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Abstract. To manage respiratory motion in image-guided interventions
a novel sparse to dense registration approach is presented. We apply
an emerging laser-based active triangulation (AT) sensor that delivers
sparse but highly accurate 3-D measurements in real-time. These sparse
position measurements are registered with a dense reference surface ex-
tracted from planning data. Thereby a dense displacement field is recon-
structed which describes the 4-D deformation of the complete patient
body surface and recovers a multi-dimensional respiratory signal for ap-
plication in respiratory motion management. The method is validated
both on real data from an AT prototype and synthetic data sampled
from dense surface scans acquired with a structured light scanner and
achieved a mean reconstruction accuracy of ±0.22 mm when compared
to ground truth data.

1 Introduction

In the context of small margin and high dose treatment, the management of
intra-fractional respiratory motion is paramount for patients with thoracic, ab-
dominal and pelvic tumors. Respiration-synchronized image-guided radiation
therapy (IGRT) delivery techniques aim at tracking the tumor location and
reposition the beam dynamically [1, 2]. To reduce additional radiation exposure,
recent hybrid tumor-tracking techniques combine episodic radiographic imag-
ing with continuous monitoring of external breathing surrogates based on the
premise that the internal tumor position can be accurately predicted from exter-
nal motion. The underlying correlation model can be established from a series of
simultaneously acquired external-internal position measurements [2] or 4-D CT
planning data [3]. Clinically available solutions for hybrid tumor-tracking [2, 4, 5]
measure external motion using a single or a few passive markers on the patient’s
chest as a low-dimensional surrogate. Thus, these techniques are incapable of
depicting the full complexity of respiratory motion, they involve extensive pa-
tient preparation, and require reproducible marker placement with a substantial
impact on model accuracy. Modern IGRT solutions that allow to monitor the
motion of the complete external patient surface help to reduce correlation model
uncertainties. In particular, optical range imaging (RI) technologies can acquire
a dense 3-D surface model of the patient’s chest [6–8]. Based on the estimation
of a dense displacement field representing the deformation of the instantaneous



Fig. 1. Geometric configuration for reconstructing the dense deformation φ with
φ(ζ, g(ζ)) = (ζ, g(ζ)) + u(ζ) from sparse sampling data Y = {y1, . . . , yn} and the ap-
proximate sparse inverse ψ with ψ(yi) = yi + wi (for a better visibility G and Y have
been pulled apart). Furthermore, the orthogonal projection P onto G and the projection
Q from the graph onto the parameter domain Ω are sketched.

torso surface w.r.t. a reference surface (either from RI or planning CT data),
a highly accurate correlation model can be established [9, 10]. The deformation
estimation from dense surface scans for application in RT has been investigated
recently [11, 10]. Available RI-based IGRT solutions are capable of delivering
dense surface information in a marker-less manner but focus on patient posi-
tioning, do not support dense sampling in real-time [6, 7] or at the cost of a
limited field of view [8], often imply high costs in terms of hardware and are
subject to measurement uncertainties due to the sampling principles e.g. active
stereo [8] or swept lasers [6, 7]. The temporal resolution of these solutions may
be insufficient to characterize respiratory motion [12].

In this paper, we propose a novel marker-less system based on a non-moving
active laser triangulation (AT) sensor that delivers sparse but accurate measure-
ments in real-time (30 Hz). Using prior patient shape knowledge from planning
data, a variational model is proposed to recover a dense and accurate displace-
ment field and to reconstruct a complete and reliable patient surface model at
the instantaneous respiration phase. The variational model is discretized using
a multi-linear Finite Element approach and the optimization is guided by a
step-size controlled gradient flow to guarantee fast and smooth relaxation. The
algorithm is evaluated on synthetic and real AT data from 16 subjects.

2 Method

In this section, we derive the variational model for the reconstruction of a dense
displacement field from sparse measurements. Given is a reference shape G ⊂ R3

extracted from planning data and the instantaneous body surface M represented
by a sparse sampling Y . For instance, let us assume that the AT sensor acquires
a set of n measurements Y = {y1, . . . , yn}, yi ∈ R3, arranged in a grid-like struc-
ture (Fig. 1). We assume that G is given as a graph, i. e. there is a domain Ω ⊂ R2

(usually associated with the plane of the patient table) and a function g : Ω → R
such that G =

{
(ζ, g(ζ)) ∈ R3 : ζ ∈ Ω

}
. Due to respiration, the intra-fractional

sampling Y is not aligned with G. Now, the goal is to estimate the unknown,
non-rigid, dense deformation φ of G with Y ⊂ φ(G). For this purpose, in a joint



manner, we estimate φ together with an inverse deformation ψ matching Y and
G in the sense that ψ(Y ) ⊂ G. Thereby, registering Y onto G we solely deal with a
sparse displacement field (ψ(yi))i=1,...,n on the n positions measured by the AT.
A geometric sketch of the registration configuration is depicted in Fig. 1. Esti-
mating ψ allows us to establish a correspondence between the AT measurements
and the reference patient surface, whereas the dense deformation φ enables the
reconstruction of the complete instantaneous patient surface.

Let us fix some useful additional notation. We represent ψ by a vector of
displacements W = {w1, . . . , wn} with ψ(yi) = yi +wi . Furthermore, the defor-
mation φ is represented by a displacement u : Ω → R3 defined on the parameter
domain Ω of the graph G with φ(ζ, g(ζ)) = (ζ, g(ζ)) + u(ζ) . To quantify the
matching of ψ(Y ) onto G let us assume that the signed distance function d with
respect to G is precomputed in a sufficiently large neighborhood in R3. We set
d(x) := ±dist(x,G), where the sign is positive outside the body, i. e. above the
graph, and negative inside. Then ∇d(x) is the outward pointing normal on G
and |∇d(x)| = 1. Based on this signed distance map d we can define the pro-
jection P (x) := x − d(x)∇d(x) of a point x ∈ R3 in a neighborhood of G onto
the closest point on G and compute the mismatch of ψ(Y ) and G pointwise via
|P (ψ(yi)) − ψ(yi)| = |d(yi + wi)|. Let us emphasize that we do not expect ψ
to be equal to the projection P . Indeed, the computational results discussed
below underline that it is the prior in the deformation φ which leads to general
matching correspondences for a minimizer of our variational approach.

2.1 Definition of the Registration Energy

Now, we define a functional E on dense displacement fields u and sparse vectors
W of displacements such that a minimizer represents a suitable matching of the
planning data and AT measurements:

E [u,W ] := Ematch[W ] + κ Econ[u,W ] + λ Ereg[u] (1)

where κ and λ are nonnegative constants controlling the contributions of the
individual terms. Ematch denotes a term measuring closeness of ψ(Y ) to G. The
consistency functional Econ is responsible for establishing the relation between
both displacement fields. Finally, Ereg ensures a regularization of the dense dis-
placement u. The detailed definitions of these functionals are as follows.

Matching Energy. In order to measure closeness of ψ(Y ) to G, we use the
pointwise mismatch measure discussed above and define

Ematch[W ] :=
1
2n

n∑
i=1

|d(yi + wi)|2 . (2)

Consistency Energy. For a known instantaneous deformation φ of the patient
surface G and an exact deformation correspondence ψ(Y ) ⊂ G of the AT mea-
surement Y the identity φ(ψ(Y )) = Y holds. But for an arbitrary deformation
ψ described by some vector of displacements W in general ψ(Y ) 6⊂ G. To relate



φ and ψ in this case we have to incorporate the projection P because φ is only
defined on G. In fact, to ensure that (φ ◦ P ◦ψ)(W ) ≈W for a minimizer of the
total energy we introduce the consistency energy

Econ[u,W ] :=
1
2n

n∑
i=1

|P (yi + wi) + u(QP (yi + wi))− yi|2 , (3)

where Q ∈ R3×2 denotes the orthographic projection matrix with Q(ζ, g(ζ)) = ζ.
Here, we have used that φ(P (ψ(yi))) = P (yi + wi) + u(QP (yi + wi)) . Indeed,
this definition of the consistency energy allows us to compute a dense smooth
displacement of the patient planning surface even though only a sparse set of
measurements is available.

Prior for the Displacement. To ensure smoothness of the deformation φ on
G we incorporate a thin plate spline type regularization of the corresponding
displacement u [13] and define

Ereg[u] :=
1
2

∫
Ω

|4u|2 dx , (4)

where 4u = (4u1,4u2,4u3) and thus |4u|2 =
∑3

k=1(4uk)2. Indeed, since
our input data Y only implicitly provide information for φ on a sparse set, a
first order regularizer is inadequate to ensure sufficient regularity for the defor-
mation. Let us emphasize that (discrete) smoothness of the approximate inverse
deformation ψ is implicitly controlled by the regularization of φ.

2.2 Numerical Optimization

To minimize the functional E (Eq. 1), we apply a Finite Element approximation
and optimize the functional using a gradient descent scheme. In particular, after
an appropriate scaling of G we choose Ω = [0, 1]2 and consider a piecewise bi-
linear, continuous Finite Element approximation on a uniform rectangular mesh
covering Ω (we used a 129×129 grid). Furthermore, the signed distance function
d is precomputed using a fast marching method [14] on a uniform rectangular
3-D grid covering the unit cube [0, 1]3 and stored on the nodes of this grid.
In the algorithm d and ∇d are evaluated using trilinear interpolation of nodal
values. For the gradient descent, derivatives of the energy have to be computed
numerically. The derivatives of Ematch and Econ w.r.t. wj are given as:

∂wj
Ematch[W ] =

1
n
d(yj + wj)∇d(yj + wj)

∂wj
Econ[u,W ] =

1
n

(P (yj + wj) + u(PΩ(yj + wj))− yj)

(DP (yj + wj) +∇u(QP (yj + wj))QDP (yj + wj))
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Fig. 2. Validation on real AT data. Estimation of φp transforming G into Mp, from AT
sampling data Yp. For the glyph visualization of φp on G, |u(ζ)| is color coded [mm].

where DP denotes the Jacobian of the projection P . The variations of Econ, Ereg

with respect to u in a direction ϑ : Ω → R3 are given by

〈∂uEcon[u,W ], ϑ〉 =
1
n

n∑
i=1

(P (yi + wi) + u(QP (yi + wi))− yi)ϑ(QP (yi + wi))

〈∂uEreg[u], ϑ〉 =
3∑

k=1

∫
Ω

4uk4kϑ dx

The evaluation of DP involves the Hessian D2d(x) of the distance function.
One can either compute D2d(x) based on second order finite differences or -
as actually implemented here - replace the projection direction in P by the
already computed direction from the last update. Furthermore, the Laplacian of
a Finite Element function is evaluated by the discrete Finite Element Laplacian.
In the gradient descent scheme we stop iterating as soon as the energy decay
is smaller than a threshold value ε (ε = 10−4 proved to be sufficient to achieve
the accuracy reported below). For the first frame of the respiratory motion we
initialize u = 0 and wj = P (yj)−yj leading to approx. 60 gradient descent steps
on average. For all subsequent frames we take u computed in the previous step
and wj = P (yj) − yj as initial data resulting in approx. 45 descent steps on
average.

3 Experiments and Results

Experimental Setup. For validation of the method, we have used an eye-safe
AT prototype that is based on a novel single-shot active triangulation principle
[15]. The prototype acquires a sparse grid of 11×10 accurate 3-D sampling lines
in real-time (30 Hz), using two perpendicular laser line pattern projection sys-
tems and a 1024×768 px resolution CCD chip. Within the measurement volume,
the mean AT measurement uncertainty is σ = 0.39 mm. The evaluation dataset
is composed of 32 datasets from 16 subjects, each performing abdominal and
thoracic breathing, respectively. Per subject, we synchronously acquired both
real AT data and surface data using a moderately accurate but rather dense
structured light (SL) system with a resolution of 320×240 px. Both sensors were
mounted at a height of 1.2 m above the patient table, at a viewing angle of 30◦.



G and Y4 dist(G,M4) dist(φ4(G),M4) φ4 on G

Fig. 3. Estimation of φp transforming G into Mp from realistic AT sampling data Yp,
for thoracic (top row) and abdominal respiration (bottom row). p = 4 represents the
respiration state of fully inhale, roughly. For the glyph visualization of φ on G, |u(ζ)|
is color coded [mm]. Please note that the color coding differs by a factor of 10.

Fig. 4. Glyph visualization of φ2 to φ8 on G for an abdominal respiration cycle.

AT and SL data were aligned using calibration. From each dataset, we extracted
sparse AT measurements Yp and dense SL meshes Mp for 8 phases within one
respiration cycle. In the experiments below, the subject’s body surface at full
expiration M1 is considered as the given planning data G. The model parame-
ters were empirically set to κ = 8 · 10−1, λ = 4 · 10−8.
Validation on Real AT Data. Results for the reconstruction of φp for phase p
on real AT data are given in Fig. 2. A quantitative evaluation on real AT and
aligned SL data was unfeasible, as the SL camera exhibited local sampling ar-
tifacts (due to the underlying measurement principle and interferences between
the laser grid (AT) and speckle pattern projections (SL) of the synchronously
used modalities) which cause local deviations in the scale of several millimeters.
Quantitative Evaluation on Realistic AT Data. For quantitative evalua-
tion, we developed a simulator for the generation of realistic AT sampling data
from dense SL surfaces. For this purpose, the noise characteristics of our AT
sensor prototype were measured in an optics lab and used to augment the syn-
thetic sampling, providing realistic AT data. We considered the reconstruction
of the displacement field φp from realistic AT data Yp, p = {2, . . . , 8} sam-
pled from Mp. An evaluation is given in Fig. 3 and the displacements for a full
respiration cycle are shown in Fig. 4. The accuracy of the deformation estima-
tion is assessed by the absolute error |dist(φp(G),Mp)| in Fig. 5 representing the
mismatch between the transformed reference surface and ground truth surface.
To discard boundary effects, the evaluation is performed within the central sur-
face of interest covering the torso. Over all subjects and respiration phases, the



Fig. 5. Box plots of |dist(φp(G),Mp)| for realistic AT sampling data from 16 subjects,
for abdominal (top row) and thoracic (bottom row) respiration. Given are plots (left)
for different phases of the respiration cycle, (center) w.r.t. the respiration amplitude,
and (right) for the individual subjects. Note that the reconstruction error scales ap-
proximately linearly with the respiration amplitude observing a peak at the respiration
state of fully inhale (phase 4/5). The whiskers indicate that >99% of the residual error
is <1 mm.

mean reconstruction error was 0.22 mm w.r.t. ground truth dense SL data. This
indicates that the proposed method is capable of reliably recovering the dense
and accurate displacement field from a sparse sampling of the instantaneous pa-
tient state using prior shape knowledge.
Runtime Performance. With our proof of concept implementation, a single
gradient descent step on a single core of a Xeon X5550 2.67GHz CPU currently
takes ≈ 60 ms. Over all subjects, we achieved total runtimes of 2.6±0.7 s. As
our proposed method exhibits an inherently high degree of data parallelism we
further consider a GPU implementation.

4 Conclusions and Outlook

A key challenge in IGRT is respiratory motion. In this paper, a novel variational
approach to marker-less reconstruction of dense non-rigid 4-D surface motion
fields from sparse but accurate real-time AT sampling data has been introduced.
In a study on 16 subjects, we demonstrated that the algorithm can precisely re-
construct the dense respiratory displacement field using prior shape knowledge
from planning data, at a mean reconstruction accuracy of ±0.22 mm. The impli-
cations of this work for RT motion management are manifold. The 4-D motion
fields can be used as physically correct multi-dimensional respiration surrogates,
as input for accurate external-internal motion correlation models, and to recon-
struct the instantaneous body shape for patient positioning. Although we have



limited our discussion to RT, the approach holds great potential for motion-
compensated tomographic reconstruction and image-guided interventions.
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