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Abstract. We extend the Hodge decomposition approach for the cavity prob-
lem of two-dimensional time-harmonic Maxwell’s equations to include the

impedance boundary condition, with anisotropic electric permittivity and sign

changing magnetic permeability. We derive error estimates for a P1 finite
element method based on the Hodge decomposition approach and present re-

sults of numerical experiments that involve metamaterials and electromagnetic

cloaking. The well-posedness of the cavity problem when both electric permit-
tivity and magnetic permeability can change sign is also discussed.

1. Introduction

Let Ω be a polygonal domain in R2 whose boundary is the union of two disjoint
closed subsets Γpc and Γimp. We will consider the following cavity problem for the
time-harmonic Maxwell equations: Find u ∈ Himp(curl; Ω; Γimp)∩H0(curl; Ω; Γpc)∩
H(div0; Ω; ε) such that

(1.1) (µ−1∇×u,∇×v)−k2(εu,v)−ik〈λn×u,n×v〉Γimp
= (f ,v)+〈g,n×v〉Γimp

for all v ∈ Himp(curl; Ω; Γimp)∩H0(curl; Ω; Γpc)∩H(div0; Ω; ε). (The definitions of
these function spaces will be given below.)

Here u is the electric field (in a transverse magnetic problem), ε is the electric
permittivity, µ is the the magnetic permeability, k > 0 is the frequency, i =

√
−1,

f is the electric current density, 1/λ is the impedance on Γimp, g is a magnetic field
intensity on Γimp, n is the outward pointing unit normal along ∂Ω, (·, ·) is the in-
ner product for the complex function space L2(Ω) (or [L2(Ω)]2), and 〈·, ·〉Γimp

is the
inner product for the complex function space L2(Γimp). The impedance (respec-
tively perfectly conducting) boundary condition is imposed on Γimp (respectively
Γpc). In the special case where Γimp is the outer boundary of Ω and Γpc is the
inner boundary of Ω, the problem described by (1.1) corresponds to a truncated
scattering problem where Γpc is the boundary of the scatterer(s) and Γimp is an
artificial boundary where the impedance boundary condition acts as an absorbing
boundary condition [1, 2].
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We assume that f ∈ [L2(Ω)]2, λ is a smooth strictly positive function defined on
Γimp, g ∈ L2(Γimp), and, for most of the paper, that ε is a smooth real symmetric
positive-definite (SPD) 2×2 tensor field defined on Ω̄ and the real-valued functions
µ and 1/µ both belong to L∞(Ω). The conditions on ε and µ will be relaxed for
the electromagnetic cloaking simulation in Section 4.5, and we will even allow ε to
change sign in Section 5.

The spaces Himp(curl; Ω; Γimp), H0(curl; Ω; Γpc) and H(div0; Ω; ε) are defined as
follows:

H(curl; Ω) = {v =

[
v1

v2

]
∈ [L2(Ω)]2 : ∇× v = ∂v2/∂x1 − ∂v1/∂x2 ∈ L2(Ω)},

Himp(curl; Ω; Γimp) = {v ∈ H(curl; Ω) : n× v|Γimp ∈ L2(Γimp)},
H0(curl; Ω; Γpc) = {v ∈ H(curl; Ω) : n× v|Γpc

= 0},

H(div0; Ω) = {v =

[
v1

v2

]
∈ [L2(Ω)]2 : 0 = ∇ · v = ∂v1/∂x1 + ∂v2/∂x2},

H(div0; Ω; ε) = {v ∈ [L2(Ω)]2 : εv ∈ H(div0; Ω)},

where n = [n1 n2]t is the outward pointing unit normal along ∂Ω and n × v =
n1v2 − n2v1 is the tangential component of v.

We will use the Hodge/Helmholtz decomposition of divergence-free vector fields
to reduce the problem (1.1) to several scalar elliptic boundary value problems,
which can be solved numerically by standard finite element methods. This idea
was first proposed in [3] for the time-harmonic Maxwell equations with the perfectly
conducting boundary condition, and was exploited in [4] and [5] for the construction
of adaptive and multigrid algorithms. In this paper, besides treating more general
boundary conditions, we also consider more general ε and µ. In particular, µ is
allowed to be both positive and negative in Ω throughout the paper, and ε is also
allowed to change sign in the last section of the paper, which can occur if a part
of Ω is occupied by certain metamaterials [6, 7]. Therefore the well-posedness of
(1.1) does not follow immediately from the standard theory that can be found for
example in [2].

We note that the well-posedness of the time-harmonic Maxwell equations for
metamaterials has been investigated by many authors. For example, the well-
posedness of three-dimensional cavity problems with lossy materials and the impedance
boundary condition were studied in [8, 9], and an electromagnetic scattering prob-
lem with sign changing constants ε and µ in R3 was treated in [10]. In the case of the
perfectly conducting boundary condition, the well-posedness for cavity problems for
lossless materials in two and three dimensions was investigated in [11, 12, 13, 14].
We will show that the Hodge decomposition approach can provide yet another
treatment of the well-posedness involving metamaterials.

The rest of the paper is organized as follows. We develop in Section 2 the Hodge
decomposition approach and show that (1.1) is well-posed if the positive number k
does not belong to a discrete subset of (0,∞). Error estimates for a P1 finite element
method based on the Hodge decomposition are derived in Section 3. Numerical
results that involve metamaterials and electromagnetic cloaking are presented in
Section 4. In Section 5, under stability conditions on the sesquilinear form (∇ ×
·, ε−1∇×·) (cf. (5.2) and (5.3)), the well-posedness result for (1.1) is extended to the
general case where both the electric permittivity ε and the magnetic permeability
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µ can change sign, provided that Γimp 6= ∅. We end with some concluding remarks
in Section 6. Throughout the paper we will follow standard notation for differential
operators, function spaces and norms that can be found for example in [15, 16].

To facilitate the presentation, we recall here that the tangential trace map v −→
n × v can be extended from [C∞(Ω̄)]2 to H(curl; Ω) such that n × v ∈ H− 1

2 (∂Ω)
and we have an integration by parts formula [17, Theorem 2.11]

(1.2) (ζ,∇× v) = (∇× ζ,v) + 〈〈ζ,n× v〉〉 ∀ ζ ∈ H1(Ω), v ∈ H(curl; Ω),

where ∇×ζ = [∂ζ/∂x2,−∂ζ/∂x1]t and 〈〈·, ·〉〉 is the duality pairing of H
1
2 (∂Ω) and

H−
1
2 (∂Ω).

In particular, we have the orthogonality relation

(1.3) (∇× ζ,∇η) = 0 ∀ ζ ∈ H1(Ω)

if the trace of η ∈ H1(Ω) is a constant on each component of ∂Ω, since ∇η ∈
H0(curl; Ω) = {w ∈ H(curl; Ω) : n × w = 0 on ∂Ω} and we can take v = ∇η in
(1.2). The integration by parts formula below is a special case of (1.2):

(1.4) (ζ,∇× v) = (∇× ζ,v) + 〈ζ,n× v〉Γimp ∀ ζ ∈ H1(Ω),

v ∈ Himp(curl; Ω; Γimp) ∩H0(curl; Ω; Γpc).
Throughout this paper we use C (with or without subscript) to denote a generic

positive constant that does not depend on the mesh size but which may depend on
ε, µ and k.

2. The Hodge Decomposition Approach

Let m ≥ 0 be the Betti number of Ω (m = 0 if Ω is simply connected). We
will denote the outer boundary of Ω by Γ0 and the m components of the inner
boundary of Ω by Γ1, . . . ,Γm. The functions ϕ1, . . . , ϕm ∈ H1(Ω) are determined
by the following Dirichlet boundary value problems:

(ε∇ϕj ,∇v) = 0 ∀ v ∈ H1
0 (Ω),(2.1a)

ϕj
∣∣
Γ0

= 0,(2.1b)

ϕj
∣∣
Γ`

= δj` =

{
1 j = `

0 j 6= `
for 1 ≤ ` ≤ m.(2.1c)

The space of ε-harmonic functions spanned by the functions ϕ1, . . . , ϕm is denoted
by H(Ω; ε).

Remark 2.1. Note that, for any ϕ ∈ H(Ω; ε), we have ∇ϕ ∈ H(div0; Ω; ε) by (2.1a)
and∇ϕ ∈ H0(curl; Ω) by (2.1b)–(2.1c). Therefore∇ϕ belongs toHimp(curl; Ω; Γimp)∩
H0(curl; Ω; Γpc) ∩H(div0; Ω; ε) for any ϕ ∈ H(Ω; ε).

Remark 2.2. Let H1
Γ be the subspace of H1(Ω) whose members vanish on Γ0 and

have constant traces on Γ1, . . . ,Γm. Then H(Ω; ε) is a subspace of H1
Γ and H1

Γ =

H1
0 (Ω)

⊥
⊕H(Ω; ε) with respect to the inner product (∇·,∇·) on H1

Γ.
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2.1. Reduction to scalar elliptic problems. Assume for the moment that u ∈
Himp(curl; Ω; Γimp) ∩H0(curl; Ω; Γpc) ∩H(div0; Ω; ε) is a solution of (1.1). By the

Hodge decomposition for H(div0; Ω; ε) [3, Lemma 2.3], we can write in a unique
way

(2.2) u = ε−1∇× φ+

m∑
j=1

cj∇ϕj ,

where φ ∈ H1(Ω) satisfies (φ, 1) = 0 and c1, . . . , cm are constants. Our goal is
to derive elliptic boundary value problems that determine the function φ and the
coefficients c1, . . . , cm in (2.2).

Let [L2(Ω; ε)]2 be the space [L2(Ω)]2 equipped with the inner product (·, ·)ε
defined by

(v,w)ε =

∫
Ω

εv · w̄ dx

and Q : [L2(Ω; ε)]2 −→ H(div0; Ω; ε) be the orthogonal projection with respect to
the inner product (·, ·)ε. Note that H(div0; Ω; ε) is the orthogonal complement of

∇H1
0 (Ω) in [L2(Ω; ε)]2, i.e., [L2(Ω; ε)]2 = ∇H1

0 (Ω)
⊥
⊕H(div0; Ω; ε).

Lemma 2.3. If u is a solution of (1.1), then we have

(2.3) ∇× (µ−1∇× u)− k2εu = εQ(ε−1f)

in the sense of distributions.

Proof. Let ζ ∈ [C∞c (Ω)]2 be a C∞ vector field with compact support in Ω. Then
we have ζ ∈ H0(curl; Ω), Qζ ∈ H(div0; Ω; ε), ζ−Qζ ∈ ∇H1

0 (Ω) ⊂ H0(curl; Ω), and

Qζ ∈ H0(curl; Ω)∩H(div0; Ω; ε) ⊂ Himp(curl; Ω; Γimp)∩H0(curl; Ω; Γpc)∩H(div0; Ω; ε).

Furthermore, since ∇×∇H1
0 (Ω) = {0} and H(div0; Ω; ε) is orthogonal to ∇H1

0 (Ω)
in [L2(Ω; ε)]2, we have

∇× (ζ −Qζ) = 0 = (u, ζ −Qζ)ε = (εu, ζ −Qζ),

which together with (1.1) implies

(µ−1∇× u,∇× ζ)− k2(εu, ζ)

=
(
µ−1∇× u,∇× (Qζ + (ζ −Qζ)

)
− k2

(
εu, Qζ + (ζ −Qζ)

)
= (µ−1∇× u,∇×Qζ)− k2(εu, Qζ)

= (f , Qζ) = (ε−1f , Qζ)ε =
(
Q(ε−1f), ζ

)
ε

=
(
εQ(ε−1f), ζ). �

Remark 2.4. If f ∈ H(div0; Ω), then ε−1f ∈ H(div0; Ω; ε) and hence εQ(ε−1f) =
ε(ε−1f) = f . Therefore εQ(ε−1·) is a projection from [L2(Ω)]2 onto H(div0; Ω).

Let the function ξ be defined by

(2.4) ξ = µ−1∇× u.

Then ξ ∈ H1(Ω) and

(2.5) ∇× ξ − k2εu = ε(Qε−1f) in Ω

by (2.3).
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Let v ∈ Himp(curl; Ω; Γimp) ∩ H0(curl; Ω; Γpc) be arbitrary. We have Qv ∈
H(div0; Ω; ε), v−Qv ∈ ∇H1

0 (Ω) ⊂ H0(curl; Ω), Qv ∈ Himp(curl; Ω; Γimp)∩H0(curl; Ω; Γpc)∩
H(div0; Ω; ε), and by repeating the arguments in the proof of Lemma 2.3, we find

(µ−1∇× u,∇× v)− k2(εu,v)

= (µ−1∇× u,∇×Qv)− k2(εu, Qv)

= (f , Qv) + ik〈λn× u,n×Qv〉Γimp + 〈g,n×Qv〉Γimp

= (εQ(ε−1f),v) + ik〈λn× u,n× v〉Γimp
+ 〈g,n× v〉Γimp

.

(2.6)

It then follows from (1.4), (2.3), (2.4) and (2.6) that

〈ξ − ikλn× u,n× v〉Γimp = 〈g,n× v〉Γimp

for all v ∈ Himp(curl; Ω; Γimp) ∩H0(curl; Ω) and hence

(2.7) n× u =
i

k
(g − ξ)/λ on Γimp.

Let ψ ∈ H1(Ω) be arbitrary. Then ε−1∇ × ψ belongs to H(div0; Ω; ε) and it
follows from (1.4), (2.5) and (2.7) that

(f , ε−1∇× ψ) =
(
εQ(ε−1f), ε−1∇× ψ

)
=
(
∇× ξ − k2εu, ε−1∇× ψ

)
= (∇× ξ, ε−1∇× ψ)− k2

[
(∇× u, ψ)− 〈n× u, ψ〉Γimp

]
= (∇× ξ, ε−1∇× ψ)− k2(µξ, ψ) + ik〈(g − ξ)/λ, ψ〉Γimp

.

Therefore ξ satisfies

(∇× ξ, ε−1∇× ψ)− k2(µξ, ψ)− ik〈ξ/λ, ψ〉Γimp

= (f , ε−1∇× ψ)− ik〈g/λ, ψ〉Γimp ∀ψ ∈ H1(Ω),
(2.8)

which implies immediately that

(2.9) (µξ, 1)− i

k
〈(g − ξ)/λ, 1〉Γimp

= 0.

Remark 2.5. The problem defined by (2.8) is the weak form of a scalar elliptic
problem with a Robin boundary condition on Γimp and a homogeneous Neumann
boundary condition on Γpc.

Now we turn to the problem that will determine the function φ in the Hodge
decomposition (2.2). Let ψ ∈ H1(Ω) be arbitrary. We have, by (1.3), (1.4), (2.2),
(2.4) and (2.7),

(∇× φ, ε−1∇× ψ) =
(
∇× φ+ ε

m∑
j=1

cj∇ϕj , ε−1∇× ψ
)

= (εu, ε−1∇× ψ)

= (∇× u, ψ)− 〈n× u, ψ〉Γimp
= (µξ, ψ)− i

k
〈(g − ξ)/λ, ψ〉Γimp .

Thus the function φ satisfies the equation

(2.10) (∇× φ, ε−1∇× ψ) = (µξ, ψ)− i

k
〈(g − ξ)/λ, ψ〉Γimp ∀ψ ∈ H1(Ω)

and the constraint

(2.11) (φ, 1) = 0.
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Remark 2.6. Given ξ ∈ H1(Ω), the problem defined by (2.10)–(2.11) is the weak
form of a scalar elliptic problem with a nonhomogeneous Neumann boundary con-
dition on Γimp and a homogeneous Neumann boundary condition on Γpc. It is
uniquely solvable under the condition (2.9).

In the case where m ≥ 1, the coefficients c1, . . . , cm in (2.2) are determined by
the equations

(2.12)

m∑
j=1

(ε∇ϕj ,∇ϕ`)cj = − 1

k2
(f ,∇ϕ`) for 1 ≤ ` ≤ m,

which are obtained from (1.1) by replacing εu with ∇× φ+ ε
∑m
j=1 cj∇ϕj and by

taking v to be∇ϕk for k = 1, . . . ,m. Note that (2.12) is an SPD system since (2.1b)
implies that ϕ = 0 is the only function in H(Ω; ε) that satisfies (ε∇ϕ,∇ϕ) = 0.

Remark 2.7. Observe that the coefficients c1, . . . , cm depend only on the volume
source term f . In particular, if f equals 0, then we have c1 = . . . = cm = 0 and
the harmonic functions ϕj (1 ≤ j ≤ m) do not contribute to the solution u.

2.2. Equivalence of the scalar problems with the original problem. So far
we have shown that if u ∈ Himp(curl; Ω; Γimp) ∩ H0(curl; Ω; Γpc) ∩ H(div0; Ω; ε)
satisfies (1.1), then the function φ and the coefficients c1, . . . , cm in the Hodge
decomposition (2.2) are determined by (2.8), (2.10)–(2.11) and (2.12) (when m ≥
1). Conversely, we can show that if ξ ∈ H1(Ω), φ ∈ H1(Ω) and c1, . . . , cm ∈ C
satisfy (2.8) and (2.10)–(2.12), and the vector field u is defined by (2.2), then u
belongs to Himp(curl; Ω; Γimp)∩H0(curl; Ω; Γpc)∩H(div0; Ω; ε) and is a solution of
(1.1).

Indeed (1.2) and (2.10) imply

∇×(ε−1∇×φ) = µξ in Ω and n× (ε−1∇× φ) =

{
i
k (g − ξ)/λ on Γimp

0 on Γpc
.(2.13)

Hence ε−1∇×φ belongs to Himp(curl; Ω; Γimp)∩H0(curl; Ω; Γpc)∩H(div0; Ω; ε). In
view of Remark 2.1, the vector field u defined by (2.2) also belongs toHimp(curl; Ω; Γimp)∩
H0(curl; Ω; Γpc) ∩H(div0; Ω; ε). Moreover we have

∇× u = µξ in Ω and n× u =

{
i
k (g − ξ)/λ on Γimp

0 on Γpc
(2.14)

by (2.2) and (2.13).
Given any v ∈ Himp(curl; Ω; Γimp) ∩H0(curl; Ω; Γpc) ∩H(div0; Ω; ε), we have a

Hodge decomposition

(2.15) v = ε−1∇× ψ +∇ϕ,

where ψ ∈ H1(Ω) and ϕ ∈ H(Ω; ε). Then ∇× v = ∇× (ε−1∇× ψ) in Ω, n× v =
n× (ε−1∇× ψ) on ∂Ω, and it follows from (1.4), (2.14) and (2.15) that

(µ−1∇× u,∇× v) = (ξ,∇× v) = (ξ,∇× (ε−1∇× ψ))

= (∇× ξ, ε−1∇× ψ) + 〈ξ,n× v〉Γimp
.

(2.16)
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From (1.3), (1.4), (2.2), (2.8), (2.12), (2.14) and (2.15) we have

(∇× ξ, ε−1∇× ψ)

= k2(µξ, ψ) + (f , ε−1∇× ψ)− ik〈(g − ξ)/λ, ψ〉Γimp

= k2(∇× u, ψ) + (f , ε−1∇× ψ)− ik〈(g − ξ)/λ, ψ〉Γimp

= k2
[
(u,∇× ψ) + 〈n× u, ψ〉Γimp

]
+ (f , ε−1∇× ψ)− ik〈(g − ξ)/λ, ψ〉Γimp

= k2(εu, ε−1∇× ψ) + (f , ε−1∇× ψ)

= k2(εu,v)− k2(∇× φ+ ε

m∑
j=1

cj∇ϕj ,∇ϕ) + (f , ε−1∇× ψ)

(2.17)

= k2(εu,v)− k2
m∑
j=1

(ε∇ϕj ,∇ϕ)cj + (f , ε−1∇× ψ)

= k2(εu,v) + (f , ε−1∇× ψ +∇ϕ)

= k2(εu,v) + (f ,v).

From (2.14) we also have

(2.18) 〈ξ,n× v〉Γimp = ik〈λn× u,n× v〉Γimp + 〈g,n× v〉Γimp .

Equation (1.1) follows from (2.16)–(2.18).

2.3. A well-posedness result. We can now formulate a well-posedness result for
(1.1).

Theorem 2.8. There exists a discrete (possibly empty) subset S+ of R+ = (0,∞)
such that (1.1) has a unique solution for k ∈ R+ if and only if k 6∈ S+.

Proof. Since (1.1) is equivalent to (2.8)–(2.12), it suffices to consider the unique
solvability of the latter and, because (2.10)–(2.11) and (2.12) are always uniquely
solvable, we only have to consider the well-posedness of the scalar elliptic problem
(2.8).

We can write (2.8) as

(2.19) a(ξ, ψ) = (f , ε−1∇× ψ)− ik〈g/λ, ψ〉Γimp
∀ψ ∈ H1(Ω),

where

(2.20) a(η, ψ) = (∇×η, ε−1∇×ψ)−k2(µη, ψ)−ik〈η/λ, ψ〉Γimp
∀ η, ψ ∈ H1(Ω).

Since ε−1 is uniformly SPD on Ω, the problem (2.8) is Fredholm for any k ∈ C.
Therefore, according to the analytic Fredholm theorem [18, Theorem VI.14], we
only need to show that (2.8) is uniquely solvable for some k ∈ C.

Suppose Γimp = ∅, k2 = i and η ∈ H1(Ω) satisfies

0 = a(η, ψ) = (∇× η, ε−1∇× ψ)− i(µη, ψ) ∀ψ ∈ H1(Ω).(2.21)

By taking ψ = η in (2.21), we see that η must be a constant and hence

η(µ, ψ) = 0 ∀ψ ∈ H1(Ω).

In view of our assumptions on µ, this means η = 0 and thus the problem (2.8) is
uniquely solvable when k2 = i.
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We now consider the case where Γimp 6= ∅. Since µ ∈ L∞(Ω), ε−1 is SPD and
the positive function 1/λ is bounded away from 0, we have a Poincaré-Friedrichs
inequality [19, Theorem 2.7.1]

(2.22) ‖η‖2L2(Ω) ≤ CPF

[
(∇× η, ε−1∇× η) + 〈η/λ, η〉Γimp

]
∀ η ∈ H1(Ω).

Therefore for t ∈ (0, 1) sufficiently small, we have

(2.23) t2|(µη, η)| ≤ 1

2

[
(∇× η, ε−1∇× η) + t〈η/λ, η〉Γimp

]
∀ η ∈ H1(Ω).

It follows from (2.22) and (2.23) that there exists a positive number ct such that∣∣(∇× η, ε−1∇× η) + t2(µη, η) + t〈η/λ, η〉Γimp

∣∣
≥ 1

2

[
(∇× η, ε−1∇× η) + t〈η/λ, η〉Γimp

]
≥ ct‖η‖2H1(Ω) ∀ η ∈ H1(Ω),

provided t ∈ (0, 1) is sufficiently small. This means the sesquilinear form a(·, ·) is
coercive for k = it where t ∈ (0, 1) is sufficiently small. Since a(·, ·) is obviously
bounded, we can apply the Lax-Milgram lemma [20, Theorem 6.6] to conclude that
(2.8) has a unique solution for such k. �

Remark 2.9. Note that µ, which appears in a lower order term in the scalar equa-
tion (2.8) posed on H1(Ω), does not play any role in the Fredholm property of
(2.8). In the three-dimensional case the corresponding system is posed on a space
that involves H(div0; Ω;µ) and hence additional conditions on µ are needed if µ is
allowed to change sign (cf. [14]).

Remark 2.10. Theorem 2.8 is valid under the assumptions that ε and ε−1 are SPD
and bounded. In particular, ε can be piecewise smooth. However in that case the
regularity of ξ, φ and ϕ1, . . . , ϕm can be very low [21] and their numerical solutions
would be very challenging.

Remark 2.11. There are additional conditions on µ that would imply S+ is the
empty set. For example, if µ is a negative function, then a(·, ·) is coercive for k > 0
and S+ = ∅. If Γimp 6= ∅ and µ is a piecewise Lipschitz function, then, under
appropriate conditions on the subdomains where µ is Lipschitz, one can use unique
continuation results for second order elliptic problems [22, Section 17.2] to show
that, for any k > 0, a(η, ψ) = 0 for all ψ ∈ H1(Ω) implies η = 0 (cf. the treatments
in [23] and [2, Section 4.6]). Hence in this case we also have S+ = ∅. On the other
hand, if µ is positive and Γimp = ∅, then it is well known that S+ is an infinite set
with ∞ as the only limit point.

Remark 2.12. For k ∈ S+, the Fredholm problem (1.1) is solvable if and only if the
data satisfy a finite number of compatibility conditions and the solution is unique
if an equal number of appropriate constraints are imposed.

Remark 2.13. The proof of Theorem 2.8 actually establishes the well-posedness of
(1.1) for k ∈ C \ S, where S is a discrete subset of C and S+ = S ∩ R+.

2.4. A numerical procedure. From here on we assume that k belongs to R+\S+.
We can then solve (1.1) numerically by the following procedure.

Procedure 2.14.
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• Solve the boundary value problem (2.8) numerically to find an approximate

solution ξ̃ for ξ such that (2.9) holds with ξ replaced by ξ̃.

• Solve the boundary value problem (2.10) numerically under the constraint

(2.11), with ξ replaced by ξ̃, to find an approximate solution φ̃ for φ.

• If Ω is not simply connected, solve the boundary value problem(s) (2.1)
numerically to find ϕ̃j that approximates ϕj for 1 ≤ j ≤ m, and then
solve (2.12) numerically with the ϕj ’s replaced by the ϕ̃j ’s to find c̃j that
approximates cj for 1 ≤ j ≤ m.

• The approximation ũ for the solution u of (1.1) is given by

ũ = ε−1∇× φ̃+

m∑
j=1

c̃j∇ϕ̃j .

A P1 finite element method based on this procedure will be analyzed in the next
section.

3. A P1 Finite Element Method

Since the case of the perfectly conducting boundary condition has already been
carried out in [3], we will focus on the case Γpc = ∅ to simplify the presentation
and we will denote 〈·, ·〉Γimp

= 〈·, ·〉∂Ω by 〈·, ·〉.
Let Th be a triangulation of Ω and Vh ⊂ H1(Ω) be the (complex-valued) P1 finite

element space associated with Th, where h represents the mesh size.

3.1. The P1 finite element method for (2.8). The approximation ξh ∈ Vh for
ξ is defined by

(3.1) a(ξh, v) = (f , ε−1∇× v)− ik〈g/λ, v〉 ∀ v ∈ Vh,
where a(·, ·) is the sesquilinear form defined in (2.20).

The error analysis for ξh involves the adjoint problem of (2.8). By the Fredholm
theory, the adjoint problem

(3.2) a(ψ, ζ) = (ψ, f) ∀ψ ∈ H1(Ω)

has a unique solution ζ ∈ H1(Ω) for any f ∈ L2(Ω) under the assumption that
k 6∈ S+. It then follows from the elliptic regularity theory for Robin/Neumann
problems on polygonal domains [24, 25, 26] and a standard interpolation error
estimate that

(3.3) inf
v∈Vh

‖ζ − v‖H1(Ω) ≤ Chβ‖f‖L2(Ω),

where the index of elliptic regularity β ∈ ( 1
2 , 1] is given by

(3.4) β = min(1, min
1≤`≤L

π

ω`
)

and ω1, . . . , ωL are the angles at the corners of Ω. Note that β = 1 if and only if Ω
is convex.

Lemma 3.1. There exists h0 > 0 such that (3.1) has a unique solution for h ≤ h0,
in which case we have

(3.5) ‖ξ − ξh‖L2(Ω) ≤ Chβ inf
v∈Vh

‖ξ − v‖H1(Ω).
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Proof. We follow the arguments of Schatz in [27]. Suppose ξh ∈ Vh satisfies (3.1).
We have the Galerkin orthogonality

(3.6) a(ξ − ξh, v) = 0 ∀ v ∈ Vh.

Let ζ ∈ H1(Ω) be defined by

(3.7) a(ψ, ζ) = (ψ, ξ − ξh) ∀ψ ∈ H1(Ω).

It follows from the estimate (3.3) that

(3.8) inf
v∈Vh

‖ζ − v‖H1(Ω) ≤ Chβ‖ξ − ξh‖L2(Ω).

We can then use (3.6), (3.7) and the boundedness of a(·, ·) to obtain

‖ξ − ξh‖2L2(Ω) = a(ξ − ξh, ζ) = a(ξ − ξh, ζ − v)

≤ C‖ξ − ξh‖H1(Ω)‖ζ − v‖H1(Ω) ∀ v ∈ Vh,

which together with (3.8) implies

(3.9) ‖ξ − ξh‖L2(Ω) ≤ Chβ‖ξ − ξh‖H1(Ω).

Combining (3.6), (3.9) with the G̊arding inequality

(3.10) ‖v‖2H1(Ω) ≤ γ1

(
|a(v, v)|+ γ2‖v‖2L2(Ω)

)
∀ v ∈ H1(Ω)

that is valid for γ1 and γ2 sufficiently large, we find

(3.11) ‖ξ − ξh‖2H1(Ω) ≤ C
∣∣a(ξ − ξh, ξ − v)

∣∣ ∀ v ∈ Vh,

provided h ≤ h0 for a sufficiently small positive number h0.
For the special case where f = 0 and g = 0, we have ξ = 0 and then (3.11) (with

v = 0) implies that ξh = 0, i.e.,

a(ξh, v) = 0 ∀ v ∈ Vh ⇒ ζh = 0

provided h ≤ h0. Therefore the discrete problem (3.1) is uniquely solvable for
h ≤ h0, in which case it follows from (3.11) that

(3.12) ‖ξ − ξh‖H1(Ω) ≤ C inf
v∈Vh

‖ξ − v‖H1(Ω).

The estimate (3.5) follows from (3.9) and (3.12). �

The proof of the following result is entirely analogous to Lemma 3.1 and hence
omitted.

Lemma 3.2. For any δ ∈ (0, 1/2) we have

(3.13) ‖ξ − ξh‖H(1/2)+δ(Ω) ≤ Cδh(1/2)−δ inf
v∈Vh

‖ξ − v‖H1(Ω)

provided h ≤ h0.

The following corollary is an immediate consequence of (3.5), (3.12), (3.13) and
the following trace inequalities:

‖ξ − ξh‖L2(∂Ω) ≤ C‖ξ − ξh‖
1
2

L2(Ω)‖ξ − ξh‖
1
2

H1(Ω),

‖ξ − ξh‖L2(∂Ω) ≤ Cδ‖ξ − ξh‖H(1/2)+δ(Ω).
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Corollary 3.3. We have, for h ≤ h0,

(3.14) ‖ξ − ξh‖L2(∂Ω) ≤ Ch1/2 inf
v∈Vh

‖ξ − v‖H1(Ω),

if Ω is convex (i.e., β = 1), and

(3.15) ‖ξ − ξh‖L2(∂Ω) ≤ Cδh(1/2)−δ inf
v∈Vh

‖ξ − v‖H1(Ω),

if Ω is nonconvex (i.e., β < 1).

Remark 3.4. If µ is a negative function, then a(·, ·) is coercive and the estimates
(3.5), (3.14) and (3.15) are valid for any h > 0.

3.2. The P1 finite element method for (2.10)–(2.11). For h ≤ h0 so that (3.1)
is well-posed, we define the approximation φh ∈ Vh for φ by

(∇× φh, ε−1∇× v) = (µξh, v)− i

k
〈(g − ξh)/λ, v〉 ∀ v ∈ Vh,(3.16)

(φh, 1) = 0.(3.17)

Since (3.1) implies

(3.18) (µξh, 1)− i

k
〈(g − ξh)/λ, 1〉 = 0,

the discrete Neumann problem (3.16)–(3.17) is uniquely solvable.

Lemma 3.5. For h ≤ h0, we have

(3.19) |φ− φh|H1(Ω) ≤ C
(
h1/2 inf

v∈Vh
‖ξ − v‖H1(Ω) + inf

v∈Vh
|φ− v|H1(Ω)

)
,

if Ω is convex, and

(3.20) |φ− φh|H1(Ω) ≤ Cδh(1/2)−δ inf
v∈Vh

‖ξ − v‖H1(Ω) + C inf
v∈Vh

|φ− v|H1(Ω),

if Ω is nonconvex.

Proof. In view of (2.9), we can define φ̃h ∈ Vh to be the unique solution of

(∇× φ̃h, ε−1∇× v) = (µξ, v)− i

k
〈(g − ξ)/λ, v〉 ∀ v ∈ Vh,(3.21)

(φ̃h, 1) = 0,(3.22)

i.e., φ̃h is the approximation of φ by the P1 finite element method that uses the exact
solution ξ of (2.8). By a standard argument based on the Galerkin orthogonality
we have

(3.23) |φ− φ̃h|H1(Ω) ≤ C inf
v∈Vh

|φ− v|H1(Ω).

From (3.16)–(3.17) and (3.21)–(3.22), we find(
∇× (φ̃h − φh), ε−1∇× v

)
=
(
µ(ξ − ξh), v

)
− i

k
〈(ξ − ξh)/λ, v〉 ∀ v ∈ Vh,(3.24) (

φ̃h − φh, 1) = 0.(3.25)

Because of the constraint (3.25), we have a Poincaré-Friedrichs inequality

(3.26) ‖φ̃h − φh‖L2(Ω) ≤ C‖∇ × (φ̃h − φh)‖L2(Ω).



12 S.C. BRENNER, J. GEDICKE, AND L.-Y. SUNG

Taking v = φ̃h − φh in (3.24), we obtain, by (3.26) and the trace theorem,(
∇× (φ̃h − φh), ε−1∇× (φ̃h − φh)

)
≤ C

(
‖ξ − ξh‖L2(Ω) + ‖ξ − ξh‖L2(∂Ω)

)
‖∇ × (φ̃h − φh)‖L2(Ω)

which implies

(3.27) |φ̃h−φh|H1(Ω) = ‖∇×(φ̃h−φh)‖L2(Ω) ≤ C
(
‖ξ−ξh‖L2(Ω) +‖ξ−ξh‖L2(∂Ω)

)
.

The estimate (3.19) and (3.20) follow from Lemma 3.1, Corollary 3.3, (3.23) and
(3.27). �

3.3. The P1 finite element method for (2.1). The P1 finite element method for
(2.1) is to find ϕj,h ∈ Vh (1 ≤ j ≤ m) such that

(ε∇ϕj,h,∇v) = 0 ∀ v ∈ Vh ∩H1
0 (Ω),(3.28a)

ϕj,h
∣∣
Γ0

= 0,(3.28b)

ϕj,h
∣∣
Γ`

= δj` =

{
1 j = `

0 j 6= `
for 1 ≤ ` ≤ m.(3.28c)

The approximation cj,h for the coefficient cj in (2.2) is then obtained from the SPD
system

(3.29)

m∑
j=1

(ε∇ϕj,h,∇ϕ`,h)cj,h = − 1

k2
(f ,∇ϕ`,h) for 1 ≤ ` ≤ m.

Since (3.28) and (3.29) do not involve the boundary condition of the time-
harmonic Maxwell equations, their analysis is identical to the one in [3] and we
have the following result (cf. [3, Lemma 4.6, Lemma 4.7 and Remark 4.8]).

Lemma 3.6. The function ϕj,h satisfies

(3.30) |ϕj − ϕj,h|H1(Ω) ≤ Chβ for 1 ≤ j ≤ m,

and the coefficient cj,h satisfies

(3.31) |cj − cj,h| ≤ Chβ‖f‖L2(Ω) for 1 ≤ j ≤ m.

3.4. Error estimate for uh and ∇ × uh. Following Procedure 2.14, we define
the approximate solution uh of (1.1) by

(3.32) uh = ε−1∇× φh +

m∑
j=1

cj,h∇ϕj,h.

The following theorem provides L2 error estimates for uh.

Theorem 3.7. The approximation uh satisfies

(3.33) ‖u− uh‖L2(Ω) ≤ Cδh(1/2)−δ(‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
for any δ ∈ (0, 1/2).

If f belongs to [H1(Ω)]2 and g belongs to H
1
2 (E) for all E ∈ E(Ω), where E(Ω)

denotes the set of the edges of Ω, then this error estimate can be improved to

(3.34) ‖u− uh‖L2(Ω) ≤ Chβ
(
‖f‖H1(Ω) +

∑
E∈E(Ω)

‖g‖
H

1
2 (E)

)
.
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Proof. We have, by (2.2) and (3.32),

(3.35) ‖u−uh‖L2(Ω) ≤ ‖ε−1∇× (φ−φh)‖L2(Ω) +
∥∥∥ m∑
j=1

(cj∇ϕj− cj,h∇ϕj,h)
∥∥∥
L2(Ω)

.

Using (3.30) and (3.31), the following estimate

(3.36)
∥∥∥ m∑
j=1

(cj∇ϕj − cj,h∇ϕj,h)
∥∥∥
L2(Ω)

≤ Chβ‖f‖L2(Ω)

was established in [3, Theorem 4.9]. Therefore it only remains to estimate |φ −
φh|H1(Ω).

Note that the well-posedness of (2.8) implies

(3.37) ‖ξ‖H1(Ω) ≤ C
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
and hence

(3.38) inf
v∈Vh

‖ξ − v‖H1(Ω) ≤ ‖ξ‖H1(Ω) ≤ C
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
.

Moreover it follows from (2.10), (3.37), the elliptic regularity for Neumann problems
on polygonal domains and a standard interpolation error estimate that

(3.39) inf
v∈Vh

|φ− v|H1(Ω) ≤ Cδh(1/2)−δ(‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
.

The estimate (3.33) follows from Lemma 3.5, (3.36), (3.38) and (3.39).
If f belongs to [H1(Ω)]2, then we can rewrite (2.8) as

(∇× ξ, ε−1∇× ψ)− k2(µξ, ψ)− ik〈ξ/λ, ψ〉
=
(
∇× (ε−1f), ψ

)
− 〈n× (ε−1f), ψ〉 − ik〈g/λ, ψ〉 ∀ψ ∈ H1(Ω),

and if g ∈ H 1
2 (E) for all E ∈ E(Ω), then we can apply the elliptic regularity theory

of Neumann problems on polygonal domains [25, Corollary 4.4.4.14] and a standard
interpolation error estimate to obtain

(3.40) inf
v∈Vh

‖ξ − v‖H1(Ω) ≤ Chβ
(
‖f‖H1(Ω) +

∑
E∈E(Ω)

‖g‖
H

1
2 (E)

)
.

Similarly we have, in view of (2.10) and (3.37),

(3.41) inf
v∈Vh

|φ− v|H1(Ω) ≤ Chβ
(
‖f‖L2(Ω) +

∑
E∈E(Ω)

‖g‖
H

1
2 (E)

)
.

Combining Lemma 3.5, (3.40) and (3.41), we find

|φ− φh|H1(Ω) ≤ Chβ
(
‖f‖H1(Ω) +

∑
E∈E(Ω)

‖g‖
H

1
2 (E)

)
,

which together with (3.35) and (3.36) implies the estimate (3.34). �

The following theorem provides L2 error estimates for µξh as an approximation
of ∇× u.

Theorem 3.8. The approximation µξh of ∇× u satisfies

(3.42) ‖∇ × u− µξh‖L2(Ω) ≤ Chβ
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
.
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j ‖u− uj‖L2(Ω;ε) order ‖ξ − ξj‖L2(Ω) order
3 5.5277× 10−1 1.25 2.8653× 100 0.81
4 2.8602× 10−1 0.95 1.2385× 100 1.21
5 1.4190× 10−1 1.01 3.4716× 10−1 1.83
6 7.0696× 10−2 1.01 8.9453× 10−2 1.96
7 3.5311× 10−2 1.00 2.2539× 10−2 1.99
8 1.7651× 10−2 1.00 5.6458× 10−3 2.00

Table 1. Errors and convergence rates for the first experiment
with inhomogeneous and anisotropic material

If f belongs to [H1(Ω)]2 and g ∈ H 1
2 (E) for all E ∈ E(Ω), then the error estimate

can be improved to

(3.43) ‖∇ × u− µξh‖L2(Ω) ≤ Ch2β
(
‖f‖H1(Ω) +

∑
E∈E(Ω)

‖g‖
H

1
2 (E)

)
.

Proof. In view of (2.4) and (3.5), the estimates (3.42) and (3.43) follow from (3.38)
and (3.40) respectively. �

Remark 3.9. In view of the results in [3], Theorem 3.7 and Theorem 3.8 remain
valid for (1.1) where Γpc 6= ∅

4. Numerical Experiments

We report in this section the results of several numerical experiments for the two-
dimensional time-harmonic Maxwell equations with inhomogeneous and anisotropic
permittivity ε, sign changing permeability µ, and the impedance boundary condi-
tion. We compare the Hodge decomposition approach with the lowest order edge
element method and present numerical results for nonconvex domains. We use
uniform triangulations with mesh size hj :=

√
2/2j (j = 0, 1, 2, . . .) in the compu-

tation. The corresponding finite element approximations are denoted by uj := uhj
and ξj := ξhj . We take the impedance 1/λ to be 1 in all the numerical experiments.

4.1. Inhomogeneous and anisotropic material. The first experiment (cf. [28])
involves the square domain Ω = (−1, 1)2 with the following permittivity and per-
meability:

ε =

(
1 + x2 xy
xy 1 + y2

)
and µ = (1 + x2 + y2)−1.

For k = 1, we take the exact solution of (1.1) to be u = (y/(x2+y2+0.02),−x/(x2+
y2 + 0.02))t. It is easy to check that u ∈ Himp(curl; Ω; Γimp) ∩H(div0; Ω; ε), f =

∇× (µ−1∇×u)− εu ∈ H(div0; Ω; ε)∩ [H1(Ω)]2, and that g = −in×u+µ−1∇×u
satisfies g ∈ H 1

2 (E) for all E ∈ E(Ω). The errors ‖u−uj‖L2(Ω;ε) and ‖ξ− ξj‖L2(Ω)

are presented in Table 1, together with the computed order of convergence that is
based on comparing the errors on two consecutive levels. We observe that the error
‖u−uj‖L2(Ω;ε) converges asymptotically with order one and the error ‖ξ−ξj‖L2(Ω)

with order two, as predicted by the theory.
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j ‖u− uj‖L2(Ω) order ‖u− uNd
j ‖L2(Ω) order

3 3.9039× 10−1 1.14 5.5880× 10−1 1.30
4 1.8472× 10−1 1.08 2.6133× 10−1 1.10
5 9.0770× 10−2 1.03 1.2835× 10−1 1.03
6 4.5176× 10−2 1.01 6.3886× 10−2 1.01
7 2.2562× 10−2 1.00 3.1907× 10−2 1.00
8 1.1277× 10−2 1.00 1.5949× 10−2 1.00

j ‖∇ × u− ξj‖L2(Ω) order ‖∇ × (u− uNd
j )‖L2(Ω) order

3 8.4800× 10−1 1.76 1.9478× 100 1.61
4 2.2195× 10−1 1.93 8.0880e× 10−1 1.27
5 5.6146× 10−2 1.98 3.7969× 10−1 1.09
6 1.4078× 10−2 2.00 1.8612× 10−1 1.03
7 3.5222× 10−3 2.00 9.2453× 10−2 1.01
8 8.8071× 10−4 2.00 4.6117× 10−2 1.00

Table 2. Results of the Hodge decomposition method and the
lowest order edge element method for the second experiment with
a plane wave exact solution

4.2. Plane wave. In the second numerical experiment we compare the Hodge
decomposition approximations with the lowest order edge element [29] approxima-
tions, where

V Nd
h :=

{
v∈H(curl; Ω):(v|T )(x)=

[
aT,1
aT,2

]
+bT

[
−x2

x1

]
, aT,1, aT,2, bT ∈ R,∀T ∈Th

}
.

The domain is Ω = (−1, 1)2, the electric permittivity and magnetic permeability
are given by ε = 1 and µ = 1, and the frequency k is taken to be 5. The impedance
boundary condition is defined by the plane wave solution

u = p exp(ikd · x)

where d = (1, 0)t and p = (0, 1)t, and f = 0. The numerical results are reported in
Table 2. For the edge element method the order of convergence is 1 for both errors
‖u− uNd

j ‖L2(Ω) and ‖∇× (u− uNd
j )‖L2(Ω). Since the order of convergence for the

error ‖∇×u− ξj‖L2(Ω) is 2 in the Hodge decomposition approach, asymptotically
these errors are much smaller than the ones for the edge element method. On the
other hand the errors ‖u− uj‖L2(Ω) and ‖u− uNd

j ‖L2(Ω) are comparable for both
methods.

Note that the computation of ξj requires the solution of one scalar equation
whose number of degree of freedoms (dofs) is roughly half the number of dofs for
the lowest order edge element, while the computation of uj requires the solution of
two scalar equations whose combined number of dofs equals roughly the number of
dofs for the lowest order edge element.

4.3. L-shaped domain with sign changing µ. In the third numerical experi-
ment we consider the L-shaped domain Ω = (−1, 1)2\[0, 1]2 with sign changing µ.
Such parameters occur in the study of metamaterials [6, 7]. For this experiment we
chose ε = 1, µ = 1 in the 2nd quadrant, and µ = −1 in the 3rd and 4th quadrants,
and we take g to be 0, f to be (1, 1)t, and k to be 1. The error is computed by
comparing the discrete solution to a reference solution that is computed on the fine
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j ‖u9 − uj‖L2(Ω) order ‖ξ9 − ξj‖L2(Ω) order
1 4.4279× 10−1 0.61 7.1024× 10−2 1.36
2 2.7456× 10−1 0.69 2.7601× 10−2 1.36
3 1.6899× 10−1 0.70 1.0699× 10−2 1.37
4 1.0432× 10−1 0.70 4.1407× 10−3 1.37
5 6.4455× 10−2 0.69 1.5913× 10−3 1.38
6 3.9513× 10−2 0.71 5.9878× 10−4 1.41

Table 3. Convergence history for the third experiment on an L-
shaped domain with sign changing permeability

j ‖u9 − uj‖L2(Ω) order ‖ξ9 − ξj‖L2(Ω) order
2 6.4948× 10−1 0.65 6.3263× 10−2 1.24
3 4.0680× 10−1 0.67 2.5837× 10−2 1.29
4 2.5398× 10−1 0.68 1.0361× 10−2 1.32
5 1.5804× 10−1 0.68 4.0826× 10−3 1.34
6 9.7298× 10−2 0.70 1.5631× 10−3 1.39

Table 4. Convergence history for the fourth experiment for a dou-
bly connected domain with perfectly conducting boundary condi-
tion on the inner boundary and the impedance boundary condition
on the outer boundary

j ‖u9 − uj‖L2(Ω) order ‖ξ9 − ξj‖L2(Ω) order
3 1.5145× 100 0.58 1.3411× 101 0.67
4 7.0845× 10−1 1.10 5.6132× 100 1.26
5 3.2102× 10−1 1.14 2.1270× 100 1.40
6 1.5452× 10−1 1.05 7.8724× 10−1 1.43
7 8.1899× 10−2 0.92 2.9174× 10−1 1.43

Table 5. Convergence history for the fifth experiment pertaining
to electromagnetic cloaking

mesh with mesh size h9 =
√

2/29. Due to the nonconvex corner at the origin, the
convergence is sub-optimal for both errors as shown in Table 3. The convergence of
‖u9−uj‖L2(Ω) and ‖ξ9−ξj‖L2(Ω) are numerically close to 2/3 and 4/3, as predicted
by Theorem 3.7 and Theorem 3.8 with β = 2/3.

4.4. Doubly connected domain. The computational domain for the fourth nu-
merical experiment is the doubly connected domain Ω = (−1, 1)2\[−1/2, 1/2] so
that m = 1 in (2.2). The impedance boundary condition is imposed on the outer
boundary Γimp where g = 0, and the perfectly conducting boundary condition
n × u = 0 is imposed on the inner boundary Γpc (cf. Remark 3.9). We take ε, µ
and k to be 1, and f to be (ex1 , ex2)t. Thus we have to solve three scalar equations
for this experiment.

Due to the four nonconvex corners with β = 2/3, the convergence of both errors
are sub-optimal as demonstrated by the results in Table 4. Again the orders of
convergence for ‖u9−uj‖L2(Ω) and ‖ξ9− ξj‖L2(Ω) are numerically close to 2/3 and
4/3, as predicted by our theory.



HODGE DECOMPOSITION FOR MAXWELL’S EQUATIONS 17

Figure 1. Cloaking effect illustrated by the real part of the second
component of the reference solution u9

4.5. Cloaking. The fifth and last numerical experiment is concerned with a elec-
tromagnetic cloaking problem from [28, 30]. We consider a perfectly conduction
cylinder with radius R1 = 0.25 wrapped around by a cylindrical cloak with thick-
ness R2 − R1, where R2 = 0.5. Outside the radius R2, we take both µ and ε to
be 1. For r ∈ (R1, R2), the inhomogeneous and anisotropic permittivity is given in
polar coordinates by

εxx =

((
R2 −R1

R2

)2

+

(
1 + 2

(
R2 −R1

R2

)2
R1

r −R1

)
sin2 θ

)
µ,

εxy = εyx = −

((
1 + 2

(
R2 −R1

R2

)2
R1

r −R1

)
sin θ cos θ

)
µ,

εyy =

((
R2 −R1

R2

)2

+

(
1 + 2

(
R2 −R1

R2

)2
R1

r −R1

)
cos2 θ

)
µ,

and the inhomogeneous permeability is given by

µ =

((
R2 −R1

R2

)2
r

r −R1

)−1

.

For the resulting two-dimensional transverse magnetic problem, we impose an
impedance boundary condition on the boundary of the square (−1, 1)2 induced
by the plane wave solution from the second experiment with k = 10, and we take
f to be 0.

Therefore we have a time-harmonic Maxwell problem posed on the doubly con-
nected domain Ω = (−1, 1)2\D, where D is the closed disc {x : |x| ≤ R1}, with an
impedance boundary condition on the outer boundary and the perfectly conducting
boundary condition on the inner boundary. Note that for this problem the permit-
tivity ε is discontinuous on the circle with radius R2 and it is positive semi-definite
on the inner boundary, i.e. the circle with radius R1, where the permeability µ
also vanishes. Thus ε and µ do not satisfy the assumptions under which the Hodge
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decomposition approach is derived and analyzed. Nevertheless numerical results
indicate that the Hodge decomposition approach still works for this problem. Note
also that we only need to solve two scalar problems since f = 0 (cf. Remark 2.7).

To preserve the symmetry of the mesh with respect to the circular obstacle, we
consider a crisscross triangulation with mesh size hj := 2−j and adjust the vertices
of the inner boundary such that they match the radius R1. The errors obtained
by comparing the discrete solutions with the reference solution u9 are reported
in Table 5. The order of convergence for the error ‖ξ9 − ξj‖L2(Ω) is roughly 1.5,

sugessting that ξ = µ−1∇× u belongs to H(3/2)−δ near the circle with radius R2.
On the other hand, the order of convergence for the error ‖u9−uj‖L2(Ω) is roughly

1, suggesting that the solution u belongs to [H1(Ω)]2.
A 2D surface plot of the real part of the second component of the reference

solution u9 is presented in Figure 1, where the cloaking effect (i.e. the wave going
through without being disturbed) is clearly visible.

5. Simultaneous sign changes in electric permittivity and magnetic
permeability

Let S2×2 be the space of real-valued 2× 2 symmetric nonsingular matrices. We
consider in this section the well-posedness of (1.1) under the assumptions that

ε ∈ L∞(Ω,S2×2), ε−1 ∈ L∞(Ω,S2×2), µ ∈ L∞(Ω) and µ−1 ∈ L∞(Ω).(5.1)

We will also need two other assumptions on ε.

5.1. The space H(Ω; ε). In order for (2.1) to be well defined, we assume that for
any w ∈ H1

0 (Ω), there exists ζw ∈ H1
0 (Ω) such that

(ε∇ζw,∇v) = (∇w,∇v) ∀v ∈ H1
0 (Ω).(5.2)

Since the sesquilinear form (ε∇·,∇·) is Hermitian, the function ζw is unique and the
map ζw → w defines an isomorphism T ε0 of H1

0 (Ω) by the open mapping theorem.
Let ϕ̃1, . . . , ϕ̃m ∈ H1(Ω) satisfy the boundary conditions (3.28b)–(3.28c). For

1 ≤ j ≤ m, the unique solution of (2.1) is then given by ϕj = ϕ̃j + ζj , where
ζj ∈ H1

0 (Ω) is determined by

(ε∇ζj ,∇v) = −(ε∇ϕ̃j ,∇v) = −(∇T ε0 ϕ̃j ,∇v) ∀v ∈ H1
0 (Ω).

The space H(Ω; ε) is spanned by ϕ1, . . . ϕm.

5.2. Hodge decomposition. In order to construct a Hodge decomposition for
u ∈ H(div0; Ω; ε), we assume that for any w ∈ H1

Γ, there exists ζw ∈ H1
Γ such that

(ε∇ζw,∇v) = (∇w,∇v) ∀v ∈ H1
Γ,(5.3)

where H1
Γ is the space introduced in Remark 2.2. Since the sequilinear form

(ε∇·,∇·) is Hermitian, the function ζw is unique and the map ζw → w defines
an isomorphism T εΓ of H1

Γ by the open mapping theorem.

Remark 5.1. For a simply connected Ω, the conditions (5.2) and (5.3) are identical
since in this case H1

Γ = H1
0 (Ω).

Lemma 5.2. Let ϕ belong to H(Ω; ε). Then (ε∇ϕ,∇ρ) = 0 for all ρ ∈ H(Ω; ε) if
and only if ϕ = 0.
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Proof. Since H1
Γ = H(Ω; ε) ⊕H1

0 (Ω), if ϕ ∈ H(Ω; ε) satisfies (ε∇ϕ,∇ρ) = 0 for all
ρ ∈ H(Ω; ε), then definition (2.1) implies

0 = (ε∇ϕ,∇v) = (∇(T εΓϕ),∇v) ∀v ∈ H1
Γ

and hence T εΓϕ = 0. �

Lemma 5.3. Let ϕ ∈ H(Ω; ε). Then
∫

Γj
ε∇ϕ · n ds = 0 for 1 ≤ j ≤ m if and only

if ϕ = 0.

Proof. If ϕ ∈ H(Ω; ε) satisfies the m conditions, then it follows from the Green’s
formula [17, (2.17)] that

(ε∇ϕ,∇%) =

m∑
j=1

%|Γj
∫

Γj

ε∇ϕ · n ds = 0 ∀% ∈ H(Ω; ε)

and hence ϕ = 0 by Lemma 5.2. �

We can now apply the same arguments in [3, Lemma 2.3] to conclude that any
u ∈ H(div0; Ω; ε) has a unique Hodge decomposition

u = ε−1∇× φ+

m∑
j=1

cj∇ϕj

where φ ∈ H1(Ω) satisfies (φ, 1) = 0.

5.3. A condition equivalent to (5.3). Let Ĥ1(Ω) = {v ∈ H1(Ω) : (v, 1) = 0} be
the space of H1 functions with zero means. The well-posedness of (2.8) under (5.1)

will require the following condition: for any w ∈ Ĥ1(Ω), there exists ζw ∈ Ĥ1(Ω)
such that

(∇× v, ε−1∇× ζw) = (∇× v,∇× w) ∀v ∈ Ĥ1(Ω).(5.4)

Again ζw is unique since the sesquilinear form (∇ × ·, ε−1∇ × ·) is Hermitian and

the map ζw → w defines an isomorphism T̂ ε on Ĥ1(Ω).
It turns out that condition (5.4) is equivalent to condition (5.3), which is a

consequence of the following relation between the spaces ∇× Ĥ1(Ω) and ∇H1
Γ (cf.

(1.3) and [17, Theorem 3.2]):

[L2(Ω)]2 = ∇× Ĥ1(Ω)
⊥
⊕∇H1

Γ.(5.5)

Lemma 5.4. The condition (5.4) is equivalent to the condition (5.3).

Proof. We begin by showing (5.4) implies (5.3). Given any w ∈ H1
Γ, we want to

show that the equation in (5.3) is solvable. By (5.1) and the Riesz representation

theorem, there exists ρw ∈ Ĥ1(Ω) such that (∇× v,∇× ρw) = (∇× v, ε−1∇w) for

all v ∈ Ĥ1(Ω). It then follows from (5.4) that there exists z ∈ Ĥ1(Ω) such that

(∇× v, ε−1∇× z) = (∇× v,∇× ρw) = (∇× v, ε−1∇w) ∀v ∈ Ĥ1(Ω),

which, in view of (5.5), implies that

ε−1∇w − ε−1∇× z = ∇ζw
for some ζw ∈ H1

Γ. Hence we have, again by (5.5),

(ε∇ζw,∇v) = (∇w −∇× z,∇v) = (∇w,∇v) ∀v ∈ H1
Γ.
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The proof that (5.3) implies (5.4) is similar. Given any w ∈ Ĥ1(Ω), we want to
show that the equation in (5.4) is solvable. By (5.1), (5.3) and the Riesz represen-
tation theorem, there exists z in H1

Γ such that

(ε∇z,∇v) = (ε∇× w,∇v) ∀v ∈ H1
Γ,

which, in view of (5.5), implies that

ε∇× w − ε∇z = ∇× ζw

for some ζw ∈ Ĥ1(Ω). It follows that, by (5.5),

(∇× v, ε−1∇× ζw) = (∇× v,∇× w −∇z) = (∇× v,∇× w) ∀v ∈ Ĥ1(Ω).�

Remark 5.5. Lemma 5.4 is an analog of [13, Theorem 4.6].

5.4. A reduced problem. Consider the following problem related to (1.1): Find

ũ ∈ Himp(curl; Ω; Γimp) ∩H0(curl; Ω; Γpc) ∩ (ε−1∇× Ĥ1(Ω)) such that

(µ−1∇×ũ,∇×v)−k2(εũ,v)−ik〈λn×ũ,n×v〉Γimp =(f ,v)+〈g,n×v〉Γimp(5.6)

for all v ∈ Himp(curl; Ω; Γimp) ∩H0(curl; Ω; Γpc) ∩ (ε−1∇× Ĥ1(Ω)).

Remark 5.6. For a simply connected Ω, the two problems (1.1) and (5.6) are iden-

tical since H(div0; Ω; ε) = ε−1∇× Ĥ1(Ω) in this case.

For this reduced problem we have ũ = ε−1∇× φ for some φ ∈ Ĥ1(Ω), and (5.6)
is equivalent to the two scalar problems (2.8) and (2.10)–(2.11). The derivation of
this equivalence is identical to the derivation given in Section 2.1 and Section 2.2
for (1.1), with one modification. The projection Q in Lemma 2.3 is now defined by

Q : [L2(Ω)]2 → ε−1∇× Ĥ1(Ω) and

(Qζ, εv) = (ζ, εv) ∀v ∈ ε−1∇× Ĥ1(Ω).(5.7)

Note that, for ζ = ε−1∇× ζ, v = ε−1∇× v and ζ, v ∈ Ĥ1(Ω), we have

(ζ, εv) = (ε−1∇× ζ,∇× v).

Therefore condition (5.4) implies that the sesquilinear form (·, ε·) is nonsingular

on the space ε−1∇ × Ĥ1(Ω) and hence (5.7) is well-defined. By replacing the

orthogonal decomposition [L2(Ω; ε)]2 = ∇H1
0 (Ω)

⊥
⊕H(div0; Ω; ε) with the orthogonal

decomposition (5.5), the proof of Lemma 2.3 remains the same and the rest of the
results in Section 2.1 and Section 2.2 are valid for the reduced problem (5.6).

We now turn to the well-posedness of (5.6) under assumptions (5.1) and (5.4).
Since the unique solvability of (2.10) is guaranteed by condition (5.4) directly, it
only remains to consider the well-posedness of (2.8).

Lemma 5.7. Let Tε : H1(Ω)→ H1(Ω) be defined by

(Tεv, w)H1(Ω) = (∇× v, ε−1∇× w) + (v, 1)(1, w) ∀v ∈ H1(Ω),(5.8)

where (z, w)H1(Ω) = (∇×z,∇×w)+(z, w) = (∇z,∇w)+(z, w) is the inner product

for H1(Ω). Then Tε is an isomorphism.

Proof. Clearly Tε is a bounded linear operator under the assumption (5.1). Since
Tε is self-adjoint with respect to (·, ·)H1(Ω), it suffices to show that

||v||H1(Ω) ≤ C||Tεv||H1(Ω) ∀v ∈ H1(Ω)(5.9)
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for some positive constant C, which implies Tε is injective and has a closed range.
Given any v ∈ H1(Ω), we define the function v̂ ∈ Ĥ1(Ω) by v̂ = v − (v, 1)/|Ω|.

It follows from condition (5.4) that there exists w ∈ Ĥ1(Ω) such that

(∇× v̂, ε−1∇× w) = (∇× v̂,∇× v̂) and |w|H1(Ω) ≤ C|v|H1(Ω).

Putting this w in (5.8) we find

|v|H1(Ω) ≤ C||Tεv||H1(Ω).(5.10)

On the other hand, by taking w = 1 in (5.8), we have

|(v, 1)| ≤ C||Tεv||H1(Ω).(5.11)

The estimate (5.9) follows from (5.10), (5.11) and a Poincaré-Friedrichs inequal-
ity. �

Theorem 5.8. Under the assumptions (5.1), (5.3) (or equivalently (5.4)) and
Γimp 6= ∅, there exists a discrete (possibly empty) subset S+ of R+ = (0,∞) such
that (5.6) has a unique solution for k ∈ R+ if and only if k 6∈ S+.

Proof. It follows from Lemma 5.7, elliptic regularity and compact embeddings of
Sobolev spaces that we can interpret (2.8) as a Fredholm equation in H1(Ω). There-
fore, by the analytic Fredholm theorem, it suffices to show that (2.8) is uniquely
solvable for some k ∈ C, or equivalently, that for some k ∈ C the only solution in
H1(Ω) of

a(η, ψ) = 0 ∀ψ ∈ H1(Ω)(5.12)

is η = 0, where the sequilinear form a(·, ·) is defined in (2.20).
First we observe that (2.20) and (5.12) imply η = 0 on Γimp as long as k ∈ R\{0}.

Therefore for k ∈ R\{0}, the homogeneous problem is equivalent to η ∈ H1(Ω),

η|Γimp
= 0,(5.13)

and

ã(η, ψ) = 0 ∀ψ ∈ H1(Ω),(5.14)

where

ã(η, ψ) = (∇× η, ε−1∇× ψ)− k2(µη, ψ).(5.15)

There exists, in view of (5.4), a function ψ ∈ Ĥ1(Ω) such that

(∇× η, ε−1∇× ψ) = (∇× η,∇× η) and |ψ|H1(Ω) ≤ C|η|H1(Ω).(5.16)

It follows from (5.1), (5.13)–(5.16) and Poincaré-Friedrichs inequalities that

|η|2H1(Ω) = k2(µη, ψ) ≤ k2C||η||L2(Ω)|ψ|H1(Ω) ≤ Ck2|η|2H1(Ω).

Therefore η = 0 if k ∈ R\{0} is sufficiently small. �



22 S.C. BRENNER, J. GEDICKE, AND L.-Y. SUNG

5.5. The well-posedness of (1.1). We can deduce a well-posedness result for
(1.1) from Theorem 5.8 by including the assumption (5.2).

Theorem 5.9. Under the assumptions (5.1), (5.2), (5.3) (or equivalently (5.4))
and Γimp 6= ∅, there exists a discrete (possibly empty) subset S+ of R+ = (0,∞)
such that (1.1) has a unique solution for k ∈ R+ if and only if k 6∈ S+.

Proof. Under assumptions (5.2) and (5.3) we have a Hodge decomposition (2.2) for
u (cf. Section 5.2). Let S+ be the discrete subset of R+ from Theorem 5.8, k 6∈ S+

and ũ ∈ Himp(curl; Ω; Γimp)∩H0(curl; Ω; Γpc)∩ (ε−1∇× Ĥ1(Ω)) be the solution of
the reduced problem (5.6), then a straightforward computation shows that

u = ũ+

m∑
j=1

cj∇ϕj

is the unique solution of (1.1) if the coefficients c1, . . . , cm are determined by (2.12),
whose unique solvability is guaranteed by Lemma 5.2. �

Remark 5.10. In the case where ε = ε̃I2×2 and ε̃ is a real-valued function, conditions
on ε̃ that imply (5.2) and (5.4) are discussed in [12, 31].

Remark 5.11. It follows from Theorem 5.9 that under conditions (5.2) and (5.4)
(or equivalently condition (5.3)) the cavity problem (1.1) is well-posed for k ∈ R+

outside a discrete subset when both ε and µ change sign simultaneously, provided
that Γimp 6= ∅. The condition that Γimp 6= ∅ plays a key role because it implies
the solution of the homogeneous problem satisfies (5.13) for k ∈ R\{0} so that
a Poincaré-Friedrichs inequality can be applied. The well-posedness of the cavity
problem with the perfectly conducting boundary condition and simultaneous sign
changes in ε and µ remains an open problem (cf. [13, Remark 3.8]). However, as
pointed out in [13, Remark 3.8], if either µ(x) ≥ δ > 0 for all x ∈ Ω or µ(x) ≤ γ < 0
for all x ∈ Ω, then the conclusion of Theorem 5.9 remains valid even if Γimp = ∅,
since in this case (5.12) implies η = 0 when k2 = i.

6. Concluding Remarks

The two-dimensional time-harmonic Maxwell equations considered in this paper
and [3] are associated with the transverse magnetic problem. But the Hodge de-
composition approach can also be applied to the transverse electric problem under
various boundary conditions.

For problems on nonconvex domains (cf. Sections 4.3 and 4.4) or problems with
discontinuity in the material properties (cf. Section 4.5), optimal convergence can
be restored by adaptive algorithms based on the Hodge decomposition approach (cf.
[4] for the case of the perfectly conducting boundary condition). For example, the
plot in Figure 1 is the result of solving scalar problems with roughly two million dofs.
Preliminary results indicate that a similar but slightly better plot can be obtained
by an adaptive computation that only involves roughly one hundred thousand dofs.

The investigation of the adaptive versions of the P1 finite element method in this
paper with applications to problems with sign changing electric permittivity and
magnetic permeability is an ongoing project.
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