
MULTIVARIATE REGRESSION AND MACHINE LEARNING WITH

SUMS OF SEPARABLE FUNCTIONS. ∗

GREGORY BEYLKIN† , JOCHEN GARCKE‡ , AND MARTIN J. MOHLENKAMP§

Submitted for publication December 2007; revised September 2008.

Abstract. We present an algorithm for learning (or estimating) a function of many variables
from scattered data. The function is approximated by a sum of separable functions, following the
paradigm of separated representations. The central fitting algorithm is linear in both the number of
data points and the number of variables, and thus is suitable for large data sets in high dimensions.
We present numerical evidence for the utility of these representations. In particular, we show that
our method outperforms other methods on several benchmark data sets.

Subject Classification: 62J02 General nonlinear regression, 62H99 Multivariate anal-
ysis, 65D15 Algorithms for functional approximation, 68T05 Learning and adaptive
systems.
Keywords: multivariate regression, machine learning, curse of dimensionality, separa-
tion of variables.

1. Introduction. We consider the multivariate regression problem in high di-
mensions. Starting from a set of scattered data,

D = {(xj , yj)}
N

j=1
=
{

(xj
1, · · · , xj

d; yj)
}N

j=1
, (1.1)

the goal is to construct a function g(x) such that g(xj) ≈ yj in some (usually average)
sense, and g provides a reasonable model when evaluated at other x. Such problems
arise frequently in statistics and machine learning.

We are interested in the case where the dimension d is large, but the underlying
function that generated the data is fairly “simple”. It is easy to construct a function
whose discretization would require a grid with M points in each direction and, thus,
N = Md samples. Since Md is impossibly large for even moderate values of M
and d, we must assume N ≪ Md and, therefore, the data cannot describe such a
function to begin with. Such consequences of the curse of dimensionality exclude the
representation of arbitrary functions. Instead, our construction should accommodate
a sufficiently rich class of functions so that we are able to form reasonable regression
functions to fit the data. In this work we represent g(x) as a sum of separable
functions. This class of functions allows surprisingly accurate approximations for a
wide variety of important examples, while also allowing algorithms that scale linearly
in both N and d.

As a simple instructive example of the type of problems we are interested in,
consider learning to touch your forehead with a finger while your eyes are closed.
Before making any decisions on how to move your arm and hand, you need some
estimate of the current position of your finger. Between your forehead and your finger
are several joints, with (at least) d = 10 angles. One strategy is to use sensory input

∗ This material is based upon work supported by the National Science Foundation under Grant
DMS-0545895 (M.J.M.), and the DARPA/ARO under Grant W911NF-06-1-0254 (G.B and M.J.M.).

† Department of Applied Mathematics, University of Colorado at Boulder, 526 UCB, Boulder CO
80309-0526; beylkin@colorado.edu.

‡ Technische Universität Berlin, Institut für Mathematik, Sekretariat MA 3-3, Straße des 17. Juni
136, 10623 Berlin, Germany; garcke@math.tu-berlin.de.

§ Department of Mathematics, Ohio University, 321 Morton Hall, Athens OH 45701;
mjm@math.ohiou.edu.

1

2 G. BEYLKIN, J. GARCKE, and M. J. MOHLENKAMP

from your muscles and joints to determine these angles, and then use geometry to
calculate the distance (or vector) from your finger to your forehead. A second strategy,
which we advocate for here, is to learn this distance function by gathering data and
forming a regression function. Using your eyes, you can determine the distance that
corresponds to a given set of angles (or the raw sensory input), and so acquire a data
point. By moving your arm around, you can acquire a training set. After building a
regression function, you can close your eyes and simply evaluate this function at the
current angles to estimate the distance, instead of computing it using geometry. In
this example the function has many variables, but is not inherently complicated, and
so our method would be appropriate.

A prerequisite for the construction of g(x) is the ability to represent and manip-
ulate functions of many variables. In high dimensions it appears that one is forced
into either a radial (see e.g. [16, 18]) or separable approach. The separable approach
is based on the classical approximation of such a function as a separable function,

g(x) =

d
∏

i=1

gi(xi) . (1.2)

When this approximation is not good enough, it is natural to consider a sum of
separable functions,

g(x) =
r
∑

l=1

sl

d
∏

i=1

gl
i(xi) . (1.3)

We call r the separation rank. The coefficients sl are solely for convenience, so that
we can have ‖gl

i‖ = 1. Many methods are based on this form but differ in how they
use it. A tensor product basis chooses the functions gl

i from a preselected master set
of orthogonal functions, forms all combinations, and then determines the coefficients
sl. If the one-variable basis has M elements, then there are r = Md combinations,
which is terribly large for even moderate parameter values. Thus the curse of di-
mensionality manifests itself, and the full basis cannot be used. Sparse grid methods
(see e.g. [5]) use decay estimates justified by hierarchical properties to eliminate many
of the combinations, resulting in a sparse tensor product decomposition that retains
O(M(log M)d−1) terms. They have been used in this context in [13, 12, 11]. Both
the tensor product basis and sparse grid basis produce linear approximation methods,
and result in exponential growth of r with d.

In the statistics literature, representations of the form (1.3) appear under the
names “parallel factorization” or “canonical decomposition”, see e.g. [15, 20, 21, 4, 7,
25]. They are used primarily to analyze data on a grid, typically in d = 3. Since the
goal is to interpret data, constraints on gl

i, such as positivity when one is interested
in probabilities, are often imposed. Similarly, since they only describe data on a grid,
a general regression function is not built.

In this work we demonstrate a method that also uses functions of the form (1.3)
but without constraints such as orthogonality or positivity on the gl

i. By removing
the constraints we switch from a linear to a nonlinear approximation method (see e.g.
[9]). In this context we call (1.3) a separated representation. The functions gl

i may be
constrained to a subspace, but are not restricted to come from a particular basis set.
We found in [1, 2, 23] that this extra freedom allows one to find good approximations
with surprisingly small r, and reveals a much richer structure than one would believe
beforehand. Although there are at present no useful theorems on the size r needed for

Regression with Sums of Separable Functions 3

a general class of functions, there are examples where removing constraints produces
expansions that are exponentially more efficient than one would expect a priori, i.e.
r = d instead of 2d or r = log d instead of d. These examples are discussed in detail
in [2, 23], but we will sketch a few here as illustrations. Notice that these examples
include the widely-used additive and linear models, as well as representations with
Gaussians.

First, as a simple example, note that in our approach we can have a two-term
representation

d
∏

i=1

φi(xi) +

d
∏

i=1

(φi(xi) + φi+d(xi)) (1.4)

where {φj}
2d
j=1 form an orthonormal set. To represent the same function as (1.4) while

requiring all factors to come from a master orthogonal set would force one to multiply
out the second term and thus obtain a representation with 2d terms. Thus a function
that would have r = 2d in an orthogonal basis may be reduced to r = 2. Second,
consider the additive model

∑d

i=1
φi(xi), and note that

d
∑

i=1

φi(xi) = lim
h→0

1

2h

(

d
∏

i=1

(1 + hφi(xi)) −

d
∏

i=1

(1 − hφi(xi))

)

. (1.5)

Thus we can approximate a function that naively would have r = d using only r =
2. This formula provides an example of converting addition to multiplication; it
is connected to exponentiation, since one could use exp(±hφi(xi)) instead of 1 ±
hφi(xi). Third, notice that using the usual trigonometric identity sin(A + B) =

sin(A) cos(B) + cos(A) sin(B) recursively, it appears that sin(
∑d

j=1
xj) requires r =

2d−1. We discovered that

sin





d
∑

j=1

xj



 =

d
∑

j=1

sin(xj)

d
∏

k=1,k 6=j

sin(xk + αk − αj)

sin(αk − αj)
(1.6)

for all choices of {αj} such that sin(αk − αj) 6= 0 for all j 6= k (see [23]), and thus
only r = d is needed. Fourth, note that using complex exponentials, we can write

sin





d
∑

j=1

xj



 =
1

2i
exp



i
d
∑

j=1

xj



−
1

2i
exp



−i
d
∑

j=1

xj



 (1.7)

=
1

2i

d
∏

j=1

exp (ixj) −
1

2i

d
∏

j=1

exp (−ixj) , (1.8)

and thus we can reduce to r = 2. This observation generalizes to any function with
a short Fourier series (the terms of which do not have to be consecutive). Note also
that in this case a rotation of the coordinate axes would introduce constants in front
of the xj , but would not effect r. Thus any linear model (g(x) = φ(

∑

aixi + b)) can
be accommodated, with r depending only on the complexity of the outer function φ,
as measured by the decay of its Fourier transform. Fifth, note that Gaussians are
separable, since

exp(−c‖x − z‖2) =

d
∏

i=1

exp(−c(xi − zi)
2) . (1.9)

4 G. BEYLKIN, J. GARCKE, and M. J. MOHLENKAMP

By expanding a radial function in Gaussians, one can obtain a separated representa-
tion for it. Several important operators, such as the inverse Laplacian, have radial
kernels and thus can be represented using this technique (see e.g. [2]).

The goals of this paper are to present algorithms to construct regression functions
of the form (1.3), and to give preliminary numerical evidence that such representations
are worth using.

First, in Section 2, we construct and present the basic algorithm for constructing
a regression function of the form (1.3). We also present several variants; in particular
we show how to handle vector-valued data, and how to incorporate regularization to
encourage smoothness and avoid overfitting. The algorithms are linear in both N and
d, and so are suitable for large data sets in high dimensions. The basic algorithm
depends (quadratically) on r and thus the central remaining issue is how large r must
be in practice.

Second, in Section 3, we demonstate by numerical experiments that interesting
functions can indeed be well approximated in the form (1.3) with small r. One can of
course construct functions where these methods would fail. However, our experiments
confirm that the class of functions that we can approximate well is wide enough to
include “naturally occurring” functions of many variables, and so these methods are
useful in practice. In particular, we show that our method outperforms other methods
on several benchmark data sets.

Remark 1.1. It may be appropriate to first transform the data locations using
a dimensionality-reduction technique such as principle component analysis (see e.g.
[16]), the Johnson-Lindenstrauss lemma [19], or manifold learning (e.g. [6]), and then
apply our method in the reduced coordinates. Thus while our method may sometimes
be used instead of these techniques, it can also be used in conjunction with them.

2. Description of the Algorithm. In this section we describe the basic al-
gorithm and several variants. First we give the core principles, which allow us to
reduce to one-dimensional subproblems. Second we describe how to solve this one-
dimensional subproblem when using a linear function space, and how to set up the
problem in the nonlinear case. Third we consider how to incorporate procedures to
avoid over-fitting. Finally we extend the method to vector-valued data and functions.

2.1. Core Principles.

2.1.1. Data-Driven Inner Product. We define a pseudo inner product on
functions by

〈f, g〉D =

N
∑

j=1

f(xj)g(xj) . (2.1)

We note that (2.1) is not a true inner product since we could have 〈g, g〉D = 0 if the
support of g is disjoint from the data. Since this pseudo inner product only involves
evaluations at the data points, we may take inner products with our data, i.e.

〈D, g〉D = 〈{(xj , yj)}
N

j=1
, g〉D =

N
∑

j

yjg(xj) . (2.2)

Regression with Sums of Separable Functions 5

Thus we can treat the data as if it were some unknown function. In the associated
pseudo norm the usual least-squares error is then simply given by

‖ {(xj , yj)}
N

j=1
− g‖2 =

N
∑

j=1

(yj − g(xj))
2 . (2.3)

Remark 2.1. Symmetries in the data can sometimes be built into the inner
product (2.1). See [2] for an example where the antisymmetry constraint in quantum
mechanics was built into a pseudo inner product.

2.1.2. Collapse to One-Dimensional Subproblems. We now assume that
an initial g of the form (1.3) is given, with some choice of representation for gl

i (to be
discussed later). We fix the components in all directions but one, and so collapse to
a one-dimensional problem. For ease of exposition we describe the case for direction
m = 1, and so fix gl

m for m > 1. We define the (fixed) partial products from the
remaining directions by

pl
j = sl

d
∏

i=2

gl
i(x

j
i) , l = 1, . . . , r, j = 1, . . . , N . (2.4)

The error (2.3) then reduces to

N
∑

j=1

(

yj −

r
∑

l=1

pl
jg

l
1(x

j
1)

)2

. (2.5)

To minimize (2.5) we must solve a one-dimensional least-squares problem involving
r one-dimensional functions gl

1. The method to do so will depend on the choice of
representation of gl

1, and, in particular, whether gl
1 is linear in the free parameters

(see Section 2.2).

2.1.3. Iterative Improvement. If we can solve the one-dimensional subprob-
lems, then we can iteratively solve such problems to reduce the error (2.3). One
strategy for ordering the iteration is the well-known Alternating Least-Squares (ALS)
approach (see e.g. [15, 20, 21, 4, 7, 25]), which was extended in [1, 2]. In this approach
one minimizes using direction m = 1 to obtain improved gl

1, then minimizes using di-
rection m = 2 to obtain improved gl

2, etc., and thus loops through (“alternates” in)
the directions m = 1, . . . , d. This approach is robust in that the error can never
increase, but its theoretical properties are not well understood. A second strategy is
to update all directions simultaneously (in which case a parallel computer could be
used). This second approach does not have the ordering bias present in ALS, but has
the disadvantage that it may actually increase the error.

In both cases one should repeat this process and monitor the change in error to
detect convergence. It is certainly possible to hit local minima, in which case one
would need to restart with a different guess or increase r. Even when we approach
the true minima, we have no reason to expect any better than linear convergence.
The minimization problem can be ill-posed [8]; in Section 2.3 we discuss a method to
avoid overfitting that also ensures the problem is well-posed.

2.1.4. Computational Cost, so far. Although we have deferred the discussion
on solving the one-dimensional subproblems, it is worthwhile at this point to account
for the computational cost to set up these problems. We assume that the number

6 G. BEYLKIN, J. GARCKE, and M. J. MOHLENKAMP

of ALS iterations or number of simultaneous parallel updates is K and that the cost
to evaluate a single gl

i at a single point is O(M). The cost to compute all pl
j for a

single m is then O(rdMN). If we use the parallel update rule with d processors, then
the cost (per processor) is thus O(rdMNK). It would appear that the ALS method
would have cost O(rd2MNK) since it has a loop through the d directions. However,
when we switch from, say, m = 1 to m = 2, we can simply update pl

j by multiplying

it by gl
1(x

j
1)/gl

2(x
j
2), at cost O(rMN). The total cost for the ALS formulation is thus

also

O(rdMNK) . (2.6)

Note that this cost is linear in all the parameters.

2.2. The One-Dimensional Subproblem.

2.2.1. with a Linear Function Space. We now consider how to solve the one-
dimensional subproblem in Section 2.1.2 in the case when gl

1 depends linearly on some
set of coefficients. We assume that we are given a function space of (finite) dimension
Ml in which to search for gl

1. For example, we could choose polynomials of some
degree. This space may be different for each term l in the sum, each attribute m,
and in general also for each (l,m) pair. We next choose some basis {φl

k}
Ml

k=1
for this

function space, but we emphasize that the results are independent of the particular
choice. The function gl

1 will be represented by Ml coefficients cl(k), organized in the
vector cl. We organize our basis functions φl

k into a vector-valued function Φl(x),
defined by

Φl =











φl
1

φl
2

...
φl

Ml











. (2.7)

Using (·)∗ to denote transpose, we then have gl
1 = Φ∗

l cl.
We will solve for the values of cl for all l, so those are the free parameters with

respect to which we minimize the error (2.5). Taking the gradient with respect to these
parameters and setting it equal to zero, we obtain the usual linear normal equations

Az = b . (2.8)

Since our free parameters have two indices (l, k), the system has a natural block
structure. We can hide the index k of the basis functions by using the vector notation
Φl. The blocks of A are then defined by

A(l, l′) =

〈

slΦl

d
∏

i=2

gl
i, sl′Φl′

d
∏

i=2

gl′

i

〉

D

=
N
∑

j=1

pl
jΦl(x

j
1)p

l′

j Φ∗
l′(x

j
1) (2.9)

for 1 ≤ l, l′ ≤ r, each of which is a Ml × Ml′ -matrix. The (block) entries in b are
defined by

b(l) =

〈

slΦl

d
∏

i=2

gl
i, {(xj , yj)}

N

j=1

〉

D

=

N
∑

j=1

yjp
l
jΦl(x

j
1) , (2.10)

Regression with Sums of Separable Functions 7

each of which is a vector of length Ml. The matrix A thus depends only on the data
locations {xj}, whereas b also depends on the values {yj}. Once A and b have been
constructed, we will solve the system. Since we expect that after a few steps of the
iteration in Section 2.1.3 we will have good starting values, we use the Conjugate
Gradient iterative method (see e.g. [14]) to solve (2.8). Once z is determined, we set
cl = z(l, ·), then renormalize gl

1 and incorporate the norm into sl.
For the computational cost bounds we now assume Ml = M for all l and that the

cost to evaluate φl
k is O(1), which would be the case e.g. for monomials. Given the

pl
j , it costs O(r2M2N) to compute A and O(rMN) to compute b. We denote by S

the number of conjugate gradient iterations needed, so the cost to solve the system
is O(r2M2S). Although S in theory could be as many as rM , we usually have a
very good starting point, and so expect only a very small number to be needed. The
computation cost for this method to solve the one-dimensional subproblem is thus

O(r2M2(N + S)) . (2.11)

If we incorporate this algorithm into the overall method and account for the costs and
considerations in Section 2.1.4, our total cost is

O(Kdr2M2(N + S)). (2.12)

The cost is linear in both d and N , and so the method is feasible for large data sets
in high dimensions.

Remark 2.2. The normalization for gl
1 is not determined by the inner product

(2.1). Since sl is not strictly necessary, we need not normalize at all; we do so only
to prevent over/under-flows.

Remark 2.3. It is common in machine learning that the coordinates in certain
directions xj are categories rather than numbers. In this case our function space is
a vector space, so we use a basis of vectors rather than functions, and index their
coordinates by the categories.

2.2.2. with Nonlinear Dependence. If gl
1 depends nonlinearly on the param-

eters cl, then the one-dimensional subproblem in Section 2.1.2 requires a nonlinear
optimization (see e.g. references in [16]). Typically the input for a nonlinear opti-
mization routine is the vector of errors, which in our case is

{ej}
N

j=1
=

{

yj −

r
∑

l=1

pl
jg

l
1(x

j
1)

}N

j=1

. (2.13)

For methods that require a derivative, we can compute

∂

∂cl(k)
ej = −pl

j

∂

∂cl(k)
gl
1(x

j
1) . (2.14)

With this information one can use one’s preferred nonlinear optimization method.
Remark 2.4. If one formulates the error (2.5) using something besides least-

squares, e.g. Huber-loss [16, 17] for regression or loss functions for classification like
maximum likelihood or the hinge loss used for support vector machines [16], then one
obtains a nonlinear optimization problem, as in this section. Some loss functions,
such as the hinge-loss, are not Frechet-differentiable, and so require a general descent
method such as subgradient-based approaches to minimize.

8 G. BEYLKIN, J. GARCKE, and M. J. MOHLENKAMP

2.3. Avoiding Over-Fitting. One issue to address for regression/learning al-
gorithms is the avoidance of over-fitting. As an extreme example of overfitting, one
could use the function

g(x) =

N
∑

j=1

yj exp(−c‖x − xj‖
2) (2.15)

to represent the data. For large enough c, this function would match the given data
nearly exactly, but be completely unreasonable for other locations. There are two
standard approaches to avoid over-fitting. In parametric methods, g is constrained to
be of a certain form, with only a few free parameters to determine. Assuming that
the model for g is correct, there is no room to over-fit. In nonparametric methods, g
is chosen from a much wider class of functions, with some mechanism encouraging the
choice of a nice (smooth) function. We will demonstrate how both these approaches
apply within our method.

There are two ways in which over-fitting can occur in our method. The first is
when r is too large. The algorithm can then attempt to fit the noise, and/or match the
data points individually. The parametric approach to avoid this effect is to choose
r very low. This is the natural approach to take, since r is the main complexity
parameter. As with all parametric methods, various more-or-less justified tests, or
simple cross-validation, can be used to choose the appropriate r.

The second way over-fitting can occur is when there is over-fitting in the one-
dimensional functions gl

i. In some sense this issue is off the topic of this paper, since
the collapse to one-dimensional subproblems in Section 2.1.2 allows users to choose
their favorite method (see e.g. [16]). There are, however, two natural ways to avoid
over-fitting within our framework. The first is to use a parametric approach, and
choose Ml small in Section 2.2. The second is to use a nonparametric approach and
incorporate regularization to encourage smoothness, as we describe next. Suppose
that in Section 2.2.1 we choose the basis {φl

k}
Ml

k=1
ordered with smoother functions

at the beginning. For example, if we are using polynomials, we could choose the
Legendre polynomials and order them by degree; if we are using wavelets, we can
order them with coarse-scale functions listed first. We now choose a list of penalty
weights 0 ≤ λl

1 ≤ · · · ≤ λl
Ml

. Instead of minimizing (2.5) we minimize

N
∑

j=1

(

yj −
∑

l

pl
jg

l
1(x

j
1)

)2

+
∑

l

s2
l

∑

k

λl
k|cl(k)|2 , (2.16)

where cl(k) are the expansion coefficients from Section 2.2.1. Tracking this change
into the normal equations, we see that the diagonal elements of A in (2.9) are modified
by adding to the block A(l, l) a matrix with s2

l λ
l
k on the diagonal. The relative sizes

of the λl
k can often be justified given the particular choice of a basis. The overall size,

however, will likely need to be determined by cross-validation. By choosing all λl
k > 0,

this form of regularization also prevents A from becoming singular in the case where
a basis function has support disjoint from the data, and ensures the minimization
problem is well-posed; see [2] for discussion on controlling condition number in this
way.

2.4. Vector-Valued Functions. In some machine learning problems there are
multiple response variables, i.e. g itself is vector-valued. One approach would be to
approximate each response variable separately. In the scalar case described above,

Regression with Sums of Separable Functions 9

our representation cost is rdM , so if we do v independent problems then our cost is
vrdM .

In this section we describe another approach, where we incorporate vector-valued
functions by replacing the scalar sl with a vector sl. We then have another “direction”,
which indexes the coordinate of the output, and in which we also fit. An importance
weighting for the coordinates can be included easily. Since this direction is discrete,
it is natural to take the unit coordinate vectors as a basis. Our approach tries to use
correlations between different response variables to get a more compact representation,
and results in a representation cost of r(v + dM). We present a numerical example
using this algorithm in Section 3.3, but do not have enough experience with it to
make specific claims about its effectiveness, or the wisdom of looking for correlations
in the response variables.

We replace (1.3) with

g(x;n) =

r
∑

l=1

sl(n)

N
∏

i=1

gl
i(xi), (2.17)

define g(x) = g(x; ·) and replace the inner product (2.1) with 〈f ,g〉D =
∑N

j=1
〈f(xj),g(xj)〉,

where 〈·, ·〉 is the vector inner product 〈w, z〉 = z∗w. When fitting in direction m = 1,
as described in Section 2.1.2, the error (2.5) becomes

N
∑

j=1

∥

∥

∥

∥

∥

yj −
r
∑

l=1

pl
jg

l
1(x

j
1)

∥

∥

∥

∥

∥

2

, (2.18)

since the partial product (2.4) is now vector-valued. When we fit in the new direction,

which corresponds to the coordinate of the output, we define ql
j =

∏d

i=1
gl

i(x
j
i) and

the error is

N
∑

j=1

∥

∥

∥

∥

∥

yj −
r
∑

l=1

slq
l
j

∥

∥

∥

∥

∥

2

. (2.19)

If we use a linear representation, as described in Section 2.2.1, the blocks of the
matrix A in (2.9) become A(l, l′) =

∑N

j=1
〈pl

j ,p
l′

j 〉Φl(x
j
1)Φ

∗
l′(x

j
1), and the vector b

in (2.10) becomes b(l) =
∑N

j=1
〈yj ,p

l
j〉Φl(x

j
1). When we fit in the direction of the

coordinate of the output, the matrix A in (2.9) becomes A(l, l′) =
∑N

j=1
ql
jq

l′

j and

the vector b in (2.10) becomes b(l) =
∑N

j=1
ql
jy

∗
j , which makes the entries of b (row)

vectors themselves.

3. Numerical Results. In this section we give numerical results for several
benchmark problems. We show that:

1. Given enough noise-free data, several interesting functions can be well ap-
proximated in the form (1.3).

2. Given a smaller set of noisy data, by incorporating the method to avoid over-
fitting we can still fit well, and in several cases outperform existing methods.

We first report the results of our exploratory testing on three commonly used
synthetic datasets originating from [10]. To avoid confounding issues, we use plenty
of data and do not include noise. Next we compare the performance of our algorithm
with the results in an extensive benchmark study from machine learning [22]. This

10 G. BEYLKIN, J. GARCKE, and M. J. MOHLENKAMP

Table 3.1

Mean Squared Error (MSE) for fitting the Friedman1 dataset with no noise, using polynomials
in each direction. The degree 0 entry estimates the variance in our realization of the data.

r = 1 r = 2 r = 3 r = 4
degree 0 23.8
degree 1 6.3 5.9 5.9 5.9
degree 2 2.1 1.0 0.33 0.024
degree 3 2.1 1.0 0.32 0.011

study includes the synthetic data sets from [10] as well as several real world data sets.
Finally, we consider an example with vector-valued data, to validate the approach in
Section 2.4.

3.1. Exploratory Testing on Synthetic Datasets. We first consider syn-
thetic data to allow some comparison of the function of the form (1.3) produced
by our approach with the real function. To avoid unwittingly constructing data cus-
tomized for our approach we consider three standard test functions for regression from
the literature [10]. In this section we are only studying how well we can approximate
these functions, so we use N = 20000 data points, without any noise.

3.1.1. Friedman1 Dataset. This standard test is the function

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 (3.1)

on ten variables x1, . . . , x10 uniformly distributed over the ranges 0 ≤ xi ≤ 1, with
the last five variables unused.

Choosing to use polynomials for the functions gl
i, we obtain the results in Ta-

ble 3.1. Using polynomials of degree three and r = 4, the model of the form (1.3) has
captured 99.95% of the variance. An illustration of the function constructed is given
in Figure 3.1. In the unused variables x6, . . . , x10 the dependence is correctly approxi-
mated as constant, and in the variables x3, x4, x5 with an additive contribution there
seems to be a structure similar to (1.5).

3.1.2. Friedman2 Dataset. This standard test is the function

y =

√

x2
1 +

(

x2x3 −
1

x2x4

)2

, (3.2)

with the four variables uniformly distributed over the ranges 0 ≤ x1 ≤ 100, 40π ≤
x2 ≤ 560π, 0 ≤ x3 ≤ 1, and 1 ≤ x4 ≤ 11. This function has variance 3752 = 140625
and describes the physics of a simple alternating current series circuit [10], as does the
following data set. For our test we shifted and scaled the xi variables to lie in [0, 1].

Choosing to use polynomials for the functions gl
i, we obtain the results in Ta-

ble 3.2. Using polynomials of degree two and r = 2, the model of the form (1.3) has
captured 99.985% of the variance. An illustration of the function constructed is given
in Figure 3.2.

3.1.3. Friedman3 Dataset. This standard test is the function

y = tan−1

(

x2x3 − (x2x4)
−1

x1

)

, (3.3)

Regression with Sums of Separable Functions 11

l sl i = 1 2 3 4 5 6 7 8 9 10

1 30.27

2 5.01

3 11.03

4 8.80

Fig. 3.1. The function of the form (1.3) using polynomials of degree three that captures 99.95%
of the variance of the Friedman1 function (3.1). Each sub-plot shows a gl

i
(xi).

Table 3.2

Mean Squared Error (MSE) for fitting the Friedman2 dataset with no noise, using polynomials
in each direction. The degree 0 entry estimates the variance in our realization of the data.

r = 1 r = 2 r = 3
degree 0 143303
degree 1 177 51 51
degree 2 162 21 20
degree 3 155 11 9

with the four variables uniformly distributed over the ranges 0 ≤ x1 ≤ 100, 40π ≤
x2 ≤ 560π, 0 ≤ x3 ≤ 1, and 1 ≤ x4 ≤ 11. This function is reported to have variance
0.32 = 0.09, but we measured the variance to be 0.100. Again, for our test we shifted
and scaled the xi variables to lie in [0, 1].

Using Polynomials. Choosing to use polynomials for the functions gl
i, we obtain

the results in Table 3.3. The fitting is not as good as in the previous examples.
Examining (3.3) we note that when x1 ≈ 0, the function is nearly discontinuous, with
a jump from −π/2 to π/2 when the numerator changes sign. Thus polynomials are
not a good choice for a basis in x1.

12 G. BEYLKIN, J. GARCKE, and M. J. MOHLENKAMP

sl i = 1 2 3 4

1767.99

117.34

Fig. 3.2. The function of the form (1.3) with r = 2 using polynomials of degree two that
captures 99.985% of the variance of the Friedman2 function (3.2). Each sub-plot shows a gl

i
(xi).

Table 3.3

Mean Squared Error (MSE) for fitting the Friedman3 dataset with no noise, using polynomials
in each direction. The degree 0 entry estimates the variance in our realization of the data.

r = 1 r = 2 r = 3 r = 4
degree 0 0.100
degree 1 0.045 0.035 0.032
degree 2 0.029 0.016 0.013
degree 3 0.023 0.0092 0.0068 0.0063
degree 4 0.021 0.0050 0.0043 0.0039
degree 5 0.021 0.0053 0.0034 0.0031
degree 6 0.0035

Using Rational Functions. We next chose to replace the polynomials with
rational functions, which allows us to demonstrate the nonlinear one-dimensional
fitting, as described in Section 2.2.2. The resulting errors are given in Table 3.4.
Using rational functions of degree three in numerator and denominator and r = 4,
the model of the form (1.3) has captured 99.598% of the (measured) variance. An
illustration of the function constructed is given in Figure 3.3.

Further testing, however, revealed that this method was unstable, and subject to
severe overfitting. The regularization mechanism we used to avoid overfitting was to
penalize higher degree terms in both the numerator and denominator. With hindsight
it is clear that in the denominator we should instead penalize zeros that are close to
the real interval [0, 1] in the complex plane, so that we do not have poles or near
poles. Although this seems possible, it is a bit off-topic, so we stopped our testing of
this approach at this point. We also note that the nonlinear fitting was much slower
than the linear fitting methods.

Using a Multilevel Basis. Next we tried using a multilevel basis of tent func-
tions on the interval [0, 1], as was used e.g. in [13]. On level 0 this consists of the
functions 1 and x. On level 1 we additionally include the tent function of support 1

Regression with Sums of Separable Functions 13

Table 3.4

Mean Squared Error (MSE) for fitting the Friedman3 dataset with no noise, using rational
functions in each direction. Both the numerator and denominator are of the degree indicated.

r = 1 r = 2 r = 3 r = 4
degree 1 0.018 0.0071 0.0012 0.00093
degree 2 0.018 0.0050 0.00081 0.00042
degree 3 0.0039 0.00081 0.00040

sl i = 1 2 3 4

0.1523

2.2228

2.0519

0.9515

Fig. 3.3. The function of the form (1.3) with r = 4 using rational function of degree two in
numerator and denominator that captures 99.598% of the variance of the Friedman3 function (3.3).
Each sub-plot shows a gl

i
(xi).

centered at 1/2, i.e. the line segments from (0, 0) to (1/2, 1) and then to (1, 0). Level
2 adds two tent functions of width 1/2, centered at 1/4 and 3/4, etc. The resulting
errors are given in Table 3.5. Using this multilevel basis up to level 6 and r = 4,
the model of the form (1.3) has captured 99.627% of the (measured) variance. An
illustration of the function constructed is given in Figure 3.4. At higher levels, a
small amount of the regularization (2.16) was used to encourage a smoother graph,
and suppress any basis functions that might have support disjoint from the data.

3.2. Benchmark Comparisons. We now compare the performance of our al-
gorithm to the results of a benchmark study [22]. That study considered the generated
data sets from Section 3.1, as well as several typical real data sets from different appli-
cation domains; for the data, see http://www.ci.tuwien.ac.at/~meyer/benchdata/ .
Using the mean squared error (MSE) to measure the error, it empirically compared
the following regression methods: linear regression, ǫ-support vector regression with a
Gaussian-RBF-kernel (svm), neural networks (nnet), regression trees, projection pur-

14 G. BEYLKIN, J. GARCKE, and M. J. MOHLENKAMP

Table 3.5

Mean Squared Error (MSE) for fitting the Friedman3 dataset with no noise, using a multilevel
basis of tent functions in each direction.

r = 1 r = 2 r = 3 r = 4
level 0 0.045 0.035 0.032 0.032
level 1 0.032 0.020 0.017 0.017
level 2 0.023 0.010 0.0066 0.0066
level 3 0.020 0.0063 0.0027 0.0024
level 4 0.019 0.0050 0.0016 0.00085
level 5 0.019 0.0047 0.0013 0.00046
level 6 0.0045 0.0012 0.00037

sl i = 1 2 3 4

1.2641

2.1831

2.4819

1.8343

Fig. 3.4. The function of the form (1.3) with r = 4 using a multilevel basis of tent functions
that captures 99.627% of the variance of the Friedman3 function (3.3). Each sub-plot shows a gl

i
(xi).

suit regression (ppr), multivariate adaptive regression splines, additive spline models
by adaptive backfitting (Bruto), bagging of trees, random forest (rForest), and mul-
tivariate adaptive regression trees (mart).

Ten-fold cross-validation was performed ten-times; we report the means and me-
dians of all 100 runs, whereas the standard deviation and inter-quartile range are
computed with respect to the ten averages from the ten-fold subsets. For comparison
we give the best result from the benchmark study and note the rank of our approach
in comparison to the other methods used. Overall, we achieve the best performance
of all the methods tested.

The representation (1.3) is quite flexible, but that also means there are many free
parameters/choices. One needs to select the separation rank r, the one-dimensional

Regression with Sums of Separable Functions 15

Table 3.6

Summary of the results on synthetic data as described in Sections 3.1.1, 3.1.2, and 3.1.3. We
give the mean (with standard deviation) and median (with inter-quartile range) of the MSE for our
approach, the best results from [22] and our rank in comparison to all approaches used in [22].

best result from [22] our approach
data set criteria method error error rank
Friedman1 mean Bruto 3.22 2.44 (0.18) 1/11

median Bruto 3.20 (0.14) 2.34 (0.26) 1/11
Friedman2 mean svm 18130 16897 (520) 1/11

median svm 17990 (760) 16658 (422) 1/11
Friedman3 mean nnet 0.01812 0.02172 (0.00119) 2/11

median nnet 0.01625 (0.00129) 0.02048 (0.00174) 2/11

basis/representation (which in principle can change with l and i), and the parameters
to avoid over-fitting.

To choose these parameters we proceed here as in the benchmark study [22]. We
split the training data, use two thirds for learning and one third for validation. Using
this splitting we learn over a suitable range of the three involved parameters: r, the
size of one-dimensional basis, and the regularization factor. We pick the parameter
set with the best results on the validation third, and then learn on the whole training
data and evaluate on the separate and as-yet unseen test data. This result we use
for comparison with the other approaches. More refined techniques for choosing good
parameters might be possible, but the usual approaches of cross-validation or splitting
the training data into 2 data sets work sufficiently well for our method. We assume
that this is in part due to the insensitivity of our approach to additional data positions
since our representation is independent of the data locations.

Remark 3.1. Since our algorithm may encounter local minima, one should try
multiple initial guesses and select the best results. We did not use or experiment with
multiple guesses in our benchmark comparisons, although they might further improve
the performance.

3.2.1. Synthetic data sets. For the synthetic data sets from Section 3.1, the
benchmark study [22] compared ten different regression methods by performing 100
repeats for training sets with 200 examples and test sets with 1000 examples, both
including normally distributed noise with variance set as in [10]. Since noise is present
and there are relatively few data points, we incorporated the regularization (2.16) to
avoid overfitting. For each of the 100 repeats we perform a separate parameter search
as described above. In Table 3.6 we summarize the results for all three synthetic data
sets.

On the Friedman1 dataset, the variance of the noise is set to 1. We chose a basis
of monomials, penalized them by their degree, and scaled the penalties by the overall
factor λ.

On the Friedman2 dataset, the variance of the noise is set to 1252 = 15625, which
gives a signal-to-noise ratio of 3:1. We noticed that the simple setting of polynomials
of degree one and separation rank one was often choosen in the parameter search.
Since the MSE is already close to the variance of the noise, using higher degree or
separation rank more likely results in overfitting.

On the Friedman3 dataset, the variance of the noise is 0.12 = 0.01, again resulting
in a signal-to-noise ratio of 3:1 (based on the reported signal variance). As discussed

16 G. BEYLKIN, J. GARCKE, and M. J. MOHLENKAMP

Table 3.7

Results on real data sets from the study [22]. We give the mean (with standard deviation)
and median (with inter-quartile range) for the best results from [22] and for our approach using
polynomials and using the multilevel basis, and our rank in comparison to all approaches used
in [22].

best result from [22] us, polynomials us, multilevel
data set criteria method error error rank error rank
abalone mean nnet 4.31 4.52(0.04) 4/9 4.47(0.03) 3/9

median nnet 4.29(0.03) 4.46(0.06) 3/9 4.41(0.04) 2/9
autompg mean svm 7.11 7.46(0.22) 4/9 6.99(0.27) 1/9

median nnet 6.37(0.85) 7.09(0.30) 5/9 6.48(0.37) 2/9
boston- mean svm 9.60 10.19(0.79) 2/9 9.67(0.59) 2/9
housing median svm 8.01(0.72) 8.57(1.14) 2/9 8.12(0.40) 2/9
cpu mean ppr 3.16 3.24(0.94) 2/9 2.85(1.02) 1/9
(×103) median rForest 1.27(0.65) 1.84(0.89) 2/9 1.72(1.05) 2/9
cpuSmall mean mart 7.55 9.50(0.58) 5/10 7.98(0.07) 2/10

median mart 7.53(0.12) 9.16(0.48) 5/10 7.98(0.09) 2/10
SLID mean rForest 34.1 39.3(0.20) 6/9 39.5(0.16) 6/9

median rForest 33.3(2.99) 39.6(0.26) 6/9 39.7(0.13) 6/9

in Section 3.1.3, polynomials are a poor choice, so we use the multilevel basis. We
chose a penalty of 0 for the constant term, 1 for the x term, and then doubling at
each level, and scaled the penalties by the overall factor λ.

For the first two Friedman data sets we achieve the best performance in compar-
ison to the benchmark study [22], and on the third data set only a highy nonlinear
approach achieves better results.

3.2.2. Real data sets. We now compare with some of the real data sets used in
[22]. Pre-processing of the data consists of omitting missing values, like in [22], and
scaling all data to [0, 1]d. We did not use two of the data sets since they were domi-
nated by categorical attributes. In data sets with only two or three categorical values
we use the usual binary coding scheme or choose a basis of vectors, see Remark 2.3.
In our tests these two approaches gave similar numerical results.

In Table 3.7 we give the results of these tests, using polynomials and using the
multilevel basis. For polynomials, when comparing the means we are among the top
three methods for two of the data sets, whereas when comparing the medians we
are among the top three methods for three data sets. These results indicate that
our approach using polynomials is worthwhile trying on data sets, since it will at
least give average results, but the promising results on the synthetic data did not
transfer fully to real data. The situation changes when we use the multilevel basis.
We achieve lower errors than before, in some cases quite significantly lower, on all data
sets. Comparing the median, the preferred measurement in [22], we are now among
the top two methods for five of the six data sets. This is the best overall performance
among all approaches. Using the mean we also achieve the best performance among
the approaches, achieving the lowest results for two of the data sets.

As shown in (2.12), the complexity of our approach is linear in the number of
data and the number of attributes and quadratic in the rank and the size of the
one-dimensional basis chosen. Both neural networks and support vector machines are
nonlinear in the number of data, but linear in the number of attributes. Mart is linear

Regression with Sums of Separable Functions 17

Table 3.8

Mean Squared Error (MSE) for fitting the Helicopter dataset, using a multilevel basis of tent
functions in each direction.

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6
variance 0.0052

level 0 0.0043 0.0037 0.0028 0.0018 0.0017 0.0016
level 1 0.0041 0.0037 0.0027 0.0018 0.0016 0.0014
level 2 0.0044 0.0034 0.0026 0.0016 0.0014 0.0013
level 3 0.0043 0.0030 0.0022 0.0015 0.0013 0.0012
level 4 0.0041 0.0030 0.0021 0.0013 0.0012 0.0011
level 5 0.0039 0.0032 0.0022 0.0013 0.0012 0.0010

in both, RandomForests is N log N in the number data and scale with the square root
of the number of attributes, and projection pursuit regression scales N log N and
linear in the number of attributes. All methods involve other complexities in the
solution process as well.

We observe run times for the solution of one problem for one parameter set
between seconds and minutes, depending on the actual data set and the parameters of
our apprach. These run times are quite preliminary since our current implementation
is purely in the scripting language python. The run times of loops in python can
often be improved by one or two orders of magnitude by using a compiled language
for these computations.

3.3. Vector-Valued data. We next consider a case with vector-valued data,
with the simple goal of validating the method in Section 2.4. We do not attempt to
determine if this method performs better than fitting each vector entry separately.

The data is from a helicopter flight project [24] and the task is to use the current
state to predict subdynamics of the helicopter for one timestep later, in particular
its yaw rate, forward velocity, and lateral velocity. We found that simply using the
values of these subdynamics in the current state as the predictor captures 99.969%
of the variance, so we chose to subtract off the values in the current state and use
the difference as the response variables. The noise level in the data is not known, nor
is the magnitude of the effect of influences not included in the state, such as wind.
Again we linearly transform the domain of the predictor variable to [0, 1]d.

For parameter fitting we again split the training data of 40000 into two thirds
for learning and one third for validation. In Table 3.8 we give the results using the
multilevel basis. At level 5 and separation rank 6, we now learn on the 40000 training
data and evaluate on 4000 as yet unseen testing data and achieve an MSE of 0.00099,
which means the model of the form (1.3) has captured 81% of the variance. We also
measured a mean absolute error of 0.0089 for the yaw rate, 0.0116 for the forward
velocity, and 0.0172 for the lateral velocity; we compare with the values of 0.0083,
0.0147, and 0.0185, respectively, obtained in [3]. Note that if the variances for the
response variables are different, which seems to be the case for this data set, one can
scale them to zero mean and variance one to allow a similar error reduction over all
response variables. An illustration of the function constructed is given in Figure 3.5.

Acknowledgments. We would like to thank Aleksandra Orlova, who did back-
ground research on this project while a Master’s student at Ohio University.

18 G. BEYLKIN, J. GARCKE, and M. J. MOHLENKAMP

sl i = 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 3.5. The vector-valued function of the form (1.3) with r = 6 using the multilevel basis
with level five that captures 81% the variance of the Helicopter dataset. The first column shows sl

and the other sub-plots shows gl

i
(xi).

REFERENCES

[1] G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions,
Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 10246–10251.

[2] G. Beylkin and M. J. Mohlenkamp, Algorithms for numerical analysis in high dimensions,
SIAM J. Sci. Comput., 26 (2005), pp. 2133–2159.

[3] S. Börm and J. Garcke, Approximating gaussian processes with H2-matrices, in
Proceedings of 18th European Conference on Machine Learning, Warsaw, Poland,
September 17-21, 2007. ECML 2007, J. N. Kok, J. Koronacki, R. L. de Mantaras,
S. Matwin, D. Mladen, and A. Skowron, eds., vol. 4701, 2007, pp. 42–53.

[4] R. Bro, Parafac. tutorial & applications, in Chemom. Intell. Lab. Syst., Special Issue 2nd
Internet Conf. in Chemometrics (INCINC’96), vol. 38, 1997, pp. 149–171.
http://www.models.kvl.dk/users/rasmus/presentations/parafac tutorial/paraf.htm.

[5] H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 147–269.
[6] R. R. Coifman and S. Lafon, Diffusion maps, Appl. Comput. Harmon. Anal., 21 (2006),

pp. 5–30.
[7] L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank-1 and

rank-(R1, R2, · · · , RN) approximation of higher-order tensors, SIAM J. Matrix Anal.
Appl., 21 (2000), pp. 1324–1342.

[8] V. de Silva and L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank
approximation problem, SIAM Journal on Matrix Analysis and Applications, (to appear).

[9] R. A. DeVore, Nonlinear approximations, Acta Numerica, 7 (1998), pp. 51–150.
[10] J. H. Friedman, Multivariate adaptive regression splines, Ann. Statist., 19 (1991), pp. 1–141.

With discussion and a rejoinder by the author.
[11] J. Garcke, Regression with the optimised combination technique, in Proceedings of the 23rd

ICML ’06, W. Cohen and A. Moore, eds., New York, NY, USA, 2006, ACM Press,
pp. 321–328.

Regression with Sums of Separable Functions 19

[12] J. Garcke and M. Griebel, Classification with sparse grids using simplicial basis functions,
Intelligent Data Analysis, 6 (2002), pp. 483–502. (shortened version appeared in KDD
2001, Proc. of the Seventh ACM SIGKDD, F. Provost and R. Srikant (eds.), pages 87-96,
ACM, 2001).

[13] J. Garcke, M. Griebel, and M. Thess, Data mining with sparse grids, Computing, 67
(2001), pp. 225–253.

[14] G. Golub and C. V. Loan, Matrix Computations, Johns Hopkins University Press, 3rd ed.,
1996.

[15] R. A. Harshman, Foundations of the parafac procedure: Model and conditions for an
“explanatory” multi-mode factor analysis, Working Papers in Phonetics 16, UCLA, 1970.
http://publish.uwo.ca/∼harshman/wpppfac0.pdf.

[16] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer,
2001.

[17] P. J. Huber, The 1972 wald lecture robust statistics: A review, The Annals of Mathematical
Statistics, 43 (1972), pp. 1041–1067.

[18] A. A. Jamshidi and M. J. Kirby, Towards a black box algorithm for nonlinear function
approximation over high-dimensional domains, SIAM Journal on Scientific Computing,
29 (2007), pp. 941–963.

[19] W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert
space, in Conference in modern analysis and probability (New Haven, Conn., 1982),
vol. 26 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1984, pp. 189–206.

[20] P. M. Kroonenberg and J. de Leeuw, Principal component analysis of three-mode data by
means of alternating least squares algorithms, Psychometrika, 45 (1980), pp. 69–97.

[21] S. E. Leurgans, R. A. Moyeed, and B. W. Silverman, Canonical correlation analysis when
the data are curves, J. Roy. Statist. Soc. Ser. B, 55 (1993), pp. 725–740.

[22] D. Meyer, F. Leisch, and K. Hornik, The support vector machine under test,
Neurocomputing, 55 (2003), pp. 169–186.

[23] M. J. Mohlenkamp and L. Monzón, Trigonometric identities and sums of separable
functions, The Mathematical Intelligencer, 27 (2005), pp. 65–69.
http://www.math.ohiou.edu/∼mjm/research/sine.pdf.

[24] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and

E. Liang, Autonomous inverted helicopter flight via reinforcement learning, in
International Symposium on Experimental Robotics, 2004.

[25] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis. Applications in the Chemical
Sciences, John Wiley & Sons, 2004.

