A Variational Framework for Simultaneous Motion Estimation and Restoration
of Motion-Blurred Video

Figure 1. From two real blurred frames (left), we automatically and simultaneously estimate the motion region, the motion vector, and the
image intensity of the foreground (middle). Based on this and the background intensity we reconstruct the two frames (right).
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Abstract

The problem of motion estimation and restoration of ob-
jects in a blurred video sequence is addressed in this paper.
Fast movement of the objects, together with the aperture
time of the camera, result in a motion-blurred image. The
direct velocity estimation from this blurred video is inac-
curate. On the other hand, an accurate estimation of the
velocity of the moving objects is critical for restoration of
motion-blurred video. Therefore, restoration needs accu-
rate motion estimation and vice versa, and a joint process is
called for. To address this problem we derive a novel model
of the blurring process and propose a Mumford-Shah type
of variational framework, acting on consecutive frames, for
joint object deblurring and velocity estimation. The pro-
posed procedure distinguishes between the moving object
and the background and is accurate also close to the bound-
ary of the moving object. Experimental results both on sim-
ulated and real data show the importance of this joint esti-
mation and its superior performance when compared to the
independent estimation of motion and restoration.
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1. Introduction

Motion estimation, that is, the computation of the veloc-
ity of moving objects in a given image sequence, is a well
known problem in image processing and has received sig-
nificant attention in recent years. Optical flow computation
is one example of a widely used approach to motion estima-
tion. Numerous methods have been developed to determine
this flow, e.g., [10, 24]. One commonly known fact is that
the clearer the sequence is, the more reliable the motion can
be estimated. While certain robustness has been addressed
in motion estimation, e.g., under varying illumination, [13],
and contrast, [4], simple observation of the state-of-the-art
literature in the subject immediately reveals that the videos
are quite sharp and in general of sufficiently high quality. In
particular, blurred video, see below, is very seldom consid-
ered in motion estimation techniques.

There are many real world effects on video footage
which make motion estimation more difficult. In this pa-
per, we address how to handle one of these critical effects.
Considering video footage from a standard video camera, it
is quite noticeable that relatively fast moving objects appear
blurred (cf. Fig. 1). This effect is called motion blur, and it
is caused by the way a camera takes pictures and is linked



to the aperture time of the camera, which roughly integrates
information in time. The longer the aperture is open, or the
faster the motion, the blurrier moving objects appear.

To improve the accuracy of the motion estimation on a
video suffering from motion blur, it would be helpful to re-
move the motion blur first. On the other hand, if the ac-
tual motion is known, the motion blur can be removed by
“deconvolution,” since the motion gives the velocity of the
objects and therefore the exact kernel needed for deconvo-
lution. Realizing that these two problems are intertwined
suggests to develop a method to tackle both problems at
once.

In this paper we introduce a variational method which
jointly handles motion estimation, moving object detection,
and motion blur deconvolution (cf. Fig. 1). The pro-
posed framework is a Mumford-Shah type of convex vari-
ational formulation, which includes explicit modelling of
the motion-blur process as well as shape and image regular-
ization terms, and is solved via efficient regularized decent
techniques. The input to the variational formulation are two
consecutive frames, while the output are the corresponding
reconstructed frames, the segmented moving object, and the
actual motion velocity. As demonstrated in this paper, this
joint estimation of motion, moving object region, and re-
constructed images, outperforms techniques where each in-
dividual unknown is individually handled.

Before proceeding with the explicit description of the
proposed framework, let us illustrate this last point. For
this, we use the image in Fig. 2, which although artificial,
is very challenging and appropriate to demonstrate the ad-
vantage of joint estimation. In this figure, the Einstein in-
sert fop; is moving (velocity vector v = (6, 7)), while the
Lena background f3, is fixed. The independently computed
velocity from the blurred frames leads to an inaccurate es-
timate of v = (5.78,6.80) and of the moving region (level-
set of ¢g), which results in non-satisfactory restoration of
the blurred frames (first image in second row of Fig. 3, see
also Fig. 7). With our proposed joint technique, we ob-
tained v = (5.98,7.009), and both the frames (last row of
Fig. 2) and the moving region (blue curve, level line of ¢ in
middle row of Fig. 2) are accurately recovered.

The remainder of this paper is organized as follows. Af-
ter briefly presenting the related literature and a resume of
our key contributions, we describe the motion model in Sec.
2 and derive our variational formulation in Sec. 3. Then, in
Sec. 4 results of the joint approach are discussed. Section 5
is devoted to a detailed description of the energy minimiza-
tion algorithm and in Sec. 6 we draw conclusion and give an
outlook. The appendix contains a comprehensive collection
of gradient components required in the algorithm.

Figure 2. Results on an artificial motion blur sequence showing
a square with a picture of Einstein moving on the Lena image as
background. The input images g1 and g2 (top), the recovered ob-
ject intensity fo;, the initial boundary contour of the object (red)
and the computed contour (blue) (middle row), and finally the re-
covered frames f1 and f> (bottom) are depicted.

Figure 3. For the example from Fig. 2, intermediate results from
our algorithm are depicted. In the top row from left to right the
object contour is shown for three iterations from the initialization
phase based on motion competition without deblurring. On the
bottom three follow—up iterations of the joint method including
the restoration of the frame are depicted.



1.1. Related works and key contributions

There exist numerous methods to remove motion blur
using a single frame,', and these often introduce strong as-
sumptions on the scene and/or blur [8]. As an example,
let us mention the recent contribution on blind motion de-
blurring using image statistics presented in [17], were the
author explains, as clear from the results, that while the
image often well recovered, the actual motion and region
of movement are often quite non-accurate. Another recent
approach to motion deblurring [ 1] uses blending with the
background but assumes the shift-variant case. Further [2]
tackles piecewise shift-variant deblurring, including a seg-
mentation of the blurred regions. Of more interest to our
approach are techniques that use multiple frames, and these
(some of them hardware based) are only very few, as sum-
marized in [8]. More on the close connection between our
work and [8] will be presented below.

Sequential motion estimation and then deblurring has
been reported in [16] (see also [19]), while not address-
ing a truly joint estimation. The idea of developing joint
methods for intertwined problems has become quite popu-
lar and successful recently, for example blind deconvolution
and denoising [9], segmentation of moving objects in front
of a still background and the computation of the motion ve-
locities [14], segmentation and registration using geodesic
active contours [12, 23], anisotropic classification and car-
toon extraction [3], and optical flow computation and video
denoising [18].

Motion deblurring can also be obtained with the so
called “super-resolution framework,” see [21] and refer-
ences therein. The basic idea behind these approaches,
which often assume that the blurring kernel is provided,
is to obtain a higher resolution image from a collection of
low-resolution frames. In addition, these techniques often
assume that the whole frame suffers motion blur (or attack
this with robust norms), and do not explicitly separate the
moving object from the background or estimate the motion
velocity.

The pioneering work by Favaro and Soatto, [8], is the
closest to ours, not only because of the use of multiple
frames but also because of the joint estimation. In a sep-
arate paper, they also [7] address the problem of simultane-
ously inferring the depth map, radiance and motion, from
motion blurred and defocused. Thus, these works address
the same challenges as we do here, which is the joint estima-
tion of motion and scene deblurring from multiple frames.
Some differences are that the authors of [8] approximate the
motion blur with a Gaussian, rather than the more accurate
rectangular filter, described in the next section. This model
leads them to an anisotropic diffusion flow, and inverting

'Similarly, the literature on motion estimation is abundant. Here we
concentrate only on works addressing blurred video.

it is ill posed. On the other hand, the variational formula-
tion we propose here is well-posed and convex. The model
in [8] is designed to handle only very little blur (motion),
while the proposed method, as illustrated by the real ex-
amples below, can handle large velocities and blurs. We
also model the crucial blending of the foreground and back-
ground, which happens in reality and significantly effects
the blur as well as the reconstruction near the boundary of
the moving object (see examples in Fig. 2,5,6). Finally, we
note that while the proposed formulation could deal with
multiple moving objects, in this paper we provide examples
with only one, whereas [8] develop their work for multiple
moving objects— although they present no examples of this
capability with real video data.

To recap, this paper addresses the very important and
challenging problem of joint motion estimation and scene
reconstruction from multiple frames. This problem has been
widely ignored in the literature, and ordinary motion esti-
mation techniques assume sharp videos, while deblurring
techniques often have other not always realistic assump-
tions. Furthermore, we incorporate a motion blur model
which is consistent at motion singularities. The important
differences with the only closely related method, proposed
[8], are detailed above.

2. Modeling the blurring process

Images from an image sequences captured with a video
camera are integrated measurements of light intensity emit-
ted from moving objects over the aperture time interval of
the camera. Let f : [T, T] x ©; (t,x) — R denote a con-
tinuous sequence of scene intensities over a time interval
[T, T] and on a spatial image domain €2 observed via the
camera lens. The video sequence recorded with the cam-
era consists of a set of images g; : 2 — R associated with

times t;, fori = 1,--- , m, given as the convolution
1 tiJr%T
gi(z) = f/ ft+s,2)ds (1)
T tiféT

over the aperture time 7. For the time integral, we propose
a box filter, which realistically approximates the mechani-
cal shutters of film cameras and the electronic read out of
modern CCD video recorders. In the simplest case, where
the sequence f renders an object moving at constant veloc-
ity v € R?,ice. f(z — sv) = f(t + s, x), we can transform
integration in time to an integration in space and obtain for
the recorded images

gi(z) = % j: (x — sv)ds = (f * hy)(x), 2)

for a one dimensional filter kernel h,, = 50(”%' . y)h(lf—‘ -y)
with filter width 7|v| in the direction of the motion trajec-

tory {y = 2 + sv : s € R}. Here v denotes v rotated by



Figure 4. We consider a moving circle with back and white stripes
in front of a similarly textured background. For this test case a
comparison is shown between the wrong (left) motion blur model
which ignores the motion discontinuity at the boundary and our
realistic, consistent model (right) given in (4).

A
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Figure 5. Given two frames for the realistic motion blur showing
the moving circle on the texture background from Fig. 4 (left),
computational results for the deblurring are depicted based on the
wrong motion blur model built into GG; (middle), and on our con-
sistent model (right). This clearly outlines the importance of a
proper handling of the motion discontinuity in the considered mo-
tion blur model.

90 degrees, dy is the usual 1D Dirac distribution and A the
1D block filter with h(s) = | ‘ for s € [— Tlv\7 v I] and

h(s) = 0, else. In case of an object moving in front of a
(still) background the situation is somewhat more compli-
cated. At a point x close to the boundary of the object, the
convolution (1) decomposes into a spatial convolution of
object intensities along the motion path for the sub-interval
of the aperture interval where the object covers the back-
ground at position z, and a retrieval of the background in-
tensity for the remaining opening time of the lens. Figure 4
shows a comparison between the actually observed motion
blur and results obtained by a (wrongly) direct application
of the spatial convolution formula (2) on a moving circular
object in front of a textured background (more specifics on
this below). This observation is particularly important for
the reliable recovery of boundaries of moving objects from
recorded video frames g; and subsequently for the proper
restoration of image frames (cf. Fig. 5 for a corresponding
comparison).

In what follows we consider an object moving with speed
v € R? in front of a still background f,, : 2 — R (which
simplifies the formulation—see Sec. 6 for remarks on the
generalization). The object at time 0 is represented by a
intensity function f,, : {2, — R defined on an object do-
main 2. From f,; and f,, one assembles the actual scene

intensity function

fitz) = fu(®—tv)xu(z —vt) +
foe(2) (1 = X (z — 01)) (3)

at time ¢, where Y, : R? — R denotes the characteristic
function of €. Now, inserting (3) in (1) and then using (2)
on €, we deduce the correct formula for the theoretically
observed motion blur at time ¢;,

Gi[ Qs 0, iy Foel (%) 7= ((foriXan) ¥ o) (2 —tiv) +
Joe (@) (1= (Xa* o) (2 —t5v)) (4)

for given object domain €2, motion velocity v, and object
and image (background) intensity functions f,,; and f,, re-
spectively. If we do not carefully model the observed inten-
sities as the moving object occludes and uncovers the back-
ground, we would observe (f(¢,-) * h,) on the object do-
main and f,, elsewhere (cf. the combination of Eq. (14) and
Eq. (3) in [8]). Given the more precise motion blur model
proposed here, we now proceed to derive a variational for-
mulation to simultaneously estimate all parameters in this
equation based on two consecutive frames.

3. A Mumford-Shah model

Given two frames g; and g» of a video sequence with
motion blur recorded at times ¢; and to, respectively, we
construct a variational model to extract from these frames
the domain €2, the image intensity f,,; of a moving object,
and the motion velocity v. Here, we propose that the back-
ground intensity f,, can a priori be extracted from the video
sequence, for example, by averaging pixels with stable val-
ues over a sequence of frames. The formulation generalizes
easily to include this estimation, as described in Sec. 2. We
aim at formulating a joint energy for these degrees of free-
dom. Modeling this energy we take into account the follow-
ing observations:

e Given v and intensity maps f.;, fi. : @ — R (ex-
tended on the whole domain in a suitable way), we phrase
the identification problem of the object boundary 0€,,; in
terms of a piecewise constant Mumford—Shah model. This
appears to be well-suited in particular because the un-
known contour is significantly smeared out due to the mo-
tion blur. Hence, a comparison of the expected motion
blur G; with the observed time frames g; in a least square
sense fQ Doy Uy i foe) — gi)2 dz is considered as the
fidelity energy, where the length of the boundary contour
|0€2,y;] acts as the corresponding prior.

e For known v and (2,;, we obtain an almost classi-
cal deblurring problem for f,,; with the modification of the
blurring kernel given in (3), which is already reflected in
the above fidelity term. We expect f,;, to be characterized
by edges (cf. Fig. 1, 2, and 6 ). As a suitable prior for



Figure 6. The performance of the joint model is shown in case of
2 consecutive images from an artificially blurred plane sequence.
The input images g1 and g2 (top), the recovered object intensity
fovj» the zero contour of the level set function ¢ at two different
relaxation step (in red and blue) of the algorithm (middle row),
and finally the recovered frames f; and f> (bottom) are displayed.

these intensity maps we select the total variation functional
fQ |V fui| d [20], which at the same time guarantees a suit-
able extension onto the whole space (cf. Fig. 2 for an ex-
ample of the object intensity f,,; which is extended in a total
variation consistent way to a neighborhood of the object do-
main €,,).

e Finally, given (1, and the two intensities f;, fi., the
extraction of the motion velocity v is primarily an optical
flow problem. The transport of the object intensity f,,; from
time t; to to described in G; and G4 provides us with in-
formation on v. In the case of limited intensity modulations
on the moving object, it is the comparison of the expected
transition profile ., * h,, encoded in G;, with the observed
profile in g; that will act as a guidance for the identification
of the motion velocity.

Based on these modeling aspects we finally obtain the
energy

g[Qobj)va obj] = Z /Q(Gi[Qoban objafbg] _gi)2 dz

i=1,2

+ / UV fos] Az + v|0820],
Q
&)

and ask for a minimizing set of the degrees of freedom €2,
v, and f,,;. Once a minimizer is known, we can retrieve the
deblurred images f(t1,-) and f(¢2,-) applying (3).

4. Discussion of the model

In this section we validate the performance of our vari-
ational model and discuss results obtained for different ap-
plications. Figures 2 and 6 demonstrate the model for two
different test cases. In both we see the proper identification
of the moving object and estimation of the motion velocity.
We obtain an estimated velocity v = (9.47, —0.007) of the

Figure 7. A comparison of our joint method with a non—joint
method and with a method not taking into account the consistent
motion blur model is shown. A restored frame with two zoom up
areas is depicted for a straightforward scale variant motion deblur-
ring, where the contour is extracted a priori based on pure motion
competition (left), for the non—consistent motion blur model on
the same a priori computed contour (middle), and for the fully
joint method with the consistent model (right).

Figure 8. A blow up of the moving object from Fig. 1 is rendered
for an original frame with motion blur (left) and for the restored
intensity (right) computed by our model.

plane in Fig. 6, compared to the true velocity v = (10,0).
The joint approach for all three unknowns—the motion ve-
locity v, the object intensity f,; and the object domain
Q,,—turns out to be crucial for a proper reconstruction of
blurred video frames. This interdependence is demonstrated
by the results in Fig. 7 where we compare our joint ap-
proach with a two step method which first tries to identify
Q,; and v based on a motion competition algorithm [6], fol-
lowed by the actual deblurring in a second step. Note that
the proposed method can be regarded as a motion compe-
tition method if we skip the convolution with the convolu-
tion kernel h, in the variational formulation. Figure 7 also
shows the importance of the consistent motion blur model
from (4) for a proper reconstruction in the vicinity of motion
singularities. Finally, we have applied our model to a true
motion sequence recorded with a hand held video camera.
The sequence shows a toy car moving in front of a puzzle
(background). We choose a textured object moving in front
of a textured background to demonstrate the interplay be-
tween the deblurring steered by the fidelity functional F?°
(see Eq. 7) and the reconstruction of sharp edges due to
the total variation built into the prior [7°. Results showing
the overall procedure of our approach are also depicted in
Fig.1. In Fig. 8 we render a zoom onto the moving object,
which demonstrates the interplay of the deblurring and the
edge reconstruction.



5. The minimization algorithm

To solve the minimization problem for the energy (5) we
consider that the object domain 2, is represented by the
zero super level set {z € Q : ¢(x) > 0} of alevel set func-
tion and follow the approach proposed by Chan and Vese
[5]. The domain splitting into object and background in the
different energy terms is encoded via a heaviside function
H(¢) with H(s) = 1 for s > 0, and 0 elsewhere. Further-
more, the perimeter of the object domain can be rewritten as
the total variation of H(¢), 1. e. |0Qu| = [, |V(H(¢))|dz
[1]. As in [5] we consider a regularized heaviside function
Hs(z) :== & + L arctan (%) for a scale parameter § > 0.
Let us emphasize that the desired guidance of the initial
zero contour to the actual object boundary relies on the non-
local support of this regularized heaviside function. Apply-
ing this approximation, we get a regularized integrand G¢,
representing the expected motion blur at time #;:

Gf[¢v Vs Jobj fbg} :((foij6(¢)) * hv)('_Tiv)
+ (fue(1=H5(¢) * hy)) (- =Tiv)) -

Finally, we obtain an approximate global energy consisting
of fidelity term % and prior [J°

85[¢ava obj] :f6[¢: v, obj] + j6[¢a fobj]

— 5 1—a)?
= Z /Q(GZ[¢,U, i) gl) dx o

i=1,2

4 /Q HIV foul + V|V Hy ()] da

(6)

This expression depends on the motion vector v € R? and
two scalar, unknown functions, namely the level set descrip-
tion ¢ of the object domain €2, and the object intensity f,;.
Now, we take into account discrete intensities for a given
video frame resolution of n x m pixels. We combine this
with a finite difference approximation of the energy, and de-
note by ® and F,, the corresponding vectors of nodal values
in R™ . In what follows, we will outline an energy relax-
ation method in this already spatially discrete setting based
on an operator splitting with step size control and a regular-
ized descent with respect to the level set description.
Initialization. At first, given an initial contour, we select
and fix (in a very rough approximation step) F, as the
intensity values of one of the images g; and g». Then, we
relax the functional [, 37, , (G —g:)? +v|VHs(¢)| dz,
where éf is obtained from G¢ skipping the motion blur
convolution. This initializing step can be regarded as
a “motion competition approach” (as in the level set
formulation of [6]), and we obtain an initial contour ®° and
an initial estimate v° for the motion velocity. Now, fixing
®° and vY, a standard deblurring based on (2) is performed

on g; and g» to obtain an initial estimate for E,%.

Gradient descent. We examined experimentally a sig-
nificantly different roughness (difference of gradient direc-
tions) of the energy landscape associated with the unknowns
®, v, and F,,;. Hence, an operator splitting strategy which
separates these directions and incorporates different time
steps for all of them turns out to be appropriate. In any sub-
sequent descent step we pick up the newly computed quan-
tities from the same iteration. As step size control we con-
sider Armijo’s rule, [15], separately evaluated for all three
components. The descent in the level set description ® of
the object domain €2, requires a special treatment.

A point-wise evaluation of

shape derivatives (here given as
variations with respect to the
level set function) in the pres-
ence of fine scale fluctuation in
the corresponding integrand of
the shape functional (in our case
object and background texture
blurred solely in the direction
of motion) is questionable (cf.
Fig. 9, which shows non—smoothness and concentration of
the gradient). Hence, we incorporate a regularized gradi-
ent descent in the level set function inspired by the Sobolev
active contour approach [22]. It is based on a Gaussian fil-
tering of the descent direction (presented in the appendix)
with a filter G, of width 0 = 0.005. Let us emphasize that
the resulting regularized descent does not affect the energy
landscape itself, but solely the descent path towards the set
of minimizers.
Stopping criterion. As a stopping criterion we require the
offsets in all three unknowns computed in the last time step
and measured in the Euclidean norm to be bounded by a
threshold parameter €. In our implementation we have cho-
sen € = 0.01.

A plot of the energy decay for the application in Fig. 2
is given in Fig. 10. Finally, let us summarize the algorithm
in pseudo code notation:

Figure 9. Color coded point-
wise gradient gradg & 5 for
one iteration from the appli-
cation in Fig. 2.

EnergyDescent(g1, g2) {
initialize ®°,0°, F: k = 1;
do {
7% = AmijoStepSize[£9, ®*];
P = P* —7Pgrad s, £ [DF, v*, FYl*Gos
7Y = AmijoStepSize[£?, v*];
v =o* —7Vgrad, £ (@ vk, FE];
78 = AmijoStepSize[£°, F:]; »
Fii = Fh—rF grad , £90%1 v+ FE);

k=k+1;
} while([| @ — @[, [lo™ — o, |5 —

obj

Fll =€)

For the convenience of the reader, a comprehensive col-
lection of variations of the different energy contributions
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Figure 10. Plot of the energy decay in the descent algorithm.

comprised in the gradient vectors gradg&%, grad,£9, and
grad Fobjg % is given in the Appendix.

6. Conclusions and outlook

In this work, we have presented a Mumford-Shah type
variational formulation for joint motion estimation and de-
blurring from video, which includes a segmentation of the
moving region. Following the tradition of jointly solving for
inter-dependent unknowns, we have shown that this formu-
lation outperforms individual and independent estimates. In
particular, we present a consistent motion blur model at mo-
tion discontinuities and demonstrate it to be essential for
proper deblurring.

Although the presented framework is generic, it was
particularly addressed for single moving objects and static
background. Handling multiple objects can be simply done
by having multiple €2,;; unknown regions in the general in-
troduced formulation (cf. the approach by Chan and Vese
[5] for multiple segments). More elegantly, and thereby also
permitting dynamic background, we could consider formu-
lations of the type f(t,-)x(-) = f(t + 7,-)x(- — 7v). This
constraint means that the function moves with the object,
and eliminates the need for having independent f,;; and
fvg functions. Results using this functional are in progress.

7. Appendix

Here, we discuss the variation of the different energy contribu-
tions comprised in the gradient vectors grad,&°, grad,£?, and
grad Fobjé’ % required to reproduce the gradient descent algorithm.

In the case of Fi,; and ®, these gradients consist of the deriva-
tives of the discrete energy with respect to the nodal values ®; and
(Fij)j, for j =1, -+ nm. To shorten notation, we introduce the
residual term

ril@) =2 (G20, v, fais Sl (2) = 4(a)] -

First, we consider the derivative with respect to v1 and v2 (v =
(v1,v2)), and obtain

Z / (o H () * (ko
—[0;Hs(¢) * (kv
-fbg(:r)] ri(z) dz,

— 1iho)] (@ — )

— Tihv)} ((E — Ti’L))

where k, (y) = —(y - v)|v| "2y (y) . Here, we rewrite the fidelity
term F° in terms of (2), differentiate this and then convert it back
to a spatial integral, instead of differentiating f * h, directly.

Let us remark that here we do not need to regularize the block
filter function h., to be able to calculate the variation of F° with
respect to v. This approach at the same time leads to significantly
more stable results.

To deduce the derivatives with respect to the other unknowns,
which represent discrete functions, we begin with the first varia-
tion of the fidelity functional F° and the prior functional 7 in the
direction of test functions and discretize afterwards:

%fé[fobj Z/ ri(x)(9Hs(4)) * hy)(x — Tiv) dz,
d s _ ri(z BTy . I
2l :0*; [ )Gtz +ha)e -

@) (H(6))  ho) (@ nv)} de,

. Vfobj )
=— di vd
=0 M/sz v (\Vfobj| o
d 5 _ V¢ /
S| =—v [ av (Z5) m@ua.

Here, we have applied straight forward differentiation and integra-
tion by parts. To remove the convolution from the test function
we use the integral transform

/ @+ a)(g*h)(@ +b)de = / (Fo+ % ) (W)a(y) dy,
Q Q

d
— T forj + €]
de

where ¢”* (z) := q(£x + b). Now, choosing test functions con-
centrated at nodes and evaluated for the spatially discretized en-
ergy, we finally obtain

2

o .
3w, 7= ;(Ri*hJT"'”’f)(ﬂﬁj)Hs(q’(xj)%
E) 2 )
50 70 = D (Rexh(T ) (@) (R H (2))(ay)
J =1
—(RiFog % b7 ) (2 HY (@ (a5)) ,
9 s . VEai(z;)
R = —pdiv | ———= |,
O(F obj)jJ . (‘VFnbj(gﬁ)l)
Y 7 — —v ! T iv L(IJ)
a<1> J Hy(®(x;)) d (\W(a:j)\)’

where R;(z) := 2[G?[®,v, Fu, Fi)(z) — gi(x)] denotes the
spatially discrete blurring residual. Note that we use standard dif-
ference quotients to numerically evaluate the derivatives appearing
above.
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