black-Scholes and the
Vasicek model, respectively, with path constructions based on PCA, the effective dimensions range
from 1 − 6 independent of the nominal dimension, see Wang, Fang (2003) and Wang, Sloan (2005).

6The same capital market model is used, e.g., in Bacinello (2001), Miltersen, Persson (2003),
Ballotta et al. (2006), Grosen, Jorgensen (2000).
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Figure 1: Effective dimensions dt of the ALM problem with different nominal dimen-
sions d and different covariance matrix decompositions for an underlying geometric
Brownian motion (left) and a CIR process (right).

than the nominal dimension in case of the Brownian bridge or PCA path construction.
The largest dimension reduction is achieved by the Brownian bridge construction7

in the geometric Brownian motion (GBM) case and by the PCA discretizations in
the CIR case. One can further see that for the Brownian bridge construction the
effective dimension is almost insensitive to the nominal dimension and is bounded
by dt = 8 even for very large dimensions. In the CIR case with PCA decomposition
the effective dimension is only 2 − 4. It even decreases slightly for increasing d. The
effective dimension is affected by several parameters of the ALM model. Numerical
tests not displayed in this paper indicate that a higher smoothing of the policyholder
interest rates usually leads to a lower effective dimension. Furthermore, the presence
of mortality and surrender or a high correlation between stock and bond market
reduces the effective dimension.

The low effective dimension of the ALM problem is in agreement with the nu-
merical results in Gerstner, Griebel, Holtz (2007) where it is shown that quasi-Monte
Carlo and sparse grid methods outperform Monte Carlo simulation for the ALM of
participating life insurance products even for long simulation horizons up to 10 years
and longer. Furthermore, quasi-Monte Carlo methods converge even nearly indepen-
dently of the dimension and the dimension reduction techniques in fact lead to an
improved performance of the quasi-Monte Carlo and sparse grid methods while they
do not have any effect on the Monte Carlo scheme. Let us finally note that in many
cases the efficiency of the numerical methods does not deteriorate very much even
if the effective dimension is high in the truncation sense. This indicates that ALM
models are also of low effective dimensions in the superposition sense.

7This is not in contradiction to the well-known fact that the PCA discretizations is optimal with
respect to a concentration of variance of a standard Brownian motion because of the non-linear
dependence of the integrand from the realisations of the Brownian motion.
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