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We present a new approach, the BGY3dM model, for the approximation of solvent densities
around solutes of arbitrary shape. Our model is derived directly from the YBG-hierarchy and
comprises the famous Kirkwood approximation as closure relation. The molecules of the solvent
are modeled as rigid bodies by taking the limit of an infinite restoring force for the intramolecular
interactions. Furthermore, short-range potentials as well as the long-range Coulomb interaction are
taken into account. The resulting integro-differential equations are efficiently solved by a Picard
iteration and a solution of the linearized equations using Fourier transformations. We compare the
results obtained from the presented BGY3dM method with results obtained by extensive molecular
dynamics simulations for a HCl-like model solvent. Furthermore, we apply the method to carbon
disulfide as solvent. The overall performance of the method is promising.
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I. INTRODUCTION

The microscopic simulation of molecules such as pro-
teins in solution is a challenging task. An explicit simula-
tion of the entire solute-solvent system is often unfeasible
due to the high number of degrees of freedom needed to
adequately simulate the solvent effects [1]. Therefore,
implicit solvent models have been developed which take
the influence of the solvent into consideration without
explicitly introducing new degrees of freedom to the sys-
tem. Most of these implicit solvent models approximate
the solvent effects by a continuum model which clearly
neglects important local properties of the solvent [2, 3].
Hence, the development of new implicit solvent models
which approximate the solvent effects more accurately is
a key-topic of current research.

Promising developments were made by the application
of the liquid state integral equation theories. Several au-
thors developed methods based on these theories which
allow to compute solvent densities around solutes of ar-
bitrary shape for simple monoatomic [4, 5] as well as for
molecular solvents [6–14]. It stands out that practically
all such methods found in the literature are based on the
Ornstein-Zernike equation and mostly employ the hyper-
netted chain (HNC) closure. However, these methods do
not lead to a satisfactory accuracy in all situations [6–
14]. Additionally, the computational effort involved still
makes a repeated evaluation during an extensive solute-
solvent simulation unfeasible.

In this paper, we present a new approach, the
BGY3dM model, derived directly from the YBG-
hierarchy which employs the Kirkwood superposition ap-
proximation [15]. We will investigate its properties and
benefits for the computation of solvent density distribu-
tions around a solute of arbitrary shape. With our new
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model we are able to treat molecular solvents that in-
teract with the solute by any short-range potential and
the long-range Coulomb potential. The solvent molecules
are modeled as rigid bodies. A comparison between the
BGY3dM method and results obtained by extensive MD
simulations demonstrate the quite good performance of
the new method.

The remainder of this article is organized as follows:
First, we review some related statistical mechanics con-
cepts in Section II before we derive the BGY3dM model
in Section III. Some computational details are presented
in Section IV. Then, results from the BGY3dM model
are compared with results from MD simulations for a
HCl-like model solvent and the method is applied to car-
bon disulfide as solvent in Section V. Finally, we give a
short summary and outlook of the presented method in
Section VI.

II. STATISTICAL MECHANICS

In a typical solute-solvent system, such as a protein
in water, macroscopic properties of the solute are at the
center of interest. These properties are usually computed
by the approximation of ensemble averages using Monte
Carlo (MC) or molecular dynamics (MD) methods which
sample the phase space. However, such an explicit sim-
ulation of the solvent molecules increases the size of the
phase space dramatically which in turn leads to unac-
ceptable long running times of the sampling procedure.
Hence, simulations with explicit solvent are often unfea-
sible with today’s computers.

If the microscopic quantity to be averaged does not de-
pend explicitly on the solvent, it is possible to formally
split the Hamiltonian of the system into a part only de-
pending on the solute degrees of freedom and a part in-
cluding the solute-solvent interaction. This latter part
can then be integrated over all solvent degrees of free-
dom to yield an averaged solute potential including the
solute-solvent interaction implicitly. This is illustrated in
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FIG. 1: Left: A protein (blue ribbon) surrounded by H2O molecules (explicit solvent). Right: The same protein with implicit
solvent indicated by the red field.

Figure 1. The left plot shows a typical configuration of
a biomolecular system: A protein is to be simulated in
aqueous solution. To this end, the water molecules are
included explicitly in the simulation box. Instead, the
red field of Figure 1 (right) indicates an averaged force
field that implicitly incorporates the solvent effects on
the solute. Therefore, no explicit solvent molecules are
necessary.

A. Potential of Mean Force

For the derivation of such an averaged potential,
we consider a system consisting of a single arbitrary
molecule, which we call the solute M , and a bulk of sol-
vent molecules, the solvent S. The solute consists of
NM particles whereas the solvent consists of NS parti-
cles. The Hamiltonian of this system can be written as

H(pM ,pS ,xM ,xS) =
1

2

NM
∑

i=1

(pM
i )2

mM
i

+
1

2

NS
∑

i=1

(pS
i )2

mS
i

(1)

+ V (xM
1 , · · · ,xM

NM
,xS

1 , . . . ,xS
NS

),

where pM ∈ R
3NM ,pS ∈ R

3NS are the momenta, xM ∈
ΩNM

,xS ∈ ΩNS
the positions and mM

i , mS
i the masses

of the solute and the solvent particles, respectively. The
sets ΩNM

⊂ R
3NM and ΩNS

⊂ R
3NS denote the con-

figurational domains of the solute and the solvent. The
potential V describes the interaction between all parti-

cles of the system. It can be further split into a part
VM describing the intramolecular interaction of the so-
lute, a part VS describing the interactions between the
solvent molecules and a part VMS which consists of the
interactions between the solute and the solvent atoms,
i.e.

V (xM ,xS) = VM (xM ) + VS(xS) + VMS(xM ,xS). (2)
Hence, the Hamiltonian can also be written in separated
form

H(pM ,pS ,xM ,xS) = HM (pM ,xM ) + HS(pM ,xS)

+ HMS(pM ,pS ,xM ,xS). (3)

This system still explicitly includes the solvent degrees
of freedom. Observables of this system can be computed
by microscopic averages in the canonical ensemble as

〈a〉 := C−1

∫

ΩN

a(xM ,xS)e−βV (xM ,xS) dxMdxS

with C :=

∫

ΩN

e−βV (xM ,xS) dxMdxS , (4)

where we assume that the microscopic quantity a does
not depend on the momenta. The domain ΩN = ΩNM

×
ΩNS

denotes the spatial part of the phase space and
β = 1/kBT is the inverse temperature with kB the Boltz-
mann constant. If we now further assume that a does not
depend on the solvent degrees of freedom, the integral can
be written as

〈a〉 = C−1

∫

ΩNM

a(xM )e−βVM (xM )

∫

ΩNS

e−β(VMS(xM ,xS)+VS(xS)) dxSdxM . (5)

Hence, the inner integral can be computed separately.
The formal integration of this inner part leads directly

to the so-called potential of mean force (PMF). It is de-
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fined by integrating the Boltzmann factor e−βV (x) over
the solvent degrees of freedom,

e−βV P MF (xM) = (6)

C−1
S

∫

ΩNS

e−β(VM(xM )+VS(xS)+VMS(xM ,xS)) dxS

= e−βVM(xM )C−1
S

∫

ΩNS

e−β(VS(xS)+VMS(xM ,xS)) dxS

with CS :=

∫

ΩNS

e−βVS(xS) dxS . (7)

The PMF can also be written in an additive way as

V PMF (xM ) = VM (xM )

− 1

β
ln

(

C−1
S

∫

ΩNS

e−β(VS(xS)+VMS(xM ,xS)) dxS

)

=: VM (xM ) + W (xM ), (8)

where W (xM ) is defined by (8) and contains only the
energy due to the solute-solvent interaction. It is there-
fore called the solvation free energy. The Hamiltonian of
the reduced system now acts only on the particles of the
solute M and reads as

HPMF (pM ,xM ) =
1

2

NM
∑

i=1

(pM
i )2

mM
i

+ V PMF (xM ). (9)

Likewise, the microscopic average (5) can be written as

〈a〉 = C−1
PMF

∫

ΩNM

a(xM )e−βV P MF (xM) dxM (10)

with CPMF :=

∫

ΩNM

e−βV P MF (xM ) dxM . (11)

A comparison of equations (5) and (10) shows that the
introduction of the PMF is just a formal transformation.
The ensemble averages (4) and (10) lead to the exact
same results. The transformation shifts the problem of
sampling the solvent degrees of freedom to the computa-
tion of the integral defining the PMF (8).

In practice, the integral in (8) can be computed exactly
only for very simple systems. Hence, methods have to be
employed to approximately compute the PMF. In prin-
ciple, MD or MC type simulations can be applied. How-
ever, due to the high dimension of the phase space they
are computationally too costly. Instead, approximations
have to be considered that avoid a sampling of the phase
space. The most promising approaches are based on the
liquid state integral equation theories. These integral
equations emerge from a hierarchy of equations for the
reduced probability distributions which can be employed
to compute the ensemble averages by lower-dimensional
integrals. Likewise, the PMF can be computed by an in-
tegral over a reduced probability distribution, as we will
see later.

B. The YBG-Hierarchy

We introduce the concepts of the liquid state in-
tegral equation theories starting from the Liouville
equation. We follow the derivation given in [16].
The Liouville equation describes the time evolution of
the phase space probability distribution π(p(N),x(N))
which represents the probability to find the system at
the point (p(N),x(N)) in phase space. To this end,

p(N) := (p1, . . . ,pN ) ∈ R
3N are again the momenta of

the N particles and x(N) := (x1, . . . ,xN ) ∈ ΩN are their
positions in the 3N -dimensional domain ΩN . We restrict
the potential function to be a sum of pairwise terms

V (x1, . . . ,xN ) =

N
∑

i=1

N
∑

j=i+1

v(xi,xj) (12)

and note that the forces Fij between particle i and j are
defined as

Fij = F(xi,xj) = −∇xi
v(xi,xj). (13)

Then, we can write the Liouville equation as

∂π

∂t
= −

N
∑

i=1

pi

mi

· ∂π

∂xi

−
N
∑

i=1

N
∑

j=1,j 6=i

Fij ·
∂π

∂pi

, (14)

where we omit any external force on the particles. Now,
the Liouville equation is integrated over N − n posi-
tions and momenta and multiplied by the factor N !

(N−n)! .

Thereby, we consider the definition of the reduced prob-
ability density for n = 1, . . . , N − 1

π(n)(p(n),x(n)) :=
N !

(N − n)!
× (15)

×
∫

R3(N−n)

∫

ΩN−n

π(p(N),x(N)) dp(N−n)dx(N−n).

where dp(N−n) and dx(N−n) denote dpn+1 · · · dpN and
dxn+1 · · ·dxN , respectively. Taking the symmetry of π
under exchange of particles into account we find that





∂

∂t
+

n
∑

i=1





pi

mi

· ∂

∂xi

+
n
∑

j=1,j 6=i

Fij ·
∂

∂pi







 π(n)

= −
n
∑

i=1

∫

R3

∫

Ω

Fin+1 ·
∂π(n+1)

∂pi

dxn+1dpn+1 (16)

for n = 1, . . . , N − 1, where Ω := Ω1 is the domain of
the system. This set of equations is called the BBGKY-
hierarchy after Bogolyubov, Born, Green, Kirkwood and
Yvon, see [16].

In the canonical ensemble the (reduced) probability
densities can be factorized as

π(n)(p(n),x(n)) = P(n)(p(n))ρ
(n)(x(n)) (17)
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with

P(n)(p(n)) =
n
∏

i=1

(

β

2πmi

)
d
2

e
−β

|pi|
2

2mi (18)

only depending on the momenta. If one further notes
that

∂

∂pi

P(n)(p(n)) = − β

mi

piP(n)(p(n)) (19)

and
∫

R3

P(n+1)(p(n+1)) dpn+1 = P(n)(p(n)), (20)

this yields for n = 1, . . . , N − 1

n
∑

i=1

pi ·





∂

∂xi

− β

n
∑

j=1,j 6=i

Fij



 ρ(n)(x(n))

= β

n
∑

i=1

pi ·
∫

Ω

Fin+1ρ
(n+1)(x(n+1)) dxn+1, (21)

where we considered equation (16) at equilibrium, i.e.
∂
∂t

π(n) = 0. This relation must be independent of the
choice of the momenta pi. Hence, it must hold term by
term, which leads us for n = 1, . . . , N − 1 to the YBG-
hierarchy (Yvon, Born, Green) [16],

∇x1g
(n)(x(n)) = β

n
∑

i=2

F1ig
(n)(x(n))

+βρ̄

∫

Ω

F1n+1g
(n+1)(x(n+1)) dxn+1. (22)

Here, we introduced the (reduced) distribution functions
g(n) := 1

ρ̄n ρ(n) with ρ̄ the overall density of the fluid.

The YBG- and the BBGKY-hierarchy are not imme-
diately useful, since they relate for n = 1, . . . , N − 1 the
unknown functions ρ(n) and g(n) to ρ(n+1) and g(n+1),

respectively. In order to solve (22) for g(n) the solution
g(n+1) for n+1 is needed, and so on. This ultimately re-
quires the knowledge of g(N) and thereby the solution of
the overall Liouville equation which is too costly to com-
pute. To this end, for a truncation of the YBG-hierarchy
a closure relation between g(n+1) and g(n) is required.
Here, the case n = 2 is the best investigated one, see
[16]. The application of the Kirkwood superposition ap-
proximation [15]

g(3)(x1,x2,x3) = g(2)(x1,x2)g
(2)(x1,x3)g

(2)(x2,x3),
(23)

for n = 2 yields the Born-Green equation

∇x1

(

ln(g(2)(x1,x2)) + βv(x1,x2)
)

(24)

= βρ̄

∫

Ω

F13 g(2)(x1,x3)
(

g(2)(x2,x3) − 1
)

dx3.

For a given pair potential v(x1,x2) the Born-Green equa-
tion can be solved to give g(2). For low densities ρ̄ the
results are in good agreement with those obtained by MC
or MD methods or analytical results in the case of a hard
sphere fluid [16]. Finding better closures for (22) is a very
challenging task. According to Meeron [17] and Salpeter
[18] the triplet correlation function can be expressed for-
mally exact as

g(3)(x1,x2,x3) = g(2)(x1,x2)g
(2)(x1,x3)g

(2)(x2,x3) ×
× exp(τ(x1,x2,x3), ρ̄) (25)

with τ(x1,x2,x3, ρ̄) =
∑∞

n=1 ρ̄nδn+3(x1,x2,x3). The
coefficients δn+3(x1,x2,x3) consist of certain terms of
the Mayer cluster expansion, the so-called simple 123-
irreducible diagrams, see [16] or [17, 18] for details. The
coefficients δ4 and δ5 were computed for a Lennard-Jones
fluid in [19, 20], but the computation of higher order
terms still is not feasible with today’s computers.

Better results for dense fluids can be obtained by us-
ing the Fisher-Kopeliovich closure [21] for the quadruplet
distribution function in the case n = 3:

g(4)(x1,x2,x3,x4) ≈
g(3)(x1,x2,x3)g

(3)(x1,x2,x4)g
(3)(x1,x3,x4)g

(3)(x2,x3,x4)

g(2)(x1,x2)g(2)(x1,x3)g(2)(x1,x4)g(2)(x2,x3)g(2)(x2,x4)g(2)(x3,x4)
. (26)

Applied to (22) for n = 3 this gives a relation for the
triplet distribution function g(3), called BGY2 equation
[22, 23]. Lee et al. [22, 23] computed g(3) for a hard sphere
fluid. The results were significantly better than those
obtained with the Kirkwood approximation for n = 2.
They showed that the BGY2 theory is superior to the
closure (25) truncated after δ5. But to our knowledge the
BGY2 theory has never been applied to other potential

functions than the hard sphere potential.

C. Approximation of the PMF

The integral equation theories have been developed to
compute macroscopic properties of fluids without explic-
itly performing the integration over the full phase space.
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Similarly, they can be applied to approximate the PMF,
which also can be represented by means of a reduced
probability distribution. To see this, we consider the
computation of the forces −∇V PMF of the PMF. They
are exactly the forces of the full potential V (xM ,xS) av-
eraged over the solvent degrees of freedom with the solute
atoms in fixed position,

∇xM V PMF (xM ) = 〈∇xM V (xM ,xS)〉(xM ) (27)

with

〈a(xM ,xS)〉(xM ) := C−1
MS

∫

ΩNS

a(xM ,xS)e−βV (xM ,xS) dxS

(28)
and

CMS :=

∫

ΩNS

e−βV (xM ,xS) dxS . (29)

If we now assume that the solute-solvent interaction po-
tential can be written as a sum over pairwise terms,

VMS(xM ,xS) =

NM
∑

i=1

NS
∑

j=1

vMS(xM
i ,xS

j ), (30)

we can transform (27) and obtain

∇xM V PMF (xM ) = ∇xM VM (xM ) + ∇xM W (xM )

= ∇xM VM (xM ) +

NM
∑

i=1

NS
∑

j=1

〈∇xM
vMS(xM

i ,xS
j )〉(xM )

= ∇xM VM (xM )

+

NM
∑

i=1

∫

Ω

∇xM
vMS(xM

i , r)ρ(NM+1)(r|xM ) dr (31)

with the conditional probability

ρ(NM+1)(r|xM ) =
ρ(NM+1)(r,xM )

ρ(NM )(xM )
(32)

and Ω ⊂ R
3 the domain of the system. In this derivation,

we used the definition of reduced probability functions
(15) for the integral (28) as well as the normalization
CMS , which is actually a function of the solute coordi-
nates. This conditional probability can be identified with
the average solvent density

〈

NS
∑

j=1

δ(r − xS
j )

〉

(xM )

= ρ(NM+1)(r|xM ), (33)

where xS
i are the individual solvent particles.

Hence, we can compute the forces of the PMF by an in-
tegral over the three-dimensional domain if we know the
average solvent density around the solute with configura-
tion xM . The goal is therefore the efficient approximation
of the solvent density. This can be achieved by applying

the liquid state integral equation theories. To this end,
concerning this application to solute-solvent systems, the
literature is largely focused on methods based on the
Ornstein-Zernike equation. The Ornstein-Zernike equa-
tion is an integral equation defining the direct correla-
tion function. Similar to the equations from the YBG-
hierarchy it can only be solved by assuming additional
approximations, as e.g. the hypernetted-chain (HNC) or
the Percus-Yevick (PY) closures. Its popularity in the
literature may be caused by the fact that it can more
easily be reduced to a one-dimensional equation in the
case of rotational symmetry and that it has an algebraic
form in Fourier space. Hence, its numerical solution is
less costly at least in the case of rotational symmetry.
Ikeguchi and Doi [4] and Beglov and Roux [5] have em-
ployed the Ornstein-Zernike equation together with the
HNC and PY closure for the computation of the density
of a simple monoatomic solvent around solutes of arbi-
trary shape. Kovalenko, Hirata et al. [6–12] and Beglov,
Roux et al. [13, 14] have extended the methods to be able
to cope with molecular solvents as well. The so-called 3d-
RISM-PLHNC and 3d-RISM-HNC methods have been
applied to several solute-solvent systems, as e.g. alkanes,
alcohols, carboxylic acids and simple amides in water.
In [13] solvation free energies of several solute-solvent
systems are computed and the results are in acceptable
agreement with experimental data. The errors are as-
sumed to be the result of the approximation comprised
in the closure relations. Therefore, the authors propose
empirical corrections needed to improve the agreement
between theory and experimental data.

To our knowledge, methods based directly on the
YBG-hierarchy have never been considered for the com-
putation of solvent densities in solute-solvent systems.
Only methods that are related to the computation of pair
distribution functions of pure molecular fluids were devel-
oped in the field of polymeric fluids. To this end, Eu and
Gan [24], Taylor and Lipson [25] and Attard [26] have
derived equations based on the YBG-hierarchy that have
been quite successfully applied to several polymer mod-
els [27–35]. In these models, a polymer chain consists of
either hard or soft spheres with rigid or flexible bonds.
But neither chains with different types of particles nor
more complex interaction potentials as e.g. the Coulomb
potential have been considered.

III. THE BGY3DM MODEL

In the following, we present our BGY3dM model for
the approximation of solvent densities around an arbi-
trary solute. To this end, we first derive the site-site
BGY3dM equations for the computation of pair distri-
bution functions of the pure solvent, since these pair dis-
tribution functions are needed as input for the BGY3dM
equations, which will be described afterwards. Both the
SS-BGY3dM and the BGY3dM model represent equa-
tions from two distinct YBG-hierarchies, i.e. that for pure
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molecular fluids and that for a solute immersed into a
molecular fluid, respectively. These hierarchies are ob-
tained by integrating the corresponding Liouville equa-
tions similar to the monoatomic case as described in Sec-
tion II B. The application of approximations for the dis-
tribution functions then yields a closed set of equations,
which can be solved numerically.

A. The Site-Site BGY3dM Equations

First, we derive the BGY equation, i.e. we consider the
case n = 2, for a molecular fluid. For this, we assume
that the molecules of the fluid consist of s not neces-
sarily different particle species. From the literature, the
BGY equation for a simple mixture of s different particle
species is known [36]. It reads as

∇xα
1
g(2)

αγ (xα
1 ,xγ

2 ) = βFαγ(xα
1 ,xγ

2 )g(2)
αγ (xα

1 ,xγ
2 )

+β
s
∑

η=1

ρ̄η

∫

Ω

Fαη(xα
1 ,xη

3)g(3)
αγη(xα

1 ,xγ
2 ,xη

3) dxη
3 (34)

for any pair α, γ = 1, . . . , s. Here, g
(2)
αγ and g

(3)
αγη are

the pair and triplet distribution functions for particles of
species α, γ and η, respectively, Fαγ = −∇xα

1
vαγ denotes

the force between particles of species α and γ and ρ̄α is,
as already stated above, the number density of particle
species α. For clarity the position vectors have a super-
script also indicating their respective particle species, e.g.
xα

1 ∈ R
3.

We now consider molecular solvents. Therefore, we set
ρ̄S := ρ̄1 = ρ̄2 = . . . = ρ̄s. Then, we build molecules
which contain exactly one particle from every not nec-
essarily different species. By this, we model a molecular
fluid with number density ρ̄S , where the molecules consist
of s particles. When we now derive the BGY equation
for this molecular fluid, we have to distinguish between
intramolecular and intermolecular interactions. The in-
tramolecular forces are indicated by the superscript i,
i.e., we write Fi

αγ and vi
αγ for the forces and the pair po-

tential, respectively. Similar to the forces, we now have
different types of distribution functions, which depend on
how many of the particles belong to the same molecule.
We indicate this dependency by the indices of the corre-
sponding position vectors, i.e. xα

j denotes the position of

particle α of molecule j. Hence, g
(2)
αγ (xα

1 ,xγ
1 ) denotes the

intramolecular pair distribution function between parti-

cle α and γ of the same molecule, whereas g
(2)
αγ (xα

1 ,xγ
2 )

denotes the intermolecular pair distribution function be-
tween particles α and γ of different molecules. In this
notation we can write the BGY equation for the inter-
molecular pair distribution functions (n = 2) of a molec-

ular fluid as

∇xα
1
g(2)

αγ (xα
1 ,xγ

2 ) = βFαγ(xα
1 ,xγ

2 )g(2)
αγ (xα

1 ,xγ
2 ) (35)

+β

s
∑

η=1

ρ̄S

∫

Ω

Fαη(xα
1 ,xη

3)g(3)
αγη(xα

1 ,xγ
2 ,xη

3) dxη
3

+β

s
∑

η=1,η 6=α

∫

Ω

Fi
αη(xα

1 ,xη
1)g(3)

αγη(xα
1 ,xγ

2 ,xη
1) dxη

1

+β
s
∑

η=1,η 6=γ

∫

Ω

Fαη(xα
1 ,xη

2)g
(3)
αγη(xα

1 ,xγ
2 ,xη

2) dxη
2 ,

and the BGY equation for the intramolecular pair distri-
bution functions as

∇xα
1
g(2)

αγ (xα
1 ,xγ

1 ) = βFi
αγ(xα

1 ,xγ
1 )g(2)

αγ (xα
1 ,xγ

1 ) (36)

+β

s
∑

η=1

ρ̄S

∫

Ω

Fαη(xα
1 ,xη

2)g(3)
αγη(xα

1 ,xγ
1 ,xη

2) dxη
2

+β

s
∑

η=1,η 6=α,η 6=γ

∫

Ω

Fi
αη(xα

1 ,xη
1)g

(3)
αγη(xα

1 ,xγ
1 ,xη

1) dxη
1 .

As for a simple mixture, the equations are obtained by in-
tegrating the Liouville equation over N −2 particles, i.e.,
we choose the case n = 2 of the YBG-hierarchy for molec-
ular fluids. To this end, one has to take into account that
particles can now belong to different molecules. This ad-
ditional distinguishability results in the last two lines of
equation (35) and the last line of equation (36) which rep-
resent the intramolecular coupling within the molecules.
The first lines are identical to those of a simple mixture
as in equation (34). Recall that all particle species in the
molecular fluid have the same number density ρ̄S .

In order to facilitate the numerical solution of the fi-
nal equations, the molecules are modeled as rigid bodies.
To this end, we introduce a harmonic potential as in-
tramolecular interaction

vi(xα
1 ,xγ

1 ; κ) = κ(rαγ
1 − rαγ

0 )2, ∀ α 6= γ (37)

with rαγ
1 = |xα

1 − x
γ
1 |. Here, rαγ

0 denotes the desired in-
tramolecular distance between particles of species α and
γ. The constant κ defines the strength of the poten-

tial. The s(s−1)
2 different distances rαγ

0 completely spec-
ify the configuration of the molecule. The potential (37)
does not yet lead to fixed distances within the molecule,
but allows fluctuations around the desired distances rαγ

0 .
Hence, we investigate the limit case where the constant κ
goes to infinity, i.e., we consider lim

κ→∞
vi(xα

1 ,xγ
1 ; κ). Here,

κ determines the strength of the force that constrains two
particles to their desired distance. We examine equation
(36), which determines the intramolecular pair distribu-
tion functions, and assume that, in this limit, the solution
of equation (36) is strongly dominated by the first term
of the right hand side, and that all integral terms can be
neglected, i.e., for κ → ∞ we have

∇xα
1
g(2)

αγ (xα
1 ,xγ

1 ; κ) = βFi
αγ(xα

1 ,xγ
1 ; κ)g(2)

αγ (xα
1 ,xγ

1 ; κ).
(38)
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The dependence on κ is explicitly written in the argu-

ments in order to distinguish between g
(2)
αγ (xα

1 ,xγ
1 ; κ) and

the limit version of g
(2)
αγ (xα

1 ,xγ
1 ) which will not depend on

this parameter. The solution of (38) is

g(2)
αγ (xα

1 ,xγ
1 ; κ) =

√

4βκ

π

1

4π(rαγ
0 )2

e−βvi(xα
1 ,x

γ
1 ;κ) (39)

=

√

4βκ

π

1

4π(rαγ
0 )2

e−βκ(rαγ
1 −r

αγ
0 )2 .

The factor
√

4βκ
π

1
4π(rαγ

0 )2
is chosen such that the in-

tramolecular pair distribution function obeys the correct
normalization condition

lim
κ→∞

∫

Ω

g(2)
αγ (rαγ

1 ; κ) drαγ
1 = 1 (40)

with r
αγ
1 = xα

1 − x
γ
1 . With this choice, we find for the

convolution with an arbitrary function f

∫

Ω

f(rαγ
1 − r′)g(2)

αγ (rαγ
1 ) drαγ

1

= lim
κ→∞

∫

Ω

f(rαγ
1 − r′)g(2)

αγ (rαγ
1 ; κ) drαγ

1

= lim
κ→∞

∫

Ω

f(rαγ
1 − r′)

√

4βκ

π

e−βκ(rαγ
1 −r

αγ
0 )2

4π(rαγ
0 )2

drαγ
1

=

∫

Ω

f(rαγ
1 − r′)

δ(rαγ
1 − rαγ

0 )

4π(rαγ
0 )2

drαγ
1 . (41)

Equation (41) represents the definition of the delta dis-
tribution as the limit of a Dirac sequence. The result is
intuitive, since the two particles xα

1 and x
γ
1 have to re-

main exactly at a distance of rαγ
0 if the restoring force is

infinite. The factor 4π(rαγ
0 )2 represents the surface of the

sphere with radius rαγ
0 and ensures the correct normal-

ization. Consequently, we know all intramolecular pair
distribution functions and set

g(2)
αγ (xα

1 ,xγ
1 ) =

δ(rαγ
1 − rαγ

0 )

4π(rαγ
0 )2

, ∀ α 6= γ. (42)

Now, to solve equation (35) for the intermolecular pair
distribution functions, a closure relation is needed. For
this, we approximate the triplet distribution functions
by products of functions that depend only on two of the
three particle coordinates. In the case where all three
particles belong to different molecules we insert the fa-
mous Kirkwood approximation [15]

g(3)
αγη(xα

1 ,xγ
2 ,xη

3) ≈ g(2)
αγ (xα

1 ,xγ
2 )g(2)

αη (xα
1 ,xη

3)g(2)
γη (xγ

2 ,xη
3).
(43)

In the case where two of the particles belong to the same
molecule, the Kirkwood approximation is not satisfactory
[26]. Hence, we employ the so-called normalized site-
site superposition approximations (NSSA) of Taylor and
Lipson [25]

g(3)
αγη(xα

1 ,xγ
2 ,xη

2) ≈ g(2)
γη (xγ

2 ,xη
2)g̃(2)

αγ;η(xα
1 ,xγ

2 )g̃(2)
αη;γ(xα

1 ,xη
2)

(44)
with

g̃(2)
αγ;η(x

α
1 ,xγ

2 ) =
g
(2)
αγ (xα

1 ,xγ
2 )

nη
αγ(xα

1 ,xγ
2 )

,

g̃(2)
αη;γ(xα

1 ,xη
2) =

g
(2)
αη (xα

1 ,xη
2)

nγ
αη(xα

1 ,xη
2)

(45)

and the normalization functions

nη
αγ(xα

1 ,xγ
2 ) =

∫

Ω

g(2)
γη (xγ

2 ,xη
2)g(2)

αη (xα
1 ,xη

2) dxη
2 ,

nγ
αη(xα

1 ,xη
2) =

∫

Ω

g(2)
γη (xγ

2 ,xη
2)g(2)

αγ (xα
1 ,xγ

2 )dxγ
2 . (46)

Applying the Kirkwood approximation and the NSSA
approximation for the intermolecular and intramolecular
terms of equation (35) finally gives

∇xα
1
g(2)

αγ (xα
1 ,xγ

2 ) = βFαγ(xα
1 ,xγ

2)g(2)
αγ (xα

1 ,xγ
2 )

+βg(2)
αγ (xα

1 ,xγ
2 )

s
∑

η=1

ρ̄S

∫

Ω

Fαη(xα
1 ,xη

3)g(2)
αη (xα

1 ,xη
3)g(2)

γη (xγ
2 ,xη

3) dxη
3

+βg̃(2)
αγ;η(xα

1 ,xγ
2 )

s
∑

η=1,η 6=α

∫

Ω

Fi
αη(xα

1 ,xη
1)g(2)

αη (xα
1 ,xη

1)g̃(2)
γη;α(xγ

2 ,xη
1) dxη

1

+βg̃(2)
αγ;η(xα

1 ,xγ
2 )

s
∑

η=1,η 6=γ

∫

Ω

Fαη(xα
1 ,xη

2)g̃
(2)
αη;γ(xα

1 ,xη
2)g(2)

γη (xγ
2 ,xη

2) dxη
2 (47)

In the last line of (47) we can now substitute the intramolecular pair distribution function according to (42). The
term which includes the intramolecular force Fi

αη, however, requires a more detailed examination of the limit κ → ∞.
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If we insert the definition of the intramolecular potential (37) and the intramolecular pair distribution from (39), we
have

lim
κ→∞

s
∑

η=1,η 6=α

βg̃(2)
αγ;η(xα

1 ,xγ
2 )

∫

Ω

Fi
αη(xα

1 ,xη
1 ; κ)g(2)

αη (xα
1 ,xη

1 ; κ)g̃(2)
γη;α(xγ

2 ,xη
1) dxη

1

= lim
κ→∞

s
∑

η=1,η 6=α

βg̃(2)
αγ;η(xα

1 ,xγ
2 )

∫

Ω

(

−∇xα
1
κ(rαη

1 − rαη
0 )2

)

√

4βκ

π

e−βκ(rαη
1 −r

αη
0 )2

4π(rαη
0 )2

g̃(2)
γη;α(xγ

2 ,xη
1) dxη

1

= lim
κ→∞

s
∑

η=1,η 6=α

g̃(2)
αγ;η(xα

1 ,xγ
2)

s
∑

η=1,η 6=α

∫

Ω

(

∇xα
1

√

4βκ

π

e−βκ(rαη
1 −r

αη
0 )2

4π(rαη
0 )2

)

g̃(2)
γη;α(xγ

2 ,xη
1) dxη

1

= lim
κ→∞

s
∑

η=1,η 6=α

g̃(2)
αγ;η(xα

1 ,xγ
2)

∫

Ω

√

4βκ

π

e−βκ(rαη
1 −r

αη
0 )2

4π(rαη
0 )2

(

∇x
η
1
g̃(2)

γη;α(xγ
2 ,xη

1)
)

dxη
1

=

s
∑

η=1,η 6=α

g
(2)
αγ (xα

1 ,xγ
2 )

nη
αγ(xα

1 ,xγ
2)

∇xα
1

∫

Ω

δ(rαη
1 − rαη

0 )

4π(rαη
0 )2

g̃(2)
γη;α(xγ

2 ,xη
1) dxη

1

≈ g(2)
αγ (xα

1 ,xγ
2 )

s
∑

η=1,η 6=α

∇xα
1

ln

(∫

Ω

δ(rαη
1 − rαη

0 )

4π(rαη
0 )2

g̃(2)
γη;α(xγ

2 ,xη
1) dxη

1

)

. (48)

In the last line of equation (48) we approximated g
(2)
γη in the definition of nη

αγ by its normalized form g̃
(2)
γη;α, such that

we can write the fraction as the gradient of a logarithm.
A further simplification of equation (47) is possible by introducing a product ansatz for the solution

g(2)
αγ (xα

1 ,xγ
2 ) = g0

αγ(xα
1 ,xγ

2 )e−u(2)
αγ (xα

1 ,x
γ
2 ) (49)

with

g0
αγ(xα

1 ,xγ
2 ) = e−βvαγ(xα

1 −x
γ
2 ), (50)

where vαγ(xα
1 − x

γ
2 ) denotes the potential between sites α and γ of molecules one and two, respectively. Here, u

(2)
αγ is

the new unknown function. This approach together with the application of the divergence to both sides of the equation
leads after some calculation to the following equation for the intermolecular site-site pair distribution function:

∆xα
1
u(2)

αγ (xα
1 ,xγ

2 ) = β
s
∑

η=1

ρ̄S∇xα
1
·
∫

Ω

Fαη(xα
1 ,xη

3)g(2)
αη (xα

1 ,xη
3)g(2)

γη (xγ
2 ,xη

3) dxη
3

−
s
∑

η=1,η 6=α

∆xα
1

ln

(∫

Ω

ωαη(xα
1 ,xη

1)g̃(2)
γη;α(xγ

2 ,xη
1) dxη

1

)

−β
s
∑

η=1,η 6=γ

∇xα
1
·
∫

Ω Fαη(xα
1 ,xη

2)g̃
(2)
αη;γ(xα

1 ,xη
2)ωγη(xγ

2 ,xη
2) dxη

2

nη
αγ(xα

1 ,xγ
2 )

. (51)

Here, we introduced the notation

ωαη(xα
1 ,xη

1) := g(2)
αη (xα

1 ,xη
1) =

δ(rαη
1 − rαη

0 )

4π(rαη
0 )2

(52)

for the intramolecular pair distribution functions. Note
that we switch here to the ω-notation to agree with the
literature. The dot · in the right hand side of (51) in-
dicates the scalar product of two vectors in R

3. We call
equation (51) for any pair α, γ = 1, . . . , s with α 6= γ the
site-site BGY3dM (SS-BGY3d) equations.

B. The BGY3dM Equations

Next, we consider a single solute molecule immersed
into the solvent. We wish to compute the mean density
of the solvent around a fixed configuration of the solute.
If we assume that the solute is described by NM particles
with fixed configuration xM := (xM

1 , . . . ,xM
NM

) the mean

solvent density ρS
α of particle type α can be expressed by



9

a conditional NM + 1-particle distribution

ρS
α(xα

1 ) := ρ̄Sg(NM+1)
α (xα

1 |xM )

= ρ̄S

g
(NM+1)
α (xα

1 ,xM )

g(NM)(xM )
. (53)

In analogy to the BGY equation for the site-site pair
distribution functions of a molecular fluid we can derive
the BGY equation for the NM + 1-particle distribution
function where NM particles belong to the solute:

∇xα
1
g(NM+1)

α (xα
1 ,xM ) = (54)

βFα(xα
1 ,xM )g(NM+1)

α (xα
1 ,xM )

+β

s
∑

η=1

ρ̄S

∫

Ω

Fαη(xα
1 ,xη

2)g(NM+2)
αη (xα

1 ,xη
2 ,xM ) dxη

2

+β

s
∑

η=1,η 6=α

∫

Ω

Fi
αη(xα

1 ,xη
1)g(NM+2)

αη (xα
1 ,xη

1 ,xM ) dxη
1 .

To this end, Fα(xα
1 ,xM ) is the total force exerted on the

solvent particle xα
1 due to the solute. Next, we employ

the so-called n-level Kirkwood closure relations [37] and
approximate the intermolecular and intramolecular NM+
2-particle distribution functions by

g(NM+2)
αη (xα

1 ,xη
2 ,xM ) ≈

g
(NM+1)
α (xα

1 ,xM )g
(2)
αη (xα

1 ,xη
2)g

(NM+1)
η (xη

2 ,xM )

g(NM)(xM )
,

g(NM+2)
αη (xα

1 ,xη
1 ,xM ) ≈ (55)

g̃
(NM+1)
α;η (xα

1 ,xM )ωαη(xα
1 ,xη

1)g̃
(NM+1)
η;α (xη

1 ,xM )

g(NM)(xM )
,

with

g̃(NM+1)
α;η (xα

1 ,xM ) :=
g
(NM+1)
α (xα

1 ,xM )

nη
α(xα

1 ,xM )

g̃(NM+1)
η;α (xη

1 ,xM ) :=
g
(NM+1)
η (xη

1 ,xM )

nα
η (xη

1 ,xM )
(56)

and

nη
α(xα

1 ) :=

∫

Ω

ωαη(xα
1 ,xη

1)g̃(NM+1)
η;α (xη

1 |xM ) dxη
1 ,

nα
η (xη

1) :=

∫

Ω

ωαη(xα
1 ,xη

1)g(NM+1)
α (xα

1 |xM )dxα
1 . (57)

For the approximation of the intramolecular distribution
function we additionally simplified the NSSA approxima-

tion (55) of Taylor and Lipson [25] by replacing g
(NM+1)
η

by its normalized form g̃
(NM+1)
η;α in (57). Now, we can

insert the above approximations into equation (55) and
consider the modeling of the rigid bonds of the molecules
in the same way as for the SS-BGY3dM equations. Then,
we divide the whole equation by g(NM)(xM ) and employ
the product approach

gα(xα
1 ) := g(NM+1)

α (xα
1 |xM ) = g0

α(xα
1 ;xM )e−uα(xα

1 )

(58)

with

g0
α(xα

1 ;xM ) = e−βvα(xα
1 −x

M ), (59)

where vα(xα
1 −xM ) describes the total potential between

solvent particle α and the solute. Finally, we apply the
divergence and obtain the equation

∆xα
1
uα(xα

1 ) = (60)

−β

s
∑

η=1

ρ̄S∇xα
1
·
∫

Ω

Fαη(xα
1 ,xη

2)g(2)
αη (xα

1 ,xη
2)gη(xη

2) dxη
2

−
s
∑

η=1,η 6=α

∆xα
1

ln

(∫

Ω

g̃η;α(xη
1)ωαη(xα

1 ,xη
1) dxη

1

)

,

for the mean solvent density

ρS
α(xα

1 ) = ρ̄Sgα(xα
1 ) = ρ̄Sg0

α(xα
1 )e−uα(xα

1 ) (61)

of solvent site α = 1, . . . , s. We coin this equations
the BGY3dM equations. They require the site-site pair

distribution functions g
(2)
αη as input, which can be com-

puted by the SS-BGY3dM equations beforehand. The
intramolecular distribution functions ωαη are given by
relation (52).

IV. COMPUTATIONAL DETAILS

To solve the SS-BGY3dM and BGY3dM equations
(51) and (61) all functions are approximated on a reg-
ular grid with mesh size h = L/m, where L is the length
of the domain Ω = [0, L]3 in one direction and m is
the number of grid points in one direction. Although
the site-site pair distribution functions are radial sym-
metric, the SS-BGY3dM equations are solved with full
three-dimensional resolution and the computed pair dis-
tribution functions are used as input for the BGY3dM
equations. The nonlinear integro-differential equations
(51) and (61) are solved by a standard Picard iteration
with simple mixing, i.e. with an additional damping. In
every step of the iteration a Poisson problem with Dirich-
let boundary conditions uαγ(∂Ω) = 0 and uα(∂Ω) = 0,
α, γ = 1, . . . , s has to be solved. Since we compute the
right hand sides of equations (51) and (61) by means of
Fourier transformations, the solution of the Poisson prob-
lem is computed by a diagonal scaling in Fourier space.
The convolution integrals are solved by the convolution
theorem, i.e.

f ∗ g = F−1
3 (F3(f)F3(g)), (62)

where ∗ denotes the convolution and the three-
dimensional Fourier transformation is defined as

ĝ(k) := F3(g)(k) =

∫

R3

g(x)e−2πık·x dx, (63)

F−1
3 (ĝ)(x) =

∫

R3

ĝ(k)e2πık·x dk. (64)



10

We employ the parallel FFT algorithm of the FFTW
[38]. For simplicity, all appearing differential operators
are applied in Fourier space. The Fourier transform of the
intramolecular distribution functions ωαγ is analytically
known

F3 (δ(r12 − rαγ
0 )) (k) =

2

|k| sin(2π|k|rαγ
0 )rαγ

0 , (65)

and has not to be computed. For numerical stability,
the divisions by the normalization functions have to be
regularized. Hence, we replace the exact divisions by

∫

Ω
Fαη(r − r′)g̃

(2)
αη;γ(r − r′)ωγη(r

′) dr′

max(nη
αγ(r), ǫω)

, ∀ r ∈ Ω.

(66)
and

gα(x)

max(nγ
α(x), ǫg)

, ∀ x ∈ Ω. (67)

with the regularization parameters ǫω = 10−1 and ǫg =
10−2, respectively.

A. The Coulomb Potential

The application of the discrete Fourier transform re-
quires periodicity of the involved functions with respect
to the computational domain Ω. Assuming that the func-
tions are of short range, i.e., they decay faster to zero
than 1/r3 with the distance r in three-dimensional space,
we can simply choose the domain large enough, so that
all functions are sufficiently small at the boundaries. The
effect of the periodicity can then be eliminated by zero
padding. Hence, the convolution integrals can be com-
puted by discrete Fourier transforms for all short-range
potentials as e.g. the Lennard-Jones potential. However,
if the Coulomb potential 1/|r| is involved, which is not of
short range, we cannot directly apply the discrete Fourier
transform, since the force does not vanish at the bound-
aries and is not periodic with respect to the domain. Nev-
ertheless, the convolution integrals can be computed by
means of discrete Fourier transforms as follows: We con-
sider the (notationally simplified) convolution integral

∫

Ω

F(r′ − r)gα(r′ − r)gγ(r′) dr′ (68)

with the total force F = FLJ + FC consisting of
a Lennard-Jones and a Coulomb part. We split the
Coulomb force into a short-range and a long-range part,
such that the long-range part is smooth and therefore
has fast decaying Fourier components. This is achieved
by adding and subtracting a smooth charge distribution
around the point charge at r = 0. As in the particle-
mesh-Ewald method [39] the charge distribution is cho-
sen to be a Gaussian

̺(r) =

(

G√
π

)3

e−G2|r|2 (69)

with a parameter G that determines the width of the
function. The Coulomb potential (and its force) between
two particles is divided by means of this shielding func-
tion into the following parts

vC(r) = vCs(r) + vCl(r) = qγΦs(r) + qγΦl(r),

FC(r) = FCs(r) + FCl(r) = −∇vCs(r) −∇vCl(r),

(70)

with Φs and Φl the solutions of the Poisson equations

−∆Φs =
1

ǫ0
qα(δ3 − ̺) in R

3,

−∆Φl =
1

ǫ0
qα̺ in R

3, (71)

where qα and qγ denote the charges of the two particles
and ǫ0 is the dielectric constant. For the special choice
of the function ̺ as in (69), the solution can be given
analytically. We have

vCs(r) =
1

4πǫ0
qαqγ

erfc(G|r|)
|r| ,

vCl(r) =
1

4πǫ0
qαqγ

erf(G|r|)
|r| , (72)

with erf the error function and erfc = 1− erf the comple-
mentary error function. The complementary error func-
tion decays rapidly, whereas the error function decays as
slowly as 1

|r| and is smooth even at |r| = 0.

We now want to use these properties and transform
the integral (68) to make it efficiently computable. The
total force F consists of a Lennard-Jones part FLJ and a
Coulomb part FC which can be split as discussed above.
Hence, we transform the convolution integral (68) accord-
ing to
∫

Ω

F(r′ − r)gα(r′ − r)gγ(r′) dr′ = (73)

∫

Ω

(

F(r′ − r)gα(r′ − r) − FCl(r′ − r)
)

gγ(r′) dr′

+

∫

Ω

FCl(r′ − r)gγ(r′) dr′.

The first term can be treated as before, since the part in
outer brackets is of short range. The second integral can
be written as
∫

Ω

FCl(r′ − r)gγ(r′) dr′ = −∇r

∫

Ω

vCl(r′ − r)gγ(r′) dr′,

(74)
where we used again the fact that the derivative of a con-
volution can be shifted to its arguments. Now, we can
take advantage of the rapid decay of the Fourier com-
ponents of vCl. The Fourier transformation can even be
given analytically as

F3(v
Cl)(k) =

qαqγ

ǫ0
e−

π2

G2 |k|2 . (75)
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Hence, this integral can be computed easily by mul-
tiplying the Fourier components of vCl and gγ and a
subsequent inverse Fourier transformation of the result.
The operator ∇r in front of the integral is eliminated in
Fourier space by the inverse operator of the left hand side
of the SS-BGY3dM or BGY3dM equations.

Now, the convolution integrals with the long-range
Coulomb force can efficiently be computed. But still,
the assumption of periodicity of the involved functions
introduces an error at the boundaries. Since we know
that the distribution functions have to be of short range
[40], it follows that we have gS

α(∂Ω) ≈ 0 for a domain Ω,
which is large enough. Hence, we employ the boundary
conditions gS

α(∂Ω) = 0 and thereby uα(∂Ω) = vCl
α (∂Ω).

Here, we restrict our discussion to the BGY3dM equa-
tions since the exact same considerations also hold for
the SS-BGY3dM equations. To enforce these boundary
conditions and to remove the errors due to the periodic
boundary conditions, we can compute this error as the
solution of

∆u∗
α = 0 in Ω (76)

with u∗
α(∂Ω) = uα(∂Ω) − vCl

α (∂Ω),

where uα(∂Ω) are the boundary values of the previously
computed solution of the BGY3dM equations for particle
type α. Subtraction of the solution u∗

α from uα leads
exactly to the solution of the BGY3dM equation with the
desired Dirichlet boundary condition ūα(∂Ω) = vCl

α (∂Ω)
where ūα = uα − u∗

α.

The solution of equation (76) is computed by a simple
finite-difference scheme with a seven-point stencil. The
resulting systems of equations can be solved by any it-
erative method. For convenience we choose the GMRES
method with block Jacobi preconditioning as it is im-
plemented in PETSc [41–43]. The computational effort
necessary to solve this problem is very small compared
to the costs for solving the BGY3dM equations, since the
repeated solution of (76) becomes very efficient at later
steps of the Picard iteration. Then, subsequent iterates
ul

α, with l denoting the iteration number, differ only little
at the boundaries and we have u∗l

α ≈ u∗l−1
α . Therefore,

only few GMRES iterations are sufficient to compute the
solution u∗l

α up to a prescribed accuracy.

V. RESULTS

To validate the BGY3dM method for the computation
of solvent densities around arbitrary solutes, we compare
results computed by the BGY3dM method with results
obtained from MD simulations. For this, we employ the
HCl-like models of Hirata et al. [44] as solvent. They
are two site models where the intermolecular interac-
tion is described by a combination of Lennard-Jones and
Coulomb forces. Hence, the total potential between two
particles of species α and γ with α, γ = H, Cl can be

mCl = 35.453 u mH = 1.008 u
qCl = −0.2 e qH = 0.2 e
ǫCl = 0.5143 kcal/mol ǫH = 0.0397 kcal/mol
σCl = 3.353 Å σ

1
H = 2.735 Å, σ

2
H = 0.4 Å

TABLE I: Parameter values for the HCl-like model solvents.

written as

vI
αγ(r) = vLJ

αγ (r) + vC
αγ(r) (77)

= 4ǫαγ

(

(σαγ

r

)12

−
(σαγ

r

)6
)

+ ǫC

qαqγ

r

with r = |xα −xγ |. The specific parameters for the HCl-
like models can be found in Table I. The two models only
differ in the value of σH, i.e., for the first model (HCl1) it
is σ1

H = 2.735 Å and both particles have large Lennard-
Jones spheres, whereas in the second model (HCl2) we
have σ2

H = 0.4 Å and the Lennard-Jones sphere of the
hydrogen is completely embedded inside that of the chlo-
ride atom.

The parameters for the Lennard-Jones potential are
computed according to the Lorentz-Berthelot mixing
rules

ǫαγ =
√

ǫαǫγ , σαγ = 0.5(σα + σγ), α, γ = H, Cl.
(78)

The constant intramolecular distance between a hydro-
gen and chloride atom of the same molecule is set to
rHCl
0 = 1.257 Å. The molecular number density is cho-

sen as ρ̄S = 0.0018 Å−3 with Ω = [−10 Å, 10 Å]3

and the temperature as T = 420 K (β = 1.1989).
With this choice of unit system we additionally have
ǫC ≈ 331.84 (kcal Å)/(mol e2). We use m = 256 and
m = 128 grid points in one direction for the solution of
the SS-BGY3dM and the BGY3dM equations, respec-
tively. The iteration of the (SS-)BGY3dM equations is
stopped if the L∞-norm of the difference of subsequent
iterates is less than 10−2. Note that this value for the
stopping criterion is sufficient, because the model error
of the (SS-)BGY3dM equations is larger anyway as we
will see in the following section.

A. Site-Site Pair Distribution Functions

Now, we first compute the site-site pair distribution
functions by means of the SS-BGY3dM equations (51)
and compare them to the pair distribution functions com-
puted by a MD simulation of the pure solvent, see e.g.
[45] for details concerning the computation of pair distri-
bution functions by MD. The results are shown in Figures
2 and 3.

Note that the SS-BGY3dM equations are solved in
three-dimensions, but Figures 2 and 3 only show the ra-
dial component of the computed site-site pair distribu-
tion functions. We compute three error values to quan-
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FIG. 2: Radial component of the site-site pair distribution
functions for the HCl-like model (HCl1). Comparison between
SS-BGY3dM and MD results.

titatively compare the results:

eLh
2

:=
1

N

(

∑

i

|(gh)i − (gMD
h )i|2

)
1
2

,

eLh
∞

:= max
i

|(gh)i − (gMD
h )i|,

emax := |max
i

(gh)i − max
i

(gMD
h )i|, (79)

where (gh)i denotes the respective solution of the SS-
BGY3dM equations at grid point i, i ∈ [0, N − 1]3,
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FIG. 3: Radial component of the site-site pair distribution
functions for the HCl-like model (HCl2). Comparison between
SS-BGY3dM and MD results.

and (gMD
h )i is the distribution function at grid point i

computed with MD. To this end, the MD results of the
pair distribution functions are interpolated on the three-
dimensional grid to compute the above errors. The values
for the HCl-like model solvents can be found in Table II.

The apparent differences between the SS-BGY3dM
and MD results in Figures 2 and 3 are typical for any
method employing the Kirkwood approximation. That
is, the exact position and the height of the first peak do
not exactly match those of the MD results except for the
H-H distribution of HCl1. The frequency of the subse-
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MD SS-BGY3dM
max g max g e

Lh
2

eLh
∞

emax

H-H (HCl1) 1.32 1.32 3.549−6 6.223−2 0.00
H-Cl (HCl1) 1.29 1.37 4.385−6 8.698−2 0.08
Cl-Cl (HCl1) 1.99 1.93 1.491−5 3.194−1 0.06

H-H (HCl2) 1.14 1.13 6.893−6 2.692−1 0.00
H-Cl (HCl2) 1.17 1.18 7.516−6 3.000−1 0.01
Cl-Cl (HCl2) 2.07 2.48 2.896−5 5.756−1 0.41

TABLE II: Comparison of SS-BGY3dM with MD results for
the site-site pair distribution functions of the HCl-like models.

quent oscillation is too low. These errors are known to
be a consequence of the two-particle superposition ap-
proximation, see e.g. [46]. A comparison of the error
values for the different site-site distribution functions of
HCl1 reveals that their magnitude differs significantly.
The L2- and L∞-errors of the Cl-Cl distribution func-
tion are about 3.5 times larger than the H-Cl errors.
Hence, the quality of the approximation depends on the
different potential parameters of the respective particle
species. In this special example, the Cl-atoms have a
much stronger Lennard-Jones interaction, which obvi-
ously influences the quality of the solution in a negative
sense. The comparison with the results for HCl2 uncovers
another difficulty. All errors are increased for this model,
which is due to the decreased value of σH considered for
HCl2. This leads to a small Lennard-Jones sphere of the
hydrogen atom which is completely embedded inside that
of the chloride atom and results in a worse approximation
of the SS-BGY3dM equations. Especially the H-H and
H-Cl distribution functions of Model 2 show major defi-
ciencies in the prediction of the position of the first flank
of the function. Similar problems have been observed for
the solution of the extended RISM equations of Hirata
and Rossky in [44].

We can conclude that the exact characteristics of the
site-site distribution functions are very difficult to ap-
proximate, as long as the approximations only comprise
pair distribution functions. Obviously, the approxima-
tion of the SS-BGY3dM equations perform better for
more similar particle species. However, note that the
overall approximation of the presented method is still rea-
sonable. All important features of the distribution func-
tions of the HCl-like HCl1 are reproduced. We conclude
that the general form and especially the modeling of the
intramolecular bonds within the SS-BGY3dM equations
is verified by the results.

B. Site Density Distributions

Next, we test the BGY3dM model with respect to
the computation of solvent densities around a solute
molecule. For this, we again employ the HCl-like model
(HCl1) of Hirata et al. [44] already described above.
First, a single HCl molecule is considered as the solute.

MD BGY3dM
max g max g e

Lh
2

eLh
∞

emax

H (solute: HCl) 1.96 1.56 3.594−5 4.134−1 0.39
Cl (solute: HCl) 3.39 2.38 9.671−5 1.215+0 1.00

H (solute: hexane) 2.42 1.92 4.802−5 5.525−1 0.50
Cl (solute: hexane) 4.49 3.96 9.880−5 1.299+0 0.52

TABLE III: Comparison of BGY3dM with MD results for
the site density distributions of the HCl-like solvent around a
single HCl and a hexane molecule as solute.

It is placed symmetrically along the x1-axis at the cen-
ter of the simulation box. The site-site pair distribution
functions of the pure solvent, which are required as in-
put for the BGY3dM equations, are computed by the
SS-BGY3dM model. All simulation parameters are cho-
sen as described above. Details on how the site density
distribution is computed by MD can be found in [47]. In
this case, a total of 3.2 108 MD time steps were necessary
to reach a satisfactory level of convergence.

The computed site densities and their deviation are
depicted in Figures 4 and 5. The computed error quanti-
ties can be found in Table III. The MD results still show
distinct fluctuations, but all features of the distribution
functions have clearly developed. A comparison of the
results of the BGY3dM model and MD shows a satisfy-
ing agreement. The low L2-errors indicate a good overall
approximation. The first peak and the subsequent oscil-
lation pattern are reproduced with a sufficient accuracy
considering the approximations involved in the model.
The main difference can be observed at the location of
the first peak of the distributions. All other errors are not
resolved in the plots due to the fluctuations of the MD
results. The L∞-error is about 0.4 and 1.2 for the hydro-
gen and the chloride distribution, respectively, and is also
located at the main peaks. The error of the chloride dis-
tribution function is considerably larger, as it was also the
case for the Cl-Cl pair distribution functions, see the dis-
cussion above. Recall that the site-site pair distribution
functions are required as input of the BGY3dM model.
They are computed with the approximate SS-BGY3dM
model. Hence, the approximation error enters twice: di-
rectly via the approximation involved in the BGY3dM
model and by the use of the approximated site-site pair
distribution functions computed with the SS-BGY3dM
model.

Finally, we compare the site distribution functions
of the HCl-like model solvent around a single hexane
molecule (CH3(CH2)4CH3) as solute. The potential pa-
rameters for hexane are taken from the general-purpose
force field OPLS [48]. The computed site densities and
the difference between the BGY3dM and MD results are
shown in Figures 6 and 7. The computed error quantities
can be found in Table III.

As for the HCl molecule as solute the overall agreement
between the BGY3dM and MD results is good. The com-
puted error values are similar to those for HCl as solute.
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]

 

 

0

0.4

0.8

1.2

1.6

2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x1 [Å ]
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FIG. 4: Hydrogen distribution around a single HCl molecule
at the x3 = 0 plane. Top: BGY3dM. Middle: MD. Bottom:
Difference between BGY3dM and MD.
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FIG. 5: Chloride distribution around a single HCl molecule
at the x3 = 0 plane. Top: BGY3dM. Middle: MD. Bottom:
Difference between BGY3dM and MD.
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x
2

[ Å
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FIG. 6: Hydrogen distribution around a hexane molecule at
the x3 = 0 plane. Top: BGY3dM. Middle: MD. Bottom:
Difference between BGY3dM and MD.
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But again, the magnitude of the maxima in the first shell
of the approximated hydrogen and chloride distributions
around the solute are considerably small. Moreover, the
predicted magnitude of the oscillation pattern which fol-
lows the main peak is also small compared to the MD
results. Nevertheless, the positions of the maxima of the
first shell and the form of the subsequent oscillation pat-
tern is reproduced well. We can conclude that the accu-
racy of the computed site distribution functions is nearly
independent of the size and form of the considered solute
as long as the interactions between solute and solvent are
similar in strength. The atoms of the considered HCl and
hexane models do not carry large partial charges directly
exposed to the solvent. Hence, the approximation of the
BGY3dM model yields similar results in both cases. This
property is important to predict the error of a computed
site density without actually comparing it to MD results.

C. Examples

We have seen that the BGY3dM model leads to a satis-
fying agreement between the computed site densities and
the results of a MD simulation. Now, we present results
obtained by the BGY3dM model for a more realistic fluid.
For this, we consider carbon disulfide (CS2) as solvent.
Carbon disulfide is a colorless liquid which is mainly used
to solve fats, rubber, resins and waxes, among other ap-
plications, see e.g. [49]. The CS2 molecule is linear and
has no dipole moment. It is a non-polar solvent. For
our numerical computations we employ the model of Zhu
et al. [50]. As before, the functional form of the inter-
action potential is given as a sum of Lennard-Jones and
Coulomb terms, see equation (77) with α, γ = C, S in this
case.

Contrary to the HCl-like model solvent, the carbon
disulfide model is a three-site model. Since the two sul-
fur atoms of CS2 are identical, we again have to com-
pute three different site-site pair distribution functions
and two different site distributions. The pair distribu-
tion functions are computed by a MD simulation of 80

CS2 molecules at a number density of ρ = 0.01/Å
3

and
a temperature of T = 360K. The resulting C-C, C-S and
S-S pair distributions are depicted in Figure 8. They are
used as input for the BGY3dM equations.

As a first example we compute the site distribu-
tion functions of carbon disulfide around a single CS2

molecule as solute. The computational domain is set to
Ω = [−14Å, 14Å]3. Figure 9 shows the site distributions
at the x3 = 0 plane. The carbon distribution exhibits a
broad maximum around the entire solute molecule. This
maximum results from a superposition of the van der
Waals attraction modeled by the Lennard-Jones poten-
tial between the carbon atoms and the solute, and from
the Coulomb attraction between the solvent carbon and
the solute sulfur atoms. The solvent sulfur distribution
shows a sharp peak around the solute carbon particle due
to the strong Coulomb interaction between them. This
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FIG. 8: The site-site pair distribution functions of carbon
disulfide computed by MD.

can also be observed in Figure 10, where the charge dis-
tribution is plotted. The charge distribution gcharge of
carbon disulfide can be computed from the site distribu-
tion functions gC and gS by

gcharge = qCgC + 2qSgS (80)

with qα the charge of site α = C, S. As can be expected,
a closed band of high sulfur density evolves around the
solute carbon whereas the solvent carbon is more likely
to be found next to the solute sulfur atoms.

Next, we consider methanol as solute in carbon disul-
fide as solvent. Methanol is the simplest alcohol and has
the chemical formula CH3OH. It is a colorless, highly
flammable liquid used as a petrol additive, solvent or as
antifreeze [51]. Due to the alcohol specific OH-group,
methanol is a polar molecule. The oxygen and hydro-
gen atoms carry strong opposed charges. We again em-
ploy the OPLS force field [48] for the parameter set of
methanol. To this end, the hydrogen particle of the
OH-group is modeled as a charge carrying site without
Lennard-Jones interaction. However, for the numerical
stability of the BGY3dM equations a hard core potential
is required at the position of any atom. Hence, we intro-
duce Lennard-Jones parameters for the oxygen bonded
hydrogen and choose σH = 3.4Å and ǫH = 0.03kcal/mol.
The high value of σH includes an empirical correction
and ensures a stable convergence of the BGY3dM equa-
tions. We observed that the carbon density of the CS2

solvent is overestimated in the neighborhood of strong
positively charged particles as the hydrogen atom. This
is partly due to a lack of an intramolecular coupling in
the BGY3dM model where the two sulfur sites are in-
corporated without considering their relative position to
the carbon site. This is a three-body effect that is ne-
glected by the n-level Kirkwood approximation. Taking
the three-body effect into account would lower the car-
bon density next to the hydrogen atom, because sulfur
has a low density in the vicinity of positive charges. In
order to compensate for this missing three-body effect,
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FIG. 9: Distribution functions of carbon disulfide around a CS2 molecule at the x3 = 0 plane. Carbon distribution (left) and
sulfur distribution (right).

FIG. 10: Charge distribution of carbon disulfide around a CS2 molecule. Cut at the x3 = 0 plane (left) and isosurface plot
(right).

we choose the high value of σH = 3.4Å as an empirical
correction.

Figure 11 shows the carbon and sulfur distributions
around methanol at the x3 = 0 plane. Here, the methanol
molecule is depicted 2Å above the plane for visualization
purposes. It is obvious that the strong Coulomb interac-
tion strongly influences the behavior of the distribution
functions. The negatively charged solvent carbons are
more likely to be found in the vicinity of the positive
solute hydrogens, whereas the solvent sulfur atoms are
dominantly attracted by the negative oxygen site. The
plots of the charge distributions in Figure 12 also uncover
the negatively charged cloud behind the strong positive
sulfur peak next to the solute oxygen atom. This charge
minimum forms partly due to the intramolecular bond
between carbon and sulfur, but also due to the inter-
molecular attraction of the different solvent sites. The
whole picture reveals the well-known fact that charges
tend to neutralize each other. Hence, the net forces on
a particle in a fluid at equilibrium are exerted only by
nearby particles although the long-range Coulomb po-
tential is involved.

VI. CONCLUSIONS

We have presented the BGY3dM model for the ap-
proximation of solvent densities around solutes of ar-
bitrary shape. The model is directly derived from the
YBG-hierarchy and comprises the Kirkwood superposi-
tion approximation as closure relation for the intermolec-
ular interactions. The intramolecular terms were derived
to model rigid bonds by taking the limit of an infinite
restoring force between two bonded particles. This way,
the solvent molecules are represented as rigid bodies.
Since the Kirkwood approximation is not appropriate for
terms including intramolecular interactions, we employ a
slightly simplified version of the normalized site-site su-
perposition approximation (NSSA) of Taylor et al. [25]
for these terms.

Beside the short-range Lennard-Jones potential, we
also considered the long-range Coulomb interaction. For
this, we introduced a splitting of the Coulomb poten-
tial into a singular short-range part and a smooth long-
range part. The short-range part is processed in exactly
the same way as the Lennard-Jones potential. The long-
range part has fast decaying analytic Fourier components
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FIG. 11: Distribution functions of carbon disulfide around a methanol molecule at the x3 = 0 plane. Carbon distribution (left)
and sulfur distribution (right).

FIG. 12: Charge distribution of carbon disulfide around a methanol molecule. Cut at the x3 = 0 plane (left) and isosurface
plot (right).

which are therefore directly dealt with in Fourier space.
Nevertheless, the inverse Fourier transform of this long-
range part leads to undesirable boundary conditions that
have to be corrected. The correction comprises the so-
lution of an additional Laplace problem which can effi-
ciently be solved by a finite difference scheme with an
iterative GMRES solver. Finally, we also derived the
SS-BGY3dM equations to compute the site-site pair dis-
tribution functions of the pure solvent which are required
as input of the BGY3dM model.

A comparison of the results computed by the
(SS-)BGY3dM model and by MD revealed a good over-
all performance of our method. All important charac-
teristics of the site-site pair distribution functions and
the site density distributions are reproduced. Hence, the
general form of the (SS-)BGY3dM model including the
modeling of the intramolecular bonds is consistent with
the results. Nevertheless, the involved approximations
have to be further modified to reach an improved level of
accuracy at realistic temperatures and for stronger inter-
actions. A promising approach would be the introduction
of an empirical correction specific for a certain solvent.
This would be similar to the empirical bridge functions

as they are employed by Du et al. [13] and Kovalenko
et al. [6] for water as solvent. A better accuracy could
also be gained by employing the optimal superposition
approximation of the intramolecular terms as it has been
derived by Attard [26]. This, however, requires an itera-
tive solution of an additional system of equations for the
functions to be superposed and would therefore increase
the computational costs.

In conclusion we note that our results are promising.
The BGY3dM model is able to reproduce the important
features of the site distribution functions around an ar-
bitrary solute. To consider more realistic solvents, such
as water, empirical corrections of the approximations are
currently under development.

Acknowledgments

This work was supported by the “Deutsche
Forschungsgemeinschaft” through the SFB 611 “Sin-
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