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Abstract. We present an adaptive P1 finite element method for two-dimensional
transverse magnetic time harmonic Maxwell’s equations with general material

properties and general boundary conditions. It is based on reducing the bound-

ary value problems for Maxwell’s equations to standard second order scalar
elliptic problems through the Hodge decomposition. We allow inhomogeneous

and anisotropic electric permittivity, sign changing magnetic permeability, and

both the perfectly conducting boundary condition and the impedance bound-
ary condition. The optimal convergence of the adaptive finite element method

is demonstrated by numerical experiments. We also present results for a semi-
conductor simulation, a cloaking simulation and a flat lens simulation that

illustrate the robustness of the method.

1. Introduction

A new approach to two-dimensional time-harmonic Maxwell’s equations with
the perfectly conducting boundary condition was introduced in [3], where the prob-
lem was reduced to standard second order scalar elliptic boundary value problems
through the Hodge decomposition. This approach makes it possible to apply many
standard numerical techniques to computational electromagnetics. A P1 finite el-
ement method based on this approach was analyzed in [3]. Adaptive versions and
multigrid algorithms for the P1 finite element method were subsequently developed
in [4] and [6].

In a recent paper [5], the Hodge decomposition approach was extended to trans-
verse magnetic problems that involve general materials and the impedance bound-
ary condition. The goal of this paper is to extend the adaptive methods in [4] to
the general problem for time-harmonic Maxwell’s equations treated in [5], whose
setting is recalled below.

We take the material domain Ω ⊂ R2 to be a bounded polygon whose boundary
consists of two disjoint closed subsets Γpc (where the perfectly conducting boundary
condition is posed) and Γimp (where the impedance boundary condition is posed).
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We denote the magnetic permeability by µ, the electric permittivity by ε, the
impedance on Γimp by 1/λ, the electric current density by f , and the magnetic
field density imposed on Γimp by g.

We assume that f ∈ [L2(Ω)]2 (the space of complex L2 vector fields on Ω),
g ∈ L2(Γimp) (the space of complex L2 functions on Γimp), λ is a smooth strictly
positive function defined on Γimp, µ and 1/µ are real-valued functions in L∞(Ω),
and ε is a smooth real symmetric positive definite 2× 2 tensor field defined on Ω̄.

Remark 1. Note that the magnetic permeability µ is allowed to change sign in our
setting, and the electric permittivity can be inhomogeneous and anisotropic. We
will also allow ε to change sign in the numerical experiment for a flat lens. Thus
the results in this paper are also relevant for electromagnetic problems involving
metamaterials [12, 19].

The model transverse magnetic problem is to find u ∈ E such that

(1) (µ−1∇×u,∇×v)−k2(εu,v)− ik〈λn×u,n×v〉Γimp = (f ,v)+ 〈g,n×v〉Γimp

for all v ∈ E.
Here i =

√
−1, k > 0 is the frequency, (·, ·) (resp. 〈·, ·〉Γimp

) denotes the inner

product of the complex function space [L2(Ω)]2 (resp. L2(Γimp)),

E = Himp(curl; Ω; Γimp) ∩H0(curl; Ω; Γpc) ∩H(div0; Ω; ε),

and the spaces Himp(curl; Ω; Γimp), H0(curl; Ω; Γpc) and H(div0; Ω; ε) are defined
as follows:

H(curl; Ω) = {v =

[
v1

v2

]
∈ [L2(Ω)]2 : ∇× v = ∂v2/∂x1 − ∂v1/∂x2 ∈ L2(Ω)},

Himp(curl; Ω; Γimp) = {v ∈ H(curl; Ω) : n× v
∣∣
Γimp
∈ L2(Γimp)},

H0(curl; Ω; Γpc) = {v ∈ H(curl; Ω) : n× v
∣∣
Γpc

= 0},

H(div0; Ω) = {v =

[
v1

v2

]
∈ [L2(Ω)]2 : 0 = ∇ · v = ∂v1/∂x1 + ∂v2/∂x2},

H(div0; Ω; ε) = {v ∈ [L2(Ω)]2 : εv ∈ H(div0; Ω)},

where n = (n1, n2)t is the outward pointing unit normal along ∂Ω and n × v =
n1v2 − n2v1 is the tangential component of v.

Note that (1) is well-posed for k outside a (possibly empty) discrete subset of
R+ [5, 11].

Remark 2. In the case where Γimp is the outer boundary of Ω and Γpc is the
inner boundary of Ω (cf. Figure 1), problem (1) can be used to model a truncated
scattering problem where Γpc is the boundary of the scatterer(s) and the impedance
boundary condition acts as an absorbing boundary condition [11, 18].

The rest of the paper is organized as follows. We first recall the Hodge decompo-
sition approach to (1) in Section 2. We then develop an adaptive P1 finite element
method in Section 3. Numerical results are presented in Section 4 and we end with
some concluding remarks in Section 5.

Throughout this paper we use the notation x . y to represent the inequality
x ≤ C1y and the notation x ≈ y to represent the inequalities C2y ≤ x ≤ C1y, with
constants C1, C2 > 0 that do not depend on the mesh size but may depend on ε,
µ, and k.
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m = 0 m = 1 m = 2

Figure 1. Betti numbers for Ω

2. The Hodge Decomposition Approach

Let the nonnegative integer m be the Betti number of Ω (cf. Figure 1). In the
Hodge decomposition approach for (1), we write the electric field u as

(2) u = ε−1∇× φ+

m∑
j=1

cj∇ϕj ,

where φ ∈ H1(Ω) satisfies (φ, 1) = 0 and the functions ϕ1, . . . , ϕm are defined as
follows.

Let the outer boundary of Ω be denoted by Γ0 and the m components of the
inner boundary be denoted by Γ1, . . . ,Γm. Then the functions ϕj ∈ H1(Ω) for
1 ≤ j ≤ m are determined by the scalar problems

(ε∇ϕj ,∇v) = 0 ∀ v ∈ H1
0 (Ω),(3a)

ϕj |Γ0 = 0 and ϕj |Γl
= δjl for 1 ≤ l ≤ m,(3b)

where δjl = 1 if j = l and δjl = 0 if j 6= l.
It was shown in [5, Section 2] that there exists a discrete subset S+ of R+ such

that the model problem (1) is uniquely solvable for k ∈ R+ \ S+, in which case the
function φ in (2) is determined by

(4) (∇× φ, ε−1∇× ψ) =
i

k
〈(ξ − g)/λ, ψ〉Γimp

+ (µξ, ψ) ∀ψ ∈ H1(Ω)

together with the constraint (φ, 1) = 0, and the function ξ = µ−1∇ × u ∈ H1(Ω)
(which is the magnetic field multiplied by −ik) is determined by

(∇× ξ, ε−1∇× ψ)− k2(µξ, ψ)− ik〈ξ/λ, ψ〉Γimp

= (f , ε−1∇× ψ)− ik〈g/λ, ψ〉Γimp
∀ψ ∈ H1(Ω).(5)

Remark 3. The discrete subset S+ (possibly empty) is determined by the well-
posedness of the Fredholm problem (5). For k ∈ R+ \ S+, the solution of (5)
satisfies

(6) (µξ, 1) =
i

k
〈(g − ξ)/λ, 1〉Γimp ,

which then implies that the singular Neumann problem (4) is solvable.
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In the case wherem ≥ 1 the coefficients cj in (2) are determined by the symmetric
positive definite system

m∑
j=1

(ε∇ϕj ,∇ϕl)cj = − 1

k2
(f ,∇ϕl) for 1 ≤ l ≤ m.(7)

From now on we assume that k ∈ R+ \ S+. We can then solve (1) numerically
by the following P1 finite element method.

Let T` be a regular triangulation of Ω with mesh size h` = maxT∈T` hT , where
hT = diamT , and let V` ⊂ H1(Ω) be the P1 finite element space associated with

T`. The space V` ∩H1
0 (Ω) is denoted by V̊`.

First we find an approximate solution of (5) by computing ξ` ∈ V` such that

(∇× ξ`, ε−1∇× ψ`)− k2(µξ`, ψ`)− ik〈ξ`/λ, ψ`〉Γimp

= (f , ε−1∇× ψ`)− ik〈g/λ, ψ`〉Γimp ∀ψ` ∈ V`.(8)

Then we find an approximate solution of (4) by replacing ξ with ξ` and computing
φ` ∈ V` such that (φ`, 1) = 0 and

(9) (∇× φ`, ε−1∇× ψ`) =
i

k
〈(ξ` − g)/λ, ψ`〉Γimp + (µξ`, ψ`) ∀ψ ∈ V`.

If Ω is not simply connected (m ≥ 1), we find approximate solutions of (3) by
computing ϕ1,`, . . . , ϕm,` ∈ V` such that

(ε∇ϕj,`,∇v`) = 0 ∀ v` ∈ V̊`,(10a)

ϕj,`|Γ0 = 0 and ϕj,`|Γl
= δjl for 1 ≤ l ≤ m,(10b)

and then we find an approximate solution of (7) by replacing ϕj with ϕj,` and
solving

m∑
j=1

(ε∇ϕj,`,∇ϕl,`)cj,` = − 1

k2
(f ,∇ϕl,`) for 1 ≤ l ≤ m.(11)

The approximate solution of (1) is given by

(12) u` = ε−1∇× φ` +

m∑
j=1

cj,`∇ϕj,`.

The a priori error analysis of this P1 finite element method can be found in [5,
Section 3].

Remark 4. The scalar functions φ and ξ become vector fields for the Hodge decom-
position in three dimensions and hence (1) will not be reduced to scalar problems.

3. An Adaptive P1 Finite Element Method

We will use the following notation in the a posteriori error analysis. Let E` (resp.
E i`) denote the set of edges (resp. interior edges) and he denote the length of e ∈ E`.
For e ∈ E i` , let T± ∈ T` be the two neighboring triangles that share the edge e and
n± be the unit normal of E pointing towards the outside of T±. The normal jump
of a piecewise smooth vector field v across e is defined by [[ne ·v]] = n+ ·v+ +n− ·v−
and the tangential jump across e is defined by [[ne × v]] = n+ × v+ + n− × v−,
where v± = v

∣∣
T±

.
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Using (2), (12) and the triangle inequality, it is straightforward (cf. [4, Lemma 1])
to show that

(13) ‖u− u`‖L2(Ω;ε) . ‖ε−1∇× (φ− φ`)‖L2(Ω;ε) +

m∑
j=1

‖∇ϕj −∇ϕj,`‖L2(Ω;ε),

where ‖v‖L2(Ω;ε) =
( ∫

Ω
(εv) · v̄ dx

) 1
2

.

The following estimate for the second term on the right-hand side of (13) is also
standard (cf., for example, [10, Section 3.2.1] and the references therein).

Lemma 1. Let ϕj,` ∈ V`, j = 1, . . . ,m, be the solutions of (10). We have

‖∇(ϕj − ϕj,`)‖2L2(Ω;ε) .
∑
T∈T`

h2
T ‖∇ · (ε∇ϕj,`)‖2L2(T ) +

∑
e∈Ei`

he‖[[ne · ε∇ϕj,`]]‖2L2(E).

The next lemma provides an estimate for the first term on the right-hand side
of (13).

Lemma 2. Let φ` be the solution of (9). We have

‖ε−1∇× (φ− φ`)‖2L2(Ω;ε) .
∑
T∈T`

h2
T ‖µξ` −∇× (ε−1∇× φ`)‖2L2(T )

+
∑
e∈Ei`

he‖[[ne × (ε−1∇× φ`)]]‖2L2(e) +
∑
e⊂Γpc

he‖n× (ε−1∇× φ`)‖2L2(e)

+
∑

e⊂Γimp

he‖n× (ε−1∇× φ`) +
i

k
(ξ` − g)/λ‖2L2(e)

+ ‖ξ − ξ`‖2L2(Ω) + ‖ξ − ξ`‖2L2(Γimp),

where ξ` is the solution of (8).

Proof. It follows from (4) that

‖ε−1∇× (φ− φ`)‖2L2(Ω;ε)

=− (ε−1∇× φ`,∇× (φ− φ`)) +
i

k
〈(ξ − g)/λ, φ− φ`〉Γimp

+ (µξ, φ− φ`)

= Res`(φ− φ`) +
i

k
〈(ξ − ξ`)/λ, φ− φ`〉Γimp

+ (µ(ξ − ξ`), φ− φ`),

where

Res`(ψ) =
i

k
〈(ξ` − g)/λ, ψ〉Γimp

+ (µξ`, ψ)− (ε−1∇× φ`,∇× ψ) ∀ψ ∈ H1(Ω).

Hence we have

‖ε−1∇× (φ− φ`)‖2L2(Ω;ε) ≤ ‖Res`‖∗‖∇ × (φ− φ`)‖L2(Ω)

+ ‖µ(ξ − ξ`)‖L2(Ω)‖φ− φ`‖L2(Ω) +
1

k
‖(ξ − ξ`)/λ‖L2(Γimp)‖φ− φ`‖L2(Γimp),

(14)

where ‖Res`‖∗ = supψ∈H1(Ω) Res`(ψ)/‖ψ‖H1(Ω).

Since (φ− φ`, 1) = 0, we can apply a Poincaré-Friedrichs inequality and a trace
inequality to deduce from (14) that

‖ε−1∇× (φ− φ`)‖L2(Ω;ε) . ‖Res`‖∗ + ‖µ(ξ − ξ`)‖L2(Ω) +
1

k
‖(ξ − ξ`)/λ‖L2(Γimp),
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and it only remains to estimate ‖Res`‖∗.
For any ψ` ∈ V`, we have Res`(ψ`) = 0 because of (9). Integration by parts then

leads to

Res`(ψ) = Res`(ψ − ψ`)

=
∑
T∈T`

∫
T

hT (µξ` −∇× (ε−1∇× φ`))h−1
T (ψ − ψ`) dx

+
∑
e∈Ei`

∫
e

h1/2
e [[ne × (ε−1∇× φ`)]])h−1/2

e (ψ − ψ`) ds

+
∑
e⊂Γpc

∫
e

h1/2
e

(
n× (ε−1∇× φ`)

)
h−1/2
e (ψ − ψ`) ds

+
∑

e⊂Γimp

∫
e

h1/2
e

(
n× (ε−1∇× φ`) +

i

k
(ξ` − g)/λ

)
h−1/2
e (ψ − ψ`) ds.

The estimate for ‖Res`‖∗ (and the proof of the lemma) is completed by the
Cauchy-Schwarz inequality after choosing ψ` ∈ V` such that (cf. [17])∑

T∈T`

‖h−1
T (ψ − ψ`)‖2L2(T ) +

∑
e∈E`

‖h−1/2
e (ψ − ψ`)‖2L2(e) . ‖∇ψ‖

2
L2(Ω).

� �

Remark 5. If f ∈ [H1(Ω)]2 and g ∈ H 1
2 (E) for all the edges E of Ω that belong

to Γimp (which is the case for all the numerical experiments in Section 4), then
‖ξ− ξ`‖L2(Ω) and ‖ξ− ξ`‖L2(Γimp) are of higher order compared with ‖u−u`‖L2(Ω)

(cf. [3, Remark 4.4] and [5, Theorem 3.8 and Corollary 3.3]).

Based on (13), Lemma 1, Lemma 2 and Remark 5, we define the local error
indicator η`(T ) by

η2
` (T ) =

m∑
j=1

h2
T ‖∇ · (ε∇ϕj,`)‖2L2(T ) +

m∑
j=1

∑
e⊂∂T,e∈Ei`

he‖[[ne · ε∇ϕj,`]]‖2L2(e)

+ h2
T ‖µξ` −∇× (ε−1∇× φ`)‖2L2(T ) +

∑
e⊂∂T,e∈Ei`

he‖[[ne × (ε−1∇× φ`)]]‖2L2(e)

+
∑

e⊂∂T,e⊂Γpc

he‖n× (ε−1∇× φ`)‖2L2(e)

(15)

+
∑

e⊂∂T,e⊂Γimp

he‖n× (ε−1∇× φ`) +
i

k
(ξ` − g)/λ‖2L2(e),

where the terms involving ξ − ξ` are ignored. The global error estimator η` then

reads η` =
(∑

T∈T` η
2
` (T )

)1/2
.

Remark 6. Under the conditions in Remark 5, the estimator η` is reliable up to
higher order terms. Its efficiency will be demonstrated by the numerical experiments
in Section 4.

We can now use the adaptive loop

Solve→ Estimate→ Mark→ Refine
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to generate a sequence of triangulations T0, T1, . . . with associated finite element
spaces V0 ( V1 ( . . . ⊂ V and approximate solutions ξ` and u` for ` ≥ 0.

• Solve

The approximate solutions ξ` and u` on the mesh T` are computed by the
procedure described in (8)–(12).

• Estimate

The error ‖u − u`‖L2(Ω;ε) is estimated by the a posteriori error estimator
η` defined in (15).

• Mark

Based on the local refinement indicators η`(T ), the elements in T` are
marked for refinement using a bulk criterion [7] with parameter 0 < θ < 1.
It results in a minimal set M` ⊂ T` of marked triangles that satisfies

θ
∑
T∈T`

η2
` (T ) ≤

∑
T∈M`

η2
` (T ).

• Refine

Once a triangle is marked for refinement, all of its edges are marked for
refinement. In a closure algorithm additional edges are marked for refine-
ment such that if an edge of a triangle is marked for refinement, then the
reference edge of that triangle is marked as well. After the closure algo-
rithm has been applied the triangles are refined by one of the red-green-blue
refinement rules depicted in Figure 2.

red

1 2

3

4

56

green

1 2

3

4

blue-left

1 2

3

4

5

blue-right

1 2

3

4

5

Figure 2. Refinement rules: sub-triangles with corresponding ref-
erence edges depicted with a second edge.

4. Numerical Experiments

In this section we present some numerical examples for the model problem (1)
with inhomogeneous material parameters and sign changing µ. We also demon-
strate the robustness of our method with the numerical results of a semiconductor
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simulation, a cloaking simulation and a flat lens simulation (where ε also changes
signs) that are not covered by the a priori analysis in [5] or the a posteriori analysis
in Section 3. In all numerical experiments we take λ to be 1.

4.1. Inhomogeneous and anisotropic medium. The first example considers
the square domain Ω = (−1, 1)2 with inhomogeneous material parameters [9]

ε =

(
1 + x2 xy
xy 1 + y2

)
and µ = (1 + x2 + y2)−1.

For k = 1, we chose the analytic solution

u = (y/(x2 + y2 + 0.02),−x/(x2 + y2 + 0.02))t,

and compute f accordingly. The impedance boundary condition on ∂Ω is given by
the exact solution. Figure 3 shows that both uniform and adaptive refinement lead

to optimal O(N
−1/2
` ) convergence for the error ‖u − u`‖L2(Ω;ε), where N` is the

dimension of V`. (Note that for uniform refinement N
−1/2
` ≈ h`.) The a posteriori

error estimator η` is empirically shown to be reliable and efficient. We also observe
that the errors ‖ξ− ξ`‖L2(Ω) and ‖ξ− ξ`‖L2(∂Ω) (not shown) are of higher order for
both uniform and adaptive mesh refinements.

Nℓ

10
1

10
2

10
3

10
4

10
5

10
-3

10
-2

10
-1

10
0

10
1

||u− uℓ||L2(Ω;ǫ) (uniform)
ηℓ (uniform)
||u− uℓ||L2(Ω,ǫ) (adaptive)
ηℓ (adaptive)
||ξ − ξℓ||L2(Ω) (uniform)
||ξ − ξℓ||L2(Ω) (adaptive)

1/2

1

1

1

Figure 3. Convergence history for the first example.

4.2. L-shaped domain. The second example concerns the L-shaped domain Ω =
(−1, 1)2\[0, 1]2 with sign changing µ. Such parameters occur in the study of meta-
materials. For this examples we chose ε = 1, µ = 1 in quadrant III and µ = −1
in quadrant II and IV. We chose the homogenous impedance boundary condition
g = 0, the right-hand side f to be (1, 1)t, and the frequency k to be 1. Since the
exact solution is unknown, we compute the errors by using a reference solution
which is computed on a uniform refinement of the finest (adaptive) mesh.

The convergence history for the error ‖u−u`‖L2(Ω) is shown in Figure 4. Since the
solution has a singular point at the origin, uniform refinement leads to sub-optimal
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convergence while adaptive refinement recovers optimal convergence O(N
−1/2
` ).

Note that the errors ‖ξ − ξ`‖L2(Ω) and ‖ξ − ξ`‖L2(∂Ω) (not shown) are of higher
order for both uniform and adaptive refinement.

Nℓ

10
1

10
2

10
3

10
4

10
5

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

||u− uℓ||L2(Ω) (uniform)
ηℓ (uniform)
||u− uℓ||L2(Ω) (adaptive)
ηℓ (adaptive)
||ξ − ξℓ||L2(Ω) (uniform)
||ξ − ξℓ||L2(Ω) (adaptive)

1

1/3

1/2

1

2/3

1

1

1

Figure 4. Convergence history for the L-shaped domain.

4.3. Doubly connected domain. The third example involves the doubly con-
nected domain Ω = (−1, 1)2\[−1/2, 1/2]. We chose ε = 1, µ = 1, k = 1, the
homogenous impedance boundary condition g = 0 on the outer boundary and the
homogeneous perfectly conducting boundary condition n×u = 0 on the inner part
of the boundary. As right-hand side we chose f = (ex1 , ex2)t so that the coefficient
c in the Hodge decomposition for u is nonzero. Thus we have to solve three scalar
equation for this example.

We approximate the unknown error as in the previous example and observe that
uniform refinement leads to sub-optimal convergence rates as displayed in Figure 5
for the error ‖u − u`‖L2(Ω). In contrast, adaptive refinement leads to optimal

convergence O(N
−1/2
` ). Note that in both cases ‖ξ − ξ`‖L2(Ω) and ‖ξ − ξ`‖L2(Γimp)

(not shown) are of higher order.

4.4. Semiconductor simulation. In this example we demonstrate that the re-
sults in [3, 5] can be extended to the case where ε is complex-valued. We consider a
cavity problem where a semiconductor is wrapped inside a conductor. The domain
Ω is the doubly connected domain (−1, 1)2\[−1/4, 1/4]. We take ε to be 1 (resp.
1 + i/2) outside (resp. inside) the square [−1/2, 1/2]. We choose µ = 1, k = 10,
f ≡ 0 and the homogeneous perfectly conducting boundary condition on the inner
boundary, and we use an impedance boundary condition on the outer boundary
induced by the plane wave solution peikd·x with d = (1, 0)t and p = (0, 1)t. The
convergence history for this example is displayed in Figure 6.

We observe that both uniform and adaptive refinement lead to optimalO(N
−1/2
` )

convergence for u`, which is different from the example in Section 4.3. The reasons
are (i) the usual interface singularity for the Laplace operator [13] does not occur
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Nℓ

10
2

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

10
0

||u− uℓ||L2(Ω) (uniform)
ηℓ (uniform)
||u− uℓ||L2(Ω) (adaptive)
ηℓ (adaptive)
||ξ − ξℓ||L2(Ω) (uniform)
||ξ − ξℓ||L2(Ω) (adaptive)

1

1

2/3

1

1

1/2

1/3

1

Figure 5. Convergence history for the doubly connected domain.

N`

102 103 104 105

10-2

10-1

100

101

1

1

1

1/2jju! u`jjL2(+) (uniform)
2` (uniform)
jju! u`jjL2(+) (adaptive)
2` (adaptive)
jj9 ! 9`jjL2(+) (uniform)
jj9 ! 9`jjL2(+) (adaptive)

Figure 6. Convergence history for the semiconductor simulation.

along the interface between the semiconductor and the vacuum, and (ii) the loss
of energy inside the region occupied by the semiconductor (cf. Figure 7) weakens
the effects of the singularities at the reentrant corners of the inner boundary. Note
that no reflections are visible in Figure 7 due to the loss of energy.

As in the previous example ‖ξ − ξ`‖L2(Ω) and ‖ξ − ξ`‖L2(Γimp) (not shown) are
of higher order.

Remark 7. The asymptotic efficiency indices for the first four examples are observed
to be between 4 and 6.
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Figure 7. Real values of the second component of u` for the semi-
conductor simulation.

4.5. Cloaking simulation. The fifth example is for a cloaking simulation based
on transformation optics [16, 9], where a perfectly conducting cylinder is wrapped
by a cylindrical cloak of metamaterial. The domain Ω is the part of the square
(−1, 1)2 outside the circle centered at the origin with radius R1 = 1/4, where a
perfectly conducting boundary condition is imposed. We take µ and ε to be 1
outside a larger circle centered at the origin with radius R2 = 1/2. On the annular
region {x : R1 < |x| ≤ R2}, the permeability and permittivity are defined by

µ =

((
R2 −R1

R2

)2
r

r −R1

)−1

,

εxx =

((
R2 −R1

R2

)2

+

(
1 + 2

(
R2 −R1

R2

)2
R1

r −R1

)
sin2 θ

)
µ,

εxy = εyx = −

((
1 + 2

(
R2 −R1

R2

)2
R1

r −R1

)
sin θ cos θ

)
µ,

εyy =

((
R2 −R1

R2

)2

+

(
1 + 2

(
R2 −R1

R2

)2
R1

r −R1

)
cos2 θ

)
µ.

The right-hand side f for this example is 0 and the frequency k is 10. The
impedance boundary condition on the outer boundary is induced by the plane
wave solution peikd·x, where d = (1, 0)t and p = (0, 1)t.

The real part of the second component of the adaptive approximation is shown
in Figure 8. Note that the wave is moving from left to right and that the discrete
solution near the right boundary (almost) looks as if the cylinder is not present,
i.e., no reflections or shadows are visible. The plot in Figure 8 is produced with
roughly one hundred thousand degrees of freedom, while generating a similar plot
with a uniform mesh will require roughly two million degrees of freedom.
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Figure 8. Real values of the second component of u` for the cloak-
ing simulation.

An adaptively refined mesh is displayed in Figure 9 which shows stronger re-
finement in the region of the cloaking material, especially near the radius r = R1.

Figure 9. Adaptive meshes for the cloaking simulation.

Remark 8. Note that the permittivity ε is discontinuous at the circle with radius
R2 and it is only positive semi-definite at the circle with radius R1. Moreover, the
permeability µ vanishes at the circle with radius R1 and hence µ−1 does not belong
to L∞(Ω). Therefore ε and µ do not satisfy the assumptions underlying the a priori
analysis in [5] and the a posteriori analysis in Section 3. Nevertheless the adaptive
P1 finite element method still works for this example.
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4.6. Flat lens simulation. For this experiment, Ω is the rectangular domain
(0, 2) × (− 1

2 ,
1
2 ), ε = 1 and µ = 1 outside the rectangle (7/16, 39/32) × (− 1

2 ,
1
2 )

and ε = −1.1 and µ = 1/ε inside that rectangle. We chose k = 30, f = 0 outside a
small square of length 1/16 close to the left boundary and f = (0,−2000)t inside
that square. The boundary condition is the homogeneous impedance boundary
condition.

This example simulates the refocusing effect of a flat lens using a negative index
metamaterial with n = −1 (cf. [15] and the references therein). The wave emitted
from the point near the left boundary of the domain travels from left to right.
Once the wave encounters a metamaterial interface it is refocused towards a point
as displayed in Figure 10. The results are similar to those obtained by time domain
flat lens simulations [20, 8].

Figure 11 shows an adaptively refined mesh. Note that the mesh is more refined
at the two vertical interfaces of the metamaterial.

Figure 10. Real values of the second component of u` for the flat
lens simulation. The rectangle with the negative index metamate-
rial is indicated with black lines.

Remark 9. According to the theory in [5, Section 5], the model problem (1) on a sim-
ply connected domain with the impedance boundary condition and sign-changing
µ and ε is a Fredholm problem if the following condition is satisfied: Given any
w ∈ H1

0 (Ω) there exists ζw ∈ H1
0 (Ω) such that

(ε∇ζw,∇v) = (∇w,∇v) ∀ v ∈ H1
0 (Ω).

For the flat lens problem considered here, this condition can be verified through
the theory developed in [2, 14, 1]. But the well-posedness of the discrete prob-
lems on adaptive meshes and the a priori and a posteriori analyses remain open.
Nevertheless the adaptive P1 finite element method appears to also work for this
example.
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Figure 11. Adaptive mesh for the flat lens simulation.

5. Concluding Remarks

By extending the Hodge decomposition approach to include the impedance
boundary condition (which can act as an absorbing boundary condition), we are
able to solve problems involving the propagation of electromagnetic waves in the
frequency domain by solving simple scalar problems with the P1 finite element.

We have developed a reliable residual based error estimator for the P1 finite ele-
ment method and demonstrated numerically that it is also efficient. The resulting
adaptive algorithm exhibits optimal convergence in numerical experiments involv-
ing general material properties, general domains and general boundary conditions.
Proving mathematically the local efficiency of the error estimator is an interesting
open problem.

Furthermore we have demonstrated the robustness of the adaptive P1 finite el-
ement method by applying it successfully to a semiconductor problem, a cloaking
problem and a flat lens problem whose settings are outside our theoretical frame-
work.
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