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Abstract. Recently a new numerical approach for two-dimensional
Maxwell’s equations based on the Hodge decomposition for divergence-
free vector fields was introduced by Brenner et al. In this paper we
present an adaptive P1 finite element method for two-dimensional
Maxwell’s equations that is based on this new approach. The reli-
ability and efficiency of a posteriori error estimators based on the
residual and the dual weighted-residual are verified numerically.
The performance of the new approach is shown to be competitive
with the lowest order edge element of Nédélec’s first family.

1. Introduction

Recently Brenner et al. [8] introduced a new approach for solv-
ing two-dimensional Maxwell’s equations that is based on the Hodge
(Helmholtz) decomposition for divergence-free vector fields. It reduces
the boundary value problem for Maxwell’s equations to several scalar
second order elliptic boundary value problems, which can be discretized
by standard P1 finite element methods. In this paper we develop a
posteriori error estimators for the new approach. The L2 error for the
approximation of the solution u of the Maxwell equations is shown to
be bounded by a residual type error estimator [1, 6, 13, 27], and we
consider two types of error estimators for the L2 error of the approx-
imation of ∇ × u. For convex domains we have an L2-type residual
error estimator. For general domains we propose an error estimator
based on the dual weighted-residual (DWR) approach of Becker and
Rannacher [2, 4]. We present numerical results that verify the reliabil-
ity of the a posteriori error estimators and demonstrate their efficiency.
The convergence of adaptive methods based on these error estimators
is of optimal order.
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Compared with the discretization of Maxwell’s equations by the low-
est order edge element of Nédélec’s first family [23] which has one degree
of freedom per edge, this new discretization leads to smaller but mul-
tiple discrete systems. However, most of these systems can be solved
in parallel and the new approach leads to comparable or better results
as shown empirically by our numerical experiments. We note that the
adaptive finite element method (AFEM) for the lowest order edge ele-
ment has been studied in [3, 5, 14, 15, 21, 25].

We now introduce the model problem and briefly recall the Hodge
decomposition approach in [8]. The model problem seeks a solution
u ∈ H0(curl; Ω) ∩H(div0; Ω) such that

(∇× u,∇× v) + α(u,v) = (f,v) ∀v ∈ H0(curl; Ω) ∩H(div0; Ω)(1)

for a bounded polygonal domain Ω ⊂ R2 and f ∈ [L2(Ω)]2. Here (·, ·)
denotes the L2 inner product over Ω and the spaceH0(curl; Ω) is defined
by

H0(curl; Ω) :=
{
v ∈ [L2(Ω)]2 : ∇× v ∈ L2(Ω) and n× v = 0 on ∂Ω

}
,

where ∇×v = curl v = (∂v2/∂x1)−(∂v1/∂x2) and n denotes the outer
unit normal along ∂Ω. The space H(div0; Ω) is defined by

H(div0; Ω) :=
{
v ∈ [L2(Ω)]2 : ∇ · v = 0

}
,

where ∇ · v = div v = (∂v1/∂x1) + (∂v2/∂x2).
The problem (1) is related to the time-harmonic Maxwell equations

for α ≤ 0 and the time-domain Maxwell equations for α > 0 [7, 9, 10,
16, 20, 22]. In the following it is assumed that problem (1) admits a
unique solution. Thus −α is not a Maxwell eigenvalue and in particular
α 6= 0 if Ω is not simply connected.

Using the Hodge (Helmholtz) decomposition for H(div0; Ω), we can
write

u = ∇× φ+
m∑
j=1

cj∇ϕj,(2)

where φ ∈ H1(Ω) satisfies (φ, 1) = 0, ∇ × φ = [∂φ/∂x2,−∂φ/∂x1]t,
m ≥ 0 is the Betti number for Ω (m = 0 if Ω is simply connected), and
the functions ϕ1, . . . , ϕm are defined as follows.

Let the outer boundary of Ω be denoted by Γ0 and the m components
of the inner boundary be denoted by Γ1, . . . ,Γm. Then the functions
ϕj ∈ H1(Ω) are determined by the scalar problems

(∇ϕj,∇v) = 0 ∀v ∈ H1
0 (Ω), ϕj|Γ0 = 0 and ϕj|Γk

= δjk,(3)

where δjk = 1 if j = k and δjk = 0 if j 6= k for 1 ≤ j, k ≤ m.
The function φ in (2) is determined by

(∇× φ,∇× ψ) = (ξ, ψ) ∀ψ ∈ H1(Ω)(4)
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with the constraint (φ, 1) = 0, where the function ξ = ∇× u ∈ H1(Ω)
is determined by

(∇× ξ,∇× ψ) + α(ξ, ψ) = (f,∇× ψ) ∀ψ ∈ H1(Ω)(5)

when α 6= 0, and by (5) together with the constraint (ξ, 1) = 0 when
Ω is simply connected and α = 0.

Remark 1. Note that

(∇× v,∇× w) = (∇v,∇w) ∀v, w ∈ H1(Ω)

and the problems (4) and (5) are standard Neumann boundary value
problems for the Laplace operator.

In the case m ≥ 1 the coefficients cj in (2) are determined by the
symmetric positive-definite system

m∑
j=1

(∇ϕj,∇ϕk)cj =
1

α
(f,∇ϕk) for 1 ≤ k ≤ m.

Let Vh ⊂ H1(Ω) be a finite element space and V̊h = Vh ∩H1
0 (Ω). It

is shown in [8] that (1) can be solved by the following procedure.

• First we compute ξh ∈ Vh, which provides an approximation of∇×u,
by solving the discrete problem

(∇× ξh,∇× ψh) + α(ξh, ψh) = (f,∇× ψh) ∀ψh ∈ Vh(6)

when α 6= 0, and by solving (6) together with the constraint (ξh, 1) =
0 when Ω is simply connected and α = 0.
• Then we compute φh ∈ Vh by solving the discrete problem

(∇× φh,∇× ψh) = (ξh, ψh) ∀ψh ∈ Vh(7)

with the constraint (φh, 1) = 0.
• If Ω is not simply connected (m ≥ 1), we compute the functions
ϕ1,h, . . . , ϕm,h ∈ Vh by solving the discrete problems

(∇ϕj,h,∇vh) = 0 ∀vh ∈ V̊h, ϕj,h|Γ0 = 0 and ϕj,h|Γk
= δjk,(8)

and we compute the coefficients cj,h for 1 ≤ j ≤ m by

m∑
j=1

(∇ϕj,h,∇ϕk,h)cj,h =
1

α
(f,∇ϕk,h) for 1 ≤ k ≤ m.(9)

• The approximation of u is given by

uh = ∇× φh +
m∑
j=1

cj,h∇ϕj,h.(10)

The rest of the paper is organized as follows. We construct the er-
ror estimators in Section 2 where we also provide some analysis. The
adaptive finite element method is described in Section 3. In Section 4
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we present numerical results that demonstrate the reliability and effi-
ciency of the proposed error estimators, and we also compare the new
approach with the discretization by the lowest order edge element in
Nédélec’s first family. We end with some concluding remarks in Sec-
tion 5.

2. A posteriori error estimators

In this section we construct an a posteriori error estimator for the
error ‖u− uh‖L2(Ω) and two a posteriori error estimators for the error
‖ξ − ξh‖L2(Ω).

Let Th be a triangulation of Ω and

Vh =
{
v ∈ H1(Ω) : v|T ∈ P1(T ) ∀T ∈ Th

}
,

where P1(T ) denotes the space of affine functions on a triangle T . We
will denote the set of the edges of the triangles in Th by Eh and the set
of the edges interior to Ω by E ih.

Let [[v]] := v|T+−v|T− denote the jump over the edge E = T+∩T− for
T± ∈ Th and [[v]] := v|T+ on boundary edges. Let nE = [n1, n2]t denote
the unit normal vector pointing from T+ to T− and tE = [−n2, n1]t de-
note the unit tangent vector to E. The length of an edge is denoted by
hE and hT := diam T . In the following, the notation x . y abbreviates
the inequality x ≤ Cy with a constant C > 0 that does not depend on
the mesh size.

Our first observation is that the L2 error of uh is controlled by the
H1 error of φh and the H1 errors of ϕj,h for 1 ≤ j ≤ m.

Lemma 1. Let uh be the approximation of u given by (10). We have

‖u− uh‖L2(Ω) . ‖∇ × (φ− φh)‖L2(Ω) +
m∑
j=1

‖∇(ϕj − ϕj,h)‖L2(Ω).

Proof. It follows from (10) and the triangle inequality that

‖u− uh‖L2(Ω) ≤ ‖∇× (φ− φh)‖L2(Ω) +
m∑
j=1

‖cj∇ϕj − cj,h∇ϕj,h‖L2(Ω)

≤ ‖∇× (φ− φh)‖L2(Ω) +
m∑
j=1

(
|cj|‖∇(ϕj − ϕj,h)‖L2(Ω)

+|cj − cj,h|‖∇ϕj‖L2(Ω) + |cj − cj,h|‖∇(ϕj − ϕj,h)‖L2(Ω)

)
,

and the arguments in the proofs of [8, Lemmas 4.6 and 4.7] lead to the
estimates

|cj| . ‖f‖L2(Ω)

and

|cj − cj,h| . max
1≤j≤m

‖∇(ϕj − ϕj,h)‖L2(Ω) ≤
m∑
j=1

‖∇(ϕj − ϕj,h)‖L2(Ω).�
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Next we construct error estimators for ‖∇ × (φ − φh)‖L2(Ω) and
‖∇(ϕj − ϕj,h)‖L2(Ω).

Lemma 2. Let ϕj,h ∈ Vh, j = 1, . . . ,m, be the solutions of (8). We
have

‖∇(ϕj − ϕj,h)‖2
L2(Ω) .

∑
E∈Eih

hE‖[[∇ϕj,h]]·nE‖2
L2(E).

Proof. Define the residual Resh(v) := −(∇ϕj,h,∇v) for all v ∈ H1
0 (Ω)

and let ‖Resh‖∗ denote the dual norm of the residual with respect to
H1

0 (Ω). Since ϕj − ϕj,h ∈ H1
0 (Ω), it follows from (3) that

‖∇(ϕj − ϕj,h)‖2
L2(Ω) = (∇ϕj −∇ϕj,h,∇(ϕj − ϕj,h))

= −(∇ϕj,h,∇(ϕj − ϕj,h))
= Resh(ϕj − ϕj,h) . ‖Resh‖∗‖∇(ϕj − ϕj,h)‖L2(Ω).

Let v ∈ H1
0 (Ω) be arbitrary and vh ∈ V̊h be its Scott-Zhang interpolant

[11, 26] so that ∑
E∈Eh

‖h−1/2
E (v − vh)‖2

L2(E) . ‖∇v‖2
L2(Ω).(11)

Since Resh|V̊h = 0 by (8), we have

Resh(v) = Resh(v − vh) = −(∇ϕj,h,∇(v − vh))

= −
∑
E∈Eih

∫
E

h
1/2
E ([[∇ϕj,h]]·nE)h

−1/2
E (v − vh)ds,

which together with the interpolation estimate (11) and the Cauchy-
Schwarz inequality yields

‖Resh‖∗ .

∑
E∈Eih

hE‖[[∇ϕj,h]]·nE‖2
L2(E)

1/2

. �

Lemma 3. Let φh be the solution of (7). We have

‖∇ × (φ− φh)‖2
L2(Ω)

.
∑
T∈Th

h2
T‖ξh‖2

L2(T ) +
∑
E∈Eh

hE‖[[∇× φh]]·tE‖2
L2(E) + ‖ξ − ξh‖2

L2(Ω),

where ξh is the solution of (6).

Proof. It follows from (4) that

‖∇ × (φ− φh)‖2
L2(Ω) = −(∇× φh,∇× (φ− φh)) + (ξ, φ− φh)

= Resh(φ− φh) + (ξ − ξh, φ− φh),
where the residual is defined by

Resh(v) := (ξh, v)− (∇× φh,∇× v) ∀v ∈ H1(Ω).
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Therefore we have

‖∇ × (φ− φh)‖2
L2(Ω) . ‖Resh‖∗‖∇ × (φ− φh)‖L2(Ω)

+ ‖ξ − ξh‖L2(Ω)‖φ− φh‖L2(Ω),

where ‖Resh‖∗ is the dual norm of the residual with respect to H1(Ω).
Note that (φ−φh, 1) = 0 and hence we can apply Friedrichs’ inequality
to obtain

‖∇ × (φ− φh)‖L2(Ω) . ‖Resh‖∗ + ‖ξ − ξh‖L2(Ω).

Let v ∈ H1(Ω) be arbitrary and vh ∈ Vh be its Scott-Zhang interpolant
[11, 26] so that∑

T∈Th

‖h−1
T (v − vh)‖2

L2(T ) +
∑
E∈Eh

‖h−1/2
E (v − vh)‖2

L2(E) . ‖∇v‖2
L2(Ω).(12)

It follows from (7) and integration by parts that

Resh(v) = (ξh, v − vh)− (∇× φh,∇× (v − vh))

=
∑
T∈Th

∫
T

hT ξhh
−1
T (v − vh)dx

+
∑
E∈Eh

∫
E

h
1/2
E ([[∇× φh]]·tE)h

−1/2
E (v − vh)ds,

which together with the Cauchy-Schwarz inequality and the interpola-
tion estimates (12) yields

‖Resh‖∗ .

(∑
T∈Th

h2
T‖ξh‖2

L2(T )

)1/2
+

(∑
E∈Eh

hE‖[[∇× φh]]·tE‖2
L2(E)

)1/2
.�

Combining Lemmas 1, 2 and 3, we obtain the following result.

Theorem 1. Let uh be the approximation of u given by (10). We have

‖u− uh‖L2(Ω) . ηR + ‖ξ − ξh‖L2(Ω),

where

η2
R :=

∑
T∈Th

h2
T‖ξh‖2

L2(T ) +
∑
E∈Eh

hE‖[[∇× φh]]·tE‖2
L2(E)

+
m∑
j=1

∑
E∈Eih

hE‖[[∇ϕj,h]]·nE‖2
L2(E).

(13)

Remark 2. If f is a piecewise smooth vector field, then ‖ξ − ξh‖L2(Ω) is
of higher order compared with ‖u−uh‖L2(Ω) (cf. [8, Remark 4.4]). This
is the case for the numerical examples in Section 4, where ‖ξ− ξh‖L2(Ω)

can be safely ignored in the evaluation of ηR.
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Remark 3. The efficiency of individual terms of the error estimator ηR
can be established by the bubble function techniques of Verfürth (cf.
[1, 27]). However it is not clear whether the efficiency of ηR as a whole
can also be established by such techniques.

Finally we consider error estimators for ‖ξ − ξh‖L2(Ω), where we as-
sume that f|T ∈ [Hβ(T )]2 ∩ H(curl;T ) for all T ∈ Th and for some
β ∈ (1/2, 1]. Since (ξ − ξh, 1) = 0, there exists a solution ζ of the dual
problem

(∇× ζ,∇× v) + α(ζ, v) = (ξ − ξh, v) ∀v ∈ H1(Ω)(14)

that satisfies the constraint (ζ, 1) = 0. Therefore we can write

‖ξ − ξh‖2
L2(Ω) = (∇× ζ,∇× (ξ − ξh)) + α(ζ, ξ − ξh)

= (∇× (ζ − ζh),∇× (ξ − ξh)) + α(ζ − ζh, ξ − ξh),
for all ζh ∈ Vh, where we have also used the Galerkin orthogonality (cf.
(5) and (6))

(∇× (ξ − ξh),∇× vh) + α(ξ − ξh, vh) = 0 ∀vh ∈ Vh.
It then follows from (5) and integration by parts that

‖ξ − ξh‖2
L2(Ω) = (∇× (ζ − ζh), f−∇× ξh)− α(ζ − ζh, ξh)

=
∑
T∈Th

∫
T

[∇× (ζ − ζh) · (f−∇× ξh)− α(ζ − ζh)ξh] dx

=
∑
T∈Th

∫
T

(∇× f− αξh)(ζ − ζh)dx

−
∑
E∈Eh

∫
E

([[f−∇× ξh]]·tE)(ζ − ζh)ds,

(15)

which is valid for any ζh ∈ Vh.
If Ω is convex, then the solution ζ of the dual problem (14) belongs

to H2(Ω) [19] and

‖ζ‖H2(Ω) . ‖ξ − ξh‖L2(Ω).

In this case we can take ζh ∈ Vh to be the nodal interpolant of ζ and
we have [11, 17]∑

T∈Th

‖h−2
T (ζ−ζh)‖2

L2(T ) +
∑
E∈Eh

‖h−3/2
E (ζ−ζh)‖2

L2(E) . ‖ξ−ξh‖L2(Ω).(16)

Combining (15) and (16) with the Cauchy-Schwarz inequality, we find

‖ξ − ξh‖L2(Ω) . ηreg,(17)

where

η2
reg:=

∑
T∈Th

h4
T‖∇ × f− αξh‖2

L2(T )+
∑
E∈Eh

h3
E‖[[f−∇× ξh ]]·tE‖2

L2(E).(18)
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For a nonconvex domain Ω, motivated by (15) and the ideas of Becker
and Rannacher [2, 4] we propose the following dual weighted-residual
error estimator with ‖ξ − ξh‖L2(Ω) as the quantity of interest:

η2
DWR :=

∣∣∣ ∑
T∈Th

∫
T

(∇× f− αξh)(ζ̃ − ζh)dx

−
∑
E∈Eh

∫
E

([[f−∇× ξh]]·tE)(ζ̃ − ζh)ds
∣∣∣.(19)

Here ζh ∈ Vh is the P1 finite element solution of (14), where the un-

known function ξ is replaced by some higher order interpolant ξ̃ of ξh,
and ζ̃ is also a higher order interpolant of ζh. Details of the interpola-
tion scheme we use can be found in Section 3.

Remark 4. The reliability and efficiency of the error estimator ηDWR

will be demonstrated numerically in Section 4. We note that the theo-
retical justification of dual weighted-residual error estimators has been
discussed in [12, 24].

3. An Adaptive Finite Element Method

The adaptive finite element method (AFEM) creates a sequence of
nested triangulations T0, T1, T2, . . . with associated P1 finite element
spaces

V0 ( V1 ( V2 ( . . . ( V` ⊂ V = H1(Ω)

and discrete solutions u` and ξ`. It consists of the following loop

Solve→ Estimate→ Mark→ Refine.

3.1. Solve. We apply the following algorithm from [8] (cf. the descrip-

tion in Section 1 where Vh = V` and V̊h = V̊` ∩H1
0 (Ω)) to compute the

discrete solutions u` and ξ` on the mesh T`.
(1) Compute a numerical approximation ξ` ∈ V` of ξ = ∇ × u by

solving (6) when α 6= 0, and by (6) together with the constraint
(ξ`, 1) = 0 when Ω is simply connected and α = 0.

(2) Compute a numerical approximation φ` ∈ V` of φ by solving (7)
under the constraint (φ`, 1) = 0.

(3) If Ω is not simply connected, compute numerical approximations
ϕ1,`, . . . , ϕm,` ∈ V` of ϕ1, . . . , ϕm by solving (8), and compute nu-
merical approximations c1,`, . . . , cm,` of c1, . . . , cm by solving (9).

(4) The approximation of u is given by (cf. (10))

u` = ∇× φ` +
m∑
j=1

cj,`∇ϕj,`.
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ωT

Tu
u

u

u

u

u

u
u

u
Figure 1. Example of an element patch. The sampling
points are all vertices.

3.2. Estimate. Based on the discrete solutions u` and ξ` the errors
‖u − u`‖L2(Ω) and ‖ξ − ξ`‖L2(Ω) are estimated with the a posteriori
error estimators of Section 2.

The error ‖u−u`‖L2(Ω) is estimated by ηR (cf. (13)) with the (local)
refinement indicators

η2
`,R(T ) := h2

T‖ξ`‖2
L2(T ) +

1

2

∑
E⊂∂T

hE‖[[∇× φ`]]·tE‖2
L2(E)

+
1

2

m∑
j=1

∑
E⊂∂T\∂Ω

hE‖[[∇ϕj,`]]·nE‖2
L2(E),

where the higher order term ‖ξ − ξ`‖L2(Ω) is ignored.
The error ‖ξ−ξ`‖L2(Ω) is estimated by ηreg (cf. (18)) with the (local)

refinement indicators

η2
`,reg(T ) := h4

T‖∇ × f− αξ`‖2
L2(T ) +

1

2

∑
E⊂∂T

h3
E‖[[f−∇× ξ`]]·tE‖2

L2(E),

or by ηDWR (cf. (19)) with the (local) refinement indicators

η2
`,DWR(T ) :=

∣∣∣ ∫
T

(∇× f− αξ`)(ζ̃ − ζ`)dx

− 1

2

∑
E⊂∂T

∫
E

([[f−∇× ξ`]]·tE)(ζ̃ − ζ`)ds
∣∣∣.

Here ζ` ∈ V` denotes the solution of the discrete dual problem

(∇× ζ`,∇× v`) + α(ζ`, v`) = (ξ̃ − ξ`, v`) ∀v` ∈ V`

that satisfies the constraint (ζ`, 1) = 0, and the functions ξ̃ and ζ̃ are
higher order interpolants of ξ` and ζ` constructed by the L2 averaging
technique of [28].

In the first step of the construction of ξ̃ a higher order interpolation
ξ̂ ∈ P2(T ) is computed from ξ` for each element T ∈ T` separately.
The values for the interpolated function at the vertices and midpoints
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Figure 2. Refinement rules: sub-triangles with corre-
sponding reference edges depicted with a second edge.

of the edges for an element T ∈ T` are determined by a least squares
approximation of a global quadratic polynomial on the element patch
ωT := ∪K∈T`,T∩K 6=∅K as depicted in Figure 1. The sampling points for
the least squares interpolation are chosen to be all the vertices of the
element patch.

In the second step, a smooth interpolant ξ̃ ∈ P2(T`) is obtained by

taking the average of ξ̂ over the nodal patch ωz := ∪K∈T`,z∈KK for the
degree of freedom at the vertex z:

ξ̃(z) =
1

|T ∈ T`, T ⊆ ωz|
∑

T∈T`,T⊆ωz

ξ̂(z)|T ,

and by taking the average of ξ̂ over the edge patch ωE := ∪K∈T`,E⊂KK
for the degree of freedom at the midpoint mE of E:

ξ̃(mE) =
1

|T ∈ T`, T ⊆ ωE|
∑

T∈T`,T⊆ωE

ξ̂(mE)|T .

The evaluation of ζ̃ follows the same procedure. Numerical exam-
ples below indicate that the proposed procedure leads to reliable and
efficient a posteriori error estimators.

3.3. Mark. Based on the refinement indicators, elements are marked
for refinement in a bulk criterion [18] such that M` ⊆ T` is a minimal
set of marked elements with

θ
∑
T∈T`

η2
` (T ) ≤

∑
T∈M`

η2
` (T ),

for a bulk parameter 0 < θ ≤ 1, where η` is either η`,R, η`,reg or η`,DWR.
This is carried out by a greedy algorithm which marks elements with
larger contributions.
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Figure 3. Convergence histories of ‖ξ − ξ`‖L2(Ω), ηreg
and ηDWR on uniformly and adaptively refined meshes
for the unit square example.

3.4. Refine. The mesh is refined locally using the set M` of marked
elements. Once an element is selected for refinement, all of its edges
are marked for refinement. In order to preserve the quality of the mesh,
additional edges are marked by the closure algorithm. For each triangle
let one edge be the uniquely defined reference edge E(T ). The closure
algorithm computes a superset of marked edges, such that once an edge
of a triangle T ∈ T` is marked for refinement, its reference edge E(T ) is
marked as well. After the closure algorithm is applied, triangles with
marked edges are refined by one of the refinement rules depicted in
Figure 2.

4. Numerical Examples

In this section we present the results of several numerical experi-
ments. The reliability and efficiency of the error estimators for uni-
formly and adaptively refined meshes are verified for several examples
using different domains and different values for α. We also compare
the new numerical approach with the discretization by the lowest order
edge element in Nédélec’s first family [23].

4.1. Unit Square Example. As the first example we consider prob-
lem (1) for α = 1 on the unit square Ω = (0, 1)2 and with right-hand
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Figure 4. Comparison between the new numerical ap-
proach with errors ‖u − u`‖L2(Ω) and ‖ξ − ξ`‖L2(Ω) and
the discretization by the lowest order edge element with
errors ‖u− uNd` ‖L2(Ω) and ‖∇ × (u− uNd` )‖L2(Ω).

side f such that the smooth solution is given by

u(x, y) = (sin πy, sin πx).

Note that in this example Ω is simply connected and thus u = ∇× φ
and u` = ∇× φ`.

The convergence histories of ‖ξ − ξ`‖L2(Ω) using ηreg or ηDWR as the
refinement indicator are displayed in Figure 3. Since the domain is
convex, the estimate (17) for the a posteriori error estimator ηreg is
valid. The numerical results in Figure 3 indicate that both error esti-
mators ηreg and ηDWR are empirical reliable and efficient for uniformly
and adaptively refined meshes, and that the adaptive meshes with ηreg
or ηDWR as refinement indicators lead to similar errors for ‖ξ−ξ`‖L2(Ω).
Thus the proposed interpolation scheme for ηDWR is numerically stable.
The error estimator ηDWR also seems to be almost exact.

Since the solution ξ is smooth, the convergence rate for ‖ξ− ξ`‖L2(Ω)

is numerically of optimal order O(N−1
` ) as predicted by [8, Lemma 4.1]

for both uniform and adaptive meshes, where N` is the dimension of

V`. Note that for uniform meshes O(N
−1/2
` ) ≈ h`.

The numerical results displayed in Figure 4 provide a comparison
between the approximation u` ∈ V` based on the Hodge decomposition
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Figure 5. Plots of |u`|2 (left) and the vector field u`
(right) for the L-shaped domain example.

and the approximation uNd` ∈ V Nd
` based on the lowest order edge

element on uniform meshes, where V Nd
` is defined by

V Nd
` :=

{
v ∈ H(curl; Ω) : (v|T )(x) =

[
aT,1
aT,2

]
+ bT

[ −x2

x1

]
,

aT,1, aT,2, bT ∈ R,∀T ∈ T`
}
.

Even after taking into account that the computation of the vector
field u` requires the solution of two scalar elliptic problems (i.e., the
error ‖u − u`‖L2(Ω) is plotted versus the degrees of freedom 2N`), the
new approach shows a slightly smaller error in the vector field variable
than the edge element. The error ‖ξ − ξ`‖L2(Ω) for the new approach
is of one order higher than ‖∇ × (u− uNd` )‖L2(Ω) for the edge element
and therefore much smaller for larger degrees of freedom. Hence the
proposed scheme leads empirically to comparable or better results than
the lowest order edge element discretization.

4.2. L-Shaped Domain Example. The second numerical example
concerns the model problem (1) with α = −1 on the L-shaped domain
Ω = (−1, 1)2\[0, 1]2. A singular solution in polar coordinates (r, θ) is
given by

u = ∇×
(
r2/3 cos

(
2

3
θ − π

3

)
φ(x)

)
,

with φ(x) = (1 − x2
2)2(1 − x2

1)2. The corresponding right-hand side
f ∈ H(div0; Ω) is computed by f = ∇ × (∇ × u) − u. The Euclidean
norm of u` on an adaptive mesh based on ηR and the vector fiels u` on
an uniform mesh are portrayed in Figure 5. For visualization purposes
the discontinuous values for |u`|2 have been smoothed by the arithmetic
mean value at the vertices.

The convergence histories of the errors and the error estimators are
reported in Figure 6 and Figure 7. Since the domain is nonconvex, uni-

form refinement results in suboptimal convergence rates of O(N
−1/3
` )
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Figure 6. Convergence histories of ‖u− u`‖L2(Ω), ‖ξ −
ξ`‖L2(Ω) and ηR on uniformly and adaptively refined
meshes for the L-shaped domain example.

for ‖u − u`‖L2(Ω) and O(N
−2/3
` ) for ‖ξ − ξ`‖L2(Ω) as predicted by [8,

Theorem 4.9 and Lemma 4.1], while adaptive refinement leads to em-

pirically optimal convergence rates of O(N
−1/2
` ) and O(N−1

` ). Figure 6
indicates that the error estimator ηR is empirically reliable and efficient
for both uniform and adaptive meshes. It is observed that ‖ξ−ξ`‖L2(Ω)

is of higher order for smaller h` � 1 even for adaptively refined meshes
based on ηR.

The numerical results displayed in Figure 7 indicate that ηreg is less
reliable than ηDWR on the nonconvex L-shaped domain because of the
significantly larger error ‖ξ− ξ`‖L2(Ω) for ηreg on adaptive meshes. The
error estimator ηDWR is shown to be both reliable and efficient. Fig-
ure 8 depicts some adaptively refined meshes. All error estimators
refine strongly towards the corner singularity at the origin. However,
the mesh for ηreg shows much less refinement at the origin which may
produce larger errors in ‖ξ − ξ`‖L2(Ω).

The numerical results displayed in Figure 9 provide a comparison
between the approximations based on the Hodge decomposition and
adaptive meshes generated by the error estimators ηR and ηDWR, and
the approximations based on the lowest order edge element and adap-
tive meshes generated by the residual-based error estimator in [14].
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Figure 7. Convergence histories of ‖ξ − ξ`‖L2(Ω), ηreg
and ηDWR on uniformly and adaptively refined meshes
for the L-shaped domain example.
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Figure 8. Adaptively refined meshes using the error
estimators ηR, ηreg and ηDWR (from left to right) for the
L-shaped domain example.

For a fair comparison we have plotted the errors ‖u − u`‖L2(Ω) ver-
sus 2N`. The numerical results show that adaptive mesh refinement
leads to optimal convergence rates for both methods and that the new
method leads asymptotically to smaller errors than the lowest order
edge element method.

4.3. Doubly Connected Domain Example. The last example con-
cerns the model problem (1) with α = 1 on a doubly connected domain
Ω = (0, 4)2\[1, 3]2. Note that in this example m = 1 and therefore

u = ∇× φ+ c∇ϕ.
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edge element with errors ‖u− uNd` ‖L2(Ω) and ‖∇× (u−
uNd` )‖L2(Ω).
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Figure 10. Plots of |u`|2 (left) and the vector field u`
(right) for the doubly connected domain example.

The discontinuous right-hand side f is defined by

f =

{
[1 + x1, 0] if x1 < x2 and 3 < x1 < 4,
[0, 1 + x2] otherwise.

The norm of u` on an adaptive mesh based on ηR and the vector field
u` on an uniform mesh are displayed in Figure 10, and the convergence
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Figure 11. Convergence histories of ‖u − u`‖L2(Ω),
‖ξ − ξ`‖L2(Ω), ηR and ηDWR on uniformly and adaptively
refined meshes for the doubly connected domain exam-
ple.
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Figure 12. Adaptively refined meshes using the error
estimators ηR (left) and ηDWR (right) for the doubly con-
nected domain example.

histories of the errors and the error estimators are reported in Figure 11.
Since the exact solution is not known, the errors are approximated by
the difference between the discrete solution and the final grid solutions.

Note that the results displayed in Figure 11 indicate that this ap-
proximation of the error is sufficient except for the last few levels of
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refinement. Since the domain is nonconvex, uniform refinement re-
sults in suboptimal convergence rates while adaptive refinement leads

to empirically optimal convergence rates of O(N
−1/2
` ) and O(N−1

` ) for
the errors ‖u − u`‖L2(Ω) and ‖ξ − ξ`‖L2(Ω). The error estimators ηR
and ηDWR are empirically reliable and efficient for adaptively refined
meshes. The error ‖ξ− ξ`‖L2(Ω) is of higher order for ηR. Note that the
error estimator ηDWR underestimates the error ‖ξ − ξ`‖L2(Ω).

Figure 12 displays two adaptively refined meshes which are strongly
refined at the four inner corners. The mesh for ηDWR is additionally
more refined in the area where the right-hand side f is discontinuous.

5. Concluding Remarks

We have developed an adaptive P1 finite element method for two di-
mensional Maxwell’s equations that is based on the Hodge/Helmholtz
decomposition. In our experience the errors ‖ξ − ξ`‖L2(Ω) associated
with the adaptive meshes based on the dual weighted-residual error es-
timator ηDWR are slightly better than those associated with the resid-
ual error estimator ηR, while the errors ‖u − u`‖L2(Ω) behave in the
opposite way. The overall performance of the two error estimators are
comparable. Therefore between the two choices the adaptive method
based on ηR is recommended if one wants to approximate both u and
ξ = ∇× u, since the computational cost of ηDWR is much higher.

For simplicity we set the electric permittivity and magnetic per-
meability to be 1. But the results in this paper can be extended to
Maxwell’s equations with general electric permittivity and magnetic
permeability (cf. [8]).
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