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Nadine Olischläger2, Heinz-Otto Peitgen7, Tobias Preusser7, Martin
Rumpf2, Frank Scherbaum8, and Stefan Turek5

1 Institute for Mathematics, University of Potsdam,
Am Neuen Palais 10, 14469 Potsdam, Germany
{mkulesh,hols}@math.uni-potsdam.de

2 Institute for Numerical Simulation, University of Bonn,
Wegelerstr. 6, 53115 Bonn, Germany
{benjamin.berkels,nadine.olischlaeger,martin.rumpf}@ins.uni-bonn.de

3 Center of Industrial Mathematics (ZeTeM), University of Bremen,
Postfach 33 04 40, 28334 Bremen, Germany
{kbredies,pmaass}@math.uni-bremen.de

4 Interdisciplinary Center for Scientific Computing, University of Heidelberg,
Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
{Christoph.Garbe,Claudia.Nieuwenhuis}@iwr.uni-heidelberg.de

5 Institute for Applied Mathematics, University of Dortmund, Vogelpothsweg 87,
44227 Dortmund, Germany
{jens.acker,jaroslav.hron,ture}@math.uni-dortmund.de

6 Now at ExxonMobil Upstream Research company, Houston, Texas, USA
mamadou.s.diallo@exxonmobil.com

7 Center for Complex Systems and Visualization, University of Bremen,
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1.1 Introduction

Many problems in imaging are actually inverse problems. One reason for this
is that conditions and parameters of the physical processes underlying the
actual image acquisition are usually not known. Examples for this are the
inhomogeneities of the magnet field in magnetic resonance images leading to
nonlinear deformations of the anatomic structures in the recorded images,
material parameters in geological structures as unknown parameters for the
simulation of seismic wave propagation with sparse measurement on the sur-
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face, or temporal changes in movie sequences given by intensity changes or
moving image edges and resulting from deformation, growth and transport
processes with unknown fluxes. The underlying physics is mathematically de-
scribed in terms of variational problem or evolution processes. Hence, solu-
tions of the forward problem are naturally described by partial differential
equations. These forward models are reflected by the corresponding inverse
problems as well. Beyond these concrete, direct modeling links to continuum
mechanics abstract concepts from physical modeling are successfully picked
up to solve general perceptual problems in imaging. Examples are visually
intuitive methods to blend between images showing multiscale structures at
different resolution or methods for the analysis of flow fields.

This chapter is organized as follows. In Sect. 1.2 wavelet based method
for the identification of parameters describing heterogeneous media in subsur-
face structures from sparse seismic measurements on the surface are investi-
gated by Kulesh, Holschneider, Scherbaum and Diallo. It is shown how recent
wavelet methodology gives further insight and outperforms classical Fourier
techniques for these applications.
In Sect. 1.3 close links between surface matching and morphological image
matching are established. Berkels, Droske, Olischläger and Rumpf describe
how to encode image morphology in terms of the map of regular level set
normals (the Gauss map of an image) and the singular normal field on edges.
Variational methods are presented to match these geometric quantities of
images in a joint Mumford Shah type approach. These techniques are com-
plemented by a related approach for explicit surface matching in geometric
modeling.
In Sect. 1.4 anisotropic diffusion models with a control parameter on the right
hand side are investigated by Bredies, Maass and Peitgen. The aim is a visu-
ally natural blending between image representations on different scales. The
method is applied for the morphing between medical images of different de-
tail granularity. Here the transition between different scales is captured by the
diffusion, whereas the right hand side of the corresponding parabolic initial
value problem is considered as a control parameter to ensure that the coarse
scale image is actually meet at time 1 starting from the fine scale image at
time 0. Existence of solution for this type of control problem is established.
The inverse problem of optical flow is investigated in Sect. 1.5. Here, the
focus is in particular on restoration methods for dense optical flow and the
underlying image sequence. Garbe, Kondermann, Preusser and Rumpf de-
scribe confidence measure for local flow estimation and flow inpainting based
on variational techniques. Furthermore, Mumford Shah type approaches for
joint motion estimation and image segmentation as well as motion deblurring
are presented. Finally, Acker, Hron, Preusser and Rumpf consider in Sect. 1.6
multiscale visualization methods for fluid flow based on anisotropic diffusion
methods from image processing. Here, efficient finite element methodology is
investigated to resolve temporal flow patterns in a perceptually intuitive way
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based on time dependent texture mapping. In addition algebraic multigrid
methods are applied for a hierarchical clustering of flow pattern.

1.2 Inverse Problems and Parameter Identification in

Geophysical Signal Processing

Surface wave propagation in heterogeneous media can provide a valuable
source of information about the subsurface structure and its elastic prop-
erties. For example, surface waves can be used to obtain subsurface rigidity
through inversion of the shear wave velocity. The processing of experimental
seismic data sets related to the surface waves is computationally expensive
and requires sophisticated techniques in order to infer the physical properties
and structure of the subsurface from the bulk of available information.

Most of the previous studies related to these problems are based on Fourier
analysis. However, the frequency-dependent measurements, or time-frequency
analysis (TFR) offer additional insight and performance in any applications
where Fourier techniques have been used. This analysis consists of examining
the variation of the frequency content of a signal with time and is particularly
suitable in geophysical applications.

The continuous wavelet transform (CWT) of a real or complex signal
S(t) ∈ L2(R) with respect to a real or complex mother wavelet is the set
of L2–scalar products of all dilated and translated wavelets with this sig-
nal Holschneider [1995]:

WgS(t, a) = 〈TtDag, S〉 =
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(1.1)

where g, h are wavelets used for the direct and inverse wavelet transforms,
Da : g(τ) 7→ g(τ/a)/a and Tt : g(τ) 7→ g(τ − t) define the dilation a ∈ R and
translation t ∈ R operations correspondingly. If we select a wavelet with a
unit central frequency, it is possible to obtain the physical frequency directly
by taking the inverse of the scale: f = 1/a.

This approach is powerful and elegant, but is not the only one available
for practical applications. Other TFR methods such as the Gabor transform,
the S-transform Schimmel and Gallart [2005] or bilinear transforms like the
Wigner-Ville Pedersen et al. [2003] or smoothed Wigner-Ville transform can
be used as well. The relative performance of time-frequency analysis from
different TFR approaches is primarily controlled by the frequency resolution
capability that motivated the use of CWT in the present work.

With multicomponent data, one is usually confronted with the issue of sep-
arating seismic signals of different polarization characteristics. For instance,
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one would like to distinguish between the body waves (P- and S- waves) that
are linearly polarized from elliptically polarized Rayleigh waves. Polarization
analysis is also used to identify shear wave splitting. Unfortunately, there is
no mathematically exact a priori definition for the instantaneous polarization
attributes of a multicomponent signal. Therefore any attempts to produce one
are usually arbitrary.

Time-frequency representations can be incorporated in polarization anal-
ysis Soma et al. [2002], Schimmel and Gallart [2005], Pinnegar [2006]. We
proposed several different wavelet based methods for the polarization analysis
and filtering.

1.2.1 Polarization Properties for Two-Component Data

Given a signal from three-component record, with Sx(t), Sy(t), and Sz(t)
representing the seismic traces recorded in three orthogonal directions, any
combination of two orthogonal components can be selected for the polar-
ization analysis: Z(t) = Sk(t) + iSm(t). Let us consider the instantaneous
angular frequency defined as the derivative of the complex spectrum’s phase:
Ω±(t, f) = ±∂ argW±

g Z(t, f)/∂t. Then, near time instant t, each component
can be represented as follows:

WgZ(t+ τ, f) ≃ W+
g Z(t, f)eiΩ+(t,f)τ + W−

g Z(t, f)e−iΩ−(t,f)τ ,

which yields the time-frequency spectrum for each of the parameters (see Kulesh
et al. [2005b], Diallo et al. [2006b]):

R(t, f) = |W+
g Z(t, f)| + |W−

g Z(t, f)|/2 ,

r(t, f) = ||W+
g Z(t, f)| − |W−

g Z(t, f)||/2 ,

θ(t, f) = arg[W+
g Z(t, f)W−

g Z(t, f)]/2 ,

∆φ(t, f) = arg
(

W+
g Z(t,f)+W−

g Z(t,f)∗

W+
g Z(t,f)−W−

g Z(t,f)∗

)

modπ ,

(1.2)

where R is the semi-major axis R ≥ 0, r is the semi-minor axis R ≥ r ≥ 0, θ
is the tilt angle, which is the angle of the semi-major axis with the horizontal
axis, θ ∈ (−π/2, π/2] and ∆φ is the phase difference between Sk(t) and Sm(t)
components.

If we analyze seismic data, an advantage of the method (1.2) is the possi-
bility to perform the complete wave-mode separation/filtering process in the
wavelet domain and the ability to provide the frequency dependence of el-
lipticity, which contains important information on the subsurface structure.
With the extension of the polarization analysis to the wavelet domain, we
can construct filtering algorithms to separate different wave types based on
the instantaneous attributes by a combination of constraints posed on the
range of the reciprocal ellipticity ρ(t, f) = r(t, f)/R(t, f) and the tilt angle
θ(t, f) Diallo et al. [2006b].
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1.2.2 Polarization Properties for Three-Component Data

Reference Morozov and Smithson [1996] proposed a method based on a vari-
ational principle that allows generalization to any number of components,
and they briefly addressed the possibility of using the instantaneous polariza-
tion attributes for wavefield separation and shear-wave splitting identification.
In Diallo et al. [2005], we extended the method of Morozov and Smithson
[1996] to the wavelet domain in order to use the instantaneous attributes for
filtering and wavefield separation for any number of components. As an exam-
ple, Pacor et al. [2007] used this method for spectral analysis and multicompo-
nent polarization analyses on the Gubbio Piana (central Italy) recordings to
identify the frequency content of the different phases composing the recorded
wavefield and to highlight the importance of basin-induced surface waves in
modifying the main strong ground-motion parameters.

In more general terms, particle motions captured with three-component
recordings can be characterized by a polarization ellipsoid. Several meth-
ods are proposed in the literature to introduce such an approximation.
They are based on the analysis of the covariance matrix of multicomponent
recordings and principal components analysis using singular value decompo-
sition Kanasewich [1981]. In Kulesh et al. [2007a], we extended the covariance
method to the time-frequency domain. Following the method, proposed by Di-
allo et al. [2006a], we use an approximate analytical formula to compute the
elements of the covariance matrix M(t, f) for a time window which is derived
from an averaged instantaneous frequency of the multicomponent record:

Mkm(t, f) = |WgSk(t, f)| |WgSm(t, f)|{ sinc (Γ−
km(t, f)) cos (A−

km(t, f))

+ sinc (Γ+
km(t, f)) cos (A+

km(t, f))} − µkmµmk ,

Γ±
km(t, f) = ∆tkm(t,f)

2 (Ωk(t, f) ±Ωm(t, f)) ,

A±
km(t, f) = argWgSk(t, f) ± argWgSm(t, f) ,

∆tkm(t, f) = 4πn
Ωk(t,f)+Ωm(t,f) , n ∈ N ,

µkb = ℜ [WgSk(t, f)] sinc (∆tkb(t,f)Ωk(t,f)
2 ) , k,m = x, y, z,

(1.3)

where sinc(x) indicates the sine cardinal function.
The eigenanalysis performed on M(t, f) yields the principal component

decomposition of the energy. Such a decomposition produces three eigenval-
ues λ1(t, f) ≥ λ2(t, f) ≥ λ3(t, f) and three corresponding eigenvectors vk(t, f)
that fully characterize the magnitudes and directions of the principal compo-
nents of the ellipsoid that approximates the particle motion in the considered
time window ∆tkm(t, f):

• the major half-axis R(t, f) =
√

λ1(t, f)v1(t, f)/‖v1(t, f)‖ ;

• the minor half-axis r(t, f) =
√

λ3(t, f)v3(t, f)/‖v3(t, f)‖ ;
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• the second minor half-axis rs(t, f) =
√

λ2(t, f)v2(t, f)/‖v2(t, f)‖ ;

• the reciprocal ellipticity ρ(t, f) = ‖rs(t, f)‖/‖R(t, f)‖ ;

• the minor reciprocal ellipticity ρ1(t, f) = ‖r(t, f)‖/‖rs(t, f)‖ ;

• the dip angle δ(t, f) = arctan(
√

v1,x(t, f)2 + v1,y(t, f)2/v1,z(t, f)) ;

• the azimuth α(t, f) = arctan(v1,y(t, f)/v1,x(t, f)) .

Note, when the instantaneous frequencies are the same for all components,
this method produces the same results as those by Morozov and Smithson
[1996] in terms of polarization parameters.

1.2.3 Modeling a Wave Dispersion Using a Wavelet Deformation
Operator

The second problem in the context of surface wave analysis (especially with
high frequency signals) is the robust determination of dispersion curves from
multivariate signals. Wave dispersion expresses the phenomenon by which the
phase and group velocities are functions of the frequency. The cause of dis-
persion may be either geometric or intrinsic. For seismic surface waves, the
cause of dispersion is of a geometrical nature. Geometric dispersion results
from the constructive interferences of waves in bounded or heterogeneous me-
dia. Intrinsic dispersion arises from the causality constraint imposed by the
Kramers-Krönig relation or from the microstructure properties of material. If
the dispersive and dissipative characteristics of the medium are represented by
the frequency-dependent wavenumber k(f) and attenuation coefficient α(f),
the relation between the Fourier transforms of two propagated signals reads

O[DF ] : Ŝ(f) 7→ e−iK(f)D−2πinŜ(f) ,

where D is the propagation distance, n ∈ N is any integer number and K(f)
is the complex wavenumber, which can be defined by real functions k(f) and
α(f) as K(f) = 2πk(f) − iα(f) .

In order to analyze the dynamical behavior of multivariate signals using the
continuous wavelet transforms it is interesting to investigate a diffeomorphic
deformation of the wavelet space. These deformations establish algebra of
wavelet pseudodifferential operators acting on signals Xie et al. [2003]. In the
most general case, a wavelet deformation operator can be defined as

O[D] : S(t) 7→ MhDWgS(t, f) , D : H → H ,
H := {(t, f) : t ∈ R, f > 0} .

We investigated some practical models that give concreted expression of
this deformation operator related to the used dispersion parameters of the
medium. Reference Kulesh et al. [2005a] has shown how the wavelet trans-
form of the source and the propagated signals are related through a transfor-
mation operator that explicitly incorporates the wavenumber as well as the
attenuation factor of the medium:
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O[DW ] : WgS(t, f) 7→ e−α(f)De−iψ1(f)WgS (t− k′(f)D, f) , (1.4)

where ψ1(f) = 2π[k(f) − fk′(f)]D + 2πn.
In the special case, with the assumption that the analyzing wavelet has a

linear phase (with time-derivative approximately equal to 2π, as it is the case
for the Morlet wavelet, the approximation (1.4) can be written in terms of the
phase Cp(f) = f/k(f) and group Cg(f) = 1/k′(f) velocities as Kulesh et al.
[2005b]:

O[DW ] : WgS(t, f) 7→ e−α(f)D
∣

∣

∣
WgS

(

t− D
Cg(f) , f

)∣

∣

∣
·

exp
[

i argWgS
(

t− D
Cp(f) −

n
f , f

)]

.
(1.5)

The relationship (1.5) has the following interpretation. The group velocity is a
function that “deforms” the image of the absolute value of the source signal’s
wavelet spectrum, the phase velocity ”deforms” the image of the wavelet spec-
trum phase, and the attenuation function determines the frequency-dependent
real coefficient by which the spectrum is multiplied.

1.2.4 How to Extract the Dispersion Properties from the Wavelet
Coeffitients?

Equation (1.5) allows us to formulate the ideas how the frequency-dependent
dispersion properties can be obtained using the wavelet spectra’ phases of
source and propagated signals. To obtain the phase velocities of multi-mode
and multivariate signals, we can perform ”frequency-velocity” analysis on the
analogy of the frequency-wavenumber method Capon [1969] for a seismogram
Sk(t) , k = 1, N . The main part of this analysis consists of the calculation of
correlation spectrum M(f, c) as follows (see Kulesh et al. [2007b]):

M(f, c) =

∫ tmax

tmin

∣

∣

∣

∣

∣

∑

k,m

Ak(τ, f)A∗
m

(

τ −
Dmk

c
, f

)

∣

∣

∣

∣

∣

dτ

=

∫ tmax

tmin

∣

∣

∣

∣

∣

∑

k,m

eiBk(τ,f) exp

(

−iBm

(

τ −
Dmk

c
, f

))

∣

∣

∣

∣

∣

dτ ,

Ak(τ, f) = WgSk(τ, f)/|WgSk(τ, f)|, Bk(τ, f) = argWgSk(τ, f) ,

(1.6)

where [tmin, tmax] indicates the total time range for which the wavelet spec-
trum was calculated, c ∈ [Cminp , Cmaxp ] is an unbounded variable correspond-
ing to the phase velocity, Ak is a complex-valued wavelet phase and Bk is a
real-valued wavelet phase.

For a given parametrization of wavenumber and attenuation functions,
finding an acceptable set of parameters can be thought of as an optimization
problem that seeks to minimize a cost function χ2 and can be formulated as
follows:
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χ2(α(f,p), k(f,q)) → min , p ∈ R
P , q ∈ R

Q ,

where P is the number of parameters used to model the attenuation α(f) and
Q is the number of parameters used to model the wavenumber k(f). p and
q represent the vectors of parameters describing α(f) and k(f) respectively.
This cost function involves a propagator described above.

At this stage we need to distinguish between the case where the analyzed
signal consists only of one coherent arrival from the case where it consists of
several coherent arrivals. In the former case, the derived functions are mean-
ingful and characterize those analyzed event. However in the latter, these
functions cannot be easily interpreted since the signals involved consist of
many overlapping arrivals.

If only one single phase is observed in all the traces Sk(t), it will be enough
to minimize a cost function that involves some selected seismic traces in order
to estimate the attenuation and phase velocity using the modulus and the
phase of the wavelet transforms correspondingly, see Holschneider et al. [2005]:

χ2(p,q) =
∑

m,k

∫ ∫

||WgSk(t, f)| − |DW(p,q)WgSm(t, f)||
2

dt df ,

χ2(p,q) =
∑

m,k

∫ ∫

|argWgSk(t, f) − argDW(p,q)WgSm(t, f)|
2

dt df .

(1.7)
The first step will consist of seeking a good initial condition by performing an
image matching using the modulus of the wavelet transforms of a pair of traces.
The optimization is carried out over the whole frequency range of the signal. In
order to reduce the effect of uncorrelated noise in our estimates, it is preferable
to use a propagator based on the cross-correlations, see Holschneider et al.
[2005].

In the case where the observed signals consist of a mixture of different
wave types and modes, a cascade of optimizations in the wavelet domain
will be necessary in order to fully determine the dispersion and attenuation
characteristics specific to each coherent arrival.

Since the dependence of the cost functions (1.7) on the parameters p and q
is highly non-linear, each function may have several local minima. To obtain
the global minimum that corresponds to the true parameters, a non-linear
least-squares minimization method that proceeds iteratively from a reasonable
set of initial parameters is required. In the present contribution, we use the
Levenberg-Marquardt algorithm Press et al. [1992].

Finally, the obtained dispersion curves (especially phase and group veloc-
ities) for defined wave types can be used for the determination of physical
and geometrical properties of the subsurface structure. Because of the non-
uniqueness of earth models that can be fitted to a given dispersion curve,
the inversion for the average shear velocity profile is usually treated as an
optimization problem where one tries to minimize the misfit between exper-
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imental and theoretical dispersion curves computed for a given earth model
that is assumed to best represent the subsurface under investigation.

1.3 The Interplay of Image Registration and Geometry

Matching

Image registration is one of the fundamental tools in image processing. It
deals with the identification of structural correspondences in different images
of the same or of similar objects acquired at different times or with different
image devices. For instance, the revolutionary advances in the development of
imaging modalities has enabled clinical researchers to perform precise studies
of the immense variability of human anatomy. As described in the excellent
review by Miller, Trouvé and Younes Miller et al. [2002] and the overview ar-
ticle of Grenander and Miller Grenander and Miller [1998], this field aims at
automatic detection of anatomical structures and their evaluation and com-
parison. Different images show corresponding structures at usually nonlinearly
transformed positions.

In image processing, registration is often approached as a variational prob-
lem. One asks for a deformation φ on an image domain Ω which maps struc-
tures in the reference image uR onto corresponding structures in the template
image uT . This leads ill-posed minimization problem if one considers the in-
finite dimensional space of deformations Brown [1992]. A iterative, multilevel
regularization of the descent direction has been investigated in Clarenz et al.
[2006]. Alternatively, motivated by models from continuum mechanics, the de-
formation can additionally be controlled by elastic stresses on images regarded
as elastic sheets. For example see the early work of Bajcsy and Broit Bajcsy
and Broit [1982] and more recent, significant extensions by Grenander and
Miller Grenander and Miller [1998]. In Droske and Rumpf [2004] nonlinear
elasticity based on polyconvex energy functionals is investigated to ensure a
one-to-one image matching. As the image modality differs there is usually no
correlation of image intensities at corresponding positions. What still remains,
at least partially, is the local geometric image structure or “morphology” of
corresponding objects. Viola, Wells et al. Viola and Wells [1997] and Col-
lignon Collignon and et al. [1995] presented an information theoretic approach
for the registration of multi-modal images. Here, we consider “morphology” as
a geometric entity and will review registration approaches presented in Droske
and Ring [2007], Droske and Rumpf [2004, 2005].

Obviously, geometry matching is also a widespread problem in computer
graphics and geometric modeling Gu and Vemuri [2004]. E.g. motivated by
the ability to scan geometry with high fidelity, a number of approaches have
been developed in the graphics literature to bring such scans into correspon-
dence Blanz and Vetter [1999], Lee et al. [1999]. Given a reference surface MR

and a template surface MT a particular emphasize is on the proper alignment
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of curved features and the algorithmic issues associated with the manage-
ment of irregular meshes and their effective overlay. Here, we will describe
an image processing approach to the nonlinear elastic matching of surface
patches Litke et al. [2005]. It is based on a proper variational parametrization
method Clarenz et al. [2004] and on the matching of surface characteristics
encoded as images uR and uT on flat parameter domains ωR and ωT , respec-
tively. Here, it is particularly important to take into account of the metric
distortion, to ensure a physically reasonable matching of the actual surfaces
MR and MT .

1.3.1 The Geometry of Images

In mathematical terms, two images u, v : Ω → R with Ω ⊂ R
d for d =

2, 3 are called morphologically equivalent, if they only differ by a change
of contrast, i.e. , if u(x) = (β◦v)(x) for all x ∈ Ω and for some monotone
function β : R → R. Obviously, such a contrast modulation does not change
the order and the shape of super level sets l+c [u] = {x : u(x) ≥ c} . Thus,
image morphology can be defined as the upper topographic map, defined as
the set of all these sets morph[u] := {l+c [u] : c ∈ R} . Unfortunately, this set
based definition is not feasible for a variational approach and it does not
distinguish between edges and level sets in smooth image regions. Hence, in
what follows, we derive an alternative notion and consider image functions
u : Ω → R in SBV Ambrosio et al. [2000] - by definition L1 functions, whose
derivative Du is a vector-valued Radon measure with vanishing Cantor part.
We consider the usual splitting Du = Dacu + Dju Ambrosio et al. [2000],
where Dacu is the regular part, which is the usual image gradient apart from
edges and absolutely continuous with respect to the Lebesgue measure L,
and a singular part Dju, which represents the jump and is defined on the
jump set J , which consists of the edges of the image. We denote by nj the
vector valued measure representing the normal field on J . Obviously, nj is
a morphological invariant. For the regular part of the derivative we adopt
the classical gradient notion ∇acu for the L density of Dacu, i.e., Dacu =
∇acuL Ambrosio et al. [2000]. As long as it is defined, the normalized gradient
∇acu(x) / ‖∇acu(x)‖ is the outer normal on the upper topographic set l+u(x)[u]

and thus again a morphological quantity. It is undefined on the flat image
region F [u] := {x ∈ Ω : ∇acu(x) = 0} . We introduce nac as the normalized
regular part of the gradient nac = χ

Ω\F [u]
∇acu / ‖∇acu‖ . We are now able to

redefine the morphology morph[u] of an image u as a unit length vector valued
Radon measure on Ω with morph[u] = nacL + ns . We call nacL the regular
morphology or Gauss map (GM) and ns the singular morphology. In the next
section, we aim to measure congruence of two image morphologies with respect
to a matching deformation making explicit use of this decomposition.
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Fig. 1.1. The morphological registration is demonstrated for a test case. From left
to right the reference image uR, the contrast modulated and artificially deformed
template image uT , the jump set JT in the template image uT (represented by a
phase field function), the deformation φ−1 of the template image visualized with a
deformed underlying checkerboard, and finally the registered template image uT ◦φ

are displayed

1.3.2 Matching Image Morphology

Let us suppose that an initial template image u0
T

and an initial reference
image u0

R
are given on an image domain Ω. Both images are assumed

to be noisy. We aim for a simultaneous robust identification of smoothed
and structural enhanced representations uT , uR ∈ SBV and a deformation
φ, which properly matches the underlying image morphologies, such that
morph[uT ◦φ] = morph[uR] . To phrase this in terms a variational approach
we treat the two different components of the morphology separately.

Matching the Singular Morphology

We aim for a deformation φ a proper matching of the singular morphologies
requesting that φ(JR) = JT for the edge sets JR := JuR and JT := JuT .
Now, we ask for a simultaneous edge segmentation, denoising and matching of
images in terms of a Mumford Shah approach jointly applied to both images
and linked via the unknown elastic deformation. I.e., we consider as set of
unknowns uT , uR, JT and φ. For the template image we take into account the
usual Mumford Shah approach and define the energy

ET

MS
[uT , JT ] =

1

2

∫

Ω

(uT − u0
T
)2 dL +

µ

2

∫

Ω\JT

‖∇uT‖
2 dL + ηHd−1(ST )

with µ, η > 0. For the reference image we make use of our correspondence
assumption and define

ER

MS [uR, JT , φ] =
1

2

∫

Ω

(uR − u0
R)2 dL +

µ

2

∫

Ω\φ−1(JT )

‖∇uR‖
2 dL ,

where the Hd−1 -measure of JR is supposed to be implicitly controlled by
the Hd−1 -measure of JT and a smooth deformation φ. Hence, we omit the
corresponding energy term here. Finally, the energy for the joint Mumford
Shah segmentation and matching model in the reference and the template
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Fig. 1.2. The registration of FLAIR and T1-weighted magnetic resonance brain
images is considered. From left to right: the reference T1 weighted MR image uR,
the template FLAIR image uT , the initial mismatch (with alternating stripes from
uT and uR), and in the same fashion results for a registration only of the regular
morphology and finally for the complete energy are shown

image is given by EMS [uR, uT , ST , φ] = ET
MS

[uT , JT ] + ER
MS

[uR, JT , φ] . So far,
the deformation φ is needed only on the singularity set ST and thus it is highly
under determined.

Matching the Regular Morphology

The regular image morphology consists of the normal field nac. Given regu-
larized representations uT and uR of noisy initial images we observe a perfect
match of the corresponding regular morphologies, if the deformation of the ref-
erence normal field nac

R
:= ∇acuR / ‖∇

acuR‖ coincides with the template nor-
mals field nacT := ∇acuT / ‖∇

acuT‖ at the deformed position. In fact, all level
sets of the pull back template image uT ◦φ and the reference image uR would
then be nicely aligned. In the context of a linear mapping A normals deformed
with the inverse transpose A−T , Thus, we obtain the deformed reference nor-
mal nac,φR = CofDφ∇acuR / ‖CofDφ∇acuR‖ , where Cof A := detAA−T and

ask for a deformation φ : Ω → R
d, such that nacT ◦φ = nac,φR . This can be

phrased in terms of an energy integrand g0 : Rd ×Rd × R
d,d → R

+
0 , which is

zero-homogeneous in the first two arguments as long as they both do not van-
ish and zero elsewhere. It measures the misalignment of directions of vectors
on Rd. For instance we might define

g0(w, z,A) := γ

∥

∥

∥

∥

(1−
w

‖w‖
⊗

w

‖w‖
)

Cof Az

‖Cof Az‖

∥

∥

∥

∥

m

for w, z 6= 0, with γ > 0 and m ≥ 2, a⊗ b = abT . Based on this integrand we
finally define a Gauss map registration energy

EGM [uT , uR, φ] =

∫

Ω

g0(D
acuT ◦φ,DacuR,CofDφ) dL .

For the analytical treatment of the corresponding variational problem we refer
to Droske and Rumpf [2004].

In a variational setting neither the matching energy for the singular mor-
phology nor the one for the regular morphology uniquely identify the de-
formation φ. Indeed, the problem is still ill-posed. For instance, arbitrary
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Fig. 1.3. On the left the 3D phasefield corresponding to the edge set in the an
MR image is shown. Furthermore, the matching of two MR brain images of different
patients is depicted. We use a volume renderer based on ray casting (VTK) for a
3D checkerboard with alternating boxes of the reference and the pull back of the
template image to show the initial mismatch of MR brain images of two different
patients (middle) and the results of our matching algorithm (right)

reparametrizations of the level sets ∂l+c or the edge set J , and an exchange
of level sets induced by the deformation do not change the energy. Thus, we
have to regularize the variational problem. On the background of elasticity
theory Ciarlet [1988], we aim to model the image domain as an elastic body
responding to forces induced by the matching energy. Let us consider the de-
formation of length, volume and for d = 3 also area under a deformation φ,
which is controlled by Dφ/ ‖Dφ‖, detDφ, and CofDφ/ ‖CofDφ‖, respec-
tively. In general, we consider a so called polyconvex energy functional

Ereg[φ] :=

∫

Ω

W (Dφ,Cof Dφ, det dφ) dL , (1.8)

where W : R
d,d × R

d,d × R → R is supposed to be convex. In particular, a

suitable built-in penalization of volume shrinkage, i. e., W (A,C,D)
D→0
−→ ∞,

enables us to ensure bijectivity of the deformation (cf. Ball [1981]) and one-
to-one image matches. For details we refer to Droske and Rumpf [2004]. With
respect to the algorithmical realization we take into account a phase field ap-
proximation of the Mumford Shah energy EMS picking up the approach by
Ambrosio and Tortorelli Ambrosio and Tortorelli [1992]. Thereby, the edge
set JT in the template image will be represented by a phase field function v,
hence v◦φ can regarded as the phase field edge representation in the refer-
ence image Droske and Rumpf [2005]. As an alternative a shape optimization
approach based on level sets can be used Droske and Ring [2007]. Results of
the morphological matching algorithm are depicted in Fig. 1.1, Fig. 1.2 and
Fig. 1.3.

1.3.3 Images Encoding Geometry

So far, we have extensively discussed the importance of geometry encoded in
images for the purpose of morphological image matching. Now, we will discuss
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MR (MR + MT ) / 2 MT ωR (ωR + Φ(ωR)) / 2 Φ(ωR)

Fig. 1.4. Large deformations are often needed to match surfaces that have very
different shapes. A checkerboard is texture mapped onto the first surface as it morphs
to the second surface (top). The matching deformation shown in the parameter
domain (bottom) is smooth and regular, even where the distortion is high (e.g.,
around the outlines of the mouth and eyes)

how surface geometry can be encoded in images and how to make use of this
encoding for surface matching purposes. Consider a smooth surface M ⊂ R

3,
and suppose x : ω → M; ξ 7→ x(ξ) is a parameterization of M on a parameter
domain ω. The metric g = DxTDx is defined on ω, where Dx ∈ R

3,2 is the
Jacobian of the parameterization x. It acts on tangent vectors v, w on the pa-
rameter domain ω with (g v) ·w = Dxv ·Dxw and describes how length, area
and angles are distorted under the parameterization x. This distortion is mea-
sured by the inverse metric g−1 ∈ R

2,2. In fact,
√

tr g−1 measures the average
change of length of tangent vectors under the mapping from the surface onto
the parameter plane, whereas

√

det g−1 measures the corresponding change
of area. As a surface classifier the mean curvature on M can be considered
as a function h on the parameter domain ω. Similarly a feature set FM on
the surface M can be represented by a set F on ω. Examples for feature sets
for instance on facial surfaces are particularly interesting sets such as the eye
holes, the center part of the mouth, or the symmetry line of a suitable width
between the left and the right part of the face. Finally, surface textures T
usually live on the parameter space. Hence, the quadruple (x, h,F , T ) can
be regarded as an encoding of surface geometry in a geometry image on the
parameter domain ω. The quality of a parameterization can be described via
a suitable distortion energy Eparam[x] =

∫

x−1(M)W (tr (g−1), det g−1) dx . For

details on the optimization of the parametrization based on this variational
approach we refer to Clarenz et al. [2004].

1.3.4 Matching Geometry Images

Let us now consider a reference surface patch MR and a template patch MT to
be matched, where geometric information is encoded via two initially fixed pa-
rameter maps xR and xT on parameter domains ωR and ωT . In what follows we
always use indices R and T to distinguish quantities on the reference and the
template parameter domain. First, let us consider a one-to-one deformation
φ : ωR → ωT between the two parameter domains. This induces a deformation
between the surface patches φM : MR → MT defined by φM := xT ◦φ ◦x−1

R .
Now let us focus on the distortion from the surface MR onto the surface MT .
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Fig. 1.5. Morphing through keyframe poses A,B, C is accomplished through pair-
wise matches A → B and B → C. The skin texture from A is used throughout.
Because of the close similarity in the poses, one can expect the intermediate blends
A′, B′, C′ to correspond very well with the original keyframes A, B,C, respectively

In elasticity, the distortion under an elastic deformation φ is measured by the
Cauchy-Green strain tensor DφT Dφ. Properly incorporating the metrics gR

and gT we can adapt this notion and obtain the Cauchy Green tangential
distortion tensor G[φ] = g−1

R DφT (gT ◦ φ)Dφ , which acts on tangent vectors
on the parameter domain ωR. As in the parameterization case, one observes
that

√

trG[φ] measures the average change of length of tangent vectors from

MR when being mapped to tangent vectors on MT and
√

detG[φ] measures
the change of area under the deformation φM. Thus, trG[φ] and detG[φ] are
natural variables for an energy density in a variational approach measuring
the tangential distortion,i.-e. we define an energy of the type

Ereg[φ] =

∫

ωR

W (trG[φ], detG[φ])
√

det gR dξ .

When we press a given surface MR into the thin mould of the surface MT , a
second major source of stress results from the bending of normals. A simple
thin shell energy reflecting this is given by

Ebend[φ] =

∫

ωR

(hT ◦ φ− hR)2
√

det gR dξ .

Frequently, surfaces are characterized by similar geometric or texture features,
which should be matched in a way which minimizes the difference of the
deformed reference set φM(FMR) and the corresponding template set FMT .
Hence, we consider a third energy

EF [φ] = µ

∫

ωR

χFRχφ−1(FT )

√

det gR + µ

∫

ωT

χφ(FR)χ(FT )

√

det gT .

Usually, we cannot expect that φM(MR) = MT . Therefore, we must allow for
a partial matching. For details on this and on the numerical approximation
we refer to Litke et al. [2005]. Fig. 1.4 and 1.5 show two different application
of the variational surface matching method.
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1.4 An Optimal Control Problem in Medical Image

Processing

In this section we consider the problem of creating a “natural” movie which
interpolates two given images showing essentially the same objects. In many
situations, these objects are not at the same position or - more importantly -
may be out-of-focus and blurred in one image while being in focus and sharp
in the other. This description may be appropriate for frames in movies but
also for different versions of a mammogram emphasizing coarse and fine de-
tails, respectively. The problem is to create an interpolating movie from these
images which is perceived as “natural”. In this context, we specify “natural”
according to the following requirements. On the one hand, objects from the
initial image should move smoothly to the corresponding object in the final
image. On the other hand, the interpolation of an object which is blurred in
the initial image and sharp in the final image (or vice versa) should be across
different stages of sharpness, i.e. , the transition is also required to interpolate
between different scales.

As a first guess to solve this problem, one can either try to use an existing
morphing algorithm or to interpolate linearly between the two images. How-
ever, morphing methods are based on detecting matching landmarks in both
images. They are not applicable here, since we are particularly interested in
images containing objects, which are not present or heavily diffused in the
initial image but appear with a detailed structure in the final image. Hence,
there are no common landmarks for those objects. Mathematically speaking.
it is difficult or impossible to match landmark points for an object which is
given on a coarse and fine scale, respectively. Also linear interpolation be-
tween initial and final image does not create a natural image sequence, since
it does not take the scale sweep into account, i.e. , all fine scale are appearing
immediately rather than developing one after another.

Hence, more advanced methods have to be employed. In this article we
show a solution of this interpolation problem based on optimal control of
partial differential equations.

To put the problem in mathematical terms, we start with a given image
y0 assumed to be a function on Ω = ]0, 1[2. Under the natural assumption
of finite-energy images, we model them as functions in L2(Ω). The goal is
to produce a movie (i.e. a time-dependent function) y : [0, 1] → L2(Ω) such
that appropriate mathematical implementations of the above conditions are
satisfied.

1.4.1 Modeling as an Optimal Control Problem

Parabolic partial differential equations are a widely used tool in image pro-
cessing. Diffusion equations like the heat equation Witkin [1983], the Perona-
Malik equation Perona and Malik [1988] or anisotropic equations Weickert
[1998] are used for smoothing, denoising and edge enhancing.
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A smoothing of a given image y0 ∈ L2(Ω) can for example be done by
solving the heat equation

yt −∆y = 0 in ]0, 1[ ×Ω

yν = 0 on ]0, 1[ × ∂Ω

y(0) = y0 ,

where yν stands for the normal derivative, i.e. we impose homogeneous Neu-
mann boundary conditions. The solution y : [0, 1] → L2(Ω) gives a movie
which starts at the image y0 and becomes smoother with time t. This evolu-
tion is also called scale space and is analyzed by the image processing com-
munity in detail since the 1980s. Especially the heat equation does not create
new features with increasing time, see e.g.Florack and Kuijper [2000] and the
references therein. Thus, it is suitable for fading from fine to coarse scales.

The opposite direction, the sweep from coarse to fine scales, however, is
not modeled by the heat equation. Another drawback of this PDE is that
generally, all edges of the initial image will be blurred. To overcome this
problem, the equation is modified such that it accounts for the edges and
allows the formation of new structures. The isotropic diffusion is replaced
with the degenerate diffusion tensor given by

D2
p =

(

I − σ(|p|)
p

|p|
⊗

p

|p|

)

, (1.9)

where the vector field p : ]0, 1[ × Ω → R
d with |p| ≤ 1 describes the edges of

the interpolating sequence and σ : [0, 1] → [0, 1] is an edge-intensity function.
The special feature of this tensor is that it is allowed to degenerate for |p| = 1,
blocking the diffusion in the direction of p completely.

Consequently, the degenerate diffusion tensor D2
p can be used for the

preservation of edges. Additionally, in order to allow brightness changes and
to create fine-scale structures, a source term u is introduced. The model under
consideration then reads as:

yt − div
(

D2
p∇y

)

= u in ]0, 1[ ×Ω

ν ·D2
p∇y = 0 on ]0, 1[ × ∂Ω

y(0) = y0 .

(1.10)

The above equation is well-suited to model a sweep from an image y0 to
an image y1 representing objects on different scale. Hence, we take the image
y0 as initial value. To make the movie y end at a certain coarse scale image y1
instead of the endpoint y(1) which is already determined through (y0, u, p),
we propose the following optimal control problem:
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Minimize J(y, u, p) =
1

2

∫

Ω

|y(1) − y1|
2 dx+

1
∫

0

∫

Ω

λ1

2
|u|2 + λ2σ(|p|) dx dt

subject to











yt − div
(

D2
p∇y

)

= u in ]0, 1[ ×Ω

ν ·D2
p∇y = 0 on ]0, 1[ × ∂Ω

y(0) = y0 .

(1.11)

In other words, the degenerate diffusion process is forced to end in y0 with
the help of a heat source u and the edge field p and such that the energy for
u and the edge-intensity σ(|p|) becomes minimal.

1.4.2 Solution of the Optimal Control Problem

The minimization of the functional (1.11) is not straightforward. An analyti-
cal treatment of the minimization problem involves a variety of mathematical
tasks. First, an appropriate weak formulation for (1.10) has to be found for
which existence and uniqueness of solutions can be proven. Second, we have to
ensure that a minimizer of a possibly regularized version of (1.11) exists. The
main difficulty in these two points is to describe the influence of the param-
eter p in the underlying degenerate parabolic equation which control where
the position and evolution of the edges in the solution. A general approach
for minimizing Tikhonov functionals such as (1.11) by a generalized gradient
method can be found in Bredies et al. [2008].

The Solution of the PDE

The solution of diffusion equations which are uniformly elliptic is a classical
task. The situation changes when degenerate diffusion tensors like (1.9) are
considered. In the following we fix an edge field p and examine the PDE (1.10)
only with respect to (u, y0) which is now linear. Here, when considering weak
solutions, the choice of L2

(

0, 1;H1(Ω)
)

for the basis of a solution space is not
sufficient. This has its origin in one of the desired features of the equation:
In order to preserve and create edges, which correspond to discontinuities
in y with respect to the space variable, the diffusion tensor is allowed to
degenerate. Such functions cannot be an element of L2

(

0, 1;H1(Ω)
)

. Hence,
spaces adapted to the degeneracies have to be constructed by the formal
closure with respect to a special norm (also see Olĕınik and Radkevič [1973]
for a similar approach):

Vp = L2
(

0, 1;H1(Ω)
)
∣

∣

∼

‖·‖Vp
, ‖y‖Vp =

(

∫ 1

0

∫

Ω

|y|2 + |Dp∇y|
2 dx dt

)1/2

.

Elements y can be thought of square-integrable functions for which formally
Dp∇y ∈ L2

(

0, 1;L2(Ω)
)

. One can moreover see that functions which admit
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discontinuities where |p| = 1 are indeed contained in Vp. In the same manner,
the solution space

Wp(0, 1) =
{

y ∈ AC
(

0, 1;H1(Ω)
) ∣

∣ ‖y‖Wp <∞
}∣

∣

∼

‖·‖Wp
,

‖y‖Wp =
(

‖y‖2
Vp

+ ‖yt‖
2
V∗

p

)1/2
.

A weak formulation of (1.10) then reads as: Find y ∈ Vp such that

−〈zt , y〉V∗
p×Vp + 〈Dp∇y, Dp∇z〉L2 = 〈y0, z(0)〉L2 + 〈u, z〉L2 (1.12)

for all z ∈Wp(0, 1) with z(T ) = 0. One can prove that a unique solution exists
in this sense.

Theorem 1.1. For p ∈ L∞(]0, 1[×Ω,Rd) with ‖p‖∞ ≤ 1, u ∈ L2
(

0, 1;L2(Ω)
)

and y0 ∈ L2(Ω), there exists a unique solution of (1.12) in Wp(0, T ) with

‖y‖2
Wp

≤ C
(

‖u‖2
2 + ‖y0‖

2
2

)

where C is also independent of p.

Proof. A solution can be obtained, for example with Lions’ projection theorem
or with Galerkin approximations. Both approaches yield the same solution in
Wp(0, 1), whose uniqueness can be seen by a monotonicity argument. However,
other solutions may exist in the slightly larger space

W̄p(0, 1) =
{

y ∈ Vp
∣

∣ yt ∈ V∗
p

}

, ‖y‖W̄p
= ‖y‖Wp ,

see Bredies [2007] for details. �

Unfortunately, for each p, the solution space may be different and, in gen-
eral, no inclusion relation holds. This complicates the analysis of the solution
operator with respect to p in a profound way.

But fortunately, the spaces Wp(0, 1) still possess the convenient property
that each Wp(0, 1) →֒ C

(

[0, 1];L2(Ω)
)

with embedding constant independent
of p. So, the solution operator

S : L2
(

0, 1;L2(Ω)
)

× {‖p‖∞ ≤ 1} → C
(

[0, 1];L2(Ω)
)

, (u, p) 7→ y

is well-defined and bounded on bounded sets.
Examining the continuity of S, a bounded sequence {ul} and arbitrary

{pl} have, up to a subsequence, weak- and weak*-limits u and p. Since
C
(

[0, 1];L2(Ω)
)

is not reflexive, we cannot assure weak convergence of the
bounded sequence {yk}, but it is possible to show that a weak limit exists y
in the slightly larger space C∗

(

[0, 1];L2(Ω)
)

in which point-evaluation is still
possible, again see Bredies [2007] for details. The problem now is to show that
the solution operator is closed in the sense that S(u, p) = y.
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Characterization of the Solution Spaces

One difficulty in examining the varying solution spaces Vp is the definition as
a closure with respect to a norm which depends on p, resulting in equivalence
classes of Cauchy sequences. A more intuitive description of the Vp is given
in terms of special weak differentiation notions, as it is demonstrated in the
following. In particular, this allows to describe the behavior of the solution
operator S with respect to p.

For w ∈ H1,∞(Ω) and q ∈ H1,∞(Ω,Rd), the weak weighted derivative and
weak directional derivative of y are the functions, denoted by w∇y and ∂qy,
respectively, satisfying

∫

Ω

(w∇y) · z dx = −
∫

Ω
y(w div z + ∇w · z) dx for all z ∈ C∞

0 (Ω,Rd)

∫

Ω

∂qyz dx = −
∫

Ω y(z div q + ∇z · q) dx for all z ∈ C∞
0 (Ω) .

With the help of these notions, a generalization of the well-known weighted
Sobolev spaces Kufner [1980] can be introduced, the weighted and direc-
tional Sobolev spaces associated with a weight w ∈ H1,∞(Ω) and directions
q1, . . . , qK ∈ H1,∞(Ω,Rd):

H2
w,∂q1,...,∂qK

(Ω) =
{

y ∈ L2(Ω)
∣

∣ w∇y ∈ L2(Ω,Rd), ∂q1y, . . . , ∂qKy ∈ L2(Ω)
}

‖y‖H2
w,∂q1,...,∂qK

=
(

‖y‖2
2 + ‖w∇y‖2

2 +

K
∑

k=1

‖∂qk
y‖2

2

)1/2

.

These spaces generalize weighted Sobolev spaces in the sense that ∇y does
not necessarily exist for elements in H2

w(Ω) and that w = 0 is allowed on
non-null subsets of Ω.

The gain now is that the following weak closedness properties can be es-
tablished:

yl ⇀ y

wl∇yl ⇀ θ

∂qk,l
yl ⇀ vk

and

wl
∗
⇀ w

qk,l
∗
⇀ qk

div qk,l → div qk

pointwise a.e.























⇒

{

w∇y = θ

∂qk
y = vk .

(1.13)

Such a result is the key to prove that the solution operator S possesses ap-
propriate closedness properties.

The construction of the weighted and directional weak derivative as well
as the associated spaces can also be carried out for the time-variant case,
resulting in spaces H2

w,∂q1,...,∂qK
. Splitting the diffusion tensor (1.9) then into

a weight and direction as follows

w =
√

1 − σ(|p|) , q =

(

0 −1
1 0

)

√

σ(|p|)

|p|
p
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yields D2
p = w2I + q ⊗ q, so ∇z · D2

p∇y = w∇y · w∇z + ∂qy∂qz. This gives
an equivalent weak formulation in terms of weak weighted and directional
derivatives.

Theorem 1.2. For ‖p(t)‖H1,∞ ≤ C a.e. and |p| < 1 on ]0, 1[ × ∂Ω follows
that Vp = H2

w,q and Wp(0, 1) = W̄p(0, 1). A y ∈ Vp is the unique solution of
(1.12) if and only if

−〈zt, y〉H2∗
w,q×H2

w,q
+ 〈w∇y, w∇z〉L2 + 〈∂qy, ∂qz〉L2 = 〈y0, z(0)〉L2 + 〈u, z〉L2

(1.14)
for each z ∈Wp(0, 1), zt ∈ L2

(

0, 1;L2(Ω)
)

and z(T ) = 0 .

Proof. For the proof and further details we again refer to Bredies [2007]. �

Existence of Optimal Solutions

The characterization result of Theorem 1.2 as well as time-variant versions of
the closedness property (1.13) are the crucial ingredients to obtain existence
of solutions for a regularized version of (1.11).

Theorem 1.3. Let P a weak*-compact set such that each p ∈ P satisfies the
prerequisites of Theorem 1.2. The control problem

min
u∈L2(0,1;L2(Ω)

p∈P

‖y(1) − y1‖
2
2

2
+ λ1‖u‖

2
2 + λ2

∫ T

0

∫

Ω

σ(|p|) dx dt

+µ1tv
∗(p) + µ2 ess sup

t∈[0,1]

TV
(

∇p(t)
)

subject to











yt − div
(

D2
p∇y

)

= u in ]0, 1[ ×Ω

ν ·D2
p∇y = 0 on ]0, 1[ × ∂Ω

y(0) = y0 .

possesses at least one solution (u∗, p∗). Here, tv∗ and TV denote the semi-
variation with respect to t and the total variation, respectively.

Proof. The proof can roughly be sketched as follows, see Bredies [2007] for a
rigorous version. For a minimizing sequence (yl, ul, pl), one obtains weak- and
weak*-limits (y∗, u∗, p∗) according to the compactness stated above. Theorem
1.2 gives weakly convergent sequences wl∇yl and ∂ql

yl as well as the alter-
native weak formulation (1.14). The total-variation regularization terms then
ensure the applicability of closedness properties analog to (1.13), so passing to
the limit in (1.14) yields that y∗ ∈ W̄p∗(0, 1) is the unique solution associated
with (u∗, p∗). Finally, with a lower-semicontinuity argument, the optimality
is verified. �

Having established the existence of at least one minimizing element, one
can proceed to derive an optimality system based on first-order necessary
conditions (which is possible for ‖p‖ < 1). Furthermore, numerical algorithms
for the optimization of the discrete version of (1.11) can be implemented, see
Fig. 1.6 for an illustration of the proposed model.
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y0 y1 y

Fig. 1.6. Illustration of an interpolating sequence generated by solving the proposed
optimal control problem. The two leftmost images depict y0 and y1, respectively (a
coarse- and fine-scale version of a mammography image), while some frames of the
optimized image sequence can be seen on the right

1.5 Restoration and Post Processing of Optical Flows

The estimation of motion in image sequence has gained wide spread impor-
tance in a number of scientific applications stemming from diverse fields such
as environmental and life-sciences. From optical imaging systems, non-invasive
techniques are feasible, a prerequisite for accurate measurements. For ana-
lyzing transport processes, the estimation of motion or optical flow plays a
central role. Equally, in engineerin g applications the estimation of motion
from image sequences is not only important in fluid dynamics but can also be
used in novel products such as driver assisting systems or in robot navigation.
However, frequently the image data is corrupted by noise and artifacts. In
infrared thermography, temperature fluctuations due to reflections are often
impossible to eliminate fully. In this paper, novel techniques will be presented
which detect artifacts or problematic regions in image sequences. Optical flow
computations based on local approaches such as those presented in Chap. 7
can then be enhanced by rejecting wrong estimates and inpainting the flow
fields from neighboring areas. Furthermore, a joint Mumford Shah type ap-
proach for image restoration, image and motion edge detection and motion
estimation from noisy image sequences is presented. This approach allows to
restore missing information, which may be lost due to artifacts in the original
image sequence. Finally, we discuss a Mumford Shah type model for motion
estimation and restoration of frames from motion-blurred image sequences.
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1.5.1 Modeling and Preprocessing

Standard Motion Model

The estimation of motion from image sequences represents a classical inverse
problem. As such, constraint equations that relate motion to image intensities
and changes thereof are required. In Chapt. 7, a wide range of these motion
models is presented. Here we will just introduce the simplest one, keeping
in mind that the proposed algorithms based upon this model can readily be
extended to more complicated ones.

For a finite time interval [0, T ] and a spatial domainΩ ⊂ R
d with d = 1, 2, 3

the image sequence u : D → R is defined on the space time domain D =
[0, T ] × Ω. If x : [0, T ] → R

d describes the trajectory of a point of an object
such that the velocity w = (1, v) is given by ẋ = w we can model a constant
brightness intensity u as u(t, x(t)) = const. A first order approximation yields

du

dt
= 0 ⇔

∂u

∂t
+ v · ∇(x)u = 0 ⇔ w · ∇(t,x)u = 0 , (1.15)

where ∇ is the gradient operator with respect to parameters given as indices.
Models based on this equation called differential models since they are based
on derivatives.

The parameters w of the motion model (1.15) can be solved by incorpo-
rating additional constraints such as local constancy of parameters or global
smoothness (a more refined approach of assuming global piecewise smoothness
will be presented in Sect. 1.5.2). Refined techniques for local estimates extend-
ing the common structure tensor approach have been outlined in Chapt. 7 and
will not be repeated here.

Comparison of Confidence and Situation Measures and Their
Optimality for Optical Flows

In order to detect artifacts in image sequences, one can analyze confidence and
situation measures. Confidence measures are used to estimate the correctness
of flow fields, based on information derived from the image sequence and/or
the displacement field. Since no extensive analysis of proposed confidence
measures has been carried out so far, in Kondermann et al. [2007a] we compare
a comprehensive selection of previously proposed confidence measures based
on the theory of intrinsic dimensions Zetzsche and Barth [1990], which have
been applied to analyze optical flow methods in Kalkan et al. [2004]. We
find that there are two kinds of confidence measures, which we distinguish
into situation and confidence measures. Situation measures are used to detect
locations, where the optical flow cannot be estimated unambiguously. This is
contrasted by confidence measures, which are suited for evaluating the degree
of accuracy of the flow field based. Situation measurescan be applied, e.g., in
image reconstruction Masnou and Morel [1998], to derive dense reliable flow
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Fig. 1.7. Comparison of optimal confidence measure (left) to best known confidence
measure (right) for Yosemite and Street sequences

fields Spies and Garbe [2002] or to choose the strength of the smoothness
parameter in global methods (e.g., indirectly mentioned in Lai and Vemuri
[1995]). Confidence measures are important for quantifying the accuracy of
the estimated optical flow fields. A successful way to obtain robustness to
noise in situation and confidence measures is also discussed in Kondermann
et al. [2007a].

Previously, confidence measures employed were always chosen as innate to
the flow estimation technique. By combining flow methods with non-inherent
confidence measures we were able to show considerable improvements for con-
fidence and situation measures. Altogether the results of the known measures
are only partially satisfactory as many errors remain undetected and a large
number of false positive error detections have been observed. Based on a de-
rived optimal confidence map we obtain the results in Fig. 1.7 for Lynn Quam’s
Yosemite sequence Heeger [1987], and the Street McCane et al. [2001] test se-
quences. For situation measures we conclude by presenting the best measure
for each intrinsic dimension. Quantitative results can be found in Kondermann
et al. [2007a].

An Adaptive Confidence Measure Based on Linear Subspace
Projections

For variational methods, the inverse of the energy after optimization has been
proposed as a general confidence measure in Bruhn and Weickert [2006]. For
methods not relying on global smoothness assumptions, e.g. local methods,
we propose a new confidence measure based on linear subspace projections
in Kondermann et al. [2007b]. The idea is to derive a spatio-temporal model of
typical flow field patches using e.g. principal component analysis (PCA). Using
temporal information the resulting eigenflows can represent complex temporal
phenomena such as a direction change, a moving motion discontinuity or a
moving divergence. Then the reconstruction error of the flow vector is used
to define a confidence measure.

Quantitative analysis shows that using the proposed measure we are able
to improve the previously best results by up to 31%. A comparison between
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Fig. 1.8. Comparison to optimal confidence, left: optimal confidence map, center:
pcaReconstruction confidence map, right: previously often used gradient confidence
measure

the optimal, the obtained confidence and the previously often applied gradi-
ent measure Arredondo et al. [2004], Bruhn and Weickert [2006] is shown in
Fig. 1.8.

Surface Situation Measures

In Kondermann et al. [2007c] we present a new type of situation measure for
the detection of positions in the image sequence, where the full optical flow
cannot be estimated reliably (e.g. in the case of occlusions, intensity changes,
severe noise, transparent structures, aperture problems or homogeneous re-
gions), that is in unoccluded situations of intrinsic dimension two. The idea
is based on the concept of surface functions. A surface function for a given
flow vector v reflects the variation of a confidence measure c over the set of
variations of the current displacement vector.

Sx,v,c : R
2 → [0, 1] , Sx,v,c(d) := c(x, v + d) . (1.16)

By analyzing the curvature of a given surface function statements on the
intrinsic dimension and possible occlusions can be made. The surface situation
measures have proven superior to all previously proposed measures and are
robust to noise as well.

1.5.2 Restoration of Optical Flows

Optical Flows via Flow Inpainting Using Surface Situation
Measures

Based on the surface situation measures introduced in Sect. 1.5.1, in Kon-
dermann et al. [2007c] we suggest a postprocessing technique for optical flow
methods, a flow inpainting algorithm, which integrates the information pro-
vided by these measures and obtains significantly reduced angular errors. We
demonstrate that 100% dense flow fields obtained from sparse fields via flow
inpainting are superior to dense flow fields obtained by local and global meth-
ods. Table 1.1 shows the reduction of the angular error of four flow fields
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Table 1.1. Original and inpainting angular error for surface measures and inpainting
error based on the best previously known situation measure Kondermann et al.
[2007a] on average for ten frames of the test sequences for the combined local global
and the structure tensor method

Combined Local Global Structure Tensor

original inpainting original inpainting

Marble 3.88 ± 3.39 3.87 ± 3.38 4.49 ± 6.49 3.40 ± 3.56

Yosemite 4.13 ± 3.36 3.85 ± 3.00 4.52 ± 10.10 2.76 ± 3.94

Street 8.01 ± 15.47 7.73 ± 16.23 5.97 ± 16.92 4.95 ± 13.23

Office 3.74 ± 3.93 3.59 ± 3.93 7.21 ± 11.82 4.48 ± 4.49

computed by a the local structure tensor (ST) Bigün et al. [1991] and the
global combined local global (CLG) method Bruhn et al. [2005] by means of
flow inpainting.

Comparing the angular error obtained by the derived flow inpainting algo-
rithm to the angular error of the original flow fields computed with two state
of the art methods (the fast local structure tensor method and the highly
accurate combined local global method) we could achieve up to 38% lower
angular errors and an improvement of the angular error in all cases. We con-
clude that both local and global methods can be used alike to obtain dense
optical flow fields with lower angular errors than state of the art methods
by means of the proposed flow inpainting algorithm. The algorithm was also
used to compute accurate flow fields on real world applications. In Fig. 1.9 two
examples for typical applications are presented. The inpainting algorithm sig-
nifiacntly reduces errors due to reflections in thermographic image sequences
of the air-water interface and errors in different situations in traffic scenes.

a b c d

Fig. 1.9. In (a) the estimated flow field based on the structure tensor is shown for
an infrared sequence of the air-water interface. Reflections lead to wrong estimates.
The post processed motion field is shown in (b). In (c) and (d) the same is shown
for a traffic scene.
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Joint Estimation of Optical Flow, Segmentation and Denoising

In the previous section, separate techniques for detecting artifacts were pre-
sented, followed by an algorithm to inpaint parts of the flow field corrupted by
the artifacts. In this section we will outline a technique for jointly denoising
an image sequence, estimating optical flow and segmenting the objects at the
same time Telea et al. [2006]. Our approach is based on an extension of the
well known Mumford Shah functional which originally was proposed for the
joint denoising and segmentation of still images. Given a noisy initial image
sequence u0 : D → R we consider the energy

EMSopt[u,w, S] =

∫

D

λu
2

(u − u0)
2 dL +

∫

D\S

λw
2

(

w · ∇(t,x)u
)2

dL

+

∫

D\S

µu
2

∣

∣∇(t,x)u
∣

∣

2
dL

+

∫

D\S

µw
2

∣

∣Pδ[ζ]∇(t,x)w
∣

∣

2
dL + νHd(S)

for a piecewise smooth denoised image sequence u : D → R, and a piecewise
smooth motion field w = (1, v) and a set S ⊂ D of discontinuities of u and
w. The first term models the fidelity of the denoised image-sequence u, the
second term represents the fidelity of the flow field w in terms of the optical
flow equation (1.15). The smoothness of u and w is required on D \ S and
finally, the last term is the Hausdorff measure of the set S. A suitable choice of
the projection Pδ[ζ] leads to an anisotropic smoothing of the flow field along
the edges indicated by ζ.

The model is implemented using a phase field approximation in the spirit of
Ambrosio and Tortorelli’s approach Ambrosio and Tortorelli [1992]. Thereby
the edge set S is replaced by a phase field function ζ : D → R such that ζ = 0
on S and ζ ≈ 1 far from S. Taking into account the Euler-Lagrange equations
of the corresponding yields a system of three partial differential equations for
the image-sequence u, the optical flow field v and the phase field ζ:

−div(t,x)

(

µu
λu

(ζ2+kǫ)∇(t,x)u+
λw
λu
w(∇(t,x)u·w)

)

+u = u0

−ǫ∆(t,x)ζ +

(

1

4ǫ
+
µu
2ν

∣

∣∇(t,x)u
∣

∣

2
)

ζ =
1

4ǫ

−
µw
λw

div(t,x)
(

Pδ[ζ]∇(t,x)v
)

+ (∇(t,x)u · v)∇(x)u = 0 .

(1.17)

For details on this approximation and its discretization we refer to Droske
et al. [2007].

In Fig. 1.10 we show results from this model on a noisy test-sequence where
one frame is completely missing. But this does not hamper the restoration
of the correct optical flow field shown in the fourth column, because of the
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a b c d

Fig. 1.10. Noisy test sequence: From top to bottom frames 9 and 10 are shown. (a)
original image sequence, (b) smoothed images, (c) phase field, (d) estimated motion
(color coded)

Fig. 1.11. Pedestrian video: frames from original sequence (left); phase field (mid-
dle); optical flow, color coded (right)

anisotropic smoothing of information from the surrounding frames into the
destroyed frame.

Furthermore, in Fig. 1.11 we consider a complex, higher resolution video
sequence showing a group of walking pedestrians. The human silhouettes are
well extracted and captured by the phase field. The color–coded optical flow
plot shows how the method is able to extract the moving limbs of the pedes-
trians.

Joint Motion Estimation and Restoration of Motion Blur

Considering video footage from a standard video camera, it is quite noticeable
that relatively fast moving objects appear blurred. This effect is called motion
blur, and it is linked to the aperture time of the camera, which roughly speak-
ing integrates information in time. The actual motion estimation suffers from
motion blur and on the other hand given the motion the blur can be removed
by “deconvolution”. Hence, these two problems are intertwined, which moti-
vates the development of a method that tackles both problems at once. In Bar
et al. [2007] a corresponding joint motion estimation and deblurring model has
been presented. For simplicity let us assume that an object is moving with
constant velocity v in front of a still background and we observe m frames
g1, · · ·um at times t1, · · · , tm. From the object and background intensity func-
tions fobj and fbg, respectively, one assembles the actual scene intensity func-



1 Inverse Problems and Parameter Identification in Image Processing 29

Fig. 1.12. From two real blurred frames (left), we automatically and simultane-
ously estimate the motion region, the motion vector, and the image intensity of the
foreground (middle). Based on this and the background intensity we reconstruct the
two frames (right)

tion f(t, x) = fobj(x−tv)χobj(x−vt)+fbg(x)(1−χobj(x−vt)). Now, it turns out
to be crucial close to motion edges to observe that the theoretically observed
motion blur at time t is a properly chosen average of background intensity
and motion blurred object intensity. Indeed, the expected intensity is given by
Gi[Ωobj, v, fobj, fbg](x) := ((fobjχobj) ∗ hv)(x− tiv) + fbg(x)(1 − (χobj ∗ hv)(x−
tiv)), where χobj is the characteristic function of the object domain Ωobj and
hv := δ0((v

⊥ / |v|) · y)h((v / |v|) · y) a one dimensional filter kernel with fil-
ter width τ |v| in the direction of the motion trajectory {y = x+ sv : s ∈ R}.
Here v⊥ denotes v rotated by 90 degrees, δ0 is the usual 1D Dirac distribution
and h the 1D block filter with h(s) = 1 / (τ |v|) for s ∈ [−(τ |v|) / 2 , (τ |v|) / 2]
and h(s) = 0, else. Hence, a Mumford Shah type approach for joint motion
estimation and deblurring comes along with the energy

E[Ωobj, v, fobj] =
∑

i=1,2

∫

Ω

(Gi[Ωobj, v, fobj, fbg] − gi)
2

dL

+

∫

Ω

µ|∇fobj| dL + ν|∂Ωobj|

depending on the unknown object domain Ωobj, unknown velocity v, object
intensity fobj to be restored. We ask for a minimizing set of the degrees of
freedom Ωobj, v, and fobj. Once a minimizer is known, we can retrieve the
deblurred images (see Fig. 1.12). For details on this approach and further
results we refer to Bar et al. [2007].

1.6 FEM Techniques for Multiscale Visualization of

Time-Dependent Flow Fields

The analysis and post-processing of flow fields is one of the fundamental tasks
in scientific visualization. Sophisticated multiscale methods are needed to vi-
sualize and analyze the structure of especially nonstationary flow fields for
which the standard tools may fail. A huge variety of techniques for the visu-
alization of steady as well as time-dependent flow fields in 2D and 3D has
been presented during the last years. The methods currently available range
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from particle tracing approaches Turk and Banks [1996], van Wijk [1993] over
texture based methods Diewald et al. [2000], van Wijk [1991], Cabral and
Leedom [1993], Shen and Kao [1997], Interrante and Grosch [1997] to feature
extraction for 3D flow fields Chong et al. [1990], Tobak and Peake [1982], Hunt
et al. [1988], Jeong and Hussain [1995]. An overview is given by Laramee et
al. Laramee et al. [2004].

In this section we discuss the application of an anisotropic transport dif-
fusion method to complex flow fields resulting from CFD computations on
arbitrary grids. For general unstructured meshes, we apply the discretization
of the arising transport diffusion problems by the streamline-diffusion (SD)
FEM scheme, and we discuss iterative solvers of type Krylov-space or multi-
grid schemes for the arising nonsymmetric auxiliary problems. We analyze
a corresponding balancing of the involved operators and blending strategies.
The application to several test examples shows that the approaches are ex-
cellent candidates for efficient visualization methods of highly nonstationary
flow with complex multiscale behavior in space and time.

Moreover we show a technique for multiscale visualization of static flow
fields which is based on an algebraic multigrid method. Starting from a stan-
dard finite element discretization of the anisotropic diffusion operator, the
algebraic multigrid yields a hierarchy of inter-grid prolongation operators.
These prolongations can be used to define coarse grid finite element basis
functions whose support is aligned with the flow field.

1.6.1 The Anisotropic Transport Diffusion Method

In Bürkle et al. [2001], Preusser and Rumpf [2000] special methods which
are based on anisotropic diffusion and transport anisotropic diffusion for
the visualization of static and time-dependent vector fields have been pre-
sented. In this section we briefly review these models, the according param-
eters and a blending strategy which is needed to produce a visualization of
time-dependent flow fields.

The Transport Diffusion Operator

We consider a time-dependent vector field v : I × Ω → R
d, (s, x) 7→ v(s, x)

given on a finite time-space cylinder I × Ω where I = [0, T ] and Ω ⊂ R
d for

d = 2, 3. Here, we restrict to d = 2. If the vector field v is constant in time,
i.e., v(s, x) = v0(x) for all s ∈ I, we can create a multiscale visualization
of the flow field in form of a family of textures {u(t)}t∈R+ by the following
anisotropic diffusion equation:
Find u : R

+ ×Ω → R such that

∂tu− div(A(v,∇u)∇u) = f(u) in R
+ ×Ω ,

A(v,∇u)∂nu = 0 on R
+ × ∂Ω ,

u(0, ·) = u0(·) in Ω .

(1.18)
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We start this evolution with an initial image u0 showing random white noise.
Since we have assumed the vector field to be continuous, there exists a family
of orthogonal mappings B(v) ∈ SO(d) such that B(v)e1 = v. And denoting
the identity matrix of dimension d with Idd, the diffusion tensor reads

A(v,∇u) = B(v)

(

α(‖v‖) 0
0 G(‖∇u‖)Idd−1 ,

)

B(v)T

where α is a monotone increasing function which prescribes a linear diffusion
in direction of v for ‖v‖ > 0. We will choose α appropriately below. During the
evolution, patterns are generated which are aligned with the flow field. The
function G(s) := ε/(1 + c s2) – well known in image processing Perona and
Malik [1987] – controls the diffusion in the directions orthogonal to the flow.
It is modeled such that the evolution performs a clustering of streamlines and
thus generates coarser representations of the vector field with increasing scale
t. The definition of the diffusion tensor G depends on the gradient of a regu-
larized image uσ = u ∗ χσ. This regularization is theoretically important for
the well-posedness of the presented approach Kawohl and Kutev [1998], Catté
et al. [1992]. To our experience, in the implementation this regularization can
be neglected or can be replaced by a lower bound for the value of G(·). For
‖v‖ = 0 we use an isotropic diffusion operator. The role of the right hand side
f(u) (1.18) is to strengthen the contrast of the image during the evolution,
because for f = 0 the asymptotic limit would be an image of constant gray
value. We set f(u) = ρ×

(

(2 u− 1) − (2 u− 1)3
)

with ρ = 80 to increase the
set of asymptotic states of the evolution. An example9 of the multiscale evo-
lution is shown in Fig. 1.13, where the multiscale visualization of a flow field
is displayed for the Venturi pipe problem in 2D Acker [to appear in 2008].

Fig. 1.13. Multiscale visualization of the Venturi Pipe example (with transport)

9 This example was computed with a time step of ∆t = 0.005 on a mesh with 82753
nodes.
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Let us now suppose that the vector field varies smoothly in time. If we
would consider the evolution equation separately for each fixed time s ∈ I, the
resulting textures at a fixed scale t0 ∈ R

+ would not give a smooth animation
of the flow in time. This is due to a lack of correlation between the line-
structures of the separate textures. However, if there would be a correlation
between the structure of separate textures, the resulting animation would only
give an Eulerian type representation of the flow.

To obtain a Lagrangian type representation, we consider the following
anisotropic transport diffusion operator for the multiscale representation
u : R

+ × Ω → R and the corresponding inhomogeneous transport diffusion
equation

∂tu+ v · ∇u − div(A(v,∇u)∇u) = f(u) in R
+ ×Ω ,

A(v) ∂nu = 0 on R
+ × ∂Ω ,

u(0, ·) = u0(·) in Ω .

(1.19)

In this equation we have identified the time s of the vector field with the scale
t of the multiscale visualization. Indeed the resulting texture shows again
structures aligned with streamlines which are now transported with the flow.
But due to the coupling of s and t the feature scale gets coarser with increasing
time, i.e., we are not able to fix a scale t0 and typically an animation is created
at this scale showing always patterns of the same size. This fact makes the
use of an appropriate blending strategy unavoidable.

Balancing the Parameters

In general the transport and the diffusion of the patterns of the texture u are
opposite processes. Denoting a time-step of the transport diffusion equation
with ∆t and introducing the balance parameter β > 0 we have Bürkle et al.
[2001]

α(‖v‖)(x) =
β2 max(‖v(x)‖ , ‖v‖min)

2∆t

2
.

In our applications we use the setting β = 10 and ‖v‖min = 0.05.

Blending Strategies

Blending strategies have to be used to get a visual representation of a given
flow inside of a desired feature scale range. This means we have a set of
solutions each started at a different time representing different feature scales
which will be blended together. Different blending strategies are possible,
e.g., trigonometric functions, interpolating splines, etc. We are currently using
a Bézier-spline based approach combined with a specialized startup phase.

At the startup phase we will bootstrap our blending from one solution to
the final number ntot of solutions. The solutions are handled in an array. After
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time ∆tblend, the oldest solution will be overwritten with noise and a ring shift
will be carried out that brings the second oldest solution to the position of
the oldest. In the startup phase a start solution containing noise is inserted
at the start of the array and all other solutions are shifted one index position
higher.

Is is obvious that the use of more blended solutions increases the smooth-
ness of the transitions between visible feature scales. However, the computa-
tional time increases linearly with the number of used solutions which comes
down to a tradeoff between quality and time. For preview purposes, two
blended solutions are sufficient. High quality visualizations will need more.

1.6.2 Discretization

A Finite Element Discretization for Static Flow Fields

For static flow fields and the scheme (1.18) we can use a standard finite ele-
ment method on a given discretizational grid of the domain. A semi-implicit
Backward Euler scheme with time step width ∆t is applied, which results
in the evaluation of the diffusion tensor A and the right hand side f at the
previous time steps. This leads to the semi-discrete scheme

un+1 − un
∆t

− div (A(vn+1,∇un)∇un+1) = f(un) , (1.20)

where un denotes the evaluation of u at time n∆t. Denoting the finite element
basis functions with φi the spatial discretization yields the well known mass
matrix M with entries Mij =

∫

Ω φi φj dx and the stiffness matrix Ln at time
step n with entries Lnij =

∫

Ω
A(vn)∇φi · ∇φj . In summary we get a system of

equations (M + (∆t)Ln−1)Un = MUn−1 + Fn−1 for the vector Un of nodal
values of un. This system can be solved with e.g. a conjugate gradient method.

The SD Finite Element Method for Time-Dependent Flow Fields

In Bürkle et al. [2001] a characteristic-upwinding algorithm due to Piron-
neau Pironneau [1982] is used to discretize the transport diffusion scheme (1.19)
on quadtree/octtree grids for Ω = [0, 1]d. For the diffusive parts and the right
hand side again a semi-implicit Backward Euler scheme with time-step ∆t is
applied (cf. (1.20)):

un+1 − un
∆t

+ vn+1 · ∇un+1 − div (A(vn+1,∇un)∇un+1) = f(un) . (1.21)

However the application of the anisotropic diffusion visualization method on
rectangular or cubical domains is often unrealistic in complex CFD applica-
tions. Moreover, vector field data typically coming from CFD simulations is
rarely given on structured quadtree/octtree grids. Furthermore, the scheme
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introduces some numerical diffusion which decreases the quality of the final
animation. In this section we discuss a higher order discretization scheme on
general meshes which leads to high quality animations, showing sharp patterns
moving with the flow field.

The variational formulation of (1.21) reads

(un+1, ψ) + ∆t(vn+1 · ∇un+1, ψ) + ∆t(A(vn+1,∇un)∇un+1,∇ψ) =(1.22)

∆t(f(un), ψ) + (un, ψ) ∀ψ ∈ V(1.23)

with the space of test-functions V and test functions ψ ∈ V .
The convection part of our equation demands some kind of additional

stabilization. Since the diffusion operator A is already decomposed, in a way
that allows to control the diffusion in flow direction, we replace A with a
slightly modified version Ã:

Ã(v,∇u) = B(v)

(

α(‖v‖) + sd 0
0 G(‖∇u‖)Idd−1

)

B(v)T .

This modification allows an easy implementation of the streamline-diffusion
scheme. The scalar function sd is the necessary streamline diffusion added in
flow direction and is computed by

Reloc :=
‖v‖loc hloc
α(‖v‖)

, sd := sdpar hloc
Reloc

1 +Reloc
.

The parameter sdpar ∈ (0, 2), is user-specified and hloc is the local mesh
width, that means defined on each mesh cell, analogously to ‖v‖loc as local
flow speed (see Turek [1999] for more details). The advantage of this scheme is
that it can be easily applied on general unstructured meshes, giving sufficient
robustness for treating the convection dominated parts while at the same time
the amount of numerical diffusion is not too big. Moreover, since it is a linear
scheme - in contrast to TVD methods - the resulting subproblems are linear
and can be efficiently treated via standard iterative solvers. However, being
a linear scheme, the SD scheme suffers potentially from spurious numerical
oscillations, due to over and undershooting, and the choice for the user-specific
parameter sdpar can be critical. In a forthcoming paper, we plan to analyze
the influence of the parameter sdpar onto the behavior of accuracy, robustness
and efficiency of the described numerical approaches.

1.6.3 Multiscale Analysis with Algebraic Multigrid (AMG)

In Griebel et al. [2004] we use the fact that the structure of the flow is com-
pletely encoded in the diffusion operator −div (A(v,∇u)∇u) to create a mul-
tiscale representation of the flow field. Let us assume that we have discretized
the diffusion operator by standard finite elements on a regular grid yielding
the stiffness-matrix L introduced in Subsect. 1.6.2. The algebraic multigrid
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Fig. 1.14. Multiscale visualization of a convective flow using AMG. The left column
shows flow field clusters which are obtained from the supports of basis functions at
different grid levels. The right column shows a representation of the clusters with
arrow icons. The grid level increases from top to bottom

method (AMG) finds a hierarchy of finite element basis functions which leads
to optimal convergence of a multigrid solver of the linear system of equa-
tions determined by L. Thereby it generates a set of inter-grid prolongation
matrices P k which define the coarse grid basis.

Since the structure of the flow is encoded into the discretized diffusion
operator, the AMG aligns the support of coarse grid basis functions to the
diffusion of mass along the vector field. Consequently the prolongation ma-
trices can be used for a multiscale visualization of flow fields. In Fig. 1.14 we
show the AMG multiscale representation of the vector field of a convective
flow.
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1.6.4 Conclusions and Outlook

We have discussed multiscale visualization techniques for time-dependent and
static flow fields coming from CFD simulations on general 2 D and 3D do-
mains. The proposed models are based on PDEs with anisotropic transport
and diffusion operators which are linearized in time by a semi-implicit ap-
proach. The simple diffusion problem can be discretized by a standard FEM
scheme, for the transport diffusion scheme the resulting problem in each time
step is discretized by a sophisticated streamline-diffusion FEM scheme on un-
structured quadrilateral grids. The main features of the proposed numerical
methods together with improved blending strategies and a discussion of the
involved parameters have been tested via numerical examples.

In a next step, the use of the Crank-Nicholson or a related 2nd order
time stepping scheme, for instance fractional-step-θ-methods (see Turek et al.
[2005]), will be analyzed which we expect to yield better accuracy results
and hence enables for the use of larger time steps. Another aspect is the
improvement of the iterative solvers, particularly of special multigrid schemes
which are able to cope with the very anisotropic differential operators and the
related very ill-conditioned linear systems. These fast solvers and improved
variants of the streamline-diffusion or monotone and oscillation-free FEM-
TVD techniques (cf. Kuzmin and Turek [2004]) will be the key ingredients for
efficient visualization tools for complex 3D flows.
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phing. In Proceedings of SIGGRAPH 99, Computer Graphics Proceedings,
Annual Conference Series, pages 343–350, August 1999.

N. Litke, M. Droske, M. Rumpf, and P. Schröder. An image processing ap-
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