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Functional Thin Films on Surfaces
Orestis Vantzos, Omri Azencot, Max Wardeztky, Martin Rumpf, and Mirela Ben-Chen

Abstract—The motion of a thin viscous film of fluid on a curved surface exhibits many intricate visual phenomena, which are
challenging to simulate using existing techniques. A possible alternative is to use a reduced model, involving only the temporal
evolution of the mass density of the film on the surface. However, in this model, the motion is governed by a fourth-order nonlinear
PDE, which involves geometric quantities such as the curvature of the underlying surface, and is therefore difficult to discretize.
Inspired by a recent variational formulation for this problem on smooth surfaces, we present a corresponding model for triangle
meshes. We provide a discretization for the curvature and advection operators which leads to an efficient and stable numerical
scheme, requires a single sparse linear solve per time step, and exactly preserves the total volume of the fluid. We validate our method
by qualitatively comparing to known results from the literature, and demonstrate various intricate effects achievable by our method,
such as droplet formation, evaporation, droplets interaction and viscous fingering. Finally, we extend our method to incorporate
non-linear van der Waals forcing terms which stabilize the motion of the film and allow additional effects such as pearling.

Index Terms—Computer Graphics, Three-Dimensional Graphics and Realism, Animation.
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1 INTRODUCTION

THE intricate motion of a viscous thin film subject to
external forces, such as gravity, inspires research in

physics, mathematics and computer science, among other
scientific disciplines. In many scenarios the domain on
which the fluid resides is curved rather than flat. The tear
film on the cornea of the eye [1], the dynamics of lava
flows [2] and the formation of ice on the aerofoil of an
aircraft [3], are all examples related to the evolution of
thin films on curved geometries. The goal of this paper is
to suggest a method for simulating thin films on surfaces,
which is based on gradient flow evolution and the operator
view of the flow induced by tangent vector fields.

Generally, the Navier–Stokes equations coupled with ap-
propriate boundary conditions are assumed to give a good
approximation of the film’s dynamics. However, for the
flows we are interested in, these equations are considered
difficult to solve numerically, especially on curved domains.
Moreover, in the case of thin films we can assume an
extremely small height-to-length ratio which leads to a
substantial simplification through the lubrication approxima-
tion [4]. Namely, under the assumptions of the lubrication
model, the evolution of the film’s mass density is governed
by a fourth-order nonlinear partial differential equation
(PDE).

A natural approach to simulate thin films within this
reduced model would then be to discretize the resulting
PDE (e.g., [5]). Choosing such a strategy, however, one will
be faced with two main challenges. First, one will need to
derive a suitable set of discrete differential operators acting
on discrete curved domains (e.g., triangle meshes). Then,
the second task will be to construct a proper numerical time
integration scheme. While any attempt to discretize general
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PDEs will encounter these obstacles, in the particular case
of thin films, the restriction on the time step size (see
e.g., [6]) makes the usage of explicit schemes impractical.
Although it is possible to use implicit schemes instead, such
schemes do not guarantee in general the preservation of the
underlying structure. For example, conserved quantities in
the continuous setting (such as the total volume of the thin
film) may become non-conserved in a discrete framework.
Due to the above obstacles, direct discretization of the PDE
is usually considered less attractive.

An alternative point of view is to leverage the gradient
flow structure which is known to exist for thin film equations
(see e.g., [7], [8]). In this model, the motion of the film
is determined by the minimizer of a certain cost function,
which is defined over the manifold of all possible densities
of the film with prescribed volume. Intuitively, the cost
function is minimized when the resistance of the fluid to
flow due to dissipation induced by friction balances the
additional forces (e.g., surface tension and gravity) that act
on the film. One of the advantages of this approach is that
every gradient flow has a natural time discretization which
leads to a variational problem. In practice, it allows for
significantly larger time steps compared to explicit numer-
ical schemes. Furthermore, by construction, the associated
energy is guaranteed to decrease at each step.

However, we still need to address the issues of modeling
the underlying mass transport and the conservation of fluid
volume. A reasonable choice within the gradient flow model
is to minimize the cost function under an additional con-
straint given by the transport equation. Intuitively, the trans-
port equation describes how the mass density is affected by
the motion of the fluid through the corresponding velocity
field. Recently, [9] suggested a coordinate-free approach for
solving the transport equation on triangulated surfaces by
representing tangent vector fields as linear operators on scalar
functions. Their method is advantageous since it avoids
the complicated integration of the fluid’s motion, while
ensuring the preservation of the integral of the transported
quantity.
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In this work, we argue that the gradient flow model com-
bined with the operator view of tangent vector fields leads
to a robust and highly efficient simulation tool. Specifically,
we consider the thin film model of [8] in the presence of a
precursor layer (i.e., the film resides on top of a very thin layer
defined over the whole domain) and in the geometric setting
of triangulated surfaces. Under the assumption that we are
given an approximate normal field, we present formulations
of discrete curvature operators which are tailored for our
model. In addition, we employ insights from [9] to advect
the mass function of the thin film in a manner which
causes very little numerical dissipation, and is guaranteed to
conserve exactly the total volume of the fluid. The resulting
method boils down to a linear solve of a sparse system per
time step. We demonstrate the effects of curvature, gravity
(see e.g., Fig. 1) and material parameters on the flow, and
qualitatively compare our results to previous numerical
simulations. Finally, we present various effects (e.g., droplet
formation and interaction) which are achievable within our
framework.

1.1 Related Work

As the behaviour of viscous thin films on surfaces has not,
to the best of our knowledge, been previously simulated in
the graphics community, we focus our attention on Eulerian
methods from the computational fluid dynamics commu-
nity, and to work on similar phenomena which appeared in
the computer graphics literature.

The evolution of thin films over arbitrary domains has
been an active area of research in CFD for many decades. We
refer the interested reader to the seminal review by [10] and
to the more recent review by [11]. These reviews present a
continuous model for thin films, based on lubrication theory,
which defines a reduced model for the 3D Navier–Stokes
equations given the assumption of a small thickness of the
film.

One approach to thin film simulation is to directly dis-
cretize the governing PDE as was shown for planar (see
e.g., [12], [13]) and curved (see e.g., [5]) domains. In general,
this point of view leads to several challenges, of which
the restriction on the time step size for explicit schemes is
perhaps the most problematic. Namely, the application of
a CFL-type condition leads to the requirement that the time
step τ is on the order of (δx)4, where δx is the minimal edge
length. To overcome this constraint, [6] employed convexity
splitting for their time integration scheme (within a level-set
framework). Nevertheless, their scheme does not guarantee
conservation of the fluid’s volume, and has additional re-
strictions due to the level-set formulation.

An alternative discretization for thin films can be de-
rived from the gradient flow model, for which a natural
variational time integrator exists. In general, variational
integrators are known to conserve the underlying structure,
e.g., the variational scheme in [14] preserves a notion of
discrete momentum. For the case of thin films over curved
domains (see e.g., [8], [15]), the gradient flow approach leads
to an attractive numerical scheme. In the latter work, which
is closest to our approach, the authors used Discrete Exterior
Calculus (DEC) [16] for the spatial discretization, repre-
senting the flux field with discrete 1-forms. Our approach

differs from their work as we use a velocity based formu-
lation, leverage [9] for the advection, and suggest discrete
curvature operators. These changes allow us to generate
stable simulations on meshes with obtuse triangles which
are common in graphics. A detailed comparison with [8] is
given in Sections 2 and 4.

We conclude with some representative related work
from the graphics community literature. Free surface flows
for highly viscous fluids were suggested in [17], where
effects such as melting wax are demonstrated. While one
could consider adding a surface as a solid boundary and us-
ing a similar approach for simulating viscous films, it would
be quite difficult to achieve the intricate effects we show
without using a very dense grid resolution. More recently,
various methods were proposed for modeling thin features
in free surface flows by explicitly tracking the free surface
mesh [18], [19], by using thickened triangle meshes [20],
tetrahedral elements [21], or simplicial complexes [22], to
mention just a few. Such approaches, however, require care-
ful manipulation of the connectivity and topology of the
free surface geometry, which are avoidable when simulating
films on surfaces, as the free surface can be represented as a
scalar function.

Finally, some approaches simulate water related phe-
nomena. [23] model the contact angle with the surface,
representing the free surface with a level-set based dis-
tance field. While various effects are achievable with this
approach, the method requires a high-resolution grid which
leads to a time-consuming system requiring a few days of
computation per simulation. On the other hand, using a
height field based method as in [24] considerably reduces
computational complexity, however, the instabilities and
effects we demonstrate below were not shown there.

Fig. 1. Vanilla sauce on a chocolate bunny. The physical parameters are
b = 20, ε = 0.1, β = 0.
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1.2 Contributions

Our main contributions can be described as follows:

• A discrete model for thin film evolution on general
triangle meshes.

• An efficient and robust scheme, which exactly pre-
serves the total fluid’s volume.

• Simulation of various intricate effects, such as finger-
ing, evaporation and droplet formation, interaction
between droplets and pearling.

2 DYNAMICS OF THIN FILMS

We investigate the evolution of a layer of an incompressible
viscous fluid flowing with velocity v on top of a curved
surface Γ, under the influence of surface tension and, poten-
tially, gravity. The liquid layer is attached to the surface at
the liquid-solid interface, i.e., no-slip boundary condition
(we extend this later), whereas the liquid-air surface is
evolving freely. A typical scenario is illustrated in Figure 2
showing the notation for various related quantities.

Navier–Stokes equations. A common approach for mod-
eling the evolution of thin liquid films is to consider the
Navier–Stokes equations. These equations describe the fluid’s
velocity in the liquid phase (the bulk), the surface tension on
the liquid-air interface (i.e., the free surface), and a suitable
boundary condition for the velocity in the liquid-solid inter-
face (i.e., on the solid surface). Formally, the fluid velocity v
and the pressure p satisfy the equations:

∂tv + (v · ∇)v − µ∆v +∇p = 0 in the bulk
div v = 0 in the bulk

v = 0 on the surface
σn − γHn = 0 at the free surface

(1)

where σ = −p id +µ(∇v +∇vT ) is the stress tensor, µ and
γ are the viscosity and the capillary constants (see Fig. 2).
Furthermore, the free surface x itself evolves according to
the kinematic condition ∂tx = v .

Unfortunately, a straightforward discretization of these
equations is challenging. In particular, to achieve the type
of effects we show below, the main obstacle is due to the
prohibitively small time steps which are imposed by such
a method. Moreover, the spatial discretization is also chal-
lenging since Eulerian methods will require dense sampling
of the domain, whereas Lagrangian techniques will involve
complex tracking of the free surface. Therefore, direct dis-
cretization of equations (1) is not practical for graphics
applications for this type of problems.

Lubrication approximation. Since we are interested in thin
films, a reduction in dimensionality can be achieved by
using the lubrication approximation model (see e.g., [10]). In
this model, the dynamics of the film are governed by the
evolution of a function (i.e., a scalar quantity) defined on
the surface Γ.

Given a characteristic scaling of height and length, the
key assumption to consider is a small height to length
ratio, i.e., ε = height

length � 1. Then, one takes into account
an asymptotic expansion of the Navier–Stokes equations
with respect to ε, where the resulting thin film equations

n
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Solid
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u

Fig. 2. A typical scenario is illustrated for the full 3D Navier–Stokes (left)
compared to the reduced lubrication model (right). Notice that under the
lubrication assumptions the involved quantities are computed directly on
Γ, e.g., u is a scalar function.

are composed of the leading order terms. Taking this path,
a derivation of a lubrication model without gravity for the
mass density u on curved domains yields equations of the
form (see [5] and [8]):

∂tu = divΓ (M(u)∇Γp) (2a)

M(u) =
1

3
u3 id +

ε

6
u4(H id−S) (2b)

p = −H − εTu− ε∆Γu (2c)

where M(u) is the mobility tensor (to be discussed later)
and p can be considered as a pressure-like quantity on the
surface, i.e., the fluid moves away from areas of high p. H
andK are the mean and Gaussian curvatures, T = H2−2K ,
and S is the shape operator.

Notice that inertia effects are neglected in this model, i.e.,
the Reynolds number is assumed to be small, Re� 1, as ex-
pected (by simple scaling arguments) for a thin enough film.
Moreover, we assume that the mass density u is a proper
function. As u is closely related to the fluid’s height h, that
is u = h − ε

2Hh
2, the consequence of the former constraint

is that the free surface is assumed to be representable as a
height function over Γ, and hence, e.g., contact angles higher
than π/2 and wave-like structures cannot be modeled with
equations (2).

In addition to providing a reduced model for the Navier–
Stokes equations, the thin films equations are also instru-
mental for analyzing the behavior of the flow. As mentioned
above, the fluid flows towards low pressure areas thus
visualizing p allows to evaluate the underlying dynamics
of the film. Moreover, a qualitative study of the expected
flow can be done by estimating the different scales of the
various components in p. For instance, the dominating term
in Eq. (2c) is the mean curvature and hence the dynamics
on curved domains are expected to be completely different
when compared to the flat case (where H = 0). Indeed, we
demonstrate this and other effects in the following example.

In Figure 3 we show the color coding of the pressure
computed for an initial uniform deposition of liquid on a
bumpy plane (left) and on the Scherk surface (right). These
figures suggest that the fluid is most likely to accumulate
at the center of the respective surfaces, where the pressure
is low. Indeed, we show in Figure 4 (top) the color coding
of the evolution of the mass density u on the bumpy plane,
starting from a uniform layer of fluid. In this case, since the
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Fig. 3. By visualizing the pressure we can identify regions where the fluid
is likely to accumulate. For example, for an initially uniform layer of fluid,
the initial pressure p0 indicates that fluid is expected to concentrate at
the respective centers, where the pressure is lowest. See Fig. 4 for the
temporal evolution of the flow.

dominating term is H (top, left), the film flows towards the
maximal mean curvature, at the center of the basin. Simi-
larly, for a minimal surface, namely when H = 0, the terms
that govern the dynamics are the Gaussian curvature and
the Laplacian of u. In Figure 4 (bottom), we show frames of
the flow on the Scherk minimal surface, starting again from
a uniform layer of fluid. Here, the initial Laplacian of u is
0 thus the minimal Gaussian curvature (bottom, left) drives
the fluid towards the center of the surface.

Unfortunately, the simulation of thin film flow based
on a PDE of the form (2) suffers from serious drawbacks.
First, explicit discretization of equation (2) requires very
strong time step restrictions, and stable (semi-)implicit dis-
cretizations allowing for large time steps, are unknown.
Second, qualitative properties, such as volume preservation
and energy decay, are difficult to ensure. Finally, on general
triangulated surfaces it is unclear how to discretize the
geometric quantities in a physically consistent way.

These issues motivate a different approach—instead of
directly discretizing the PDE, it is possible to model the
evolution from the variational perspective of gradient flows,
as was first suggested in [8]. To introduce the concepts to the
graphics community, and to keep the paper self contained,
we first briefly describe the gradient flow model of thin
films, and then discuss our modifications in the next section.

Gradient flow model. The key insight behind the varia-
tional approach is that the quantity p can be viewed as
the negative (Fréchet) derivative of the free energy functional

Eε(u) =

∫
Γ

{
−Hu− ε

2
Tu2 +

ε

2
|∇Γu|2

}
dx so that the PDE

(2) is of the gradient flow form ∂tu = −G( δE
ε(u)
δu ). The

evolution of u then can be understood as a “steepest”
descent for the free energy Eε, at a rate regulated by the
mobility M(u) via the function G(φ) = divΓ (M(u)∇Γφ).
The previous statement can be made precise by introducing
the flux f = −M(u)∇Γp, so that the PDE can be written in
the form of a flow equation as

∂tu = −divΓ f. (3)

Then the gradient flow is equivalent to the statement that
the free energy decays as d

dtE
ε(u) = −Dεu(f, f) ≤ 0, where

the bilinear form Dεu(f, f) =

∫
Γ
f ·M(u)−1f dx is known

as the (viscous) dissipation. This in turn is equivalent to the
variational requirement that the density variation ∂tu and

t=0H t=0.27 t=2.34

t=0 t=3534t=281K

Fig. 4. (top) The motion of the film primarily depends on the mean cur-
vature thus the fluid concentrates in the center basin, u0 = 0.1, ε = 0.1.
(bottom) For minimal surfaces (i.e., when H = 0) the film is mostly
influenced by the Gaussian curvature as shown for the Scherk’s surface,
u0 = 0.1, ε = 1.

the flux f minimize (at each time t) the so-called Rayleigh
functional 1

2D
ε
u(f, f) + δEε(u)

δu (∂tu) under the transport con-
straint (3).

Intuitively, the energy is an approximation of the area of
the free surface, which should be minimized due to surface
tension, and the dissipation is the “price to pay” for the total
shear stress due to the flow inside the film. Hence, among
all the possible flows which preserve the mass of the fluid,
we look for the one which optimally minimizes the area of
the free surface and the stress inside the film.

Finally, following the idea of natural time discretization
of gradient flows [25] and minimizing movements [26], we
integrate in time to arrive at a variational approximation of
uk+1 = u(tk + τ) given uk = u(tk):

uk+1 = argmin
u=Fτ (uk,f)

{
1

2τ
Dεu(f, f) + Eε(u)

}
(4)

where Fτ (uk, f) denotes a suitable (approximate) solution
at tk + τ of the initial value transport problem (3) with
u(tk) = uk. The constrained minimization problem (4)
is equivalent to discretizing the original PDE (2) in time;
instead of the PDE then, one can describe (and discretize)
the thin film flow through the three components of the
gradient flow: the free energy Eε, the dissipation D and the
flow equation (3) (or in the time-discrete setting the flow
operator Fτ ).

In [8], suitable energy and dissipation functionals are
derived for gravity- and surface tension-driven thin film
flow on a smooth curved surface. The variational time dis-
cretization (4) is coupled then with a spatial discretization
based on Discrete Exterior Calculus, resulting in a fully
discrete scheme on triangulated surfaces that addresses
some of the shortcomings of PDE-based solvers pointed out
previously. Specifically, discrete qualitative properties are
straightforward to preserve: the energy decay is built into
the time discretization (4), as will be shown later, and it is
also easier to set up discrete mass conservation for the flow
equation than for the full PDE (2). In addition, because of the
explicit control on the energy decay, the variational scheme
is very stable, allowing for large time steps.

Unfortunately, directly applying that scheme for graph-
ics purposes on general triangle meshes is challenging since
curvature quantities and mass preserving transport are
more difficult to discretize in this setting. In [8] mass
preservation was achieved by working with a flux-based
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formulation, that lends itself naturally to a finite-volume
approach such as Discrete Exterior Calculus. However, in
the presence of obtuse triangles, i.e., triangles with angles
larger than π/2, negative entries can arise in the diagonal
matrices that the scheme uses to define inner products
between discrete k-forms. This can lead to non-convexity
and eventually to instability and/or non-convergence of
the variational scheme. Notice that for general meshes,
eliminating these obtuse triangles is highly non-trivial.

In the next section we present our approach for dis-
cretizing the thin film gradient flow model on general
triangulated surfaces. We first develop the discrete energy
and dissipation terms by modeling the fluid as a prismatic
layer formed by an offset surface to the triangle mesh,
which naturally introduces discrete curvature quantities. In
addition, we switch to a velocity-based formulation of the
transport equation ∂tu + divΓ(uv) = 0, which allows us to
use the new discretization suggested in [9], that does not
suffer from the aforementioned problem.

3 THIN FILMS ON TRIANGULATED SURFACES

As we have previously seen in Figure 4, the film dynamics
are heavily dependent on the curvature operators,H ,K and
S. In their work [8] presented one dimensional applications
and simulations on two dimensional surfaces where the
curvatures are easy to compute analytically (such as surfaces
of revolution and graphs). One could, of course, extend
their method to triangulated surfaces by choosing a set of
discrete curvature operators from the many available in the
literature (see e.g., [27]). We chose instead to go back to
fluid mechanics and look for a definition of the energy and
dissipation functionals that could be applied on continu-
ous but non-smooth surfaces, such as a triangulated mesh.
We present the resulting model in this section, but have
reserved a more technical derivation for the supplemental
material.

Our main observation is that if Γ is equipped with a
continuous vector field n that is approximately normal, one
can follow similar derivations as in [8], and arrive at energy
and dissipation functionals given by (up to an O(ε2) error):

Eε(u) =

∫
Γ
(bz −H)u+

ε

2
(b cos θ − T )u2 +

ε

2
|∇Γu|2 da

(5)

and

Dεu(v, v) =

∫
Γ
v ·M(u)−1v da (6)

M(u) =
(
β +

u

3

)
id +ε

u2

12

(
7H id−3S − 5S̄

)
(7)

respectively, where (unlike in [8]) the curvature quantities in
these equations are now given in terms of the approximate
normal field n. In (5) we included the gravity terms that
involve the Bond number b, which measures the relative
strength of gravity vs. surface tension, the altitude z, and the
angle θ of the surface normal with the vertical direction. The
discrete total curvature T and shape operator S are given
in section 3.1 and the rotated shape operator S̄ is given in
section 3.3. Moreover, we incorporated in (7) a constant β
which allows for various slip conditions.

i

ν n1

n3
n2

ei

Fig. 5. (left) Prismatic layer of viscous fluid, depicted as a piecewise
linear field over a triangle. (right) Prismatic volume with tangential vector
field v (red) and attached Hagen-Poiseuille type velocity profile Πs(v).

3.1 Geometry of thin films on triangulated surfaces

For a smooth surface, the geometry of a liquid layer is
modeled by a scalar height function h, which describes the
extension of the liquid along a surface normal direction at each
surface point. In the limit of thin films, this height field is
scaled by a global scaling parameter ε. Then, the liquid layer
is bounded by the surface on one side and by an offset along
the surface normal by εh on the other. The laws of physical
motion of the liquid are expressed by expanding the 3D
motion up to second powers in ε.

Adopting this perspective for the case of a triangulated
surface Γ, we take the approach of associating surface
normals n as well as the offset function h with vertices and
extending the resulting offset field linearly across triangles,
leading to a prismatic liquid layer per triangle, see Figure 5
(left). This approach ensures continuity of the offset field
across edges, which we harness to ensure mass conservation
when the liquid evolves.

There is, however, a caveat with this approach: it is
widely accepted that there exist no “best” vertex normals in
the discrete case. Consequently, we only require consistent
normals in the following sense. If the average edge length
of the mesh is δx, it suffices that we are provided with a
set of (unit length) vertex normals n such that the difference
|ν − n|, between the normal ν of any (flat) triangle of the
mesh and the vertex normal n of its vertices, is of order δx2.
1

As in the smooth case, the lubrication approximation re-
quires an additional scaling variable ε in which the relevant
physical terms are developed up to second order. With the
lateral extension of the film being measured in direction of
the discrete normal n, we obtain the free surface

Γεh = {x+ εh(x)n(x) |x ∈ Γ}

of the thin film at the liquid-gas interface and the fluid
volume Vεh = {x+ sεh(x)n(x) |x ∈ Γ, s ∈ (0, 1]} .

In order to derive the variational time discretization of
the evolution of the thin film we make use of three differ-
ent expansion formulas, namely the expansion of volume,
area, and length with respect to the thickness parameter
ε. Returning to the smooth case for a moment, such an
expansion leads to expressions in terms of curvatures of
the underlying surface, containing the shape operator S,
its trace, and its determinant, known as mean and Gauss
curvature, respectively [28].

1. Notice that this condition implies that ∇Γn is both tangential and
symmetric up to order δx.
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We exactly recover this geometric description in our
discrete model. Indeed, first recall that in the smooth setting
the shape operator is defined as the tangential gradient of
the (smooth) unit normal field. Accordingly, we define in
the discrete case a generalized shape operator (in the sense of
considering arbitrary “normals” n) by

S := −1

2
P (∇Γn+ (∇Γn)T )P , (8)

where ∇Γ = P∇R3 is the (triangle-based) tangential gra-
dient on Γ and P = id−ν ⊗ ν is the projection onto the
(triangle-based) tangent space. From this shape operator we
deduce a discrete mean curvature H = Tr(S) and a discrete
Gaussian curvature K = 1

2

(
Tr(S)2 − Tr(S2)

)
. Notice that

in this setup S, and therefore also H and K , are constant
per face.

Second recall that in the smooth case, mean and Gaus-
sian curvatures alternatively arise by considering first and
second variations of offset volume and surface area. The
same holds true in the discrete case, i.e., for our prismatic
layer. For example, for the expansion of offset volume we obtain
(up to an O(ε3 + δx) error)∫

Vεh

dx =

∫
Γ

(
εh− ε2

2
Hh2

)
da .

Here H equals the trace of our generalized shape operator S
defined above. Hence, the two alternative discrete definitions
of mean curvature (as the trace of the tangential gradient
of the normal, and through the second order expansion
of the of the offset volume) are consistent. Intuitively, the
correction term ε2

2 Hh
2, and in particular the appearance of

mean curvature, accounts for change of surface area in the
lateral direction.

Notice that the integrand can be written as εu, with
u = h − ε

2Hh
2. Thus u describes (up to a factor of ε) the

fluid volume per surface area and can be considered as the local
mass density. This quantity is an alternative and, from the
viewpoint of the underlying conservation law, preferable
variable.

Likewise, for the expansion of the surface area we obtain
(up to an O(ε3 + δx) error) that∫

Γεh

da =

∫
Γ

(
1− εhH +

ε2

2

(
2h2K + |∇Γh|2

))
da .

Notice that when h = 1, i.e., when one considers constant
offsets, then this expression is equal to the famous Steiner
formula, known from differential geometry [29]. As before,
H and K that arise from the expansion of the surface area
are exactly the mean and Gaussian curvatures, respectively,
defined using our generalized shape operator S.

3.2 Energy

The first ingredient of our variational time discretization is
the energy of the thin film, given by the sum of surface
energy (the total area of the free surface Γεh, which tends
to be minimized due to surface tension) and gravitational
energy (weighted by the Bond number b):

E(h) =

∫
Γεh

da+ b

∫
Vεh

z dx .

Here the Cartesian coordinate z denotes the altitude, i.e., we
assume that gravity is acting along the z-direction.

The surface energy was spelled out above. Analogously
to the expansion of the offset volume, we obtain for the
expansion of gravitational energy (up to an O(ε3 + δx) error)
that∫

Vεh

z dV =

∫
Γ

(
εzh+

ε2

2

(
−h2Hz + h2 cos θ

))
da .

Here, per triangle, θ is the angle of the direction of gravity
with the triangle normal. Exchanging the height h against
the mass density u and restricting to the (non constant)
leading order terms we finally end up with the energy
functional

Eε(u)=

∫
Γ

(bz −H)u+
ε

2
(b cos θ−T )u2 +

ε

2
|∇Γu|2da (9)

with T = H2 − 2K .

3.3 Conservation law for the flow
Mass conservation during the temporal evolution of the
fluid is one of the central physical principles of viscous
flow [30]. Violations of this principle in numerical simula-
tions lead to undesirable artefacts. For our approach, we
outline how mass conservation can be exactly maintained by
working with a conservation law in divergence form. Mass
conservation is a balance principle: the change of volume
must equal the flux of material across the volume boundary.
On an arbitrary (triangular) patch T this translates into the
balance equation

d

dt

∫
Vεh(T )

dx =

∫
Fεh(T )

v · µda ,

where v is the fluid’s velocity vector and µ is the (inward
pointing) normal of the faces Fεh(T ) of the prism Vεh(T )
above T (cf. Fig. 5 (right)). Using the divergence theorem
of Gauss and Taylor expansions in the height, which corre-
sponds to an expansion of the length functional on the edges
of the patch, we obtain the conservation law

∂tu = −divΓ

(
u

∫ ε

0
QsvΓ,s ds

)
,

where vΓ,s(x) is the tangential component of the velocity
in the liquid layer and the tensor Qs = id−su

(
S̄ −H id

)
accounts for the geometry of the prism Vεh(T ). The rotated
shape operator S̄ = −[ν]×S[ν]× is defined via the skew-
symmetric matrix [ν]×, which in turn is given by requiring
that [ν]× · x = ν × x for any vector x. We define the
(weighted) average velocity v =

∫ ε
0 QsvΓ,s ds, independent

of s, so that the conservation law is restricted to the triangu-
lated surface Γ and takes the simple form

∂tu+ divΓ(u v) = 0 . (10)

The weighting reflects the inclination and torsion of the
faces of the prisms. The advantage of working with an
averaged velocity is that it resides directly on the surface Γ.
In the discrete case, this velocity field can be modeled using
piecewise constant (per triangle) vector fields, and mass
balance can be expressed using commonly used discrete
differential operators.
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3.4 Dissipation and mobility
In the previous section, we used averaging in order to
reduce the velocity field in the bulk to a velocity field on
the surface. For treating dissipation, we require the opposite
direction, i.e., to reconstruct a velocity field in the bulk
from the velocity filed on the surface. Since the inverse
of averaging allows for many solutions, this reconstruction
step is not unique a priori. In order to single out a unique
velocity field in the bulk, we invoke a physical principle by
considering the field that causes least energy dissipation.

Concretely, we require a (tensor) profile function Πs

such that vΓ,s = Πsv and
∫ ε
0 QsΠs ds = id (see Fig. 5

(right)). Note that there are many possible velocity profiles
Π : s 7→ Πs that satisfy this integral constraint. From
the theory of viscous flows [31] we know that the phys-
ically observed profile minimizes the viscous dissipation
rate

∫
Vεh
|∇v +∇vT |2 dx. This is dominated by the vertical

shear stress, i.e., the normal derivative of the tangential
velocity, which can be expressed as a quadratic form in
v. Approximating this quadratic form to leading order in
ε, substituting v by Π(v), and optimizing the transporta-
tion cost for given boundary conditions Π0 = 0 (no-slip
at substrate) and zero shear stress at free surface under
the integral constraint

∫ ε
0 QsΠs ds = id, yields an optimal

profile Π∗, which to leading order matches the well-known
Hagen-Poiseuille profile. We thus obtain the dissipation as
a function of the averaged velocity v as

Dεu(v, v) =

∫
Γ
v ·M(u)−1v da , (11)

where the mobility tensor is defined as

M(u) =
u

3
+ ε

u2

12

(
7H id−3S − 5S̄

)
.

For a more detailed derivation of the optimal profile see the
supplemental material.

3.5 Minimizing movement approach
Combining the three building blocks we have derived, and
using the minimizing movement approach, we arrive at an
effective variational time discretization for the evolution of
a thin film on a triangulated surface. The energy Eε (9)
depends on the mass density u, whereas the dissipation Dεu
(11) is a quadratic form on motion fields v. For given uk at
time step k any mass density u at time step k + 1 results
from the transport of uk via an underlying motion field.
Hence, the time discrete conservation law (10) has to be
handled as a constraint representing the coupling of u and
v. Altogether, we iteratively define uk+1 as the minimizer u
of the following constrained optimization problem:

min
u,v

{
1

2τ
Dεuk(v, v) + Eε(u)

}
subject to u = Tτ (v)(uk),

where Tτ (v) denotes the operation of transporting uk with
constant velocity v for a time interval of length τ . The
factor 1

2τ reflects the proper rescaling in time to obtain the
dissipation to be spent to transform uk into u.

We consider a number of extensions to this model, which
are known for the flat case [10]. The first one replaces on Γ

the no-slip v = 0 by the Navier slip condition v = β∂nv with
β denoting the slip length (in case of large variation of the
velocity in the normal direction, the fluid undergoes slip-
ping on the surface Γ). To reflect this one has to add β to the
mobility M . This slip boundary conditions accelerates the
motion of the fluid. Furthermore, we consider evaporation.
It takes the form of a sink term in the right hand side of
the conservation law and is modeled in the time discrete
setup by the constraint u − Tτ (v)(uk) = − u

(uk+ce)2
, for a

small constant ce. Intuitively, the evaporation rate is faster
for thinner films, which reflects a faster heating of thinner
films.

4 SPATIAL DISCRETIZATION
The main challenge here is to define a stable discretization
of the transport equation (10) such that various properties
(e.g., energy decay and mass preservation) will hold on
general triangle meshes. While many of the operators we
use are standard in geometry processing, we highlight the
properties these operators should possess such that the
resulting optimization scheme would indeed be stable.

Notation. We consider a triangle mesh and denote by V its
vertex set and by F its face set. We use bold faced symbols
to denote the spatial discrete analogues of continuous quan-
tities (e.g., u is the discrete mass density). When required,
we use the subscripts V and F to denote quantities on the
vertices and the faces, respectively. The bracket [·] operator
is used to convert vectors in R|V| and R|F| to block diagonal
matrices in R|V|×|V| and R3|F|×3|F| respectively (replicating
each entry 3 times for the latter).

Functions, vector fields and inner products. We use a
typical setup, i.e., piecewise-linear functions and piecewise-
constant vector fields, with corresponding inner products.
Specifically, we represent real-valued functions as scalars on
the vertices of the mesh, i.e., u ∈ R|V|, and extend them to
the whole mesh using piecewise linear hat basis functions.
Similarly, vector fields are treated as piecewise-constant on
the faces of the mesh, i.e., v ∈ R3|F|.

For defining discrete inner products we require vertex
and face areas, denoted by AV ∈ R|V| and AF ∈ R|F|,
respectively. For the vertex area we use 1/3 of the total
area of its adjacent triangles, and we define an interpolating
matrix IFV ∈ R|V|×|F| which interpolates quantities from
faces to the vertices, i.e., IFV (i, j) = AF (j)

3AV(i) , iff vertex i
belongs to face j and 0 otherwise. This choice implies that
AF = (IFV )TAV , which will be important for consistency
later. Now, discrete inner products are defined by:∫

Γ
u1u2da = uT1GVu2,

∫
Γ
〈v1, v2〉da = vT1GFv2,

where GV = [AV ] ∈ R|V|×|V| and GF = [AF ] ∈ R3|F|×3|F|

denote the diagonal mass matrix of the vertices and the
faces.

Differential Operators. Equations (5) and (10) require dis-
crete gradient and divergence operators. In the smooth
case, these operators fulfill integration by parts, namely
on a surface without boundary we have:

∫
Γ〈v,∇Γu〉 da +∫

Γ u · divΓ v da = 0. In order to maintain discrete preser-
vation of mass (see appendix A), we need the operators
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gradΓ ∈ R3|F|×|V| and divΓ ∈ R|V|×3|F| to fulfill this
discretely, namely:

vTGF (gradΓ u) + (divΓ v)TGVu = 0,

for arbitrary v and u. Interestingly, the standard operators
(e.g., as defined in [32, Chapter 3]) fulfill this property.

Approximate normal field, curvature and gravity. As de-
scribed in the previous section, all of the required curvature
quantities can be computed once a suitable approximate
normal field is given. In practice, we use the area-weighted
averages of triangle normals [32, pg. 42] as vertex normals.
By applying the discrete gradient operator defined previ-
ously, the tangential gradient of the discrete normal field
per face j is:

(∇Γn)j =
1

2AF (j)

(
3∑
i=1

nji(J eji)T
)

where the sum runs over the three vertex normals nji of the
face and J eji is the rotated (by π/2) edge opposite to vertex
i in the triangle j (see Figure 5). The gravity quantities can
be computed as follows: z is the vertical coordinate function
and cosθ is the vertical component function of n.

Mobility. The discrete mobility M(u) is a 3|F| × 3|F|
diagonal matrix, where for each face the associated quantities
can be computed using Eq. (7), the curvature operators, and
the interpolated mass density uF on the faces (u is defined
on vertices).

Transport operator. In the continuous case, equation (10)
guarantees that the integral of ∂tu vanishes on a closed
surface (since the divergence of any vector field integrates
to 0). However, once we discretize u and v then divΓ(uv)
is no longer well defined using our discrete operators, since
uv is not a piecewise constant vector field. To avoid this
issue, we first apply the product rule to (10) and reformulate
the constraint as ∂tu = −(v · ∇Γu + udivΓ v). We then
follow [9] and define a directional derivativeD(v) such that
1TVGV (D(v) + [divΓ v])u = 0 for any u and v (see ap-
pendix A for the proof). Specifically, the directional deriva-
tive is given as D(v) ∈ R|V|×|V| by D(v) = IFV [v]T• gradΓ,
where [·]• ∈ R3|F|×|F| converts vector fields to block diago-
nal matrices.

The main advantage of this point of view is that in the
discrete case the transport equation turns into a system of
ODEs of the form ∂tu + Au = 0, for a constant matrix
A, which can be solved using a matrix exponential [33].
Thus, for a velocity v constant in time, the discrete transport
equation can be solved in the time interval [tk, tk+τ ] to yield
the solution

u = exp (−τD(v)− τ [divΓ v])uk (12)

at t = tk + τ , where τ is the time step. In the case of
evaporation, we have an additional term −τ [uk + ce]

−2 in
the exponential.

We compared our transport scheme to the method of [8]
on the bunny model which has obtuse triangles. Specifically,
we computed the difference in energy and the minimal u in
the first iteration for different time step sizes. In Figure 6
(left) we show that our method is consistently decreasing

the energy, whereas the method of [8] actually increases the
energy for small time steps. In addition, we show in Figure 6
(right) that their method yields negative values for u even
for very small time steps, whereas ours preserves the initial
value of the precursor layer.

0.01e-43.34e-46.67e-410e-4
-11.3

-6.9

-2.4

0
2.1

0.01e-43.34e-46.67e-410e-4

-0.71

-0.45
-0.2

0.05

τ

δ(
 

)

m
in

(u
 )

Ours
[Rumpf and Vantzos 2013]

τ

0

Fig. 6. Comparison with [8]. (left) Plot of the observed energy reduction
δ(E) = E(t + τ) − E(t) as a function of the time step τ , on a mesh
with obtuse triangles. The present scheme consistently decreases the
energy (δ(E) ≤ 0), whereas the other method has trouble with small time
steps. (right) Regarding the positivity of the solution, again on a mesh
with obtuse triangles, the present method preserves the initial minimum
u, whereas the other method exhibits negative values of u.

Furthermore, the suggested transport mechanism is
more appropriate to the flows we are interested in than
the one suggested by [8]. In particular, droplet formation
and fingering instabilities are transport-dominated effects.
Thus, a natural requirement from a transport mechanism
is to exhibit minimum diffusion, allowing to capture better
resolved fingers on relatively coarse meshes as we demon-
strate. We show in Figure 7 that starting from the same
initial conditions, our scheme is qualitatively less diffusive
compared to the method of [8].

5 FULLY DISCRETE MODEL
Given the above discrete operators and quantities, we can
write the fully-discrete optimization problem for computing
u,v given uk:

min
u,v

{
1

2τ
Dεuk(v,v) + Eε(u)

}
,

subject to u = exp (−τD(v)− τ [divΓ v])uk.

(13)

Ours

[Rumpf and Vantzos 2013]

t=0 t=0.25 t=0.5

Fig. 7. Starting from the same initial conditions and physical parameters,
our transport scheme (top) achieves a better resolved finger compared
to the result (bottom) generated with the more diffusive scheme sug-
gested in [8].
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Then, the fully-discrete energy and dissipation are given by:

Eε(u) = aTGVu+
ε

2
uT (GVB +L)u,

Dεuk(v,v) = vTGFM(uk)−1v,

where a = bz−H ,B = bcosθ−H2+2K, and the stiffness
matrix L = −GV divΓ gradΓ.

5.1 Properties

Discrete energy. The discrete energy Eε(uk) is non increasing.
Proof: Noticing that u = uk and v = 0 is an admissible

pair for the minimization problem (13) since they satisfy the
constraint, we have immediately that:

1

2τ
Dεuk(vk+1,vk+1) +Eε(uk+1) ≤ 1

2τ
Dεuk(0, 0) +Eε(uk)

⇒ Eε(uk+1) ≤ Eε(uk)

since Dεuk(vk+1,vk+1) ≥ 0 and Dεuk(0, 0) = 0.
Intuitively, since D is non-negative, if the fluid moved

and “paid” with dissipation, then it found a smaller energy
solution (otherwise it will have remained at the previous
state, with the same energy).

Discrete mass. The total discrete mass m(u) =
∫
Γ u da =

1TVGVu is exactly preserved.
Proof: The transport equation (12) can be written as

u = exp(−τA)uk, where A = D(v) + [divΓ v]. In ap-
pendix A we show 1TVGVA = 0 for any velocity v. Hence,
we have m(uk) − m(u) = 1TVGV {id− exp(−τA)}uk =

1TVGV
{
τA− τ2

2 A
2 + . . .

}
uk = 0.

5.2 Optimization
To solve the discrete variational model (13) we use the first
order approximation exp(−τA) ≈ id−τA of the matrix
exponential, so that the linear equation:

u = uk − τ(D(v) + [divΓ v])uk (14)

replaces the non-linear constraint (12). Hence, at every time
step we solve a quadratic problem with a linear constraint,
which is convex for a small enough τ (see §5.3 “Dynamic
Time-stepping”). As we will show next, this can be done
very efficiently, by solving a single linear system for u. Note
that it is straightforward to check that the results of §5.1 hold
for the linearized constraint as well, hence we gain efficiency
yet do not lose stability.

The linear system. Using the method of Lagrange multipli-
ers we obtain the first order necessary conditions:

GFM(uk)−1v −
(
D(uk) + [uk]divΓ

)T
GVp = 0

GV (a+ εBu) + εLu−GVp = 0

GV
(
u− uk + τ(D(v) + [divΓ v])uk

)
= 0,

(15)

where p is the dual variable.
A key ingredient to deriving (15) is the dual opera-

tor D(u), defined such that D(v)u = D(u)v, as it al-
lows us to take derivatives with respect to v. This op-
erator is: D(u) = IFV [gradΓ u]T• . Similarly, it holds that
([u]divΓ)v = [divΓ v]u.

Figure |V| Avg. per step #steps Total time
Fig. 1, Bunny* 38306 0.484 1999 967.8
Fig. 4, Bumpy plane 40401 0.683 4996 3410.4
Fig. 4, Scherk surface 40401 0.627 1997 1252.4
Fig. 9, Rounded cube* 19728 0.142 4991 709.5
Fig. 10, Sphere 40962 1.645 300 493.5
Fig. 12, Moomoo* 16710 0.080 1981 158.4
Fig. 13, Torus 40000 1.079 456 491.8
Fig. 14, Moai 89126 3.106 314 975.3
Fig. 15, Rain 10242 0.198 18001 3570.1
Fig. 17, Pensatore 27732 0.818 991 810.3
Fig. 16, Wine glass* 38976 0.708 496 351.1

TABLE 1
Timing statistics (in seconds). Asterisk denotes simulations where an

iterative solver was used, whereas for the rest, we used a direct
non-iterative solver.

Finally, eliminating v and p, we arrive at the following
reduced linear system for u:(

id +τεR(uk,uke)(GVB+L)
)
u = uke−τR(uk,uke)GVa

(16)

where R(uk,uke) = F (uke)M(uk)G−1
F F (uke)T and

F (uke) = D(uke) + [uke ]divΓ and uke = exp(−τ [uk +
ce]
−2)uk if evaporation is included and uke = uk otherwise.
Thus, we obtain a fully discrete scheme where given an

initial mass density u0, we evolve it in time using the above
update rule.

We implemented our method in MATLAB using stan-
dard linear solvers for Eq. (16). In all our experiments,
the method was very stable allowing for large time steps
(on the scale of O(ε + δx), which is excellent for 4th or-
der problems) depending on the initial conditions and the
underlying mesh. The experiments were performed on an
Intel(R) Xeon(R) processor with 32 GB RAM, and we show
in Table 1 the statistics for the different simulations.

5.3 Limitations

Dynamic Time-Stepping. Given that the stiffness matrix
L is positive semi-definite, the system (16) is invertible as
long as τ1 ε‖R(uk)‖2‖GF‖2B ≤ 1, whereB is the absolute
taken on the minimum value ofB and it is a measure of how
strongly negative the quantity b cos θ − T is on the surface.
Moreover, we employ a CFL-type condition depending on
the maximum velocity of the film v, and grid size, i.e., we
require that τ2v ≤ δx. Finally, we take the time step to be
τ = min{τ1, τ2}.

Positivity Preservation. Unfortunately, even if we start
from a strictly positive u0, the evolution of the
film uk is not guaranteed to stay positive [8].

u k

v

Fig. 8. Capillarity ridge with high ve-
locity and undershooting.

Aside from being non-
physical, in the case of
negative values, droplets
might rupture. In practice,
all of our simulations re-
main positive, excluding
the evaporation example.
Nevertheless, the evapora-
tion term has a stabilizing
effect, indeed, negative mass concentrations are also evapo-
rated. Intuitively, positivity is difficult to maintain due to
the jump in pressure along the triple line (the interface
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where air, solid and liquid meet). Moreover, the so-called
capillary ridge is formed, due to the competition between
surface tension and other forcing effects, e.g., gravity, see
Figure 8 and 9. Thus, right where the film is at its thinnest,
the resulting velocity is high, implying instability along the
direction of motion. We leave further investigation of the
issue of positivity preservation for future work.

Fig. 9. In the absence of gravity, the fluid departs areas where the mean
curvature is strongly negative and capillary ridges form. Later, surface
tension balances the fluid on top of every face, cf. [5] (u0 = 0.1, b =
0, ε = 0.1, β = 0).

Meshes with creases. In general, the model we developed
in Section 2 has a strong dependency on the consistency
of the vertex normals. In practice, general meshes might
have creases, or small dihedral angles, which will cause H
to be arbitrarily negatively large and non-smooth. This can
have a detrimental effect on the simulation, as the fluid will
be drawn towards these singular locations. There are two
possible remedies for this situation: we can either refine
the mesh (possibly non-uniformly), however that would
require additional pre-processing before one can apply our
scheme to an arbitrary model. Alternatively, we can add a
regularizer to the energy so that it is easier to control the
simulation. We opted for the second option, as it makes our
method easier to use, and can allow the artist some freedom
to control the simulation in a non-physical way. Hence,
for meshes with creases (see e.g., Fig. 17), we multiply
the stiffness matrix L defined in Section 5 by a constant
1 ≤ r ≤ 100. This effectively adds some numerical diffu-
sion, allowing for more smooth solutions. Note that discrete
conservation of mass is not affected by this modification.
Detachment of fluid. As the fluid is “tied” to the surface,
droplets cannot detach when they become too large. In these
cases, the droplets grow narrower and taller until equilib-
rium is reached and the approximate lubrication solution is
stable, although the full 3D flow is not. Note, that in this
case one could potentially switch to a full 3D simulation,
which will allow the droplet to separate from the surface.
This is an interesting direction for future research.

6 EXPERIMENTAL RESULTS

Parameter exploration. We begin by exploring the effect
of various parameter choices on the simulation of the thin
film. For this example, we choose a sphere as a simple
geometric model with limited curvature effects on the flow.
The basic experiment includes placing a concentration of
fluid at the top of the sphere, with slightly perturbed initial
conditions to avoid perfect symmetry. Due to gravity the
fluid flows downward, and the initial perturbations give
rise to fingering instabilities, (see [34] for an experimental
demonstration of fingering on a sphere). The result for the

parameters ε = 0.05, b = 50, β = 0 is shown in Figure 10 (f),
demonstrating the emergence of a secondary finger in the
center (see also Fig. 16, showing multiple fingers in a wine
glass).

We refer to this setup as the reference configuration, and
now modify in every column of the figure a single param-
eter to isolate its effect on the simulation, for which we
show a snapshot at time t = 10. Left: varying b changes
the speed with which the film flows downward, without
strongly affecting the shape of the fingers. Specifically, for a
lower b value (a), the secondary finger does not emerge yet,
whereas for a higher b value (b) it is more pronounced than
in the reference configuration. Middle: changing ε affects
the surface tension component, and therefore the shape of
the fingers. Reducing ε yields thinner fingers (c), whereas
increasing it (d) makes more viscous thick fingers, and elim-
inates the secondary finger. Right: increasing β considerably
speeds up the fluid (e), allowing it to flow more freely in all
directions (as opposed to increasing b which causes faster
flow in the direction of gravity).

Energy reduction. The numerical scheme we use is guar-
anteed by construction to reduce the energy E(u) at every
time step. Figure 11 shows the energy decay in time, for
the different simulations in Figure 10. We observe that the
slip parameter β affects the speed with which the energy
is reduced, the gravity parameter b also affects the initial
value of the energy, and the parameter ε has a minor impact
on the energy, as it is dominated by the leading order term.

Thin films interaction. Figure 12 demonstrates the flow and
interaction of thin films on the moomoo model. The higher
bulk of fluid accumulates beneath the horns of the model,
followed by a faster motion when it comes in contact with
the lower bulk of fluid (see also Figure 14). Then, the motion
is mostly determined by the two main fingers flowing on
the sides of the model. In Fig. 15 we show the interaction
of many droplets viewed from four sides of the unit sphere.
We repeatedly pour new droplets at the top of the sphere at
a fixed rate and drain the liquid from the bottom.

Droplet formation. A thin film concentrating beneath a flat

ε=0.05, b=30, β=0

ε=0.05, b=50, β=0ε=0.1, b=50, β=0

ε=0.05, b=50, β=0.05ε=0.005, b=50, β=0

ε=0.05, b=75, β=0

0.11

0.04

0

0.08a c e

d fb

Fig. 10. Fingering behavior for varying parameters, at t = 10. In every
column, one parameter is modified from the reference configuration (f).
See the text for details.
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Fig. 11. The energy E(u) for the simulations in Figure 10.

surface develops an instability called droplet formation (cf.
[35]). In Figure 13, we start with a uniform layer of fluid
on the torus with small perturbations, and allow it to drop
beneath the torus due to gravity. As the fluid accumulates
around the circular set of lowest points, droplets form.
Evaporation. Figure 14 shows how evaporation (ce = 0.01)
and the precursor layer affect the motion of the film. We
deposit precursor layers of different heights on the two
halves of the Moai model and place a similar bulk of fluid
near the eyes. Due to the initially thicker precursor layer,
even though it evaporates quickly, the film on the left part
of the model flows to a greater distance compared to the
film on the right. Eventually, all the film evaporates.

7 VAN DER WAALS POTENTIAL TERM.
As mentioned in the limitations section, a major drawback
of our method is that the positivity of the mass density
u is not guaranteed. One approach towards solving this
issue is to add the integrated non-linear potential term∫
ΓW (u)da ≈ 1TVGVW (u) to the discrete energy Eε(u).

The purpose of this term is to penalize values of u that
are under a certain threshold up. A computationally simple
choice, commonly used to model intermolecular forces, is
the well-known Lennard-Jones (LJ) potential [36] given by

W (u) =
1

2

(up

u

)4
−
(up

u

)2
.

Fig. 12. Flow on the moomoo model (b = 20, ε = 0.1, β = 0). Note how
the upper and lower films interact: the larger mass density of the upper
film causes it to catch up with the lower front leading to the formation of
quickly propagating fingers.

Fig. 13. Starting from a perturbed uniform layer of fluid, the fluid flows
downwards, accumulates and finally forms droplets.

In the context of thin films, the LJ potential was used
in [37], and in addition to maintaining the height of the
precursor layer, it also leads to the spontaneous formation of
droplets (pearling) due to the potential well (see inset figure).

0
up

W(u)Namely, the modified energy favors
large densities of fluid (where the po-
tential is zero) or densities of the pre-
cursor layer size (where the potential
has a minimum). Overall, using the LJ
potential stabilizes the simulation by
promoting the continued positivity of
the solution. Although it is not entirely accurate physically,
it is similar enough to the real intermolecular interactions,
that occur between substrate, liquid film and the air and
determine the hydrophobic/hydrophilic properties of the
surface, to achieve visually appealing results.

The modifications needed to incorporate the LJ potential
can be summarized as follows. The new energy is given
by EεW (u) = Eε(u) + 1TVGVW (u). Thus, the new Euler–
Lagrange equations (15) can be reduced to the following
primal-dual system

p = a+ ε
(
B +G−1

V L
)
u+W ′(u) ,

u = uk − τR(uk)GVp .
(17)

Therefore, the resulting Newton system can be written as(
id −ε(B +G−1

V L)− [W ′′(u)]
τR(uk)GV id

)(
δp
δu

)
=

(
rp
ru

)
,

(18)
where

−rp = p− a− ε(B +G−1
V L)u−W ′(u) ,

−ru = u− uk + τR(uk)GVp .

The correction for δp can be eliminated, resulting in a single
equation for the update of u. The modified update rule (16)
for the correction is given by(

id +τ R(uk)GV
(
ε(B+G−1

V L) + [W ′′(u)]
))
δu =

u− uk+τR(uk)GV
(
a+ ε

(
B+G−1

V L
)
u+W ′(u)

)
.

(19)

A single Newton step takes the form of u← u− γδu, with
0 < γ ≤ 1 such that the energy is reduced. In practice we
took γ = 1 in all of the examples that we show. As for
the initial guess for the Newton iterations, we took u =
uk. Unfortunately, the concavity of W (u) poses a too strict
requirement on τ for the system (19) to be invertible. In
practice, we split the potential to its convex W+(u) and
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Fig. 14. Evaporation effect on the evolution of the film.

concave −W−(u) parts, so that the usual bound discussed
in subsection 5.3 can be used. Specifically, we define

W̃ (uk,u) = W+(u)−
(
W−(uk) +W ′

−(uk)(u− uk)
)
,

where for the LJ potential we have W+(u) = 1
2

(up

u

)4 and
W−(u) =

(up

u

)2. Finally, we modify the system (19) such
that W ′′(u) →W ′′

+(u) and W ′(u) →W ′
+(u) −W ′

−(uk).
Note that a small value for the threshold up can approxi-
mate an effectively de-wetted surface (i.e. a very thin pre-
cursor layer) with droplets of apparently compact support.
As small values of up exacerbate the non-convexity of the
LJ potential, this necessitates smaller time steps.

In Figure 18 we show the effect of pearling that occurs
whenever a trail of thin layer of liquid appears during the
motion. In Figure 19 we show that due to the high attractive
and repulsive forces, droplets emerge spontaneously. Both
of these effects are achievable due to the Van der Waals non-
linear potential term.

8 CONCLUSION

We presented a novel method for simulating viscous thin
film flow on triangulated meshes. Our approach is based on
a variational time discretization and is therefore stable and
allows for large time steps. Furthermore, we guarantee by
construction that the discrete total mass is preserved and
that the discrete energy is non-increasing. The algorithm is
based on a single sparse linear solve per iteration, and is
therefore very efficient. We demonstrated various intricate
film motions, such as viscous fingering and droplet interac-
tion.

There are many potential extensions to our model. For
instance, it might be possible to extend the model to handle
effects due to surface tension gradient. Also, our discretiza-
tion of the mass transport constraint might be potentially
useful in additional applications. Finally, we mentioned
various extensions throughout the paper such as positivity
preservation and fluid detachment which might be interest-
ing to achieve.

APPENDIX
DISCRETE CONSERVATION OF MASS
To prove that mass is strictly preserved we recall the first
order necessary conditions in the context of the Lagrangian.

τGFM(uk)−1v − τ
(
D(uk) + [uk]divΓ

)T
GVp = 0

GV (a+ εBu) + εLu−GVp = 0

GV
(
u− uk + τ(D(v) + [divΓ v])uk

)
= 0

It is interesting to note that, using the definition of L and a
discrete integration by parts, the second equation is equiva-
lent to p = a+εBu−ε divΓ gradΓ u in correspondence to
the corresponding continuous equation p = a+ εbu− ε∆Γu.

At first, we rewrite the first equation and get

v=M(uk)G−1
F

(
D(uk) + [uk]divΓ

)T
GVp

=M(uk)G−1
F

(
[gradΓ u

k]•(I
F
V )TGVp+ divΓ

T [uk]GVp
)

=M(uk)G−1
F

(
[(IFV )TGVp]gradΓ u

k+divΓ
T GV [uk]p

)
=M(uk)G−1

F

(
[GFI

V
Fp]gradΓ u

k −GF gradΓ[uk]p
)

=M(uk)
(

[pF ]gradΓ u
k− gradΓ[uk]p

)
using the facts that GV and [uk] commute as diagonal
matrices, that [v]•uF = [uF ]v for any uF (discrete scalar
on faces) and v (discrete vector), and that the interpolation
matrices are defined so that IVF = G−1

F (IFV )TGV . Again, it
is interesting to note that the equation above is an approxi-
mation of the corresponding continuous one:

v = M(uk)
(
p∇Γu

k −∇Γ(ukp)
)

= −ukM(uk)∇Γp

Now, we consider the discrete m(u) = 1TVGVu with 1V
a vector of ones of length |V|. Indeed, multiplying the third
equation with 1TV , using the duality ofD andD, and taking
into account that the interpolation matrix IVF is defined so
that IVF1V = 1F we obtain

m(uk+1)−m(uk) = −τ 1TVGV (D(v) + [divΓ v])uk

= −τ 1TVGV
(
D(uk) + [uk]divΓ

)
v

= −τ vT
(
D(uk) + [uk]divΓ

)T
GV1V

= −τ vTGF
(

[IVF1V ]gradΓ u
k − gradΓ[uk]1V

)
= −τ vTGF

(
gradΓ u

k − gradΓ u
k
)

= 0 .

p
p/2

p/2

Fig. 15. Rain of droplets lead to their interesting interaction over the
sphere (see the video for the full simulation). The sphere is shown from
its four sides, where the axis of rotation is shown above.
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The key step is applying the previous calculation with p =
1V and so the discrete conservation of mass is equivalent to the
fact that a constant discrete pressure gives zero discrete velocity.
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