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We present a new approach for the approximation of solvent densities around solutes of arbitrary
shape. Our model represents a three-dimensional �3d� Born–Green–Yvon �BGY� equation for an
arbitrary solute immersed into a molecular �M� solvent, the BGY3dM model. It comprises the
famous Kirkwood approximation as closure relation. The molecules of the solvent are modeled as
rigid bodies by taking the limit of an infinite restoring force for the intramolecular interactions.
Furthermore, short-range potentials as well as the long-range Coulomb interaction are taken into
account. The resulting integro-differential equations are efficiently solved by a Picard iteration and
a solution of the linearized equations using Fourier transformations. We compare the results
obtained from the presented BGY3dM method with results obtained by extensive molecular
dynamics simulations for a HCl-like model solvent. Furthermore, we apply the method to carbon
disulfide as solvent. The overall performance of the method is promising. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2991296�

I. INTRODUCTION

The microscopic simulation of molecules such as pro-
teins in solution is a challenging task. An explicit simulation
of the entire solute-solvent system is often unfeasible due to
the high number of degrees of freedom needed to adequately
simulate the solvent effects.1 Therefore, implicit solvent
models have been developed which take the influence of the
solvent into consideration without explicitly introducing new
degrees of freedom to the system. Most of these implicit
solvent models approximate the solvent effects by a con-
tinuum model which clearly neglects important local proper-
ties of the solvent.2,3 Hence, the development of new implicit
solvent models which approximate the solvent effects more
accurately is a key topic of current research.

The simulation of a solute-solvent system can be for-
mally simplified by introducing the potential of mean force
�PMF�. However, the PMF can only be computed efficiently
if the mean solvent density around the solute is known.2

Promising developments for the fast approximation of the
mean solvent density were made by the application of the
liquid state integral equation theories. Several authors devel-
oped methods based on these theories which allow to com-
pute solvent densities around solutes of arbitrary shape for
simple monoatomic4,5 as well as for molecular solvents.6–14

It stands out that practically all such methods found in the
literature are based on the Ornstein–Zernike equation to-
gether with the so-called reference interaction site model15

�RISM� and mostly employ the hypernetted chain �HNC�
closure. However, these methods do not lead to a satisfactory
accuracy in all situations.6–14 Additionally, the computational
effort involved still makes a repeated evaluation during an
extensive solute-solvent simulation unfeasible.

To our knowledge, methods based directly on the Yvon–

Born–Green �YBG� hierarchy have never been considered
for the computation of solvent densities in solute-solvent
systems. Methods that are related to the computation of pair
distribution functions of pure molecular fluids were devel-
oped in the field of polymeric fluids only. To this end, Eu and
Gan,16 Taylor and Lipson,17 and Attard18 have derived equa-
tions based on the YBG hierarchy that have been quite suc-
cessfully applied to several polymer models.19–27 In these
models, a polymer chain consists of either hard or soft
spheres with rigid or flexible bonds. But neither chains with
different types of particles nor more complex interaction po-
tentials as, e.g., the Coulomb potential have been considered.

In this paper, we present a new approach derived directly
from the YBG hierarchy which employs the Kirkwood su-
perposition approximation.28 More specifically, it represents
a three-dimensional �3d� Born–Green–Yvon �BGY� equation
for an arbitrary solute immersed into a molecular �M� solvent
and is hence called the BGY3dM model. We will investigate
its properties and benefits for the computation of solvent
density distributions around a solute of arbitrary shape. With
our new model we are able to treat molecular solvents that
interact with the solute by any short-range potential and the
long-range Coulomb potential. The solvent molecules are
modeled as rigid bodies. A comparison between the
BGY3dM method and results obtained by extensive molecu-
lar dynamics �MD� simulations demonstrate the quite good
performance of the new method.

The remainder of this article is organized as follows:
First, we derive the BGY3dM model in Sec. II before we
present some computational details in Sec. III. Then, results
from the BGY3dM model are compared with results from
MD simulations for a HCl-like model solvent and the
method is applied to carbon disulfide as solvent in Sec. IV.
Finally, we give a short summary and outlook of the pre-
sented method in Sec. V.
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II. THE BGY3DM MODEL

In the following, we present our BGY3dM model for the
approximation of solvent densities around an arbitrary sol-
ute. To this end, we first derive the site-site BGY3dM �SS-
BGY3dM� equations for the computation of pair distribution
functions of the pure solvent, since these pair distribution
functions are needed as input for the BGY3dM equations,
which will be described afterwards. Both the SS-BGY3dM
and the BGY3dM models represent equations from two dis-
tinct YBG hierarchies, i.e., that for pure molecular fluids and
that for a solute immersed into a molecular fluid, respec-
tively. These hierarchies are obtained by integrating the cor-
responding Liouville equations similar to the monoatomic
case.29 The application of approximations for the distribution
functions then yields a closed set of equations, which can be
solved numerically.

A. The site-site BGY3dM equations

We begin our derivation with the BGY equation for a
simple mixture of s different particle species as it is known
from the literature.30 It reads as

�x1
�g��

�2��x1
�,x2

�� = �F���x1
�,x2

��g��
�2��x1

�,x2
��

+ ��
�=1

s

�̄��
�

F���x1
�,x3

��

�g���
�3� �x1

�,x2
�,x3

��dx3
� �1�

for any pair � ,�=1, . . . ,s. Here, g��
�2� and g���

�3� are the pair
and triplet distribution functions for particles of species �, �,
and �, respectively, F��=−�x1

�v�� denotes the force between
particles of species � and �, and �̄� is the number density of
particle species �. For clarity the position vectors have a
superscript also indicating their respective particle species,
e.g., x1

��R3.
We now consider molecular solvents. Therefore, we set

�̄Sª �̄1= �̄2= . . . = �̄s. Then, we build molecules which con-
tain exactly one particle from every not necessarily different
species. By this, we model a molecular fluid with number
density �̄S, where the molecules consist of s particles. When
we now derive the BGY equation for this molecular fluid, we
have to distinguish between intramolecular and intermolecu-
lar interactions. The intramolecular forces are indicated by
the superscript i, i.e., we write F��

i and v��
i for the forces and

the pair potential, respectively. Similar to the forces, we now
have different types of distribution functions, which depend
on how many of the particles belong to the same molecule.
We indicate this dependency by the indices of the corre-
sponding position vectors, i.e., x j

� denotes the position of
particle � of molecule j. Hence, g��

�2��x1
� ,x1

�� denotes the in-
tramolecular pair distribution function between particle �
and � of the same molecule whereas g��

�2��x1
� ,x2

�� denotes the
intermolecular pair distribution function between particles �
and � of different molecules. In this notation we can write
the BGY equation for the intermolecular pair distribution
functions �n=2� of a molecular fluid as
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and the BGY equation for the intramolecular pair distribution
functions as
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As for a simple mixture, the equations are obtained by inte-
grating the Liouville equation over N−2 particles, i.e., we
choose the second equation of the YBG hierarchy for mo-
lecular fluids. To this end, one has to take into account that
particles can now belong to different molecules. This addi-
tional distinguishability results in the last two lines of Eq. �2�
and the last line of Eq. �3� which represent the intramolecular
coupling within the molecules. The first lines are identical to
those of a simple mixture as in Eq. �1�. Recall that all par-
ticle species in the molecular fluid have the same number
density �̄S.

In order to facilitate the numerical solution of the final
equations, the molecules are modeled as rigid bodies. To this
end, we introduce a harmonic potential as intramolecular in-
teraction

vi�x1
�,x1

�;�� = ��r1
�� − r0

���2, ∀ � � � , �4�

with r1
��= �x1

�−x1
��. Here, r0

�� denotes the desired intramo-
lecular distance between particles of species � and �. The
constant � defines the strength of the potential. The
s�s−1� /2 different distances r0

�� completely specify the con-
figuration of the molecule. The potential �4� does not yet lead
to fixed distances within the molecule, but allows fluctua-
tions around the desired distances r0

��. Hence, we investigate
the limit case where the constant � goes to infinity, i.e., we
consider lim�→	vi�x1

� ,x1
� ;��. Here, � determines the strength

of the force that constrains two particles to their desired dis-
tance. We examine Eq. �3�, which determines the intramo-
lecular pair distribution functions, and assume that, in this
limit, the solution of Eq. �3� is strongly dominated by the
first term of the right-hand side, and that all integral terms
can be neglected, i.e., for �→	 we have
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�x1
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�2��x1
�,x1

�;�� = �F��
i �x1
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�;��g��

�2��x1
�,x1

�;�� . �5�

The dependence on � is explicitly written in the arguments in
order to distinguish between g��

�2��x1
� ,x1

� ;�� and the limit ver-
sion of g��

�2��x1
� ,x1

�� which will not depend on this parameter.
The solution of Eq. �5� is

g��
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�;�� =�4��
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4
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�,x1
�;���

=�4��




1

4
�r0
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�� − r0
���2� .

�6�

The factor ��4�� /
��1 /4
�r0
���2� is chosen such that the

intramolecular pair distribution function obeys the correct
normalization condition

lim
�→	

�
�

g��
�2��r1

��;��dr1
�� = 1, �7�

with r1
��=x1

�−x1
�. With this choice, we find for the convolu-

tion with an arbitrary function f
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4
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= �
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���
4
�r0
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��. �8�

Equation �8� represents the definition of the delta distribution
as the limit of a Dirac sequence. The result is intuitive, since
the two particles x1

� and x1
� have to remain exactly at a dis-

tance of r0
�� if the restoring force is infinite. The factor

4
�r0
���2 represents the surface of the sphere with radius r0

��

and ensures the correct normalization. Consequently, we
know all intramolecular pair distribution functions and set

g��
�2��x1

�,x1
�� =

��r1
�� − r0

���
4
�r0

���2 , ∀ � � � . �9�

Now, to solve Eq. �2� for the intermolecular pair distribution
functions, a closure relation is needed. For this, we approxi-
mate the triplet distribution functions by products of func-
tions that depend only on two of the three particle coordi-
nates. In the case where all three particles belong to different
molecules we insert the famous Kirkwood approximation28
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�� . �10�

In the case where two of the particles belong to the same
molecule, the Kirkwood approximation is not satisfactory.18

Hence, we employ the so-called normalized site-site super-
position approximation �NSSA� of Taylor and Lipson17

g���
�3� �x1
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with
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Applying the Kirkwood approximation and the NSSA ap-
proximation for the intermolecular and intramolecular terms
of Eq. �2� finally gives
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In the last line of Eq. �14� we can now substitute the intramolecular pair distribution function according to Eq. �9�. The term
which includes the intramolecular force F��

i , however, requires a more detailed examination of the limit �→	. If we insert the
definition of the intramolecular potential �4� and the intramolecular pair distribution from Eq. �6�, we have
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In the last line of Eq. �15� we approximated g��
�2� in the definition of n��

� by its normalized form g̃��;�
�2� , such that we can write

the fraction as the gradient of a logarithm.
A further simplification of Eq. �14� is possible by introducing a product ansatz for the solution

g��
�2��x1

�,x2
�� = g��

0 �x1
�,x2

��exp�− u��
�2��x1

�,x2
��� , �16�

with

g��
0 �x1

�,x2
�� = exp�− �v���x1

� − x2
��� , �17�

where v���x1
�−x2

�� denotes the potential between sites � and � of molecules one and two, respectively. Here, u��
�2� is the new

unknown function. This approach together with the application of the divergence to both sides of the equation leads after some
calculation to the following equation for the intermolecular site-site pair distribution function:
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. �18�

Here, we introduced the notation

���x1
�,x1

�� ª g��
�2��x1

�,x1
�� =

��r1
�� − r0

���
4
�r0

���2 �19�

for the intramolecular pair distribution functions. Note that
we switch here to the  notation to agree with the literature.
The dot �·� in the right hand side of Eq. �18� indicates the
scalar product of two vectors in R3. We call Eq. �18� for any

pair �, �=1, . . . ,s with ��� the site-site BGY3dM �SS-
BGY3dM� equations.

B. The BGY3dM equations

Next, we consider a single solute molecule immersed
into the solvent. We wish to compute the mean density of the
solvent around a fixed configuration of the solute. If we as-
sume that the solute is described by NM particles with fixed
configuration xM

ª �x1
M , . . . ,xNM

M � the mean solvent density
��

S of particle type � can be expressed by a conditional
�NM +1�-particle distribution
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��
S�x1

�� ª �̄Sg�
�NM+1��x1

��xM� = �̄S

g�
�NM+1��x1

�,xM�
g�NM��xM�

. �20�

In analogy to the BGY equation for the site-site pair distri-
bution functions of a molecular fluid we can derive the BGY
equation for the �NM +1�-particle distribution function where
NM particles belong to the solute,

�x1
�g�

�NM+1��x1
�,xM�

= �F��x1
�,xM�g�
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+ � �
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��g��

�NM+2��x1
�,x1

�,xM�dx1
�.

�21�

To this end, F��x1
� ,xM� is the total force exerted on the sol-

vent particle x1
� due to the solute. Next, we employ the so-

called n-level Kirkwood closure relations31 and approximate
the intermolecular and intramolecular �NM +2�-particle dis-
tribution functions by

g��
�NM+2��x1

�,x2
�,xM�

	
g�
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�,x2
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�22�
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�,xM����x1
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��g̃�;�
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,
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�,xM� ª
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�,xM�

n�
��x1

�,xM�
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�23�

g̃�;�
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and
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���x1
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�24�

n�
��x1

�� ª �
�

���x1
�,x1

��g�
�NM+1��x1

��xM�dx1
�.

For the approximation of the intramolecular distribution
function we additionally simplified the NSSA approximation
�22� of Taylor and Lipson17 by replacing g�

�NM+1� by its nor-
malized form g̃�;�

�NM+1� in Eq. �24�. Now, we can insert the
above approximations into Eq. �21� and consider the model-
ing of the rigid bonds of the molecules in the same way as
for the SS-BGY3dM equations. Then, we divide the whole
equation by g�NM��xM� and employ the product approach,

g��x1
�� ª g�

�NM+1��x1
��xM� = g�

0�x1
�;xM�exp�− u��x1

��� ,

�25�

with

g�
0�x1

�;xM� = exp�− �v��x1
� − xM�� , �26�

where v��x1
�−xM� describes the total potential between sol-

vent particle � and the solute. Finally, we apply the diver-
gence and obtain the equation

�x1
�u��x1

�� = − ��
�=1

s

�̄S�x1
�

· �
�

F���x1
�,x2

��g��
�2��x1

�,x2
��g��x2

��dx2
�

− �
�=1,���

s

�x1
� ln
�

�

g̃�;��x1
�����x1

�,x1
��dx1

��
for the mean solvent density

��
S�x1

�� = �̄Sg��x1
�� = �̄Sg�

0�x1
��exp�− u��x1

��� �27�

of solvent site �=1, . . . ,s. We coin these equations the
BGY3dM equations. They require the site-site pair distribu-
tion functions g��

�2� as input, which can be computed by the
SS-BGY3dM equations beforehand. The intramolecular dis-
tribution functions �� are given by relation �19�.

III. COMPUTATIONAL DETAILS

To solve the SS-BGY3dM and BGY3dM Eqs. ��18� and
�27�� all functions are approximated on a regular grid with
mesh size h=L /m, where L is the length of the domain �
= �0,L�3 in one direction and m is the number of grid points
in one direction. Although the site-site pair distribution func-
tions are radial symmetric, the SS-BGY3dM equations are
solved with full 3d resolution and the computed pair distri-
bution functions are used as input for the BGY3dM equa-
tions. The nonlinear integro-differential Eqs. ��18� and �27��
are solved by a standard Picard iteration with simple mixing,
i.e., with an additional damping. In every step of the iteration
a Poisson problem with Dirichlet boundary conditions
u������=0 and u�����=0, � ,�=1, . . . ,s has to be solved.
Since we compute the right hand sides of Eqs. �18� and �27�
by means of Fourier transformations, the solution of the
Poisson problem is computed by a diagonal scaling in Fou-
rier space. The convolution integrals are solved by the con-
volution theorem, i.e.,

f � g = F3
−1�F3�f�F3�g�� , �28�

where ��� denotes the convolution and the 3d Fourier trans-
formation is defined as

ĝ�k� ª F3�g��k� = �
R3

g�x�exp�− 2
�k · x�dx , �29�
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F3
−1�ĝ��x� = �

R3
ĝ�k�exp�2
�k · x�dk . �30�

We employ the parallel FFT algorithm of the FFTW.32 For
simplicity, all appearing differential operators are applied in
Fourier space. The Fourier transform of the intramolecular
distribution functions �� is analytically known,

F3���r12 − r0
�����k� =

2

�k�
sin�2
�k�r0

���r0
��, �31�

and has not to be computed. For numerical stability, the di-
visions by the normalization functions have to be regular-
ized. Hence, we replace the exact divisions by

��F���r − r��g̃��;�
�2� �r − r�����r��dr�

max�n��
� �r�,��

, ∀ r � � �32�

and

g��x�
max�n�

��x�,�g�
, ∀ x � � , �33�

with the regularization parameters �=10−1 and �g=10−2, re-
spectively.

A. The Coulomb potential

The application of the discrete Fourier transform re-
quires periodicity of the involved functions with respect to
the computational domain �. Assuming that the functions
are of short range, i.e., they decay faster to zero than 1 /r3

with the distance r in 3d space, we can simply choose the
domain large enough, so that all functions are sufficiently
small at the boundaries. The effect of the periodicity can then
be eliminated by zero padding. Hence, the convolution inte-
grals can be computed by discrete Fourier transforms for all
short-range potentials as, e.g., the Lennard–Jones potential.
However, if the Coulomb potential 1 / �r� is involved, which
is not of short range, we cannot directly apply the discrete
Fourier transform, since the force does not vanish at the
boundaries and is not periodic with respect to the domain.
Nevertheless, the convolution integrals can be computed by
means of discrete Fourier transforms as follows: We consider
the �notationally simplified� convolution integral

�
�

F�r� − r�g��r� − r�g��r��dr�, �34�

with the total force F=FLJ+FC consisting of Lennard–Jones
and Coulomb parts. We split the Coulomb force into short-
range and long-range parts, such that the long-range part is
smooth and therefore has fast decaying Fourier components.
This is achieved by adding and subtracting a smooth charge
distribution around the point charge at r=0. As in the
particle-mesh-Ewald method33 the charge distribution is cho-
sen to be a Gaussian

��r� = 
 G
�


�3

exp�− G2�r�2� , �35�

with a parameter G that determines the width of the function.
The Coulomb potential �and its force� between two particles

is divided by means of this shielding function into the fol-
lowing parts:

vC�r� = vCs�r� + vCl�r� = q��s�r� + q��l�r� ,

�36�
FC�r� = FCs�r� + FCl�r� = − �vCs�r� − �vCl�r� ,

with �s and �l the solutions of the Poisson equations

− ��s =
1

�0
q���3 − �� in R3,

�37�

− ��l =
1

�0
q�� in R3,

where q� and q� denote the charges of the two particles and
�0 is the dielectric constant. For the special choice of the
function � as in Eq. �35�, the solution can be given analyti-
cally. We have

vCs�r� =
1

4
�0
q�q�

erfc�G�r��
�r�

,

�38�

vCl�r� =
1

4
�0
q�q�

erf�G�r��
�r�

,

with erf the error function and erfc=1−erf the complemen-
tary error function. The complementary error function decays
rapidly, whereas the error function decays as slowly as 1 / �r�
and is smooth even at �r�=0.

We now want to use these properties and transform the
integral �34� to make it efficiently computable. The total
force F consists of a Lennard–Jones part FLJ and a Coulomb
part FC which can be split as discussed above. Hence, we
transform the convolution integral �34� according to

�
�

F�r� − r�g��r� − r�g��r��dr�

= �
�

�F�r� − r�g��r� − r� − FCl�r� − r��g��r��dr�

+ �
�

FCl�r� − r�g��r��dr�. �39�

The first term can be treated as before, since the part in outer
brackets is of short range. The second integral can be written
as

�
�

FCl�r� − r�g��r��dr� = − �r�
�

vCl�r� − r�g��r��dr�,

�40�

where we used again the fact that the derivative of a convo-
lution can be shifted to its arguments. Now, we can take
advantage of the rapid decay of the Fourier components of
vCl. The Fourier transformation can even be given analyti-
cally as

174511-6 M. Griebel and L. Jager J. Chem. Phys. 129, 174511 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



F3�vCl��k� =
q�q�

�0
exp
−


2

G2 �k�2� . �41�

Hence, this integral can be computed easily by multiplying
the Fourier components of vCl and g� and a subsequent in-
verse Fourier transformation of the result. The operator �r in
front of the integral is eliminated in Fourier space by the
inverse operator of the left-hand side of the SS-BGY3dM or
BGY3dM equations.

Now, the convolution integrals with the long-range Cou-
lomb force can efficiently be computed. But still, the as-
sumption of periodicity of the involved functions introduces
an error at the boundaries. Since we know that the distribu-
tion functions have to be of short range,34 it follows that we
have g�

S����	0 for a domain �, which is large enough.
Hence, we employ the boundary conditions g�

S����=0 and
thereby u�����=v�

Cl����. Here, we restrict our discussion to
the BGY3dM equations since the exact same considerations
also hold for the SS-BGY3dM equations. To enforce these
boundary conditions and to remove the errors due to the
periodic boundary conditions, we can compute this error as
the solution of

�u
�
* = 0 in � , �42�

with

u
�
*���� = u����� − v�

Cl���� ,

where u����� are the boundary values of the previously
computed solution of the BGY3dM equations for particle
type �. Subtraction of the solution u

�
* from u� leads exactly

to the solution of the BGY3dM equation with the desired
Dirichlet boundary condition ū�����=v�

Cl���� where ū�

=u�−u
�
*.

The solution of Eq. �42� is computed by a simple finite-
difference scheme with a seven-point stencil. The resulting
systems of equations can be solved by any iterative method.
For convenience we choose the GMRES method with block
Jacobi preconditioning as it is implemented in PETSc.35–37

The computational effort necessary to solve this problem is
very small compared to the costs for solving the BGY3dM
equations, since the repeated solution of Eq. �42� becomes
very efficient at later steps of the Picard iteration. Then, sub-
sequent iterates u�

l , with l denoting the iteration number, only
differ a little at the boundaries and we have u

�
*l	u

�
*l−1

.
Therefore, only few GMRES iterations are sufficient to com-
pute the solution u

�
*l

up to a prescribed accuracy.

IV. RESULTS

To validate the BGY3dM method for the computation of
solvent densities around arbitrary solutes, we compare re-
sults computed by the BGY3dM method with results ob-
tained from MD simulations. For this, we employ the HCl-
like models of Hirata et al.38 as solvent. They are two site
models where the intermolecular interaction is described by
a combination of Lennard–Jones and Coulomb forces.
Hence, the total potential between two particles of species �
and � with �, �=H, Cl can be written as

v��
I �r� = v��

LJ �r� + v��
C �r�

= 4���

���

r
�12

− 
���

r
�6� + �C

q�q�

r
, �43�

with r= �x�−x��. The specific parameters for the HCl-like
models can be found in Table I. The two models only differ
in the value of �H, i.e., for the first model �HCl1� it is �H

1

=2.735 Å and both particles have large Lennard–Jones
spheres, whereas in the second model �HCl2� we have �H

2

=0.4 Å and the Lennard–Jones sphere of the hydrogen is
completely embedded inside that of the chloride atom.

The parameters for the Lennard–Jones potential are
computed according to the Lorentz–Berthelot mixing rules

��� = �����, ��� = 0.5��� + ���, �,� = H,Cl. �44�

The constant intramolecular distance between hydrogen and
chloride atoms of the same molecule is set to r0

HCl

=1.257 Å. The molecular number density is chosen as �̄S

=0.0018 Å−3 with �= �−10 Å,10 Å�3 and the temperature as
T=420 K ��=1.1989�. With this choice of unit system we
additionally have �C	331.84 �kcal Å� / �mol e2�. We use m
=256 and m=128 grid points in one direction for the solution
of the SS-BGY3dM and the BGY3dM equations, respec-
tively. The iteration of the �SS-�BGY3dM equations is
stopped if the L	 norm of the difference of subsequent iter-
ates is less than 10−2. Note that this value for the stopping
criterion is sufficient, because the model error of the
�SS-�BGY3dM equations is larger anyway as we will see in
the following section.

A. Site-site pair distribution functions

Now, we first compute the site-site pair distribution func-
tions by means of the SS-BGY3dM Eqs. �18� and compare
them to the pair distribution functions computed by a MD
simulation of the pure solvent, see, e.g., Ref. 39 for details
concerning the computation of pair distribution functions by
MD. The results are shown in Figs. 1 and 2.

Note that the SS-BGY3dM equations are solved in three
dimensions, but Figs. 1 and 2 only show the radial compo-
nent of the computed site-site pair distribution functions. We
compute three error values to quantitatively compare the
results,

TABLE I. Parameter values for the HCl-like model solvents from Hirata
et al. �Ref. 38�.

mCl=35.453u mH=1.008u
qCl=−0.2e qH=0.2e
�Cl=0.5143 kcal /mol �H=0.0397 kcal /mol
�Cl=3.353 Å �H

1 =2.735 Å, �H
2 =0.4 Å
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eL2
h ª

1

m3
�
i

��gh�i − �gh
MD�i�2�1/2

,

eL
	
h ª max

i
��gh�i − �gh

MD�i� , �45�

emax ª �max
i

�gh�i − max
i

�gh
MD�i� ,

where �gh�i denotes the respective solution of the SS-
BGY3dM equations at grid point i, i� �0,m−1�3, and �gh

MD�i
is the distribution function at grid point i computed with MD.

To this end, the MD results of the pair distribution functions
are interpolated on the 3d grid to compute the above errors.
The values for the HCl-like model solvents can be found in
Table II.

The apparent differences between the SS-BGY3dM and
MD results in Figs. 1 and 2 are typical for any method em-
ploying the Kirkwood approximation. That is, the exact po-
sition and the height of the first peak do not exactly match
those of the MD results except for the H–H distribution of
HCl1. The frequency of the subsequent oscillation is too low.
These errors are known to be a consequence of the two-
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FIG. 1. Radial component of the site-site pair distribution functions for the
HCl-like model �HCl1�. Comparison between SS-BGY3dM and MD results.
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FIG. 2. Radial component of the site-site pair distribution functions for the
HCl-like model �HCl2�. Comparison between SS-BGY3dM and MD results.
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particle superposition approximation, see e.g., Ref. 40. A
comparison of the error values for the different site-site dis-
tribution functions of HCl1 reveals that their magnitude dif-
fers significantly. The L2 and L	 errors of the Cl–Cl distri-
bution function are about 3.5 times larger than the H–Cl
errors. Hence, the quality of the approximation depends on
the different potential parameters of the respective particle
species. In this special example, the Cl atoms have a much
stronger Lennard–Jones interaction, which obviously influ-
ences the quality of the solution in a negative sense. The
comparison with the results for HCl2 uncovers another dif-
ficulty. All errors are increased for this model, which is due
to the decreased value of �H considered for HCl2. This leads
to a small Lennard–Jones sphere of the hydrogen atom which
is completely embedded inside that of the chloride atom and
results in a worse approximation of the SS-BGY3dM equa-
tions. Especially the H–H and H–Cl distribution functions of
model 2 show major deficiencies in the prediction of the
position of the first flank of the function.

Similar problems have been observed for the solution of
the extended RISM equations of Hirata and Rossky.38 For the
H–Cl and Cl–Cl distribution functions of both HCl-like mod-
els the results of our SS-BGY3dM and the extended RISM
model of Hirata and Rossky are very similar, although we
have used a slightly increased temperature. The accuracy of
the computed H–H distribution function is improved by the
SS-BGY3dM model. In this case the SS-BGY3dM method
predicts the correct height of the first peak for both the HCL1
and the HCL2 models and leads to an excellent overall ac-
curacy for the HCL1 model.

We can conclude that the exact characteristics of all the
site-site distribution functions are very difficult to approxi-
mate, as long as the approximations only comprise pair dis-
tribution functions. Obviously, the approximation of the SS-
BGY3dM equations perform better for more similar particle
species. However, note that the overall approximation of the
presented method is still reasonable. All important features
of the distribution functions of the HCl-like model solvent
are reproduced. The general form and especially the model-
ing of the intramolecular bonds within the SS-BGY3dM
equations is verified by the results and of the same quality as
the results obtained by the extended RISM method.

B. Site density distributions

Next, we test the BGY3dM model with respect to the
computation of solvent densities around a solute molecule.

For this, we again employ the HCl-like model �HCl1� of
Hirata et al.38 already described above. First, a single HCl
molecule is considered as the solute. It is placed symmetri-
cally along the x1 axis at the center of the simulation box.
The site-site pair distribution functions of the pure solvent,
which are required as input for the BGY3dM equations, are
computed by the SS-BGY3dM model. All simulation param-
eters are chosen as described above. During the MD simula-
tions the current site densities are interpolated on a 3d grid
and averaged over all time steps to obtain the mean site
density distributions. For this, a total of 3.2�108 MD time
steps were necessary to reach a satisfactory level of conver-
gence.

The computed site densities and their deviation are de-
picted in Fig. 3. The computed error quantities can be found
in Table III. The MD results still show distinct fluctuations,
but all features of the distribution functions have clearly de-
veloped. A comparison of the results of the BGY3dM model
and MD shows a satisfying agreement. The low L2 errors
indicate a good overall approximation. The first peak and the
subsequent oscillation pattern are reproduced with a suffi-
cient accuracy considering the approximations involved in
the model. The main difference can be observed at the loca-
tion of the first peak of the distributions. All other errors are
not resolved in the plots due to the fluctuations of the MD
results. The L	 error is about 0.4 and 1.2 for the hydrogen
and the chloride distributions, respectively, and is also lo-
cated at the main peaks. The error of the chloride distribution
function is considerably larger, as it was also the case for the
Cl–Cl pair distribution functions, see the discussion above.
Recall that the site-site pair distribution functions are re-
quired as input of the BGY3dM model. They are computed
with the approximate SS-BGY3dM model. Hence, the ap-
proximation error enters twice: directly via the approxima-
tion involved in the BGY3dM model and by the use of the
approximated site-site pair distribution functions computed
with the SS-BGY3dM model.

Finally, we compare the site distribution functions of the
HCl-like model solvent around a single hexane molecule
�CH3�CH2�4CH3� as solute. The potential parameters for
hexane are taken from the general-purpose force field
OPLS.41 The computed site densities and the difference be-
tween the BGY3dM and MD results are shown in Fig. 4. The
computed error quantities can be found in Table III.

As for the HCl molecule as solute the overall agreement
between the BGY3dM and MD results is good. The com-

TABLE II. Comparison of SS-BGY3dM with MD results for the site-site pair distribution functions of the
HCl-like models.

MD
max g

SS-BGY3dM

max g eL2
h eL

	
h emax

H–H �HCl1� 1.32 1.32 3.549−6 6.223−2 0.00
H–Cl �HCl1� 1.29 1.37 4.385−6 8.698−2 0.08
Cl–Cl �HCl1� 1.99 1.93 1.491−5 3.194−1 0.06
H–H �HCl2� 1.14 1.13 6.893−6 2.692−1 0.00
H–Cl �HCl2� 1.17 1.18 7.516−6 3.000−1 0.01
Cl–Cl �HCl2� 2.07 2.48 2.896−5 5.756−1 0.41
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puted error values are similar to those for HCl as solute. But
again, the magnitude of the maxima in the first shell of the
approximated hydrogen and chloride distributions around the
solute are considerably small. Moreover, the predicted mag-
nitude of the oscillation pattern which follows the main peak
is also small compared to the MD results. Nevertheless, the
positions of the maxima of the first shell and the form of the

subsequent oscillation pattern is reproduced well. We can
conclude that the accuracy of the computed site distribution
functions is nearly independent of the size and form of the
considered solute as long as the interactions between solute
and solvent are similar in strength. The atoms of the consid-
ered HCl and hexane models do not carry large partial
charges directly exposed to the solvent. Hence, the approxi-
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FIG. 3. �Color� Hydrogen ��a�, �c�,
and �e�� and chloride ��b�, �d�, and �f��
distribution around a single HCl mol-
ecule at the x3=0 plane computed with
BGY3dM ��a� and �b��, MD ��c� and
�d��, and the difference between
BGY3dM and MD results ��e� and
�f��.

TABLE III. Comparison of BGY3dM with MD results for the site density distributions of the HCl-like solvent
around a single HCl and a hexane molecule as solute.

MD
max g

BGY3dM

max g eL2
h eL

	
h emax

H �solute: HCl� 1.96 1.56 3.594−5 4.134−1 0.39
Cl �solute: HCl� 3.39 2.38 9.671−5 1.215+0 1.00
H �solute: hexane� 2.42 1.92 4.802−5 5.525−1 0.50
Cl �solute: hexane� 4.49 3.96 9.880−5 1.299+0 0.52
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mation of the BGY3dM model yields similar results in both
cases. This property is important to predict the error of a
computed site density without actually comparing it to MD
results.

C. Examples

We have seen that the BGY3dM model leads to a satis-
fying agreement between the computed site densities and the
results of a MD simulation. Now, we present results obtained
by the BGY3dM model for a more realistic fluid. For this,
we consider carbon disulfide �CS2� as solvent. Carbon disul-
fide is a colorless liquid which is mainly used to dissolve
fats, rubber, resins and waxes, among other applications, see
e.g., Ref. 42. The CS2 molecule is linear and has no dipole
moment. It is a nonpolar solvent. For our numerical compu-
tations we employ the model of Zhu et al.43 As before, the

functional form of the interaction potential is given as a sum
of Lennard–Jones and Coulomb terms, see Eq. �43� with �,
�=C,S in this case.

Contrary to the HCl-like model solvent, the carbon di-
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FIG. 5. The site-site pair distribution functions of carbon disulfide computed
by MD.
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[Å

]

0

1

2

3

4

c)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x1 [Å ]
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FIG. 4. �Color� Hydrogen ��a�, �c�,
and �e�� and chloride ��b�, �d�, and �f��
distributions around a hexane mol-
ecule at the x3=0 plane computed with
BGY3dM ��a� and �b��, MD ��c� and
�d��, and the difference between
BGY3dM and MD results ��e� and
�f��.
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sulfide model is a three-site model. Since the two sulfur at-
oms of CS2 are identical, we again have to compute three
different site-site pair distribution functions and two different
site distributions. The pair distribution functions are com-
puted by a MD simulation of 80 CS2 molecules at a number
density of �=0.01 Å−3 and a temperature of T=360 K. The
resulting C–C, C–S and S–S pair distributions are depicted in
Fig. 5. They are used as input for the BGY3dM equations.

As a first example we compute the site distribution func-
tions of carbon disulfide around a single CS2 molecule as
solute. The computational domain is set to �
= �−14 Å,14 Å�3. Figure 6 shows the site distributions at the
x3=0 plane. The carbon distribution exhibits a broad maxi-
mum around the entire solute molecule. This maximum re-
sults from a superposition of the van der Waals attraction
modeled by the Lennard–Jones potential between the carbon
atoms and the solute, and from the Coulomb attraction be-
tween the solvent carbon and the solute sulfur atoms. The
solvent sulfur distribution shows a sharp peak around the
solute carbon particle due to the strong Coulomb interaction
between them. This can also be observed in Fig. 7, where the
charge distribution is plotted. The charge distribution gcharge

of carbon disulfide can be computed from the site distribu-
tion functions gC and gS by

gcharge = qCgC + 2qSgS, �46�

with q� the charge of site �=C,S. As can be expected, a
closed band of high sulfur density evolves around the solute
carbon whereas the solvent carbon is more likely to be found
next to the solute sulfur atoms.

Next, we consider methanol as solute in carbon disulfide
as solvent. Methanol is the simplest alcohol and has the
chemical formula CH3OH. It is a colorless, highly flam-
mable liquid used as a petrol additive, solvent, or as

antifreeze.44 Due to the alcohol specific OH group, methanol
is a polar molecule. The oxygen and hydrogen atoms carry
strong opposed charges. We again employ the OPLS force
field41 for the parameter set of methanol. To this end, the
hydrogen particle of the OH group is modeled as a charge
carrying site without Lennard–Jones interaction. However,
for the numerical stability of the BGY3dM equations a hard
core potential is required at the position of any atom. Hence,
we introduce Lennard–Jones parameters for the oxygen
bonded hydrogen and choose �H=3.4 Å and �H

=0.03 kcal /mol. The high value of �H includes an empirical
correction and ensures a stable convergence of the BGY3dM
equations. We observed that the carbon density of the CS2

solvent is overestimated in the neighborhood of strong posi-
tively charged particles as the hydrogen atom. This is partly
due to a lack of an intramolecular coupling in the BGY3dM
model where the two sulfur sites are incorporated without
considering their relative position to the carbon site. This is a
three-body effect that is neglected by the n-level Kirkwood
approximation. Taking the three-body effect into account
would lower the carbon density next to the hydrogen atom,
because sulfur has a low density in the vicinity of positive
charges. In order to compensate for this missing three-body
effect, we choose the high value of �H=3.4 Å as an empiri-
cal correction.

Figure 8 shows the carbon and sulfur distributions
around methanol at the x3=0 plane. Here, the methanol mol-
ecule is depicted 2 Å above the plane for visualization pur-
poses. It is obvious that the strong Coulomb interaction
strongly influences the behavior of the distribution functions.
The negatively charged solvent carbons are more likely to be
found in the vicinity of the positive solute hydrogens,
whereas the solvent sulfur atoms are dominantly attracted by
the negative oxygen site. The plots of the charge distribu-

a) b)

FIG. 6. �Color� Distribution functions
of carbon disulfide around a CS2 mol-
ecule at the x3=0 plane. Carbon distri-
bution �a� and sulfur distribution �b�.

a) b)

FIG. 7. �Color� Charge distribution of
carbon disulfide around a CS2 mol-
ecule. Cut at the x3=0 plane �a� and
isosurface plot �b�.
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tions in Fig. 9 also uncover the negatively charged cloud
behind the strong positive sulfur peak next to the solute oxy-
gen atom. This charge minimum forms partly due to the in-
tramolecular bond between carbon and sulfur, but also due to
the intermolecular attraction of the different solvent sites.
The whole picture reveals the well-known fact that charges
tend to neutralize each other. Hence, the net forces on a
particle in a fluid at equilibrium are exerted only by nearby
particles although the long-range Coulomb potential is
involved.

V. CONCLUSIONS

We have presented the BGY3dM model for the approxi-
mation of solvent densities around solutes of arbitrary shape.
The model is directly derived from the YBG hierarchy and
comprises the Kirkwood superposition approximation as clo-
sure relation for the intermolecular interactions. The intramo-
lecular terms were derived to model rigid bonds by taking
the limit of an infinite restoring force between two bonded
particles. This way, the solvent molecules are represented as
rigid bodies. Since the Kirkwood approximation is not ap-
propriate for terms including intramolecular interactions, we
employ a slightly simplified version of the NSSA of Taylor
and Lipson17 for these terms.

Beside the short-range Lennard–Jones potential, we also
considered the long-range Coulomb interaction. For this, we
introduced a splitting of the Coulomb potential into a singu-
lar short-range part and a smooth long-range part. The short-
range part is processed in exactly the same way as the
Lennard–Jones potential. The long-range part has fast decay-
ing analytic Fourier components which are therefore directly
dealt with in Fourier space. Nevertheless, the inverse Fourier
transform of this long-range part leads to undesirable bound-

ary conditions that have to be corrected. The correction com-
prises the solution of an additional Laplace problem which
can efficiently be solved by a finite-difference scheme with
an iterative GMRES solver. Finally, we also derived the
SS-BGY3dM equations to compute the site-site pair distri-
bution functions of the pure solvent which are required as
input of the BGY3dM model.

Since both the YBG hierarchy and the Ornstein–Zernike
equation are exact, the difference between our
�SS-�BGY3dM and the RISM models originates in the dif-
ferent numerical methods to solve the equations and, more
importantly, in the application of different approximations to
close the equations. A comparison between both methods
which employ the Kirkwood and the HNC closure, respec-
tively, revealed that the accuracy of the results is nearly iden-
tical for the considered model solvent. However, since RISM
based methods for the computation of solvent densities have
been developed for about 25 years one cannot expect that the
�SS-�BGY3dM method is of comparable quality for realistic
solvents, yet. Nevertheless, it enables the use of different
approximations and empirical corrections that could prove
advantageous in the future.

A comparison of the results computed by the
�SS-�BGY3dM model and by MD revealed a good overall
performance of our method. All important characteristics of
the site-site pair distribution functions and the site density
distributions are reproduced. Hence, the general form of the
�SS-�BGY3dM model including the modeling of the in-
tramolecular bonds is consistent with the results. Neverthe-
less, the involved approximations have to be further modified
to reach an improved level of accuracy at realistic tempera-
tures and for stronger interactions. A promising approach
would be the introduction of an empirical correction specific

a) b)

FIG. 8. �Color� Distribution functions
of carbon disulfide around a methanol
molecule at the x3=0 plane. Carbon
distribution �a� and sulfur distribution
�b�.

a) b)

FIG. 9. �Color� Charge distribution of
carbon disulfide around a methanol
molecule. Cut at the x3=0 plane �a�
and isosurface plot �b�.
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for a certain solvent. This would be similar to the empirical
bridge functions as they are employed by Du et al.14 and
Kovalenko and Hirata10 for water as solvent. A better accu-
racy could also be gained by employing the optimal super-
position approximation of the intramolecular terms as it has
been derived by Attard.18 This, however, requires an iterative
solution of an additional system of equations for the func-
tions to be superposed and would therefore increase the com-
putational costs.

We conclude that our results are promising. The
BGY3dM model is able to reproduce the important features
of the site density distributions around an arbitrary solute.
All solvent effects and thermodynamic properties of the
solute-solvent system can then be computed from the site
density distributions by thermodynamic integration as de-
scribed by Du et al.14 To consider more realistic solvents,
such as water, empirical corrections of the approximations
are currently under development.
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