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Abstract. The management of intra-fractional respiratory motion is be-
coming increasingly important in radiation therapy. Based on in advance
acquired accurate 3D CT data and intra-fractionally recorded noisy time-
of-flight (ToF) range data an improved treatment can be achieved. In this
paper, a variational approach for the joint registration of the thorax sur-
face extracted from a CT and a ToF image and the denoising of the
ToF image is proposed. This enables a robust intra-fractional full torso
surface acquisition and deformation tracking to cope with variations in
patient pose and respiratory motion. Thereby, the aim is to improve ra-
diotherapy for patients with thoracic, abdominal and pelvic tumors. The
approach combines a Huber norm type regularization of the ToF data
and a geometrically consistent treatment of the shape mismatch. The
algorithm is tested and validated on synthetic and real ToF/CT data
and then evaluated on real ToF data and 4D CT phantom experiments.

1 Introduction

In this paper, we propose a variational framework that simultaneously solves
denoising of time-of-flight (ToF) range data and its registration to a surface
extracted from computed tomography (CT) data. Thereby, we underline the
benefits of such a joint variational approach. As a case study we show its potential
for improvements in radiation therapy planning and treatment. Our algorithm is
tested on synthetic and real ToF/CT data using a rigid torso phantom with real
ToF data and a 4D CT phantom. We show that the method is capable to cope
both with deformations caused by a variation in the patient positioning and by
the respiratory motion.

Compensation of Respiratory Motion as a Challenge in Radiation Therapy. The
management of respiratory motion in diagnostic imaging, interventional imaging



and therapeutic applications is an evolving field with many current and future
issues still to be adequately addressed. In particular, effects due to organ and
tumor motion attract considerable attention in radiation oncology [1]. Technolo-
gies that allow an increased dose to the tumor while sparing healthy tissue will
improve the balance between complication and cure. Besides a typical patient
setup error of 3-5 mm (1 standard deviation) with thoracic radiotherapy [2],
a fundamental source of error and uncertainties in radiation therapy is caused
by respiratory motion during delivery. Thus, real-time tumor-tracking methods
based on the proper identification of thorax deformations due to breathing will
significantly improve the radiation therapy. Recently, it has been demonstrated
that respiratory motion can be effectively monitored using real-time 3D surface
imaging [3]. Schaller et al. [4] presented a time-of-flight respiratory motion de-
tection system that estimates at the ToF frame rate of 25 fps two 1D-signals
for the thorax and abdomen movement, respectively. Fayad et al. [5] proposed
to use ToF as surrogate to develop a respiration model using PCA. In [6, 7] a
patient specific respiration model for use in radiotherapy has been investigated.

Time-of-Flight Imaging. ToF imaging directly acquires 3D metric surface infor-
mation with a single sensor based on the phase shift ρ between an actively emit-
ted and the reflected optical signal [8]. Based on ρ, the radial distance (range) r
from the sensor element to the object can be computed as r = cρ

4πfmod
where fmod

denotes the modulation frequency and c the speed of light. The technology has
recently been proposed for diagnostic, interventional and therapeutic medical
applications such as patient positioning [9] and respiratory motion detection [4].
However, due to physical limitations of the sensor, depth data from ToF cam-
eras are subject to high temporal noise and exhibit systematic errors. Temporal
noise is usually reduced by temporal averaging and can be further smoothed by
employing edge preserving filters [10].

Joint Variational Methods in Imaging. Given a pre-fractionally acquired CT
image and an intra-fractionally recorded sequence of ToF images of a torso we
set up a variational approach, which combines the two highly intertwined tasks
of denoising the ToF image and registration of the ToF surface of the thorax with
the corresponding surface extracted from the CT data. Indeed, tackling each task
would benefit significantly from prior knowledge of the solution of the other tasks.
Joint variational methods have proven to be powerful approaches in imaging. E.g.
already in 2001 Yezzi, Zöllei and Kapur [11] and Unal et al. [12] have combined
segmentation and registration and Feron and Mohammad-Djafari [13] proposed
a Bayesian approach for the joint segmentation and fusion of images. Droske and
Rumpf proposed in [14] a variational scheme for morphological image denoising
and registration based on nonlinear elastic functionals. Recently, in [15] Buades
et al. proposed sharpening methods for images, based on joint denoising and
matching of images taken as an image burst.

The paper is organized as follows. In Section 2, we introduce the model for
joint registration and denoising, including the functional definitions and varia-
tional formulations, while Section 3 covers the numerical implementations. In



Section 4, we study the parameter setting of the method and show experimental
results. Eventually, we draw a conclusion in Section 5.

2 A Joint Registration and Denoising Approach

In this section, we will describe the underlying geometric configuration, derive
the variational model and prove the existence of minimizers.

Geometric Configuration

Let us assume that we have already extracted a reliable surface GCT ⊂ R3 from
the given CT image. Now, given the ToF camera parameters, we denote by Gr
the corresponding (unknown) noise free surface geometry uniquely described by
the range data (ToF) r. Indeed, for each point ξ on the image plane Ω a range
value r(ξ) describes a position vector Xr(ξ) ∈ R3 with

Xr(ξ) = r(ξ)γ(ξ) ,

where the transformation γ : Ω → S2; γ(ξ) =
(
|ξ|2 + d2

f

)− 1
2

(ξ1, ξ2, df ) is based

on the pinhole camera model with df denoting the focal length. Now, the pre-
fractionally acquired surface GCT differs from the intra-fractionally found surface
Gr (cf. Fig. 1).

In our application scenario, the shape of Gr de-

Ω
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ξ
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u(ξ)
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Fig. 1. A geometric
sketch of the registration
configuration.

pends on the actual positioning of the patient on
the therapy table and the current state of the res-
piratory motion at the acquisition time of the ToF
image. Hence, we consider a deformation φ match-
ing Gr and GCT in the sense that φ(Gr) ⊂ GCT and
that this deformation can best be represented by a
displacement u defined on the parameter domain Ω
with

φ(Xr(ξ)) = Xr(ξ) + u(ξ) .

To quantify the closeness of φ(Gr) to GCT we rep-
resent GCT by the corresponding signed distance
function d with d(x) := ±dist(x,GCT), where the
sign is positive outside the object domain bounded by GCT and negative inside.
In particular d = 0 on GCT. Furthermore, |∇d| = 1 and ∇d(x) is the outward
pointing normal on GCT. Based on this signed distance map we can define the
projection P (x) := x−d(x)∇d(x) of a point x in a neighborhood of GCT onto the
closest point on GCT. Thus |P (φ(x))−φ(x)| is a quantitative pointwise measure
for the closeness of φ(x) to GCT for x ∈ Gr .



Variational Formulation

Now, we are in the position to develop a suitable variational framework which
allows us to cope with significantly noisy range data r0 from the ToF camera
and to simultaneously restore a reliable range function r∗ and extract a suitable
matching displacement u∗ as a minimizer of a functional

E [u, r] := Efid[r] + κEr,reg[r] + λEmatch[u, r] + µEu,reg[u]

consisting of a fidelity energy Efid for the range function r given the input range
function r0, a suitable variational prior Er,reg for the estimated range function,
a matching functional Ematch depending on both the range data r and the dis-
placement u, and finally a prior Eu,reg for the displacement. Here, κ, λ, µ are
positive constants which weight the contributions of the different energies.

Fidelity Energy for the Range Function. We confine here to a simple least square
type functional enforcing closeness of the restored range function r to the given
input data r0 and define

Efid[r] :=

∫
Ω

|r − r0|2 dξ .

Let us remark that nowadays ToF devices deliver together with a dense sequence
of range data frames an indicator of the reliability of the output separately for
each pixel. This allows to get rid of true outliers. Denoting by ri0(ξ) the range
value at a position ξ ∈ Ω at time ti and by χi(ξ) the corresponding reliability
indicator (χi(ξ) = 1 if ri0(ξ) is reliable and 0 else) we actually consider time
averaged input data and define at a particular time tj the input range function

r0 of our method as rj0(ξ) =
(∑i=j

i=j−m χ
i(ξ)

)−1∑i=j
i=j−m χ

i(ξ)ri0(ξ) for a fixed

m (in our application m = 4). In fact, in our model we take into account this
L2-fidelity term instead of a in general more robust L1-functional since in the
application considered here large outliers are already eliminated by this time
averaging using the reliability indicator of the ToF device.

Prior for the Range Function. Range images of the thorax taken from above
are characterized by steep gradients in particular at the boundary of the pro-
jected thorax surface and by pronounced contour lines. To preserve these features
properly a TV -type regularization prior for the range function is decisive. On
the other hand, we would like to avoid the well-known staircasing artifacts of a
standard TV regularization. Hence, we take into account a pseudo Huber norm
|y|δ =

√
|y|2 + δ2 for y ∈ R2 and a suitably fixed regularization parameter δ > 0

and define

Er,reg[r] :=

∫
Ω

|∇r|δ dξ .

Decreasing this energy comes along with a strong smoothing in flat regions which
avoids staircasing and at the same time preserves large gradient magnitudes at
contour lines or boundaries.



Matching Energy. The purpose of the matching functional is to ensure that
φ(Gr) ≈ GCT with φ(x) = x + u(x). Thus, we pick up the pointwise measure
|P (φ(x))− φ(x)| of the mismatch at a position x ∈ Gr and obtain a first ansatz
for the functional

Ematch[u, r] :=

∫
Gr

|P (φ(x))−φ(x)|2 da=

∫
Ω

d(φ(Xr(ξ)))
2
√

detDXr(ξ)TDXr(ξ) dξ .

Here, we have used that |∇d| = 1 and thus

|P (φ(x))− φ(x)| = |d(φ(x))∇d(φ(x))| = |d(φ(x))| .

The area weight
√

detDXr(ξ)TDXr(ξ) with DXr(ξ) = Dr(ξ)⊗γ(ξ)+r(ξ)Dγ(ξ)
involves first derivatives of r, which can be regarded as a further first order prior
for the range function. We experimented with this at first glance geometrically
appealing approach, but observed a strong bias between this local weight for the
quality of the matching and the actual matching term d(φ(Xr(ξ)))

2 leading to
less accurate matching results in particular in regions of steep gradients in r(·)
corresponding to edges or the boundary contour of Gr.
Thus, we considered the functional

Ematch[u, r] :=

∫
Ω

d(φ(Xr(ξ)))
2 dξ =

∫
Ω

d(r(ξ)γ(ξ) + u(ξ))2 dξ .

This functional directly combines the range map r and the displacement u and
together with the corresponding prior functions both for r and u substantiates
the joined optimization approach of our method. In fact, an insufficient and
possibly noisy range function r prevents a regular and suitable matching dis-
placement and vice versa.

Prior for the Displacement. Finally, we have to take into account a regularizing
prior for the displacement u : Ω → R3. Here, we consider

Eu,reg[u] :=

∫
Ω

|Du(ξ)|2 dξ

with |A|2 := tr(ATA), which leads to satisfying results in our applications with
a moderate rigid body motion component in the underlying deformation. Let us
mention that a generalized model, which strictly incorporates rigid body motion
invariance will depend on the Cauchy Green strain tensor of the deformation
φ ◦ Xr and thus again combines gradients of the range function r and the dis-
placement u in a functional of the type

∫
Ω
W (D(φ ◦ Xr)

T (ξ)D(φ ◦ Xr)(ξ)) dξ
with D(φ ◦Xr)(ξ) = (DXr(ξ) +Du(ξ)) for some energy density function W .

Joint Functional. All in all, we obtain the following joint functional

E [u, r] =

∫
Ω

|r − r0|2 + κ|∇r|δ + λd(r(ξ)γ(ξ) + u(ξ))2 + µ|Du(ξ)|2 dξ

and can postulate the following result concerning the existence of an optimal
range map and a corresponding optimal deformation.



Theorem 1 (Existence of Minimizers). Let Ω be a bounded domain, GCT 6=
∅ and bounded, and r0 ∈ L2(Ω). Then there exists a minimizer (u∗, r∗) of E [u, r]
on (H1,2(Ω))3 ×BV (Ω).

Proof. At first we observe that on a minimizing sequence the range functions are
uniformly bounded in BV (Ω) because of the uniform boundedness of Efid and
Er,reg. From GCT 6= ∅ we deduce that d(·) is Lipschitz continuous. Furthermore,
d(·) has linear growth outside a sufficiently large ball due to the boundedness of
GCT. From this and the fact that the range maps are already uniformly bounded
in L2(Ω) we obtain that the displacements are uniformly bounded in (L2(Ω))3.
Taking into account the uniform bound on the displacement prior Eu,reg we
finally get that the displacements are uniformly bounded in (H1,2(Ω))3. Hence,
we can extract a subsequence for which the range functions converge weak–∗
in BV (Ω) and the displacements converge weakly in (H1,2(Ω))3. Finally, Efid

and Ematch are continuous in r and u, Er,reg is weakly lower semicontinuous on
BV (Ω), and Eu,reg is convex in the Jacobian of the displacement. Thus, by the
usual arguments of the direct method in the calculus of variations one verifies
the existence of a minimizing range function r∗ and a minimizing deformation
u∗.

3 Numerical Minimization Algorithm

We consider a gradient descent method for the numerical minimization of the en-
ergy functional E [·, ·], which requires the computation of the first variations with
respect to the range function and the displacement, respectively. The variations
of E [u, r] in u and r are given as

∂uE [u, r](ψ)=

∫
Ω

2λd(rγ + u)(∇d)(rγ + u) · ψ + 2µDu : Dψ dξ ,

∂rE [u, r](ϑ)=

∫
Ω

2(r − r0)ϑ+ κ
∇r · ∇ϑ√
|∇r|2 + δ2

+ 2λd(rγ + u)(∇d)(rγ + u) · γ ϑ dξ

where ϑ : Ω → R is a scalar test function and ψ : Ω → R3 is vector-valued test
displacement. Furthermore, A : B = tr(ATB).

For the spatial discretization a piecewise bilinear Finite Element approxima-
tion on a uniform rectangular mesh covering the image domain Ω is applied.
The distance function d is precomputed using a fast marching method [16] and
stored on grid nodes. In the assembly of the functional gradient we use a Gauss
quadrature scheme of order 3. The total energy E is highly non-linear due to
the involved nonlinear distance function d and the pseudo Huber norm | · |δ.
We take a multiscale gradient descent approach [17], solving a sequence of joint
matching and denoising problems from coarse to fine scales. On each scale a
non-linear conjugate gradient method is applied on the space of discrete range
maps and discrete deformations. As initial data for the range function r we take



into account the raw (time averaged) range data r0, respectively. The displace-
ment is initialized with the zero mapping. The gradient descent is performed
with respect to a regularizing metric

g((δr, δu), (δr, δu)) =

∫
Ω

|δr|2 +
σ2

2
|∇δr|2 + |δu|2 +

σ2

2
|Dδu|2

where δr and δu are increments in the range function r and the displacement u,
respectively. Furthermore, σ corresponds to a Gaussian type filter width acting
on the descent directions. As time step control the Armijo rule is taken into
account [18]. We stop iterating as soon as the energy decay is sufficiently small.

4 Validation and Application of the Model

To validate our model we have investigated the validation on a real CT and
synthetic ToF data (rigid torso phantom), on synthetic CT and ToF data (NCAT
respiration phantom), and finally the application to a real CT and real ToF data
(rigid torso phantom).

Underlying Data. CT data was acquired on a Siemens SOMATOM Sensation 64
for a male torso phantom at a resolution of 512×512×346 voxels with a spacing
of 0.95 × 0.95 × 2.50 mm3. The surface GCT with an approximate diameter of
33 cm is extracted from this data set using a thresholding based region growing
segmentation, a marching cube algorithm on the resulting binary segmentation
mask followed by a Laplacian mesh smoothing. ToF frame sequences were ac-
quired using a CamCube 3.0 ToF camera from PMD Technologies GmbH1 with
a resolution of 200×200 pixels, a frame rate of 40 Hz, a modulation frequency of
20 MHz, an infrared wavelength centered at 870 nm, an integration time of 750
µs, and a lens with 40◦×40◦ field of view. This frame rate renders a temporal av-
eraging over 5 frames as acceptable. At the clinical working distance of 1-1.5 m,
the noise level of the range measurements is σ2 ≈ 40 mm2. In addition we have
used the NCAT: 4D NURBS-based CArdiac-Torso phantom [19] and generated
(artificial) CT data for 16 states within one respiration cycle. For each state, the
phantom surface mesh is extracted with the segmentation and mesh generation
pipeline sketched above (voxel spacing (x,y,z): 3.125 × 3.125 × 3.125 mm3 and
overall resolution of 256 × 256 × 191 voxels). The length of the underlying res-
piratory cycle is 5 s with an extent of diaphragm motion of 20 mm, an extent
of the AP chest expansion of 12 mm (respiration start phase: full exhale, full
inhale: 0.4). We generated a typical RT treatment scene by adding a treatment
table plane. The synthetic data generation follows the proposal in [20] but has
been simplified: Instead of simulating the photon mixing device we directly op-
erate on simulated distance values based on the z-buffer representation of a 3D
scene. We then approximate the temporal noise on a per-pixel basis by adding
an individual offset drawn from a standard normal with σ2 = 40 mm2. This

1 http://www.pmdtec.com/
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Fig. 2. Validation of the model on a male phantom GCT (top left and bottom left).
The first two lines correspond to results for the full torso incl. head, whereas the third
line refers to results for the thorax and abdomen part of the phantom. As quantitative
measure of the denoising and registration results we show the distance dist(Gr∗ ,GrGT)
on Gr∗ (middle left) and the distance dist(φ(GrGT ),GCT) on φ(GrGT ) (middle right)
color coded from −2 mm to +2 mm using the color bar on the left. Results in the first
row correspond to raw, non time averaged range data, whereas in the second and third
row a time averaging with m = 4 is taken into account. Furthermore, Gr0 for time
averaged range data r0 is shown (top right) and a color coding of the resulting in plane
displacement is rendered below for the full torso incl. head (second row) and the sole
torso (third row) in case of the time averaged range data (angle and length of the
vector (u1(ξ), u2(ξ)) are encoded as color and brightness, respectively).

variance is motivated by observations on real ToF data at the clinical working
distance of about 1-1.5 m. As rather large synthetic deformation we have taken
into account u1/2(x) = α(±x1(x2 − 1/2) + (1 − x1)(x1 − 1/2)) and u3(x) = 0
with a comparably large deformation scale parameter α = 0.1.

Algorithmic Validation Setup. The workflow of the preparatory phase of our
validation experiments is as follows: At first we load the torso mesh (real CT
phantom or NCAT). Next, we generate a ground truth range image rGT. Then,
we generate a synthetic ToF image by adding Gaussian noise with a particular
standard derivation σ: rnoisy = rGT +noiseσ2 . Furthermore, we deform the phan-
tom torso by the synthetic deformation (in the 2D table plane) to generate a

planning CT surface Gphantom
CT . Finally, we generate the discrete signed distance

function from the triangular planning CT surface on a 3D mesh of grid resolution
2573.



non joint joint non joint joint
dist(Gr∗ ,GrGT) dist(φ(GrGT ),GCT)

Fig. 3. Comparison of denoising and subsequent registration to the proposed joint
approach for time averaged range data r0. The two left images show dist(Gr∗ ,GrGT)
on Gr∗ for the non joint (left) and joint approach (right). The two right images depict
the distance measure dist(φ(GrGT ),GCT) on φ(GrGT ) for the non joint (left) and joint
approach (right). The color coding is the same as in Fig. 2.

Validation Results for the Real CT and Synthetic Range Data. In Fig. 2, results
of our algorithm are shown for a phantom torso and artificially generated range
data. We compare the case of unfiltered range data with a suitable set of model
parameters (κ = 0.0004, λ = 10000, µ = 0.004) to the case of time averaged
range data with an adapted set of parameters (κ = 0.0001, λ = 2500, µ = 0.001).
In addition, we evaluate the benefits of the joint approach in comparison to an
algorithm, where one first denoises r0 and then computes a matching of Gr
and GCT. Fig. 3 shows that the joint approach is superior to the subsequent
denoising and registration approach. Obviously, incorporating prior knowledge
about the target shape GCT helps substantially in the denoising process. On the
other hand, proper denoising also renders the registration problem more robust.
Furthermore, we study the impact of different denoising models in Fig. 4, where

the proposed regularization using the pseudo Huber norm is compared to a
simple quadratic regularization energy κ

∫
Ω
|∇r|2 and an egde preserving TV

regularization of r. The oversmoothing effect of the quadratic model and the
staircasing artifacts of the TV model are clearly visible. Here, time averaged
ToF data has been investigated and κ = 0.0001.

Fig. 4. An experimental evaluation of different denoising models is performed. From left
to right the distance dist(Gr∗ ,GrGT) is color coded on Gr∗ for a quadratic regularization,
a TV regularization, and the proposed regularization via the pseudo Huber norm of
∇r. The color coding is the same as in Fig. 2.



phase 3 phase 5 phase 7 phase 9

Fig. 5. Four different phases of a respiration cycle Gr0 for time averaged range data
r0 are depicted (first row). The distance dist(Gr∗ ,GrGT) on Gr∗ (second row) and the
distance dist(φ(GrGT ),GCT) on φ(GrGT ) (third row) are color-coded as in Fig. 2.

Application Benchmark for a 4D CT Respiration Phantom. In Fig. 5, we consider
the joint denoising and registration of the synthetic ToF data (σ2 = 40mm2,
time averaging over 5 frames) based on the 4D CT respiration phantom with
16 phases. Thereby, the phantom volume at full expiration is considered as the
CT geometry GCT (phase 1 out of 16). To speed up the algorithm we now take
into account the estimated deformation field and the denoised range data from
the previous phase as initial data for our algorithm on the next phase. Table 1
compares this to an initialization of r with r0 and u with the zero displacement.
We observe a reduction of the required gradient descent steps by a factor 1

3
without any change of the resulting minimal energy. Here, the model parameters
are κ = 0.0001, λ = 2500, µ = 0.001.

Application to Real CT and Real ToF Data. Finally, we study the performance
of our algorithm on real CT and real ToF data based on the rigid torso phantom

Table 1. The number of non-linear CG steps are reported for different phases of a
respiration cycle for our method with and without initialization based on the previously
processed respiration phase.

respiration phases phase 3 phase 5 phase 7 phase 9

# it E [u∗, r∗] # it E [u∗, r∗] # it E [u∗, r∗] # it E [u∗, r∗]

No initial. 1743 1.778 1602 1.818 1781 1.832 1812 1.832
incremental initial. 662 1.778 418 1.818 538 1.832 470 1.832



Fig. 6. On the left Gr0 for time averaged real ToF data and the underlying CT phantom
GCT are rendered in a single image using alternating slices. On the right the distance
dist(φ(Gr∗),GCT) on φ(Gr∗) is again color-coded as in Fig. 2.

in Fig. 6. Here, we apply a time averaging of the range data over 5 frames and
use the parameters κ = 0.0001, λ = 2500, and µ = 0.001. We observe that
even topological artifacts (systematical errors of the ToF data due to intensity
related distance errors) can be removed and we obtain satisfying denoising and
matching results using the proposed joint denoising and registration approach.

5 Discussion and Conclusion

We have proposed a joint variational model for the denoising of ToF range data
and the simultaneous matching with a surface extracted from CT data. The
approach turned out to be of strong potential for the application in radiation
therapy, where respiratory motion has to be compensated to improve therapy
planning and treatment. The joint approach is capable of significantly reducing
systematic errors from ToF imaging and the obtained quantitative results are
within the intended tolerance margins. Based on this approach in a next step
a reliable 3D extension of the matching displacement onto the whole geometric
model can be computed, which would then finally allow an adaptive steering of
the beam in the radiation therapy.
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