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1. Introduction. Let Q C R? be a bounded polygonal domain. We will con-
sider the following elliptic distributed optimal control problem with pointwise state
constraints (cf. [29]): Find (y,u) € H}(Q) x La(£2) that minimizes the cost functional

1 B
(1.1) §||y—yd||2L2(Q) + §||U||2LZ(Q),
subjected to the constraints

(1.2a) (Vy, Vo) = (u,v) VYo € Hy(Q),
(1.2b) y<Y a.e.in Q,

where (-, -) is the inner product of Ly(£2) (or [La(Q)]?), ya € La2(Q), Y € C*(Q)NC(Q)
and Y > 0 on 0f). Here and below we will follow the standard notation for differential
operators, function spaces and norms that can be found for example in [31, 19, 1].

If Q is convex, then the optimal control problem can be reformulated as a fourth
order variational inequality, and finite element methods based on this reformulation
have been investigated in [53, 42, 24, 14, 18, 21]. Here we focus on the case where 2
is nonconvex.

Let the space E(€%; A) be defined by
E(QA) ={y € H)(Q): Ay € Ly(Q)},

where Ay is understood in the sense of distributions. It is straightforward to check
that E(€; A) is a Hilbert space under the inner product

Accoording to the elliptic regularity theory for polygonal domains in [43, 33, 44,
55, 51], E(Q; A) is a subspace of H'™ (1) for some v € (3, 1], where ~ is determined
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by the interior angles at the corners of Q. In particular, the functions in E(Q; A)
belong to C(£2) by the Sobolev embedding theorem (cf. [1]) and

(1.3) [Wlre@ < Callvllpan, — YveE®;A).

Since (1.2a) is equivalent to y € E(Q;A) and —Ay = u, we can rewrite the
optimal control problem defined by (1.1)—(1.2) as follows:

. _ Tl s
(1.4) Find = argmin [5 [~ vallL, o + 5 180/E.00 ]

where K = {y € E(Q;A) : y <Y in Q}.

CY interior penalty methods (cf. [37, 20, 13]) are discontinuous Galerkin meth-
ods based on P, (k > 2) Lagrange finite element spaces originally designed for the
biharmonic equation. They have been applied to fourth order variational inequalities
in [23, 22, 24, 18]. Our goal is to extend these methods to (1.4) by taking advantage
of the structure of E(€;A) (cf. Section 2.1). We will show that the errors for our
methods are O(h%) on quasi-uniform meshes, where « is determined by the elliptic
regularity of simply supported plates (cf. Section 2.4), and O(h) on graded meshes.
In the case where the free boundary is smooth, the errors on graded meshes can be
improved to O(h'*%) for any § < 1/2 if we use cubic or higher order Lagrange ele-
ments. As far as we can tell from the literature (cf. [35, 54, 46, 53, 42, 30, 56]), our
methods are the only ones proven to be convergent for elliptic distributed optimal
control problems with pointwise state constraints on arbitrary polygons. We note
that an elliptic optimal control problem on general polygonal domains with pointwise
constraints on the gradient of the state was investigated in [60, 61].

The rest of the paper is organized as follows. We consider the continuous prob-
lem in Section 2 and introduce a refined minimization problem equivalent to (1.4).
The discrete problem, where the constraint (1.2b) is imposed at the vertices of the
triangles, is constructed in Section 3, followed by the convergence analyses in Sec-
tion 4 (quasi-uniform meshes) and Section 5 (graded meshes). Numerical results are
presented in Section 6 and we end with some concluding remarks in Section 7.

Throughout the paper we will use C' with or without subscripts to denote a generic
positive constant independent of the mesh size.

2. The Continuous Problem. Since K is a nonempty closed convex subset of
E(Q; A) and the symmetric bilinear form

(y,2) = B(Ay, Az) + (y, 2)
is bounded and coercive on ED](Q; A), it follows from the classical theory (cf. [52, 49,
40, 36]) that the optimization problem (1.4) has a unique solution § € K characterized
by the variational inequality
and hence
(2.1) B(AY, AP) + (§ — ya, @) <0 for any nonnegative ¢ € C°(Q).

It then follows from (2.1) and the Riesz Representation Theorem (cf. [58, Sec-
tion 1.4] and [57, Chapter 2]) that

(2.2) B(AG, Ay) + (§ — yay) = /Q ydu  Vye B;A),
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where 1 < 0 is a regular Borel measure.
Let € be the active set for the constraint (1.2b) defined by € = {z € Q : g(z) =
Y (z)}. Then we have, by the principle of virtual work,

B(AY, AP) + (7 —ya,®) =0  if p € C°(Q) and supppN € =0
and hence
(2~3> supp u C €.

Since Y > 0 and ¥ = 0 on 912, the active set € is a compact subset of ). Consequently
1 is a finite measure.

2.1. Structure of E(Q;A). Let Cq,...,Cy be the reentrant corners of 2. We
have the following decomposition of F(£2; A) by the elliptic regularity theory for polyg-
onal domains in [43, 33, 44, 55, 51]:

(2.4) E(%;A) = [HA(Q) N Hy ()] @ (d1,-- -, da),

where the functions ¢1,...,¢s can be chosen so that ¢7 = —A¢pq,...,0% = —Ady
form a basis of the orthogonal complement of A[H?(Q) N HE(Q)] in La(Q).

The Construction of ¢;. Let w; > 7 be the interior angle at the reentrant corner
Cj, and (r;,6;) be the polar coordinates at C; so that the two edges emanating from

C; are given by # = 0 and 6 = w;. Let & = 7, [rj_ﬂ/wj sin ((W/wj)ej)], where the
polynomial 7; is chosen so that (i) £ = 0 on 9Q \ {C;}, (ii) n; = 1 at C;, and (iii)
Vn; = 0 at C;. For example we can take

L L
n;(x) = {1 + Z (ae(z1 —xj1) + be(z2 — xj,Q))} H [1—ae(z1 —2j1) = b2 — 52)],
=1 =1

where (z;1,2;2) are the coordinates of C; and 1 — ag(x1 — ;1) — be(x2 — xj2) =0
for 1 < ¢ < L define the edges of 2 away from C;.

Let ¢; € H} () be defined by
(2.5) (V¢, Vo) = (Ag,v) Vv e Hy(Q).
Then the function ¢ is defined by
(2.6) ¢; =G+ &,
and the function ¢; € Hg(Q) is given by
(2.7) (Vo;,Vov) = (¢],v) Yo € Hy(Q).

Remark 2.1. Since the function r?w/wj sin ((7/w;)0;) is a harmonic function, we
have

(2.8) Ag; = Al(n; — L)r; ™ sin ((m/w;)8;)],

which implies A&; € La(Q) (because n; — 1 = O(r?)) and AE; € C(Q\ {C;}).
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Remark 2.2. One can also replace the polynomial n; by a cut-off function in order
to enforce conditions (i)—(iii) in the construction of &;, in which case the radius for
the cut-off region has to be chosen carefully. The construction based on 7; is simpler.

Remark 2.3. Tt is well-known that
(2.9) G1,..., 05 € HT(Q)
for any v < 7T/wo*, where w, is the largest reentrant corner of Q. It follows from (2.4)
and (2.9) that E(2; A) is a subspace of H!T7(Q).

Remark 2.4. In view of Remark 2.1 and standard elliptic regularity [2], the func-
tion ¢; belongs to C>°(2\ C), where C is the set of the corners of €.

Remark 2.5. Tt follows from (2.6) and Remark 2.4 that ¢% € C°°(Q2), and conse-
quently ¢; belongs to C*°(Q\ C) by standard elliptic regularity.

2.2. A Refined Minimization Problem. According to (2.4), any y € E(Q, A)

can be written as y = y, + ¢, where y, € H*(Q) N H(Q), 7 = (11,...,77) € R/
and

J
(2.10) br = Tid;.
j=1
In particular we have
J
(2.11) J=0n+br=0n+ Y Tio;.
j=1

Remark 2.6. Let y,, + ¢» be the decomposition of y € E(€; A). Then we have
1l enm) ~ I9allzcoy + |71,

where || is the Euclidean norm of 7.

We will also use the shorthand notation
J
(2.12) 67 =Y 765 = —Adn.
j=1

Note that both ¢, and ¢% depend linearly on 7.
Since (Ay,,A¢,) = 0, the minimization problem (1.4) is equivalent to the fol-
lowing problem: Find

o 1 x
(213) (4, 7) = Jremin o [(BIAYRIZ, ) + BlorlZ, ) + I (Yn + ér) = val T, )]
Yr:T)E

o1 X
= argmin 5 [(Ba(nsyr) + Bl6xN7 ) + 1(Wr + ) = vall 7, )]
(yp.T)EK

where

( )/DQ.DQd/i<azy ) 922 )
ay,z) = o y:Dzadxr = 02, 92,0z, ) \oz;0z, x
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and
K ={(yp,7) € H* Q) NHy(Q] &R 1y, + b7 <Y on Q.
Note that we have used the identity (cf. [44, Lemma 2.2.2])
18900 = [ (A)@w)dz = [ Dy Dyda = ol Vo€ B:A)

We can write (2.13) in a concise form:

(2.14) Find (g, T) = argmin {%A((ym ), (Y, 7)) — (Ya,yp + ¢T)},
(?JR"")EK

where

(215) A((va T)7 ('ZR’ p)) = /Ba(yR’ ZR) + B(quw ¢;§) + (yR + ¢T7 ZRr + ¢p)

First Order Optimality Conditions. It follows from (2.14) that we can rewrite (2.2)
and (2.3) as

(2.16) Al(Fr 7, (0 P)) — (W 20+ Bp) = /Q (20 + Bp)dp

for all (zx, p) € [H2(Q) N H} ()] x R, where p < 0 is a finite Borel measure and

(2.17) /Q (Jr + ¢ — Y)dpu = 0.

2.3. Regularity of 7. In view of (2.13), we have

1
g = avgmin | 5 (818,130 + lEac@) = Wa = 97,92)]
yr€eEK
where K = {v € H2 Q)N HL(Q) : v <Y — ¢z}, ie., §r € H>(Q) N H(Q) is the
solution of an obstacle problem for simply supported plates.
Since Y — ¢ € C2(Q)NC(Q) and Y — ¢+ > 0 on 99, we can conclude from the
results in [50, 11, 38, 39, 27] that

(218) gR € 02 (Q) N Hl?)oc(ﬂ) N H2+Q(Q) N H(%(Q)a

where the index of elliptic regularity o € (0,1) for the biharmonic equation with the
boundary conditions of simply supported plates is determined by the angles at the
corners of  (cf. Section 2.4).

Remark 2.7. In fact, by standard elliptic regularity [2], ¥ belongs to H* away
from the active set and the corners of Q.

2.4. Index of Elliptic Regularity. Let the function a; be defined by

(rm/w) —1 ifwe (0,7/2) U (7r/2,7),
)2 if w=m/2,
(2.19) W= ) if 7 < w < (31/2),

2(m/w) — 1 it (37/2) <w < 2.
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Note that
(2.20) at(w) <m/w for we (0,27m)\ {n/2}.

According to [11, 33], the solution of the biharmonic equation with the boundary
condition of simply supported plates belongs to H2Tt(“)=¢ near a corner of  whose
interior angle is w (e > 0 is arbitrary).

Let o, be the minimum of ay(w) over all the interior angles w at the corners of
. Then we can take the index of elliptic regularity « in (2.18) to be a. — € for any
e> 0.

2.5. Regularity of u. Since p is a finite measure supported on €, we have an
obvious estimate

(221) | [ viu] < Clylee)  vuecm)

Other estimates involving p can be derived from the interior regularity of 3.

Let G be an open neighborhood of € with a smooth boundary such that G is a
compact subset of 2, and let ® be a C"*° function supported in G such that 0 < & <1
and ® = 1 on €. We have, by (2.2), (2.3) and integration by parts,

(2.22) /Qy dp = /Q(i)y) dp = —B(V(Ay),V(®y)) + (¥ — ya, Py)
=B(7.y) - (ya, ®y) Yy € B D),

where B((, x) = —B(V(AC), V(®x)) + (¢, x).
We have

(2.23) 1B, < CallClmslIxllm@ — V¢e HYG), x € HY(G),

and also, through another integration by parts,

(2.24) B¢ < CellclmolixXlie.@ — ¥¢e HYG), x € HY(G).

Since § belongs to H} () by Remark 2.5, (2.11) and (2.18), we can combine
(2.23) and (2.22) to conclude

e2) | [ vdu] < (Calill) + el ) < Cllinay

for all y € E(Q7 A). Consequently we can treat u as a member of H~1(Q).

In the case where 7 belongs to HP°(Q) for some § € (0,1), we can further
improve the regularity of u. Observe that (2.23), (2.24) and the interpolation of
bilinear forms on Sobolev spaces [8, Section 4.4] imply that B can be extended to
H3+9(G) x H'7°(@G) such that

IB(¢, )| < CasllCllmsssayIXlm-sy V¢ € H*(G)and x € H' (@),

which together with (2.22) implies
(2.26) | [ wdn] < ol ooy Ve B@:A).

Therefore in this case we can treat u as a member of H~1+9(Q).
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3. CY Interior Penalty Methods. Let 7;, be a shape regular triangulation of
Q, & be the set of the edges of Ty interior to Q, Vs, C Hg(2) be the Py (k > 2)
Lagrange finite element space associated with 7, and ay(+,-) be the bilinear form

(w, v) T;/DQUJ DQde—I—Z/ 8712 avﬂ—l— g;}[[g:ﬂ)ds
+ Z

where |e]| is the length of the edge e, o is a positive penalty parameter, and the jumps
and averages of the normal derivatives for the functions in V}, are defined as follows.

Let e € Eﬁ be the common edge of TelL € Tn and n, be the unit normal of e
pointing from 7. to T.". We define on e

Sy -1 ) -5 -

0%v_
on?

Ov_
one

Yov e Vy,

€

Remark 3.1. The bilinear form ay(-,-) is the one that appears in C° interior
penalty methods for simply supported plates in [16, 13, 24]. Tt is independent of the
choices of T:F.

For o sufficiently large, we have (cf. [20, 13])

(3.1) an(Yn,yn) = Cillynllz  Yyn € Vi,

where the mesh-dependent norm || - ||, is defined by

ol = 3 bfecr + 32 ellel...

Note that we have the following discrete Poincaré-Friedrichs and Sobolev inequal-
ities [26, 17]

(3.2) lynllLo) + Ynlai@) + lvnlloo@) < Cllynlln Yy € Va.

We will use ap(+,-) in a discrete analog of (2.13)/(2.14), for which we also need
the discrete analogs of the singular functions.

3.1. Discrete Singular Functions. Let (;; € V}, be defined by
(3.3) (V¢in, Vo) = (AE;,v) Vv € Vp,

where ¢; is the function from Section 2.1. In other words we have (;, = Rp(j, where
¢ is defined by (2.5) and Ry, : H}(Q2) — Vj, is the Ritz projection.
We then define ¢7 ;, € L2(Q2) by

(3.4) ®in = Cin+ &,
and ¢j,h e Wy by
(3.5) (Vojn, Vv) = (¢] > v) Vv e V.
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Remark 3.2. The constructions of (j, € Vi, ¢} ), € L2(S2) and ¢, € V), given by
(3.3)(3.5) are the discrete analogs of the constructions of ; € Hg (), ¢}, € La(Q)
and ¢; € H} () given by (2.5)(2.7). Other constructions can be found for example
in [32], where @7 ), is approximated by the sum of a finite element function and the
exact dual singular function and ¢; 5, is approximated by the sum of a finite element
function and a multiple of the exact singular function. A numerical scheme based on
the constructions in [32] would likely have similar performance.

3.2. The Discrete Problem. The discrete problem for (2.13) is to find yg j €
Vi and 7, = (Tn,1, .-, 7h,s) € R7 such that

_ _ o1 «
(3.6) (Yr,n,Th) = argmin 3 [Ban(yr.n, yr.n) + Blos ullT, @
(YRr,n,T)EKR

+ (o + br.n) = vall )

where 7 = (74,...,77) € R,
J J
(3.7) brn =Y Tibin, Srn =D T n
j=1 j=1
and

Kn ={(Wrn7) € Vi ®R” : yrn(p) + drn(p) < Y(p)
(3.8) at all the vertices of T}

={(Yrn,T) EVi ®R”: I(yppn + drn) < i)Y}
Here I}, is the nodal interpolation operator for the conforming P; finite element space

associated with 7.

Remark 3.3. Let the open subset G of 2 and the function ® be defined as in
Section 2.5, and let (§r,T) € K be the solution of (2.13). Then (II;(gr — 0.P),T) €
K}, where ITj, is the nodal interpolation operator for the P, Lagrange finite element
space and

(3.9) 0r = |67 — dr.nllLo ()

In particular K} is nonempty.

The discrete optimal state g is then given by

J
(3.10) Un =Yr,h + G50 h = YRW + Z Th.jPj.h-
j=1

Remark 3.4. Tf Q is convex, then ¢, = ¢%, = 0 and (3.6) reduces to the C°
interior penalty method in [24].

We can also write (3.6) in a concise form:

. _ _ . 1
(311) Find (yR,h7 Th) = argmin I:iAh((yR,hv T)7 (yR,hv T)) - (yd7 YR,h + ¢‘r,h):| 5
(YRr,n,T)EKR
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where the bilinear form Ay(+, ) is defined by

(3.12) An((Wrny T)s (2R.15 P)) = Ban(Yr.ns 2r.0) + B(O7 1y Do)
+ (Yr,h + D7 ohs ZR1 T Do)

By the norm equivalence

(3.13) 167 1l o) = [T = 67 1]l Lo

and the estimate (3.1), we have

(3.14)  Aw((WrnT), Wrn 7)) > Cy(llyralli + 7% V(yrp ) E Vi @R

Remark 3.5. In view of the fact that (¢}, ;,én,;) — (¢}, ¢;) in L2(2) x La(R) as
h ] 0 (cf. (4.2) and (4.3)), the hidden constants in (3.13) are independent of h.

A Discrete Variational Inequality.  Since K} is a nonempty closed convex subset
of V, ® R’ and the bilinear form Ap(-,-) is coercive by (3.14), the discrete problem
(3.6)/(3.11) has a unique solution characterized by the discrete variational inequality

(3.15)  Ap((Fr,hTh)s WRLE — YR T — Th)) — (Yas (YR.H — URK) + Pr—rpn) =0

for all (vah,T) € Kp.

4. Convergence Analysis: Quasi-Uniform Meshes. In this section we con-
sider the convergence of C? interior penalty methods on quasi-uniform meshes (cf.
[31, 19]) and extend the convergence analyses in [24, 21] to nonconvex polygonal
domains. We begin with an analysis for the discrete singular functions.

4.1. Estimates for the Singular Functions. Let w. be the largest angle at
the reentrant corners of Q and v = 7/w,.

LEMMA 4.1. We have the following error estimates:

(4.1) 1G5 = Gl zacey < CH2”,
165 = &5 nll o) < Ch?,
165 = bjnllLo() < Ch*.

Proof. Recall I, : C(Q}) — V}, is the nodal interpolation operator. We have a
standard error estimate [31, 19]

= anlui @) < Chlnluz) V€ H*(Q)N Hy(Q),
and, by a direct calculation (cf. [7, Lemma 5.1]), |¢; —IIp¢;| g1 (o) < Ch¥ for 1 < j <
" Combining these two estimates with (2.4) and Remark 2.6, we have
(4.4) =Tl o) < Ch ¢l pauny  VC € E(QA).
It follows from (4.4) and Galerkin orthogonality that

(4.5) G = Gnlar ) = 16 = BuGjlar @) <16 — MnGlar @) < CRYNIG ] giasn)-
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The estimate (4.1) follows from (4.5) and a standard duality argument. The
estimate (4.2) then follows immediately from (2.6), (3.4) and (4.1).
Let ¢, € H}(Q) satisfy

(4.6) (Vojn, V) = (65 ,,0)  VveH)(Q).

Then we have ¢;, € E(Q;A) and

(4.7) ll¢; — ng,hHE”(Q;A) < Ccn*

by (2.7), (4.2) and (4.6). Note that (3.5) and (4.6) imply ¢, = Rn¢;.n, and hence

(4.8) [16jn—¢jnllrai) < CRY|6jn—Rndjnlmi ) < Ch¥|djn—TIhdjnlm ) < Ch*

by (4.4) and a standard duality argument.
The estimate (4.3) follows from (4.7) and (4.8). 0

From (2.10), (2.12), (3.7), (4.2) and (4.3) we immediately have the following
estimate:

(4.9) ¢r — drnllia) + 105 = 0% 4llLa@) < Ch¥ 7.

Remark 4.2. 1t follows from (3.4) that ¢}, belongs to HL _(Q) and hence ¢,

defined by (4.6) belongs to H () by interior elliptic regularity [2]. In view of (4.2),

the H3 norm of ¢; 5 on any open subset of  away from 9 is bounded by a constant
independent of h.

Interior Estimates. Let G be the open neighborhood of € from Section 2.5. Since
b; € C®(Q), ¢jn € HP () and k > 2, we also have the following interior error

loc

estimate (cf. [59, Theorem 9.1 and Theorem 10.1]):

(4.10) |65 — Rujlm(a) < Ch?",
(4.11) 6jn — Rudjnllro(c) < Ch*.

It follows from (4.7) and (4.10) that
(4.12) |65 — Synlmi (@) < 165 — Badsln ) + |1Ri(6; — d3.) (@) < CR,
and from (1.3), (4.7) and (4.11) we have
(413)  idj = dinllrwio) < 195 = Sinlliwie) + 1950 — Budjnllio e < CR*.
In particular the number ¢, defined in (3.9) satisfies the estimate
(4.14) 5. < Ch™.

By standard interpolation error estimates (cf. [31, 19]) we also have

(4.15) 6 — Mol () + 165 — Indjllroe) < Ch*.
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4.2. Connection Operators. The key ingredients for the analysis of the C° in-
terior penalty methods are certain operators that connect the continuous and discrete
spaces.

We can connect the continuous space to the discrete space by the standard nodal
interpolation operator IIj, : H2(2)NHg (2) — Vj,. In the other direction the discrete
space is connected to the continuous space by an enriching operator E, : V, —
H2(2) N HE(Q) constructed through averaging (cf. [24, 21]).

Recall that « is the index of elliptic regularity that appears in (2.18). The proofs
of the following results can be found in [13, 24].

LEMMA 4.3. We have

(4~16) ||?3R - HhﬂR”Lz(Q) + h\ij - Hh@R|H1(Q) + h2||§R - Hh@RHh < Ch2+a,
2
(4.17) > hF1gn — By gal o) < CR*T,
k=0

and, for allv € Vy,

(4.18) (ERpv)(p) = v(p) at any vertex p,
2
(4.19) Zh% Z lv— Ehvﬁﬁlk(T) < Chi||v]z,
k=0 TeETh
(4.20) la(Gr, Erv) — an(pgr, v)| < Ch¥||v||p-

Remark 4.4. The estimate (4.17) indicates that EjII;, behaves like a quasi-local
interpolation operator, and the estimate (4.20) means that E}, acts like the transpose
of II;, with respect to the bilinear forms a(-,-) and a(-, ).

4.3. Preliminary Estimates. The estimates below will reduce the error anal-
ysis to the continuous setting. First we observe that Remark 3.3, (3.14), (3.15) and
(4.16) imply

15 = Grall7 + 17— 7ol
< 2|5 — Wagelliy + 2(0nGs — Graulli + |7 — 7ul?
< C1h** + CoAn (Man — Grons T — 7)), MnGn — Jrop T — ™))
= C1h** + O [Ap (ngr — Gr,h, T — Th), (L4 (6, @), 0))
(4.21) + An(Thgr — Grons T — Tn)s (W (§r — 0.®) — Yrn, T — 7))
< C1h** + O30, (IMngr — Yronlln + |7 — 7al)
+ Co[An ((Ungr, 7), (Un(Jr — 0+P) — Yo, T — T1))
= (Ya, M (Yr — 0.®) — Jr.n) + Gr—70,1) ]
< C1h** 4 C30, (IMnGr — Jr,nlln + |7 — Tal) + Cad.
+ Co[An ((UnGr, 7), Unn — Yrop T — Th))
— (ya Tnr — Yrop) + Gr—74.n)]-

Let zr n = Ip¥r — Yr,n- According to (3.12), we have

An(0pGr, 7), (zr0 T — 7))
=Ban(nyr, 2r0) + B(D% 1, 055, 1) + U + G5 1, 2R0 + Pr—74 1)



12 S.C. Brenner, J. Gedicke and L.-Y. Sung

=Ba(Yr, Enzrn) + Blan(nin, 2r.n) — a(Yn, Enzron)]
I T | S S S |
+ (?jR + (bi-v EhZR,h + ¢‘F*‘Fh) + [((thﬂ - 373) + (¢-T-,h - ¢i—)a ZR,h T ¢‘F7‘Fh,h)
+ (Ur + &7, (R0 — Enzrp) + (07r—700 — 07—7,)) ]

and hence

Ay (0 gr, 7), MYn — Yrop T — Th))
< A((Jr, 7), (En(MpYn — Gro1): T — T0))
(4.22) + C[(h™ 4+ *) | nGr — Jronlln + B |7 — 7
+ (B + ) (I0nGs — GronllLo0) + 107 —mnll La()]
< A7) (Ba(MaYr — Yro1): T — Th))
+ C[(h® + h® + )| Ungn — Gronlln + (R + BT — 7]

by (2.15), (3.2), (3.13), (4.9), (4.16), (4.19) and (4.20).
Moreover it follows from (4.9) and (4.19) that

— (Ya Tnr — Yr,p) + Gr—74.1)
(4.23) < —(a, En(Unin — Yr,n)

+ ¢r—r,) + C(W°|WnGn — Gronlln + B2 |7 — 7))

Using (4.16), (4.22), (4.23) and the triangle inequality, we obtain

A (WG, 7), Wnfn — Jrop, T — Th)) — Wa, nle — Gron) + Gr—70,h)
<A, 7)s (Bn(MaGn — Gron)s T — 7)) — (Ya, En(Unfin — Jr,n) + d7—7,)
(4.24) + C((h™ + h? + )| ngn — Grplln + (R + B2T) |7 — 7))
< A((r, 7), (Ba(MpGn — Gron)s T — 7)) — (Yas En(aGn — Yrop) + d7—7,)
+ C(R** + B> + BT + (b + h* + h*)||5r — r.nlln
+ (b + B> |7 — 7).
The main task now is to estimate the first two terms on the right-hand side of
(4.24), which only involves the continuous bilinear form A(-, ).
4.4. An Estimate in the Continuous Setting. It follows from (2.11), (2.16),
(2.17) and (4.18) that

A((@r, 7), (En(Dngr — Jron), T — 7)) — (Yas En(Mnin — Uron) + dr—,)

- / (B (TnGn — Grp) + drn ] di
Q
(4.25) = / (Erllngr — Ur)du + / (Y = I,Y)dp
Q Q
+ / (1Y — In(Jr,n + G70n) | dp + / (InEvyr,n — Enyr,n)dp
Q Q

+/ [Ih¢7, n — b7, | dp.
Q
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The first integral on the right-hand side of (4.25) satisfies
(4.26) /(EhHhﬂR —yr)dp < C||EnIngn — rllmro) < ChMHE
Q

by (2.25) and (4.17). In view of (3.8), (3.10) and the fact that g < 0, the third
integral satisfies

(427) /Q [IhY — Ih(yR,h + ¢7"}L,h)] d,u <0.

Next we use (2.11) to rewrite the sum of the fourth and fifth integrals as

/(IhEhﬂR,h — Enyrp)dp + / Unoz, n — bz, ]dp
Q Q

(4.28) = /Q[Ih(EhQR,h —Ur) — (Enyr,n — Yr)]dp + /Q(]hg — )dp
7 J
+ ;(Th,j —75) /Q(Imbj,h — ¢;)dp + ;Tj/gjh(qf)j’h — ))dn.

We can apply a standard interpolation error estimate (cf. [31, 19]) together with
(2.25), (4.17) and (4.19) to obtain the estimate

/ Un(Enyrn — Ur) — (EnUrn — Un)ldp
Q

< Cn(Erngrn — Ur) — (Enirn — Us)ll 51 (0)

(4.29) < ChlEvyr,n — Urlu2(0)
< Ch(|En(§r,n — Wnbn)|m2() + |EnIInTr — Ul m2(0))
< Ch(||gr,n — Mairlln + ™).

We can also use (2.25), (4.3), (4.12) and (4.15) to obtain the estimate

/ In(pjn — ¢5)dp = / In(¢jn — nops)dp
Q Q

(4.30) < Cllgjn — Undjlla @)
< C(lpjn — dillme + 195 — Mndjllmre)) < C(R* + h?).

Moreover it follows from (2.21), (4.15) and (4.30) that
@31) [ b= odn = [ T@sn = o)+ [ (1o = o) < CO>* 1 12).
Combining (4.25)—(4.31) we find
A((@r, 7), (En(ngn — Jron), T — 7)) — (Yas En(MnJr — Grop) + 77, )

(432) < [T =0 =10y = ]

+ C(W + 1 + B + hl|gr.n — Wagrlln + (B2 + h2)|7 — 7).
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Since Y — ¢ belongs to C?(2), we can apply (2.21) to obtain
@) [ [0 - 0 =9l < CIY =)~ B(Y = D)oy < O,
which together with (4.16), (4.32) and the triangle inequality implies
(4.34)  A((@r, ), (Bn(WpGn — Gron) T — 7)) — Was Ea(Mnbn — Ur,n) + dr—7,)
< O + 0%+ 1 4 h[gra = Galln + (0 + 127 = 7).

4.5. Convergence Results. Putting (4.14), (4.21), (4.24) and (4.34) together
we arrive at the estimate

19r — Groplli + 17 — 7l
(4.35) < C(R** +h'T* + B + B + (R + ¥ + ) ||§r — Gronln
+ (h* + 1?)|7 — 7l).

We can now prove our first convergence result.

THEOREM 4.5. The following error estimate holds for C° interior penalty methods
of order k > 2 on quasi-uniform meshes:

(4.36) lgr — Grnlln + |7 — Tn| < ChE,

where « is the index of elliptic regularity in (2.18).
Proof. Tt follows from (4.35) and the relation o < v < 1 (cf. (2.20)) that

15r = Urnlli + 17 = 7al> < C(W** + h™||Gr — Yrnlln + R |7 — Tal),

which together with the inequality of arithmetic and geometric means implies (4.36).0

Remark 4.6. Tt follows from (2.11), (3.2), (3.10) and Theorem 4.5 that

(4.37) 19— nlar) + 19— UnllLo @) < CR®.

Since | - |g1(o) and || - |1 (o) are lower order norms in comparison with || - ||, the
convergence of g in these norms should be of higher order, which is confirmed by
numerical results. This remark also applies to the convergence results in Section 5.1
and Section 5.2.

Convergence of Tr,. Numerical results in Section 6 show a better convergence for 7,
than that predicted by Theorem 4.5. This phenomenon can be explained as follows.

Suppose there exists a vertex x of 7;, such that x belongs to both € and the
discrete active set, and ¢;(x) # 0 for 1 < j < J. Then we have

J J
Ira(@) + Y Tnbin(r) =Y (@) = galz) + Y 70;(x)
j=1 j=1
and hence

J J
D 17 = Tinl 165 (@)] < 10a(@) = Gra@)| + Y [Fall6;(x) — ¢jn(@)],
j=1 j=1
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which together with (4.13) implies

J
(4.38) > 15 = 7nl < C10n — Gl @ + B*).
j=1
Since || - ||z, is a lower order norm, we can expect ||z — Yr.nllz.(¢) to be smaller

than ||§r — rnlln- It then follows from (4.38) that 75, converges to T at a higher
order.

5. Convergence Analysis: Graded Meshes. In this section we consider the
convergence of CV interior penalty methods on graded meshes. We follow the same
methodology as in Section 4 and take advantage of the improved performance afforded
by graded meshes.

5.1. Grading Strategy I. The goal here is to improve the O(h®) error estimate
in (4.36) to O(h). At a corner where the interior angle is less than 7/2, there is no
need for a graded mesh. Around a corner ¢ where the interior angle w is larger than
/2, the diameter h; of a triangle T" in the graded mesh satisfies

(5.1) he = hlc — cp |1 79,
where ¢, is the center of T', h =~ maxre7;, hr is the mesh parameter,
(5.2) 0<é<at(w),

and a4 is defined by (2.19).

Graded meshes defined by (5.1) and (5.2) provide O(h) approximation of g,
around the corners of € in H2-like norms. Since , belongs to H3 away from the
corners, the overall approximation is O(h) for such meshes. Therefore we can replace
a by 1 in Lemma 4.3. Details can be found in [24].

Remark 5.1. Shape regular graded meshes that satisfy (5.1) can be constructed
by many refinement procedures (cf. [41, 5, 12, 28]). The refinement procedure in our
numerical experiments is adopted from [41, 28].

Remark 5.2. Finite element methods on graded meshes were investigated in [4, 3]
for optimal control problems with pointwise control constraints.

Remark 5.3. For the Poisson equation with the homogeneous Dirichlet boundary
condition, the grading at a reentrant corner ¢ with interior angle w is defined by (5.1)
with

(5.3) 0<a<m/w.
In view of (2.20), the grading condition (5.3) for the Poisson equation at a reentrant
corner is implied by the grading condition (5.2).

It follows from Remark 5.3 and the improved interpolation error estimates in
[6, 43] that Lemma 4.1 now holds with v = 1. Consequently the estimates (4.10) and
(4.12) are now valid for v = 1. Therefore we can replace a and v by 1 in (4.35) which
then yields the following improvement of Theorem 4.5.

THEOREM 5.4. The following error estimate holds for C° interior penalty methods
of order k > 2 on meshes that satisfy (5.1)—(5.2):

|9 — Yrulln + |7 — Tl < Ch.
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Note that the estimate (4.11) holds for ¥ = 1 — € for any € > 0 because ng,h only
belongs to H} () and not leocoo (€2). Consequently the estimate (4.13) also holds
for v =1 — €. By the same arguments in Section 4.5, we have

J
(5.4) > 17 = 7inl < Cllgn — GrnllLo(e) + Ch*™ for any € > 0.
j=1

5.2. Grading Strategy II. When the desired state y4, the constraint function
Y and the free boundary 9€ are sufficiently smooth, the function § (and hence gr)
can have higher interior regularity and it is possible to improve the convergence of C°
interior penalty methods of order k > 3 by using a stronger grading.

5.2.1. Additional Regularity for y. We assume that
(5.5) d¢ is smooth and g € H*(G\ €) N H*(¢),

where G, as in Section 2.5, is an open neighborhood of € such that G is a compact
subset of 2, and € is the interior of €. It follows from (5.5) that
(5.6) g€ HI(Q),

loc

where ¢ can be any number < 1/2. Therefore the approximation away from 0 is
O(h'*9) for C° interior penalty methods of order k > 3 (which is assumed to be the
case in the discussion below), and the grading strategy in Section 5.1, which only
yields O(h) approximation around the corners, is not sufficient.

5.2.2. Behavior of Y — . The assumption (5.5) also provides additional infor-
mation on the behavior of Y — ¢ near €.

LEMMA 5.5. Let d be a sufficiently small positive number. Under assumption
(5.5) we have, for any T < 1,

(5.7) ¥ (@) - §la)| < Crd**

for any x € Q whose distance to € is less than or equal to d.

Proof. Since the C? function Y — 3 vanishes identically on €, we can focus on
the points outside €. Let x be a point outside € whose distance to € is < d. We
can connect x to a point z, € OC by a straight line £ normal to 9€ because I€ is
smooth and d is sufficiently small. The restriction of Y — 4 to the line ¢ is a C?
function in one variable whose derivatives up to order 2 vanish at x,, and we have
IY" — 4"z, < Cp for any p < oo by the Sobolev embedding theorem (cf. [I,
Theorem 4.12 (B)]).

The estimate (5.7) follows from these observations, Taylor’s theorem (with inte-
gral remainder) and Holder’s inequality. |

5.2.3. A Second Grading Strategy. We use a graded mesh that satisfies (5.1)
around any corner of 2 where the interior angle is larger than 7/3 and different from
/2. The grading parameter & is chosen according to

ot (w)
2

(5.8) 0<ax<

so that we have O(h?) approximation around the corners of Q in H?2-like norms. Since
U belongs to H319 away from the corners, the overall approximation in H2-like norms
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is then O(h'*?). Consequently we can replace o by 1 + ¢ in Lemma 4.3 and hence
also in (4.21).

Observe that (4.17) (with @ = 14 ¢) and interpolation between Sobolev spaces
(cf. [8, 1]) implies

(5.9) lgr — EhHhﬂR”Hp&(Q) < C(;h2+25.

As in Section 5.1, we can take ¥ = 1 in Lemma 4.1 and hence the estimate (4.24)
holds with o = 1 4+ and v = 1, which is sufficient for the error analysis because h2?”
is attached to ||yr — Ur,nln and |7 —7|. However the stand-alone 22" in the estimate
(4.35) is not good enough. Since it originates from (4.14) and the estimate (4.30) that
depends on (4.12), we need to improve the interior estimates in Section 4.1.

5.2.4. Improved Estimates for the Singular Functions. We begin by de-
riving better estimates that involve the function (; defined in (2.5). It is based on the
following observations.

e From (2.8) and (2.5) we see that A(; is a C* function up to the boundary
except at the reentrant corner C;. Moreover, in a neighborhood Nj of C;
there exists a smooth function ®;(6) such that A(; + r;ﬂ/wj ®,(0;) belongs
to H'T< (N;) for any €; < 1 — (7/wj).

e It then follows from (2.20), (5.8) and elliptic regularity for the Poisson prob-
lem on polygonal domains with the homogeneous Dirichlet boundary condi-
tion (where the right-hand side is more regular than H') that the approxi-
mation of ¢; by II,(; in the H! norm is of order O(h?) around all the corners
of 2 where the mesh is graded.

e Near a corner of ) where the interior angle is < 7/3, the mesh is quasi-
uniform and the approximation of ¢; by II;¢; in the H! norm is at least
of order O(h?|Inh|), and near a corner where the interior angles is 7/2, the
approximation of (; by II¢; in the H! norm is O(h?|In h|) for a quasi-uniform
mesh.

e In view of Remark 2.4, the approximation of ¢; by II(; in the H! norm is
at least O(h®) away from the corners of Q.

Putting these observations together we conclude that

(5.10) G = Ginlmi) =16 — BuGilm ) <16 — aslm o) < C-hMT

for all 7 < 1, and hence, by a standard duality argument, the estimates (4.1) and
(4.2) can be improved to

165 = GinllLac) + 165 = 5 alla@) < C-R*FT forall 7 <1,

which implies that the estimate (4.7) can be replaced by

(5.11) 165 = Gjnll auny < C-R*T forall 7 < 1.

Next we will derive better estimates that involve the function ¢; defined in (2.7).
Observe that (i) the function A¢; belongs to H? around all the convex corners of
Q; (ii) at a reentrant corner Cj, (k # j), the function A¢; belongs to H'*< for any
€ < T/wy; (iii) at the reentrant corner C;, the function Ag; +rj_7”/wj sin ((m;/w;)6;)
belongs to H'™¢ for any €; < m/w; (iv) according to Remark 2.5, the approximation
of ¢; by II¢; in the H! norm is O(h3) away from the corners of .
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Based on these observations we can conclude that, as in the case of (;,

|6 — Rnojlmi) < Ch'FT and  [|¢; — Rudjl L) < Ch**7
for any 7 < 1. It follows that the interior estimate (4.10) can be replaced by
(5.12) |6 — Rndjl i) < Ch*TT for any 7 < 1.
Combining (5.11) and (5.12), we arrive at the following improvement of (4.12):
(5.13) |6; — dinlm(e) < C-R*HT for any 7 < 1.
Since k > 3 and ¢; € C*°(Q), we also have

(5.14) |6 — ;| mi(c) < Ch°.

LEMMA 5.6. There exists a positive constant C' independent of h such that

(5.15) IVé; hllLwie) < C.

Proof. Tt follows from (5.10) and standard interpolation and inverse estimates
that

VGl <NV =)o@ F IVILSG — Gl @) + IVl Lo @)
< C(h™YGn = TGl @) + hlGlwae @) + [¢Glwre@)

< C(h M |¢n — ey +1¢G — sl e)) + BIG w2 @) + |G lwre )
<C,

which, in view of (3.4), implies (5.15). o

It follows from (4.6), Lemma 5.6 and interior elliptic regularity estimates [47,
Theorem 17.1.1] that

(5.16) |¢Zj’h|W3,p(G) <C, for any p < oo.
Note that, by (5.11) and (5.12), the estimate

IRhGjn — Ginllrac) < |1 Bh(bjn — 65) — (D0 — )l Lace) + |1 Brds — &5l Lo
< CTh2+T

holds for any 7 < 1, which together with (5.16) implies the interior error estimate
1650 = Brdjnllioe) < Crh**7.
Hence we have the following improvement of (4.13):

l6; — djnllLe () < Crh*TT

for any 7 < 1, which means the number J. defined in (3.9) satisfies the following
improvement of (4.14):

(5.17) 5. < C 2T,
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5.2.5. An Improved Continuous Estimate. The estimate (4.26) for the first
integral on the right-hand side of (4.25) can be improved by using (2.26) and (5.9) as
follows:

(5.18) / (EnIInGn — Yn)dp < Cs||EpILpgn — Gnllmi-s) < Csh*™2.
Q
Similarly we have the following improvement of (4.29):

/ Un(Evgrn — Ur) — (EnJrn — Yr)ldp
Q

< Csl[n(Eryrn — Ur) — (Enir.n — Ur) 150
(5.19) < Csh'* P |Epgrn — Unlm2 ()
< Csh*™ (|Ew(rn — Mn¥e) lm2(0) + | Enngn — Jrli2 @)
< Csh** (gm0 — MnGnlln + A )
by (2.26), (4.17) (with oo = 1+ 4), (5.9) and a standard interpolation error estimate

for I,.
In view of (5.13) and (5.14), we have the estimate

(5.20) / In(pjn — &;)dp < CLh2FT for any 7 < 1
Q

that improves (4.30).

Finally we consider the improvement of the estimate (4.33). In view of Lemma 5.5,
we have, for any 7 < 1, |Y(z) — y(z)| < C;h**™ if the distance between x and € is
comparable to h, which implies [|[1,(Y —9)|lz_(e) < C h?t,

It follows that

Ga) [0 =0 =B = ldu= = [ L =g dn < C

Combining (4.27), (4.31) (with v = 1), (5.18)—(5.21) and the triangle inequality,
we arrive at the following improvement of (4.34):
(5:22)  A((@r: 7). (En(MnGr — Gron), T = Tn)) = W, En(Mnfe — Grop) + Gr—7,)
< Cor (W20 1 127+ WG — Gralln + B2|7 — 7))

for any 6 < 1/2 and 7 < 1.

5.2.6. Convergence Results. The estimates (4.21) and (4.24), where « = 1446
and v = 1, together with the estimates (5.17) and (5.22) (where 7 = 20) yields, for
any 6 < 1/2,

(523)  Fr — Grallz + |7 — 7l* < Cs(B*™2° + B\ — Groplln + BT — 7))

We can then obtain the following theorem by the inequality of geometric and arith-
metic means.

THEOREM 5.7. Under the additional regularity assumption (5.5), the following
error estimate holds for C° interior penalty methods of order k > 3 on meshes that
satisfy (5.1) and (5.8):

|Gr — Gronlln + |7 — 70| < Csh'T? for any § < 1/2.
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As in Section 5.1, we have

(5.24) 175 = Tinl < Clin — UrpllLo (@) + Ceh® ™ Ve>0.

M-

1

J

6. Numerical Results. We solve the minimization problem (1.4) with g =1
by the quadratic and cubic C? interior penalty methods on domains where the interior
angles are right angles at all the corners except one reentrant corner, so that only the
mesh around the reentrant corner needs to be graded. The initial mesh size is 1 in all
the computations and the discrete variational inequalities are solved by a primal-dual
active set strategy (cf. [9, 10, 45, 48]). We use a Gaussian quadrature rule with
16 points in the interior of each triangle in the computation of the discrete singular
function associated with the reentrant corner (cf. (3.5)).

EXAMPLE 6.1. The domain for this experiment (cf. Figure 6.1) is the L-shaped
domain obtained from the square (—1,1)? by removing its lower right quadrant, and

we take yg = 0 and Y = [(151%'5)2 + (””201%'5)2} — 1. For this domain the index of

elliptic regularity avis 3 (cf. Section 2.4). Therefore the order of convergence predicted
by Theorem 4.5 is %

The results for the quadratic (resp., cubic) C? interior penalty method on uniform
meshes are reported in Table 6.1 (resp., Table 6.2). The value of 7 is found to be
—2.218.

j ”gRJ'—l - yR,j”h order |’7_'j_1 - 7_'j| order HgR.,j—l — gR»j||foo(€j) order
1| 5.916 x 10° —~ 18933 x10°! —~ | 1.866 x 107! -
2 | 3.506 x 10° 0.75 | 2.060 x 107t 2.12 | 1.143 x 107! 0.71
3 | 2.064 x 10° 0.76 | 6.443 x 1072 1.68 | 9.627 x 10~3 3.57
4] 1.326 x 10° 0.64 | 2.554 x 1072 1.34 | 4.357 x 1073 1.14
5 1 9.255 x 107! 0.52 | 7.697 x 1073 1.73 | 8.218 x 1074 2.41
6 | 6.944 x 1071 0.41 | 5.258 x 1072 0.55 | 4.175 x 10™* 0.98
7 15.399 x 1071 0.36 | 2.932x 1072  0.84 | 2.344 x 10™* 0.83
8 | 4.260 x 1071 0.34 | 1.720 x 1072 0.77 | 1.394 x 10™* 0.75
TABLE 6.1
Results for the quadratic method on uniform meshes for Example 6.1
j HgR7j_1 - gR7j||h order |7_'j_1 - ’7_'j| order ||Z7R,j—1 — gR,j Hgoc(e'j) order
1| 2.799 x 10° — | 4.167 x 107! ~ | 7.526 x 1072 -
2 | 2.450 x 109 0.19 | 1.829 x 107*  1.19 | 1.014 x 10~! —0.43
3 19.398 x 1071 1.38 | 3.386 x 1072 2.43 | 5.225 x 1073 4.28
4] 7319 x 107! 0.36 | 1.701 x 1072 0.99 | 3.650 x 103 0.52
5| 5.658 x 107! 0.37 | 8.067 x 1073  1.08 | 8.552 x 1074 2.09
6 | 4.482 x 1071 0.34 | 5.951 x 1073 0.44 | 4.899 x 10~* 0.80
7 1 3.569 x 1071 0.33 | 3.633x 1073  0.71 | 3.016 x 10~* 0.70
8 | 2.840 x 1071 0.33 | 2.468 x 1073 0.56 | 2.063 x 104 0.55
TABLE 6.2

Results for the cubic method on uniform meshes for Example 6.1
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The convergence of §g p in the energy norm (cf. Table 6.1 and Table 6.2) is as
predicted. The higher order convergence of 7j, can be explained by (4.38) and the
results in Table 6.1 and Table 6.2 for |gr,j—1 — Ur,jle. (¢,), Where &; is the j-th level
discrete active set and |v|s_(¢,) is the maximum of the absolute values of v at the
vertices of T;, that belong to ;.

Since the exact solution is not known, we approximate the unknown error by a
hierarchical error estimator, which is justified by the saturation assumption, i.e., that
for uniform mesh refinements the error contracts.

We have also implemented the quadratic and cubic C° interior penalty methods
on graded meshes. In order to apply the hierarchical error estimator, we use the
grading procedure from [41, 28] that generates hierarchical meshes. The results are
presented in Table 6.3 and Table 6.4.

J \l9rj—1 = Yr,jlln order | |71 — 7] order [[|yr,j—1 — Yr,jlle.(e;) order
1] 5.916 x 10° ~ 1 8.933 x 107! — | 1.866 x 10! -
2 | 3.734 x 10° 0.66 | 2.267 x 10~*  1.98 | 1.150 x 10! 0.70
3 | 1.868 x 10° 1.00 | 6.117 x 1072 1.89 | 9.812 x 1073 3.55
4] 1.002 x 10° 0.90 | 2.133 x 1072  1.52 | 4.303 x 103 1.19
5| 5.116 x 10! 0.97 | 4.963 x 1073  2.10 | 6.032 x 10~* 2.83
6 | 2.617 x 1071 0.97 | 1.667 x 103 1.57 | 1.600 x 10~* 1.91
7 11.347 x 107! 0.96 | 4.326 x 10*  1.95 | 3.883 x 10~° 2.04
8 | 6.843 x 1072 0.98 | 9.895 x 107°  2.13 | 9.043 x 10~ 2.10
TABLE 6.3
Results for the quadratic method on graded meshes with & = 0.3 for Example 6.1
j HgR-,j—l 7§R»J‘”h order "T_'j_l *’7_'j‘ order HgR,j—l 7gR7j||€oo(€j) order
1| 2.799 x 10° — | 4.167 x 1071 — | 7.526 x 1072 —
2 | 2.525 x 109 0.15 | 2.405 x 10~Y  0.79 | 1.040 x 10! —0.47
3| 4.893 x 1071 2.37 | 1.550 x 1072 3.96 | 3.864 x 1073 4.75
4| 2411 x 107! 1.02 | 1.877x 1072  3.05 | 3.217 x 1073 0.26
5 | 8.639 x 1072 1.48 | 3.525 x 107%  2.41 | 3.564 x 10~¢ 3.17
6 | 2.802 x 1072 1.62 | 8.867 x 10~°  1.99 | 6.387 x 10~° 2.48
7 | 8.941 x 1073 1.65 | 2.244 x 10~5  1.98 | 2.287 x 1076 4.80
TABLE 6.4

Results for the cubic method on graded meshes with & = 0.15 for Example 6.1

For the quadratic method, we take the grading parameter & in (5.1) to be 0.3 so
that the condition (5.2) is satisfied. The order of convergence of §g  in the energy
norm is approaching 1, which agrees with Theorem 5.4. For the cubic method, we take
the grading parameter & to be 0.15 so that the condition (5.8) is satisfied. The order
of convergence for §g  in the energy norm is approximately 1.5, which is consistent
with Theorem 5.7.

The discrete active sets computed by the quadratic C interior penalty method on
uniform and graded meshes are displayed in Figure 6.1. It appears that the boundary
of the active set is smooth and therefore the additional regularity for g in (5.5) is
justified by the smoothness of y4 and Y.
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The higher order convergence of 7;, for both methods can be justified by (5.4),
(5.24) and the results for |[yr j—1 — Ur,jle.(¢;) in Table 6.3 and Table 6.4.

V' 4

(a) (b)

Fic. 6.1. Discrete active sets for Example 6.1 computed by the quadratic method (6 levels of
refinement): (a) uniform mesh and (b) graded mesh

EXAMPLE 6.2. The domain Q (cf. Figure 6.2) for this experiment is obtained
from the square (—1,1)? by removing an isosceles right angled triangle. According
to Section 2.4, we have o = % Therefore the order of convergence predicted by
Theorem 4.5 is # ~ 0.1429.

Let (r,0) be the polar coordinates at the reentrant corner. For this domain
the leading singularity for the biharmonic equation with the boundary conditions of
simply supported plates is determined by the function 1) = —r®/7sin(80/7), which is
a negative harmonic function on €.

In order to check the performance of our methods on a problem with a known
exact solution, we consider a modified optimal control problem defined by the cost
functional (1.1) (with 8 = 1) and the constraint (1.2), but with y € 1 + H}(Q) and
u € Ly(9). The constraint function Y € C%(Q) N C(£) is given by

() if Jo—(-3.3)<3
V() + (Jz— (-3, 3) - 3)3 otherwise

Y(x) =

)

and the desired state yq € L2(Q) is given by

0 if |o—(-3,4)<t
ya(z) = o rEmme,
U(x) otherwise

This optimal control problem is equivalent to the following minimization problem:

. _ Tl 1
(6.1) Find = argmin |3y~ yallLio) + 5189000
Y&y

where Ky = {y € w—kE(Q;A) :y <YinQ}.
Clearly ¢ € Ky, and it is easy to check that it is the exact solution of (6.1). Indeed
the active set for § = 1 is the disc D = {z : |z — (—3, 3)| < 1} and we have a trivial

' 272
relation

(6.2) (AG, Az) + (¥ — ya, 2) = /D Yzdr Vze E(QA).
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It follows from (6.2) that § = 1 satisfies the variational inequality

(A@A(y—y))ﬂy—yd,y—y)=/Dw<y—z7)dsc=/Dw<y—Y>dxzo vy e Ky,

which characterizes the solution of (6.1).
Since § = ¢ € H%(2), we have jj, = 7 and 7 = 0 for this problem.
Note that (6.2) implies that the negative Borel measure p is given by

(6.3) 1= xp¥ dz,

where xp is the characteristic function for D.
Since the boundary condition is now nonhomogeneous, we modify the discrete
problem (3.6) by replacing ax(-,-) and Kj by an (-, ) and K} o respectively, where

82
app(w,v) = ap(w,v) Z / 3n1§ ds,

ect h

&} is the set of the edges of T, that are subsets of 92, n is the outward pointing unit
normal,

Ky ={(yrn,7) € (th/)—i—Vh) xR ypn(p)+7on(p) < Y(p) at all the vertices of T3},

and ¢, is the discrete singular function associated with the reentrant corner (cf.
Section 3.1). The error analysis in Section 4 and Section 5 can be extended to this
discretization of (6.1).

The numerical results for the quadratic (resp., cubic) method on uniform meshes
are reported in Table 6.5 (resp., Table 6.6). The order of convergence of g j, in the
energy norm is as predicted and 75, converges to 0.

|Yr — Ur,jlln  order |71

7.738 x 107! — 12925 x 1073
7187 x 1071 0.11 | 2.749 x 1073
6.600 x 10~1  0.12 | 2.430 x 1073
6.036 x 10~*  0.13 | 7.723 x 10~*
5.509 x 10~*  0.13 | 5.936 x 10~*
5.020 x 1071 0.13 | 5.262 x 10~*
4569 x 10~ 0.14 | 5.508 x 10~*
4156 x 10-1  0.14 | 5.468 x 10~*
3.776 x 1071 0.14 | 5.344 x 10~*

0 O Ui W N HF O

TABLE 6.5
Results for the quadratic method on uniform meshes for Example 6.2

The results for the quadratic and cubic C° interior penalty methods on graded
meshes are reported in Table 6.7 and Table 6.8, respectively. The grading parameter &
for the mesh around the reentrant corner is 0.1 (resp., 0.07) for the quadratic (resp.,
cubic) method so that the condition (5.2) (resp., (5.8)) is satisfied. We have also
tested the quadratic method on graded meshes with @ = 0.14. The performance of
the method is better when the smaller grading parameter & = 0.1 is used.

For the quadratic method the order of convergence for yg 5 is approaching 1 as
predicted by Theorem 5.4. For the cubic method the order of convergence for §g j is
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|Yr — Urjlln  order |71

6.553 x 1071 — | 2.857 x 1073
5.977 x 10~ 0.13 | 2.730 x 1073
5.458 x 1071 0.13 | 1.290 x 1073
4976 x 1071 0.13 | 7.653 x 104
4532 x 1071 0.13 | 5.984 x 1074
4123 x 1071 0.14 | 5.440 x 10~
3.749 x 1071 0.14 | 5.314 x 10~*
3.406 x 10~ 0.14 | 5.173 x 10~*

N O U W N R O

TABLE 6.6
Results for the cubic method on uniform meshes for Example 6.2

J | l9r —Yrjlln order | |7 —7;| =|7;| order | [|[yr — Yrjlle. ey order
0 7.738 x 1071 — 12925 x 1073 - - -
1| 7187 %107t  0.11 | 2.749 x 10~3 0.09 | — -
214120 1071 0.80 | 5.774 x 10~° 5.57 | 6.193 x 1076 -
312198x10"1 091 | 6.200x 107* —3.42 | 5.953 x 10~° —3.26
41 1.164x 107" 0.92 | 2.540 x 107* 1.29 | 2.721 x 107° 1.13
51 6.046 x 1072 0.94 | 7.339 x 10~° 1.79 | 8.280 x 106 1.72
6| 3.102x 1072 0.96 | 1.887 x 107° 1.96 | 2.162 x 106 1.94
711579%1072  0.97 | 9.707 x 1076 0.96 | 1.123 x 10~ 0.94
TABLE 6.7

Results for the quadratic method on graded meshes with & = 0.1 for Example 6.2

approaching 2, which is better than the one predicted by Theorem 5.7. This can be
explained as follows.

First we observe that § = ¢ € C°°(2) and hence we can take 6 = 1 in (5.6).
Secondly we can take 7 = 1 in (5.7) because Y — § is piecewise C*°, and we can
combine this observation with (6.3) to replace (5.21) by

L1 =9 =1y =)= [ wr(y ~ e < 01,

where we have used the fact that the restriction of I;,(Y — ) to D vanishes outside a
strip neighboring 02 whose width is &~ h. Putting these together we can replace § by
1 in Theorem 5.7.

Since T = 0, we can replace the estimate (5.24) by

1Tl < CllJr — IRl Lo (@)

and the higher order convergence of 7, for both quadratic and cubic methods can be
justified by the results for ||Jr — ¥r jll¢. (¢) in Table 6.7 and Table 6.8.

The discrete active sets generated by the quadratic C° interior method on uniform
and graded meshes are displayed in Figure 6.2. The one generated on graded meshes
is almost identical with the exact active set D.

7. Concluding Remarks. We have designed C? interior penalty methods for an
elliptic distributed optimal control problem with pointwise state constraint on general
polygonal domains. From our experience with this problem on convex polygonal
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J | 1yr —yrjlln  order | |7 —7;| =|7;| order | |gr — Ur,jlle..(¢) order
0| 6.553 x 1071 — | 2.857 x 1073 - - -
1|5977x107"  0.13 | 2.730 x 1073 0.07 | - -
2| 1.769 x 10~1 1.76 | 1.950 x 10~ 3.81 | 2.032 x 10~° -
3| 4.723 x 1072 1.91 | 1.377 x 10~° 3.82 | 1.477 x 10~ 3.78
411.282x1072 1.88 | 3.862 x 1077 5.16 | 4.403 x 108 5.07
513.379%x 1073  1.92 | 8.166 x 10~* 5.56 | 9.510 x 1010 5.53
TABLE 6.8

Results for the cubic method on graded meshes with & = 0.07 for Ezample 6.2

(a) (b)

F1G. 6.2. Discrete active sets for Example 6.2 computed by the quadratic method (6 levels of
refinement): (a) uniform mesh and (b) graded mesh

domains, we expect that the C° interior penalty methods can be replaced by any
convergent finite element method for the biharmonic equation with the boundary
conditions of simply supported plates. Therefore all such methods are relevant for
the optimal control problem studied in this paper.

We have only treated the Dirichlet boundary condition in the elliptic constraint,
but the results can be extended to other boundary conditions. They can also be
extended to problems with both upper and lower constraints.

We can take

J

up = —Apyn + Z Th,jPjn
=1

to be an approximation of the optimal control %, where Ay, is the piecewise defined
Laplace operator. It is trivial to show that |4 — tpl/1,(o) satisfies the same error
estimates in Theorems 4.5, 5.4 and 5.7. We can also use more sophisticated post-
processing techniques [25] to generate @, from gp,.

Note that the solution for the obstacle problem for simply supported plates be-
longs to H%(Q) N H(Q2) for any polygonal domain Q. Therefore we can solve this
problem using the approach in this paper by simply removing all the singular func-
tions. The theory developed in this paper can also be applied to this simpler problem.

Since the singularities (and hence the graded meshes) for three dimensional do-
mains are more complicated (cf. [34]), it would be useful to extend the results in [15]
for adaptive C? interior penalty methods for the obstacle problem of clamped Kirch-
hoff plates to the problem (1.4) on nonconvex domains. This will be investigated in
the future.
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