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Abstract. This article is concerned with different approaches to elastic shape optimization under
stochastic loading. The underlying stochastic optimization strategy builds upon the methodol-
ogy of two-stage stochastic programming. In fact, in the case of linear elasticity and quadratic
objective functional our strategy leads to a computational cost which scales linearly in the
number of linearly independent applied forces, even for a large set of realization of the random
loading. We consider, besides minimization of the expectation value of suitable objective func-
tionals, also two different risk-averse approaches, namely the expected excess and the excess
probability. Numerical computations are performed using either a level-set approach represent-
ing implicit shapes of general topology in combination with composite finite elements to resolve
elasticity in two and three dimensions, or a collocation boundary element approach, where
polygonal shapes represent geometric details attached to a lattice and describing a perforated
elastic domain. Topology optimization is performed using the concept of topological derivatives.
We generalize this concept, and derive an analytical expression which takes into account the in-
teraction between neighboring holes. This is expected to allow efficient and reliable optimization
strategies of elastic objects with a large number of geometries details on a fine scale.
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1. Introduction

Data uncertainty is a critical feature of many real-world shape optimization problems. When op-
timizing elastic structures, it has to be taken into account that volume and in particular surface
loadings typically vary over time. Often, these variations can be captured by probability distribu-
tions. In order to study the resulting random optimization problem it is crucial to observe that
decisions on the shape must be nonanticipative, i. e., be made before applying the stochastic forc-
ing. In terms of optimization this implies that, for a fixed candidate shape, each realization of
the stochastic force determines a value of the optimality criterion. Hence, the shape is assigned a
random variable whose realizations are the values of the optimality criterion induced by the data
realizations.

From this point of view, shape optimization under (stochastic) uncertainty amounts to finding
“optimal” shapes in sets of random variable shapes. The quotes shall indicate that different concepts
for ranking random variables may apply. In the present paper we discuss risk neutral as well as
risk averse models. While in the former the ranking is done by comparing the expectation values,
in the latter statistical parameters reflecting different perceptions of risk are applied. This bears
striking conceptual similarity with finite-dimensional two-stage stochastic programming.

The paper is organized as follows. After a brief review of related work in Section 2, we
introduce in Section 3 the elastic state equation, define suitable cost functionals, and formulate an
initial random shape optimization model with stochastic loading. Starting from basic paradigms of
finite dimensional two-stage stochastic programming, Section 4 serves to introduce general classes
of risk-neutral and risk-averse shape-optimization models. Computation of shape derivatives is
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addressed in Section 5. In Section 6 we present our methods for describing shapes, namely, the level-
set approach and parametrized perforated domains. Section 7 describes our numerical algorithms.
A selection of case studies is presented in Section 8, to demonstrate the validity of our conceptual
approach and the effectiveness of the algorithm. Section 9 discusses a new analytical result on the
hole-hole interaction in topological derivatives, and outlines its possible application to a reduced
model for the optimization of perforated geometries.

2. Related work

Deterministic shape optimization. Shape optimization under deterministic loading is a well-devel-
oped field within PDE-constrained optimization; see for example the books [62, 16, 3]. We shall
not review here the details, simply remark that the usual strategy of performing iteratively modi-
fications of the boundary, following the shape derivative, does not permit to optimize the topology
of the shape, and that the homogenization strategy delivers shapes with microstructures at many
different scales, which may be difficult to realize in practice.
Topology optimization. The optimal shape determined using the shape derivative alone may strongly
depend on this choice of the initial topology (cf. [5, 8, 25]). This is not only due to the discretization,
but also to the descent strategy itself. Indeed, even with a level-set description which in principle
entails no restriction on the topology, the evolution of a level set based on a gradient flow is able
to merge existing holes, but not capable of creating new holes. The possibility of creating new
holes is the key idea behind the so-called “bubble method” or topological sensitivity. The method
is based on considering variations of the domain corresponding to the insertion of small holes of
prescribed shape and computing an asymptotic expansion depending on the radius ρ. After its
introduction by Schumacher [53], the method was generalized to a wider class of shape function-
als by Soko lowski and Żokowski [59] and applied to 3D elasticity in [60]. In [61], the approach is
extended to the case of finitely many circular holes, combining topology variations with boundary
variations simultaneously. Using an adjoint method and a truncation technique, Garreau et al. [31]
computed the topological sensitivity for general objective functionals and arbitrarily-shaped holes.
The topological derivative has been incorporated into the level set method, e.g. in [17], and also
combined with the shape derivative in that context (cf. e.g. [5, 10, 35]). The topological derivative
permits arbitrary changes in the topology, but remains a local modification. In particular, even in
this case there is no guarantee to reach the global minimum, although one produces a local mini-
mum which is stable under a wider class of variations and includes in particular topology changes
(cf. Fig. 14).
Finite dimensional stochastic programming. The principal modeling approaches in optimization
under uncertainty differ in their requirements on data information. Worst-case models, as in online
or robust optimization [2, 14], merely ask for ranges of the uncertain parameters. Applications to
shape optimization can be found in [12, 36, 26, 21, 20]. In stochastic optimization, see [56] for
a recent textbook, data uncertainty is captured by probability distributions. In finite dimension,
there exists a rich theory and methodology of linear models [49, 56] and, to lesser extent, linear
mixed-integer or nonlinear models [13, 46, 50, 63]. Stochastic optimization in continuous time has
been analyzed in stochastic dynamic programming and stochastic control, see [30, 19]. Stochastic
shape optimization in the design of mechanical or aerodynamic structures, has been addressed in
[40, 52]. The difference of these contributions to the present paper is in the decision spaces. In
[40, 52] these are Euclidean spaces, while our design decisions are allowed to be shapes (open sets)
in suitable working domains.
Multiload shape optimization. Most shape-optimization approaches are based on considering one
given, typical, load configuration. This is not always realistic, and indeed multiload approaches
have been developed, in which a fixed (usually small) number of different loading configurations
is considered and optimization refers to this set of configurations, see, e.g., [6, 32, 66, 11] and
references therein. These approaches are based on evaluating the objective functional separately
for each of the possible values of the loading, which renders them infeasible if the set of possible
forces is large, as for example is the case when one aims at approximating a continuous distribution
of forces. In case of additional geometrical assumptions a more efficient method was derived in [9],
where optimization of the expected compliance is shown to be equivalent to a convex problem,
and hence efficiently solvable. Our approach is instead based on the solution of the elasticity PDE
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only for the basis modes for the surface and volume loading. Additionally, besides an optimization
of the expected value of the cost we investigate also the optimization of nonlinear risk measures
acting on the cost functional. A robust probabilistic approach for the optimization of simple beam
models is discussed in [1], whereas in [41] structural reliability is discussed for beam geometries with
uncertain load magnitude. Worst-case situations in a multiload context have also been considered,
see, e.g., [15]. Structural optimization under incomplete information is also addressed in [12]. The
authors investigate different types of uncertainties and follow a non-probabilistic, robust worst
case approach. They work out effective techniques to transform optimal design problems with
uncertainties into conventional structural optimization problems. In [48] a worst case analysis for
given bounds on uncertain loads has been implemented based on a boundary element approach.
A worst case compliance optimization is investigated in [7] based on a level set description of
shapes and a semi–definite programming approach in the minimization algorithm. Schulz et al. [52]
discussed shape optimization under uncertainty in aerodynamic design. Uncertainty is captured by
Euclidean parameters following truncated normal distributions and leading to optimization models
of the type of finite dimensional nonlinear programs. Due to the distributional assumptions, there
are explicit formulas for relevant probability functionals.

3. Shape Optimization Model with Linear Elasticity and Random Loading

The state equation. For a fixed elastic domain O and given stochastic loading we take into account
linearized elasticity to determine a displacement u : O → Rd as the elastic response to applied
forces. Hereby, we assume O to be a sufficiently regular subset of a fixed, bounded working domain
D ⊂ Rd. The boundary of O is assumed to be decomposed into a Dirichlet boundary ΓD on
which we prescribe homogeneous Dirichlet boundary conditions u = 0, a Neumann boundary
ΓN on which the surface loading is applied, and the remaining homogeneous Neumann boundary
∂O \ (ΓD ∪ ΓN ), those shape is to be optimized according to some objective functional, to be
discussed later. Neither ΓD nor ΓN will be subject to the shape optimization. For details on the
concrete handling of the boundary conditions in the shape optimization we refer to [25]. Concerning
the loading, we are in particular interested in a stochastic loads. Thus, we assume a random volume
force f(ω) ∈ L2(D; Rd) and a random surface force g(ω) ∈ L2(ΓN ; Rd) to be given. Here ω denotes
a realization on a probability space Ω. Based on this setup u is given as the solution of the following
elliptic boundary value problem of linearized elasticity

− div (Cε(u)) = f(ω) in O ,
u = 0 on ΓD , (1)

(Cε(u))n = g(ω) on ΓN ,
(Cε(u))n = 0 on ∂O \ ΓN \ ΓD .

Here, ε(u) = 1
2 (∇u+∇u>) is the linearized strain tensor and C = (Cijkl)ijkl denotes the elasticity

tensor. For the sake of simplicity, we restrict ourselves here to isotropic materials, i. e. Cijkl =
2µδikδjl + λδijδkl, where δij denotes the Kronecker symbol and µ, λ the positive Lamé constants
of the material. For any open, connected set O with Lipschitz boundary and any fixed realization
ω of the random loading, there exists a unique weak solution u = u(O, ω) ∈ H1(O; Rd) of (1)
[22, 39]. This solution can equivalently be characterized as the unique minimizer of the quadratic
functional

E(O, u, ω) :=
1
2
a(O, u, u)− l(O, u, ω) with (2)

a(O, ψ, θ) :=
∫
O

Cijklεij(ψ)εkl(θ) dx , (3)

l(O, θ, ω) :=
∫
O
fi(ω)θi dx+

∫
ΓN

gi(ω)θi dHd−1 (4)

on H1
ΓD

(O; Rd):={u ∈ H1(O; Rd) |u = 0 on ΓD in the sense of traces}. Here and below, we use the
summation convention and implicitly sum over repeated indices.
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The random shape optimization model. Next, we fomulate the actual shape optimization problem
and take into account an objective functional J which depends on both the shape O and the
resulting elastic displacement u(O, ω). Let us assume that J is of the form

J (O, ω) =
∫
O
j (u (O, ω)) dx+

∫
ΓN

k (u (O, ω)) dHd−1 . (5)

To allow for a subsequent efficient numerical realization in the context of a high number of stochastic
scenarios of the loading we confine ourselves to linear or quadratic functions j(.) and k(.). Finally,
we obtain the random shape optimization model with stochastic loading

min {J (O, ω) : O ∈ Uad} (6)

where Uad is a suitable set of admissible shapes. The potential energy of the applied loading for
given displacement

J1 (O, ω) :=
∫
O
f · u(O, ω) dx+

∫
ΓN

g · u(O, ω) dHd−1 , (7)

which is denoted the compliance, is the most common objective functional, which we pick up here
also in the stochastic context. Alternatively, one might consider the least square error compared
to a target displacement u0

J2 (O, ω) :=
1
2

∫
O
|u (O, ω)− u0|2 dx . (8)

or alternatively

J3 (O, ω) :=
1
2

∫
∂O
|u (O, ω)− u0|2 dHd−1 , (9)

which is used in the context of parametrized perforated domains (8). For the level approach we
usually include in the objective functional a penalty for the object volume α

∫
O dx with α ≥ 0.

Having defined the objective functional we are in a position to consider the optimization of the
shape with respect to a fixed realization of the randomness. Starting from this deterministic case
we will then introduce general classes of risk-neutral (cf. Fig. 1) and risk-averse stochastic cost
functionals, where a different (nonlinear) weighting is applied on the probability space Ω.

Figure 1. A direct comparison of two-stage stochastic optimization and deter-
ministic optimization for an averaged load is shown. In the middle, a stochastically
optimal shape is rendered together with the two underlying load scenarios ω1 and
ω2 on the upper plate, with surface loads g(ω1) and g(ω2) both with probability
1
2 . On the left the optimal shape colorcoded with the von Mises stress is drawn
for a deterministic load 1

2g(ω1) + 1
2g(ω2). An optimal shape for a perforated do-

main under deterministic shear load is shown on the right. (left and center panel
reprinted from [25, Fig. 4.2])
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4. Stochastic Shape Optimization Models

Two-Stage Stochastic Programming in Finite Dimension. Finite-dimensional linear stochastic pro-
grams serve as blueprints for our stochastic shape optimization models. For a quick review consider
the initial random optimization problem

min{c>x+ q>y : Tx+Wy = z(ω), x ∈ X, y ∈ Y }, (10)

for polyhedra X,Y in Euclidean spaces, together with the information constraint

decide x 7→ observe z(ω) 7→ decide y = y(x, z(ω)). (11)

Hence, problem (10) is accompanied by a two-stage scheme of alternating decision and observation,
where the first-stage decision x must not anticipate future information on the random data z(ω).
The second-stage decision y = y(x, z(ω)) often is interpreted as a recourse action. It is taken as
an optimal solution to the second-stage problem, i. e., the minimization problem remaining after x
and z(ω) were fixed. The overall aim is to find an x which is “optimal” under these circumstances.
Assume the minimum in (10) exists and rewrite

min
x

{
c>x+ min

y
{q>y : Wy = z(ω)− Tx, y ∈ Y } : x ∈ X

}
= min{c>x+ Φ(z(ω)− Tx) : x ∈ X}
= min{j(x, ω) : x ∈ X} (12)

where Φ(v) := min{q>y : Wy = v, y ∈ Y } is the value function of a linear program with parameters
in the right-hand side.

The representation (12) now gives rise to understanding the search for an “optimal” x as the
search for a “minimal” member in the family of random variables {j(x, ω) : x ∈ X}. Different
modes of ranking random variables then lead to different types of stochastic programs. In a risk
neutral setting the ranking is done by taking the expectation Eω, leading to

min{QEV(x) := Eω(j(x, ω)) : x ∈ X}

which is a well-defined optimization problem under mild conditions. With risk aversion, the expec-
tation is replaced by statistical parameters reflecting some perception of risk (risk measures). As
examples let us mention minimization of the expected excess of some preselected target η ∈ R

min{QEEη (x) := Eω(max{j(x, ω)− η, 0}) : x ∈ X},

and minimization of the excess probability of some preselected η ∈ R

min{QEPη (x) := Pω(j(x, ω) > η) : x ∈ X} .

Beside these pure expectation and risk models there are mean-risk models where weighted sums
of expected value and risk expressions are minimized, for further details see [47, 51, 56].
Two-Stage Stochastic Programming Formulation of Shape Optimization. In the optimization prob-
lem (6) there is a natural information constraint stating that first, and independently of the realiza-
tions of the forces f(ω), g(ω), the shape O has to be selected. Then, after observation of f(ω), g(ω),
(1) determines the displacement field u = u(O, ω), leading to the objective value J(O, ω). This
manifests the interpretation of (6) as a two-stage random optimization problem: In the outer op-
timization, or first stage, the nonanticipative decision on O has to be taken. After observation of
f(ω), g(ω) the second-stage optimization problem is the variational problem of linearized elasticity,
where for a fixed elastic domain O and random state ω one seeks a displacement u minimizing the
energy E(O, u, ω) defined in (2).

This second-stage optimization process is neither associated with further stochastic parame-
ters nor with the optimization of additional material properties. In fact, it consists of the deter-
mination of the elastic displacement, which in turn is required for the computation of the elastic
energy and the cost functional. Even though there is no additional decision making involved, the
variational structure of the elasticity problem we are solving gives an obvious analogy to the
second-stage problem in finite-dimensional stochastic programming.

As counterpart to (11), the information constraint

decide O 7→ observe ω 7→ compute u = u(O, ω).
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must be fulfilled. The role of j(x, ω) in (12) then is taken by J (O, ω) from (5). Altogether, the
random shape optimization problem (6)

min {J (O, ω) : O ∈ Uad}

arises as the analogon to (12). It amounts to finding a “minimal” member in the family of random
variables

{J (O, ω) : O ∈ Uad} .
As in the finite-dimensional case, now different ranking modes for random variables give rise to
risk neutral and risk averse stochastic shape optimization models. Taking the expectation yields
the risk neutral problem

min {QEV(O) := Eω(J (O, ω)) : O ∈ Uad} . (13)

Of the variety of risk averse problems arising with the expectation replaced by some risk measure,
we study in more detail those given by the expected excess over some preselected target η ∈ R

min
{
QEEη (O) := Eω(max{J (O, ω)− η, 0}) : O ∈ Uad

}
, (14)

and by the excess probability over η ∈ R

min
{
QEPη (O) := Pω(J (O, ω) > η) : O ∈ Uad

}
. (15)

In our applications we use smooth approximations of the max-function in (14) and of the
discontinuity caused by the probability in (15). For the expected excess this leads to

Qε
EEη (O) = Eω (qε(J(O, ω))) ,

where qε(t) := 1
2

(√
(t− η)2 + ε+ (t− η)

)
, ε > 0. For the excess probability we obtain

Qε
EPη (O) = Eω (Hε(J(O, ω)))

with Hε(t) :=
(

1 + e−
2(t−η)
ε

)−1

, ε > 0. If the random variable ω follows a discrete distribution
with scenarios ωi and probabilities πi, i = 1, . . . , Ns for an in general large number Ns or scenarios,
then

QEV(O) =
Ns∑
i=1

πiJ (O, ωi) , (16)

and accordingly for Qε
EEη

(O) and Qε
EPη

(O).

5. Shape Derivatives

Shape derivatives - deterministic case. To compute the shape derivative, we consider variations
Ov = (Id +v)(O) of a smooth elastic domain O for a smooth vector field v defined on the working
domain D. For the deterministic objective functional

J (O) := J (O, u (O)) =
∫
O
j (u (O)) dx+

∫
ΓN

k (u (O)) dHd−1 . (17)

the shape derivative [27] in the direction v initially takes the form J′(O)(v) = J,O(O, u(O))(v) +
J,u(O, u(O))(u′(O)(v)). To avoid an evaluation of u′(O)(v) for any test vector field v, one introduces
the dual or adjoint problem. In fact, the dual solution p = p(O) ∈ H1

ΓD

(
O; Rd

)
is defined as the

minimizer of the dual functional

Edual (O, p) :=
1
2
a (O, p, p) + ldual (O, p) ,

with ldual(O, p) =
∫
O j
′(u)p dx+

∫
ΓN

k′(u)p dHd−1. For the (deterministic version of the) compli-
ance objective (7) we observe that p = −u. Given p for fixed u and O we can evaluate the shape
derivative of the deterministic cost functional as follows:

J′(O)(v) = J,O(O, u(O))(v)− l,O(O, p(O))(v) + a,O(O, u(O), p(O))(v) (18)

=
∫
∂O

(v · n)
[
j(u(O))−f p(O)+Cijkleij(u(O))ekl(p(O))

]
dHd−1 .
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Let us remark that in a general situation the shape calculus is more subtle. For a discussion of
the appropriate differentiation of boundary integrals we refer to [27, 62]. Here, we confine ourselves,
as in [25, 24], to the simpler case that homogeneous Neumann boundary conditions are assumed
on the part of the boundary which is optimized. Furthermore, let us emphasize that the above
classical shape derivative is only admissible in case of additional regularity for the primal solution
u and the dual solution p, which holds under sufficiently strong regularity assumptions on loads
and geometry of the considered shapes.
Shape derivatives of expectation and risk measures. With a discrete probability distribution as in
(16) we compute the shape derivative of the expectation as

Q′EV(O)(v) =
Ns∑
i=1

πi J
′ (O, ωi) (v) . (19)

For the approximated expected excess and excess probability the chain rule yields(
Qε

EEη

)′
(O) (v) =

Ns∑
i=1

πi
2
J ′ (O, ωi)(v)

 J (O, ωi)− η√
(J (O, ωi)− η)2 + ε

+ 1

 ,

(
Qε

EPη

)′
(O) (v) =

Ns∑
i=1

2
ε
πiJ
′ (O, ωi)(v) e−

2
ε (J(O,ωi)−η)

(
1 + e−

2
ε (J(O,ωi)−η)

)−2

.

Efficient evaluation primal and dual solutions for realizations of the randomness. So far, it seems
that for every realization one has to compute a primal solution u(O, ωi) and a dual solution
p(O, ωi). Under our assumption that j(·) and k(·) are linear or quadratic functions, there is a
significant algorithm shortcut at our disposal for Ns � 1, which we will recall here. For details
we refer to [25]. Let us assume that there is a small number of (deterministic) basis volume forces
f1, . . . , fK1 , and of (deterministic) basis surface loads g1, . . . , gK2 . Then, the actual loads f(ω)
and g(ω), respectively, are given as linear combinations of these deterministic basis loads f(ω) =∑K1
i=1 c

f
i (ω)fi and g(ω) =

∑K2
j=1 c

g
j (ω)gj , with the uncertain coefficients cfi (ω) ∈ R, i = 1, . . . ,K1,

and cgj (ω) ∈ R, j = 1, . . . ,K2. The advantage of this approach is that we only need to solve as
many elasticity PDEs as there are scenarios in order to evaluate the objective functional for a
given shape O. This will reduce the computing cost significantly in case Ns � K1 +K2. Suppose
u(i,0) is the elastic displacement for given volume force f := fi and surface load g := 0, for all
i = 1, . . . ,K1. Similarly, let u(0,j) be the displacement corresponding to the volume force f := 0
and the surface load g := gj , for all j = 1, . . . ,K2. Then,

ū (O;ω) :=
K1∑
i=1

cfi (ω)u(i,0) +
K2∑
j=1

cgj (ω)u(0,j) (20)

is the minimizer of (2) with volume force f := f(ω), and surface load g := g(ω). A similar relation
holds for the adjoint state p̄ (O;ω) in scenario ω, if we additionally assume that

∑K1
i=1 c

f
i (ω) +∑K2

j=1 c
g
j (ω) = 1, which can always be achieved by choosing the basis forces appropriately. In that

case, and if we denote the adjoint states for the individual basis forces by p(i,0) and p(0,j), one
obtains

p̄ (O;ω) :=
K1∑
i=1

cfi (ω)p(i,0) +
K2∑
j=1

cgj (ω)p(0,j) (21)

is the adjoint state belonging to the state ū (O;ω).

6. Description of two different classes of admissible shapes

In this section, we will investigate two different shape representations and discuss how to evaluate
cost functionals and derivatives with respect to a modification of the shape. On the one hand
we will employ a level set method to flexibly describe shapes given as implicit surfaces. On the
other hand, geometric details describing an elastic domains will be described by polygonal models
determined by a small number of parameters each.
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Implicit shapes described via level sets. In many shape optimization problems the topology of the
optimal shape is not given a priori. One approach to allow the topology to adapt during a relaxation
of the cost functional is to formulate the optimization problem in terms of shapes described by
level sets – let us in particular refer to the approach by Allaire and coworkers [3, 4, 5, 8] and to
[28, 38, 55]. Explicitly, we assume the elastic body O to be represented by a level set function φ,
that is O = {φ < 0}:={x ∈ D |φ(x) < 0}. The boundary ∂O corresponds to the zero level set of
φ, i. e., D ∩ ∂O = {φ = 0}. Level set methods have originally been used in the context of interface
propagation, starting with the pioneering work of Osher and Sethian [43]. Since then the scope of
applications was successively widened due to their enormous flexibility. For a general overview we
refer to [42, 54]. The core observation in the context of evolving geometries is that for a domain
boundary ∂O propagating with speed v, the corresponding evolution of the level set function φ is
given by the level set equation ∂tφ+ |∇φ| v ·n = 0, where n = ∇φ

|∇φ| is the field of outer normals on
the level sets. In the context of variational problems for shapes, this can be rephrased as follows.
The level set equation identifies a variation s = ∂φ of the level set function with (normal) variations
v · n of the level set surfaces. Here, let us refer to Sokolowski and Zolésio [62], who phrased shape
sensitive analysis elegantly in terms of level sets. Using this insight, one can rewrite the objective
functional J(O) in terms of a level set function φ defining J (φ):=J({φ < 0}) and then obtain for
the shape derivative of the objective functional J (φ) with respect to a variation s of φ

J ′(φ)(s) = J ′({φ < 0})
(
−s |∇φ|−1n

)
. (22)

This representation of the shape derivative can then be used in a relaxation scheme for the objective
functional at first in the deterministic set up. But a generalization to stochastic shape optimization
in case of finitely many scenarios is straightforward. We emphasize that the usual level set approach
allows only simplifications of the topology during a descent scheme for the cost functionals. New
holes can not be created.
Perforated domains with parametrized geometric details. At variance with the usual description
of shapes as volumetric macroscopic objects with a piecewise smooth boundary let us now consider
a fixed domain D perforated with a large number of holes. In fact, we do not aim to optimize the
outer boundary of D but the geometry of the holes inside the domain. Thereby, we perform an
optimization of the fine-scale geometric structure of the elastic object. In the application section,
we will comment on the relation of this type of shape optimization to homogenization approaches
in shape optimization. As a structural restriction let us assume that the fine scale geometric details
are centered at the nodes of a lattice covering the domain D. The considered fine scale geometry
is parametrized over a low dimensional set of parameters. Furthermore, we restrict ourselves here
to N elliptical holes B(ci, αi, ai, bi) (1 ≤ i ≤ N), parametrized by a rotation αi and two scaling
factors ai and bi for the two semi-axes, i. e.

x(s) = ci + h

(
ai cos(αi) cos(s)− bi sin(αi) sin(s)
ai sin(αi) cos(s) + bi cos(αi) sin(s)

)
where h is the grid size of the lattice and the center points are characterized by ci

h + 1
2 ∈ Z. To

avoid overlapping of adjacent or completely vanishing holes we require the scaling parameters to
be bounded, i. e. we require ε ≤ ai, bi ≤ 1

2 − ε with ε > 0 being a small additional offset to
prevent numerical instability. Finally, we impose a constraint on the total 2D volume of elastic
object O := D \ (

⋃
i=1,...,N B(ci, αi, ai, bi)) and require |D| −

∑N
i=1 πh

2aibi = V . If we assume that
ellipses are attached to a fixed set of cell center ci in D, then the resulting shape optimization
problem turns into a finite dimensional optimization problem in R3N with inequality constraint for
the ai and bi and one equality constraint due to the prescribed total 2D volume. The associated
cost function is given by

J ((αi, ai, bi)i=1,...,N )):=J
(
D \

( ⋃
i=1,...,N

B(ci, αi, ai, bi)
))
,

for which one easily derives the shape gradient

J ′((αi, ai, bi)i=1,...,N ) =
(

(∂αjJ , ∂ajJ , ∂bjJ )((αi, ai, bi)i=1,...,N )
)
j=1,...,N

as a vector in R3N . In this context, we are in particular interested in the interaction of different
holes with respect to the shape optimization.
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7. A sketch of the numerical algorithms

In this section we detail the numerical algorithms in two space dimensions (d = 2). On the one hand
we discuss a finite element approach for the level-set-based shape optimization and in particular
describe suitable finite element spaces for the primal and the dual solutions. Furthermore, we
discuss how to combine the topological derivative and the regularized gradient descent approaches
in a robust discrete-energy minimization. On the other hand we review the boundary element
method as a tool to calculate the cost functional and its gradient in case of perforated domains
with fine scale geometries.
Finite element discretization of the level set approach. For the ease of implementation we restrict
ourselves to the working domain D = [0, 1]2. We suppose that a dyadic hierarchy of regular grids
is given and each cell is supposed to be divided along one of the diagonals into two triangles.
Let Vh be the corresponding space of piecewise affine functions on the resulting triangular grid,
where h = 2−l on level l of the grid hierarchy. A discrete level set function Φ ∈ Vh identifies a
discrete, polygonally bounded elastic body Oh = {x ∈ D : Φ(x) < 0}. To avoid either inaccurate
evaluations of the objective functional and the shape derivative or a complicated regular remeshing
of the boundary ∂Oh [29, 44] we resort to composite finite elements. Introduced by Hackbusch and
Sauter [34] they allow for efficient multigrid solvers for elliptic problems on complicated domains.
In fact, we define vector-valued composite finite element basis function Θcfe

ij (x) = ej χOh(x) Θi(x),
where Θi is one of the usual nodal basis functions of Vh and e1 = (1, 0), e2 = (0, 1). Here, χOh
denotes the characteristic function of Oh. Collecting all of these tailored basis functions which
vanish on the Dirichlet boundary ΓD we span the composite finite element space Vcfe

h . Notice that
to keep the Dirichlet boundary and the inhomogeneous Neumann boundary fixed we freeze the
level set function Φ on a small neighborhood of ΓD ∪ ΓN (cf. the problem set up in Section 3).
Hence, in this region the body still behaves elastically, but does not undergo any optimization.
For a given basis load the discrete primal solution is defined as the finite element function U i,j ∈
Vcfe
h solving A(Oh, U i,j ,Θ) = li,j(Oh,Θ) for all Θ ∈ Vcfe

h , where li,0(Oh,Θ):=
∫
Oh fi · Θ dx and

l0,j(Oh,Θ):=
∫
∂Oh gj · Θ dHd−1 for 1 ≤ i ≤ K1 and 1 ≤ j ≤ K2. The corresponding set of dual

solutions are those functions P i,j ∈ Vcfe
h , for which A(Oh,Θ, P i,j) = −J,u(Oh, U i,j)(Θ). for all

Θ ∈ Vcfe
h . Due to the assumption on J(O, ·) the integrand is at most quadratic and can be integrated

exactly using a Gauss quadrature rule. Finally, the primal and dual solutions for the actual set of
realizations ωi for i = 1, . . . , NS are composed of the discrete primal and dual solutions U i,j and
P i,j , respectively, based on the discrete analog of (20) and (21), respectively. For further details
on the primal and dual solutions we refer to [25] and for the composite finite element approach in
the context of domains described via level sets we refer to [37].

For the relaxation of the shape functional we consider a time discrete, regularized gradient
descent for the risk measure Q defined on shapes now described by level set functions (in case of
the basic expected value model Q(Φ) := E (J (Φ, ω))). Explicitly, given an level set function Φk we
compute Φk+1 in the next iteration solving

G(Φk+1 − Φk,Ψ) = −τQ′(Φk)(Ψ) (23)

for all Φ ∈ Vh. Here G is the following H1-type metric on the space of variations of the level set
function φ (cf. [45])

G(ζ, ξ) =
∫
D

ζξ +
ρ2

2
∇ζ · ∇ξ dx , (24)

which is related to a Gaussian filtering of the L2 gradient with the filter width ρ. Furthermore,
we consider Armijo rule as a step size control. For an overview on optimal design based on level
sets and suitable energy descent methods we refer to a recent survey by Burger and Osher [18].
Finally, after a fixed number of gradient descent steps we use a thresholding with respect to the
topological derivative to enable the creation of new holes in the elastic domain. This relaxation
algorithm is now applied in a coarse to fine manner. Starting on coarse grids, we successively solve
the minimization and prolongate on the next finer grid level until the a priori given finest grid
resolution is reached. A regularization corresponding to a surface area term is implemented via a
morphological operator as discussed in [25].
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Figure 2. The energy decay is depicted and some intermediate time steps are
shown for the successive shape relaxation via the level set / CFE method. The
impact of the topological derivative can be seen two times, first directly at the
start of the algorithm and second associated with a jump of the energy during the
relaxation process.

Boundary element approach in the context of perforated domains. We will now briefly review the
Boundary Element Method which is used to solve the primal and dual problem in the context of
perforated domains. Main ingredient is a fundamental solution for the PDE of linearized elasticity
[23]. Identifying points x ∈ R2 with points z(x) = x1 + p x2 on the complex plane, where p is a
complex constant, which is used in order to transform balls into ellipses, the fundamental solution
u∗ki and its normal derivative v∗ki are given by

u∗ki =
1

2π

∑
m

<

{∑
n

AknNnj ln (zn(x− y))

}
dmi , v∗ki = − 1

2π

∑
j,m

<

{∑
n

DijnNnm
zn(x− y)

}
dmi nj .

Here n denotes the outer normal and Akn, Nnj ,Dijn, dmi are appropriately chosen constants. We
now consider equation (2), apply Green’s formula, substitute ϑ by the fundamental solutions u∗i
and arrive at

uki(x) =
∫
∂O

(Cε(u)n) · u∗ki dH1(y)−
∫
∂O

(Cε(u∗ki)n) · udH1(y) +
∫
O
f · u∗ki dy. (25)

From this formula one now derives in the usual way a collocation type boundary element method
(for details we refer to [33]). Under the assumption that f ≡ 0, for u on the boundary and
σn = Cε(u)n denoting the normal tensions at the boundary we obtain from (25) the integral
equation

u = U [σn]− V [u] , (26)

where U [σn] is a single layer operator and V [u] a double layer operator .
For the discretization we restrict ourselves to polygonal domains Oh, where the ellipses and the
outer boundary are replaced by polygons with a fixed number of vertices, which are considered as
collocation points. Effectively, these points depend on the free parameters ci, αi, ai, and bi of the
ellipses. Furthermore, we approximate u and σn on the boundary via piecewise affine, continuous
functions. Equation (26) must now hold for every collocation point leading to a linear system of
equations for the values of the displacement and the normal tensions at each point. To evaluate
the objective funtionals observe that (7) and (9) have already been phrased as boundary integrals.
Shape derivatives of the objectives are also expressed in terms of boundary integrals in (18). For
the evaluation of these integrals full gradients of the primal and dual solution are required whereas
we only have (discrete approximations) of the normal stresses at our disposal so far. However
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one can reconstruct them approximately using finite differences on the polygonal boundary for
the tangential derivatives of the displacement. Thus, we are able to write suitable approxima-
tions of the objective functional and the shape derivative in terms of the vector of free parameters
(αi, ai, bi)i=1,...,N . The treatment of the resulting finite dimensional constrained optimization prob-
lems is a classical and well developed field. For our problem we rely on the software package Ipopt
[64, 65] which implements a Primal-Dual Interior Point Filter Line Search algorithm. Fig. 7 shows
a plot of energy during optimization by Ipopt together with some intermediate results.

Figure 3. The energy during optimization of a perforated square domain under
shear load by Ipopt is plotted with the final value indicated by the dashed line.

8. Applications of stochastic risk measure optimization

In this section we present several applications of the methods discussed before. We discuss the
stochastic optimization in the context of shapes described by level sets and by parametrized ge-
ometry (and also shortly compare the latter with results derived by the homogenization method).
Furthermore, we give a detailed description of the results obtained by using risk averse stochastic
optimization.
Stochastic Optimization of a 2D carrier plate. As a first application we look at a 2D carrier plate,
where the supporting construction between a floor slap, whose lower boundary is assumed to be
the Dirichlet boundary, and an upper plate, on which forces act, is optimized. The working domain
is D = [0, 1]2.
Figure 1 (left and center) shows a straightforward comparison between a stochastic optimization
as described before and an optimization for a deterministic load corresponding to the expected
value of the stochastic loads. Also the corresponding optimal shape (for a deterministic load) with
fine scale parametrized geometry is shown on the right. For comparison Fig. 4 depicts additional
results in the context of perforated domains under similar loading conditions colorcoded by the
von Mises stress. One observes a rather sharp interface between regions with high and low volume
fraction of the elliptical holes. Furthermore, the resulting shapes are roughly similar to the ones
obtained in the level set context but have additionally developed fine trusses aligned with the main
loading directions. For the image generation in Fig. 4 a triangulation of the computational domain
was created using the software Triangle [57, 58] and at each interior vertex the linearized strain
tensor is computed using (25).

Our next case study is a more elaborate example for stochastic optimization in the context
of level sets. Fig. 5 shows a sketch of the stochastic loading on the upper plate and the (single)
stochastically optimal shape obtained by the level-set based stochastic optimization algorithm.
Furthermore, the von Mises stress distribution is rendered for the different load scenarios. Since
each realization of the stochastic load is chosen to be spatially uniform on the upper plate, the
realizations only differ by the direction of the force. Hence, the load space containing all realizations
of the stochastic loads can be represented by the span of two base loads g1 and g2. In the notation
of Section 5, we have K2 = 2 and NS = 20.
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Figure 4. Different loads and corresponding optimal shapes colorcoded by the
von Mises stress.

1

10

20

Figure 5. Stochastic shape optimization based on 20 scenarios is depicted. On
the left the different loads g(ωσ) with probabilities πσ are sketched. Each arrow
represents one scenario where the arrow length is determined by the corresponding
force intensity weighted with the probability πσ of the corresponding scenario. On
the right the von Mises stress distribution is colorcoded on the optimal shape for
10 out of the 20 realizations of the stochastic loading. Due to the nonsymmetric
loading configuration the resulting shape is nonsymmetric as well. In particular,
the right carrier is significantly thicker than the left one, whereas the connecting
diagonal stray pointing up right is thinner than the one point down left. (Figure
reprinted from [25, Fig. 4.3])

2D and 3D cantilever. As a second application, we discuss the shape optimization of a 2D can-
tilever. We choose D = [0, 2]× [0, 1] and model a cantilever that is fixed on the left side and where
a deterministic downward pointing force is applied on a small plate on the right. Three methods,
namely homogenization (by Allaire [3], first with a composite solution and then with a penalization
of composite regions), level set based optimization, and optimization of a perforated geometry are
used to create the results shown in Fig. 6 (rotated by 90 degrees). Also, for the latter two methods,
the von Mises stress is shown by colorcoding.

As a generalization of the application before, we now consider a 3D cantilever. Here again the
cantilever is fixed on one side by having a Dirichlet condition on a disk-shaped plate. Whereas on
the other side we prescribe a Neumann boundary load on a small rectangular plate opposite to the
center of the disk. Applying eight stochastic loading scenarios with equally probable and equally
distributed forces in a plane parallel to the disk-shaped plate results in the optimal shape shown
in Fig. 7. Again a colorcoding of the von Mises stress distribution is displayed.
2D bridge. For the sake of completeness also a typical bridge-type scenario was investigated in the
context of perforated domains. Here the computational domain was chosen as D = [0, 3] × [0, 1],
the lower corners were kept fixed by imposing Dirichlet boundary values and the remainder of
the lower boundary was subject to downward pointing forces. Fig. 8 shows the obtained result
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Figure 6. Comparison between optimal shapes for the cantilever scenario ob-
tained by the homogenization method by Allaire (first two panels, reprinted from
[3, Fig. 5.8, p. 370]), level set based optimization (central panel, reprinted from
[25, Fig. 4.5]), and optimization of perforated geometries.

Figure 7. The optimal design in the case of stochastic shape optimization for the
cantilever problem with eight scenarios is depicted. From left to right four scenarios
are colorcoded with the von Mises stress in a consecutive clockwise ordering with
respect to the attacking loads. The upper and the lower row show the shape
geometry under different perspectives. (Figure reprinted from [25, Fig. 4.8])

colorcoded with the von Mises stress and again in comparison to results of the homogenization
method.
Trusses underneath two fixed bearings. In this section we will discuss an application with the
focus on risk averse stochastic optimization and study the impact of different risk measures on the
optimal shape. First, we discuss the optimization of the expected-value objective. We consider two
instances with 10 loading scenarios each (shown in Fig. 9). In the first instance (plotted on the left)
all scenarios have the same probabilities and all scenario loads have the same magnitude. In the
second instance (plotted on the right) we deal with an asymmetric case: loads acting on the left
bearing are twice as strong as those acting on the right bearing. But the left loads have a much lower
probability of 0.01 whereas each load on the right is active with probability 0.19. Hence, on average,
the forces acting on the left bearing play a minor role. In both instances, the number of base forces
is 4 (i.e, K2 = 4), since two of them have their support only at the left bearing, whereas the other
two apply only on top of the right bearing. The shapes shown in Fig. 9 minimize the expected value
of the compliance cost functional. It can be observed that the symmetric load configuration leads
to a symmetric truss construction, whereas for nonsymmetric loading nonsymmetric outriggers
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Figure 8. Comparison between optimal shapes for the bridge scenario obtained
by Allaire with the homogenization method (right panel, reprinted from [3,
Fig. 5.28, p. 399]) and optimization of perforated geometries.
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Figure 9. A symmetric stochastic load configuration (left) leads to symmetric
support jibs (left panel), whereas a nonsymmetric stochastic loading (right panel)
favors a correspondingly nonsymmetric truss construction. (Figure reprinted from
[24, Fig. 4])

Figure 10. A sequence of results for the optimization with respect to the ex-
pected excess for η = 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.5. The underlying loading
is shown in Fig. 9 (right panel). (Figure reprinted from [24, Fig. 5])

minimize the expected value of the cost. Figure 7 shows the energy decay and selected snapshots of
the evolving shape for the level-set based method. The intermediate results illustrate the interplay
between hole creation by thresholding based on the topological derivative and the optimization of
the boundary by the level set / CFE method.
Expected Excess. As mentioned above, one of the main objectives of this section is to compare the
different risk measures and we will discuss this in the context of the second (nonsymmetric) load
configuration. Fig. 10 shows a family of optimal shapes minimizing the expected excess for varying
excess parameter η. Although we start each computation with the same initial solid bulk domain
O0 = D, we observe a continuous evolution of the geometry with η. Due to the nonanticipativity
of our stochastic shape optimization model, the actual loading on an optimal shape, but not the
shape itself, depends on the load scenario.

Is is important to point out that in the minimization of the expected excess all the scenarios
ω where J(O, ω) ≤ η are irrelevant. In practice, since we use the smooth approximation Qε

EEη

(see Section 4) to regularize the stochastic cost functional, these scenarios still have a small effect.
Hence, the optimization tries to choose O such that the objective J(O, ω) stays below the risk
parameter η in the high-probability, and therefore “expensive” scenarios, which correspond to load
acting on the right bearings. In fact, the higher the value of η is, the easier it is to keep the objec-
tive below η. This leads to the effect that less material is needed on the right and therefore more
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material can be used to improve the situation for the scenarios with the strong but low-probability
loading on the left bearing.
An analogous computation was done in the framework of perforated domains. In Fig. 11 one can
observe qualitatively the same behaviour as seen in the level-set based computation. In particular,
one observes that for high η the initial configuration remains unchanged, since due to the small
offset ε (cf. section 6) there is no need for improvement to stay below the excess parameter. We have
to remark that because of the different scaling of the attacking forces the values of the parameter
η in the two computations are not directly comparable.

(a) 0.0003 (b) 0.0005 (c) 0.0007

(d) 0.0013 (e) 0.0023 (f) 0.0029

Figure 11. A sequence of results for the optimization with respect to the ex-
pected excess for η = 0.0003, 0.0005, 0.0007, 0.0013, 0.0023, 0.0029. The underly-
ing loading is shown in Fig. 9 (right panel).
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Figure 12. Objective values for each of the 10 scenarios are rendered with bar
charts for the optimal shapes in Fig. 11. The bar thickness is chosen proportional
to the probability.

Excess Probability. We now turn to optimizing the excess probability. Albeit somewhat related,
strikingly different shapes are being realized. Looking at Fig. 13 one observes a complete “mass
shift” towards the right bearing. The important difference to the expected excess is that the amount
of excess is irrelevant here. Therefore huge objective values may be acceptable for the five (low-
probability) scenarios on the left as long as it is possible to push the corresponding values for the
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(high-probability) scenarios on the right bearing below η (cf. Fig. 15 for the corresponding cost dia-
gram). Consequently trusses for the left bearing are allowed to become thinner as η increases. This
can be seen in Fig. 13 but even better for the combined level set and topological shape optimization
approach in Fig. 14 where finally the narrow trusses are removed via a topology optimization step.

(a) 0.0001 (b) 0.0003

Figure 13. Two results for the optimization with respect to the excess probability
for η = 0.0001, 0.0003. The underlying loading is shown in Fig. 9 (second right)

Figure 14. In the optimization of the excess probability for η = 0.4 decreasingly
thin trusses are realized on the intermediate grey shape on the left until the left
bearing is completely truncated via a topology optimization step (cf. Fig. 9 for
the load configuration). The final result is shown on the right. (Figure reprinted
from [24, Fig. 7])

Let us conclude with a final review of the three considered risk measures. Fig. 15 shows ob-
jective values for each loading scenario at the optimal for the different risk measures. The expected
value causes a weighted average over all single-scenario realizations. Therefore objective values
for high-probability scenarios are reduced as much as possible whereas rather big values are ac-
cepted for the low-probability scenarios. For the expected excess the main difference is that there
is no need to further optimize scenarios whose objective values have already been pushed below
the threshold. The gained flexibility may instead be used to reduce the cost of scenarios above
η more aggressively. Finally the excess probability reduces the process of assigning an objective
value to the question of how likely scenarios exceeding the threshold occur. The consequence is
ignorance of objective values for scenarios significantly above the threshold, which may be con-
sidered to be “lost” anyway. In the figure discussed before, a compliance tending to infinity is
indeed accepted when the left bearing is left floating. The arising flexibility is then used to further
reduce maximal (weighted) scenarios whose costs are slightly bigger than the threshold. As to the
built–in regularization in Qε

EEη
, Qε

EPη
one has to remark that the discussed threshold behavior is

smeared out at η, thereby favoring cost reduction of single scenarios in the vicinity of the threshold.

9. Hole-hole interaction in the topological derivative

Introducing topological derivatives. As discussed in the Introduction, classical shape-optimization
methods are based on iteratively improving a given shape O, by determining at each step an opti-
mal small modification to the position of the boundary ∂O, and are therefore unable to change the
topology of the shape. The method of topology optimization is based on a determination of the
gradient of the functional with respect to changes in topology of O [59, 31]. Precisely, for x̄ ∈ O one
considers the family of domains O\B(x̄, ρ). The topology derivative at x is then defined as the limit
limρ→0(J [O \B(x̄, ρ)]− J [O])/ρn, where J is the target functional. As usual in PDE-constrained
optimization the target functional depends indirectly on O, through a function u which is obtained
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Figure 15. Objective values for each of the 10 scenarios are rendered with bar
charts for the optimal shapes corresponding to the stochastic cost functionals QEV,
Qε

EEη
, Qε

EPη
(from left to the right) for η = 0.4. The second row shows a zoom

into the diagrams. The bar thickness is chosen proportional to the probability.
(Figure reprinted from [24, Fig. 8])

by solving a PDE, which in our case corresponds to linear elasticity. Therefore an analytic evalu-
ation of the topological derivatives requires a determination of the leading-order correction to the
elastic deformation arising from the formation of a small hole [31]. This is done by a separation of
length scales, between the one where the hole acts and the macroscopic one of O; the interaction
between the two can be represented by a suitable Dirichlet-to-Neumann operator acting on the new
(fictitious) boundary. Thus, the inner problem can be analytically solved, depending on the local
values of the strain coming from the exterior problem. The topological derivative is then evaluated
numerically, and used to modify the computational domain O.

Interaction between holes. As explained above the topological derivative describes the behaviour
of the cost functional with respect to the removal of a small hole. In practice, it is often used
to remove a complete area, determined as the set where the derivative is below a threshold (see
Section 7). This and also the observed hole structures in Section 6 (see Fig. 16(a)) motivate the
study of an asymptotic expansion with respect to multiple holes on a lattice as in

J

(
O \

⋃
z∈Zn

δz + εω

)
= J (O) + . . . (27)

(a)

δ

ρ

e

(b)

Figure 16. Fig. (a) shows some hole structures observed in the optimization of
parametrized domains (see Section 6) and Fig. (b) gives a small sketch of the
two-hole problem dealt with in Theorem 1

We start by studying the interaction between two holes (see Fig. 16(b) for a sketch). In order
to make the notation easier we deal with the scalar case, by considering the Poisson equation on
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the set O (note that one can also apply an analogous result to the case of linear elasticity). Here
a0(u, v) is the corresponding bilinear form and u0 the solution to the equation. Let ω1, ω2 ⊂ R2

be the shapes of the two holes and for convenience assume that both contain the origin. We also
define the sets OR = O \B(x̄, R), the new fictitious boundary (see above) ΓR = ∂B(x̄, R) and the
perforated domain Oρ = O \ (x̄+ (ρω1 ∪ (δe + ρω2))). Also let uρ be the solution to the Poisson
equation on Oρ with free Neumann conditions on the boundaries of the holes. Then we have the
following statement giving an asymptotic expansion of the cost function with respect to ρ:

Theorem 1. Let j (ρ) = J (uρ) be a cost function where J does not explicitly depend on ρ and DJ (u)
is continuous and linear on VR = {u ∈ H1(OR), u = 0 on ΓR}. Let v0 ∈ VR be the solution to the
adjoint equation

a0 (w, v0) = −DJ (u0)w ∀w ∈ VR,

and let

d
(1)
topo :=

∫
ΓR

∇x
(
S(1),1
ω1

(x,∇u0 (x̄)) + S(1),1
ω2

(x,∇u0 (x̄))
)
n(x) v0 (x) dγ (x)

d
(1)
int,1 :=

∫
ΓR

∇x
(
S̃(1),1
ω1

(x,∇u0 (x̄)) + S̃(1),1
ω2

(x,∇u0 (x̄))
)
n(x) v0 (x) dγ (x)

d
(1)
int,2 :=

∫
ΓR

∇x
(
Ŝ(1),1
ω1

(
x,∇2u0 (x̄)

)
+ Ŝ(1),1

ω2

(
x,∇2u0 (x̄)

))
n(x) v0 (x) dγ (x)

+
∫

ΓR

e∇2
x

(
S(1),1
ω2

(x,∇u0 (x̄))
)
n(x) v0 (x) dγ (x)

d
(2)
topo :=

∫
ΓR

∇x
(
S(1),2
ω1

(x,∇u0 (x̄)) + S(2),1
ω1

(
x,∇2u0 (x̄)

))
n(x) v0 (x) dγ (x)

+
∫

ΓR

∇x
(
S(1),2
ω2

(x,∇u0 (x̄)) + S(2),1
ω2

(
x,∇2u0 (x̄)

))
n(x) v0 (x) dγ (x) .

Then the function has the following asymptotic expansion:

j (ρ) = j (0) +
{

d
(1)
topo +

(ρ
δ

)n
d

(1)
int,1 + δd

(1)
int,2

}
ρn +

{
d

(2)
topo

}
ρn+1 + o

(
ρn+1

)
.

Here we assume that δ = ρα, with α ∈ ( 1
2 ,

3
4 ).

The terms S(i),j
ωk , S̃(i),j

ωk and Ŝ(i),j
ωk are based on approximations of single layer potentials asso-

ciated to exterior Neumann problems, reflecting the behaviour of the inner problem. In particular,
the terms in d

(1)
topo are the same that appear when computing the topological derivative for each

individual hole (see also [61]) and the terms in d
(2)
topo are reflecting the second order topological

derivatives of each hole. The interaction is described by d
(1)
int,1and d

(1)
int,2. Here, d

(1)
int,1 is the first ex-

pansion term (with respect to the scaling parameter
(
ρ
δ

)
) approximating the interaction between

two holes in the aforementioned exterior Neumann problem. On the other hand, d
(1)
int,2 is the leading

order correction term for the fact that the topology derivative for ω2 should be computed at x̄+ δ
but is instead computed only in x̄.

Outlook: a reduced model for the optimization of perforated geometries. Theorem 1 gives an ex-
plicit expression for the hole-hole interaction in the topological derivative. Controlling the pairwise
interaction permits to obtain in a natural way an estimate for the interaction terms in a lattice
of holes, as was indicated in (27) and in Figure 16(a). Indeed, much as in atomic lattices, one
can approximate the total energy of the lattice by the sum of the pairwise interactions of neigh-
bours. This strategy will permit us to estimate the influence of lattice-like microstructures on the
objective functional, either in a single-scale approach as in Section 6 or in a two-scale approach
where hole structures of ellipses on a periodic lattice are used to describe microstructures. This
class of microstructures is markedly different from the laminates typically used in two-scale shape
optimization [3]. It remains an open problem to understand if this difference in the microstructure
will result in a significant difference at the macroscopic level.
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