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Joint denoising and anisotropy estimation: original image, anisotropic cartoon and estimated orientation.
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Abstract

We propose a new approach for the extraction
of cartoons from 2D aerial images. Particularly
in city areas, these images are mainly character-
ized by rectangular geometries of locally vary-
ing orientation. The presented method is based
on a joint classification of the shape orientation
and a rectangular structure preserving prior in the
restoration of image shapes. Mathematically, an
anisotropic area functional encodes the preference
for edges aligned to locally preferable directions
and a higher order regularization term ensures a
smooth variation of these directions. The concrete
model is an anisotropic version of the Rudin-Osher-
Fatemi (ROF) scheme with a position dependent
anisotropy. Given the knowledge of the anisotropic
image structure, the restoration process can be sig-
nificantly improved, in particular the round-off ef-

fect of the ROF model can be reduced. By com-
bining the extraction of the anisotropy with the de-
noising method in a joint variational approach, we
obtain a suitable classification method, in which a
tedious direct anisotropy estimation can be avoided.
The implementation is based on a finite element dis-
cretization and an energy minimization via a step-
size-controlled gradient method. Instructive syn-
thetic images are considered to demonstrate the
methods performance and the approach is applied
to aerial images as a prototype application.

1 Introduction

Image restoration and the decomposition of images
into a cartoon (representation of the actual shapes)
and a texture are nowadays extensively studied
imaging tools [13, 14, 24]. An already classical ap-
proach is the Rudin-Osher-Fatemi model [21] and



variants of this method [15, 7, 28]. These meth-
ods are well-suitable to restore sharp edge con-
tours. But at corners formed by edges they come
along with a significant rounding artifact. In partic-
ular for images characterized by rectangular shapes
this hampers the identification of structures and de-
stroys a proper cartoon representation. Concepts
for anisotropic variational approaches, such as those
presented in [9, 18], and the anisotropic variant
of the Rudin-Osher-Fatemi model by Esedoglu and
Osher [12] point out a suitable modification, which
we are developing further here. As a prototype ap-
plication we consider aerial images of city zones,
the technique is however also suitable for other
types of images with similar morphologies. Hence,
we obtain the following problem set-up: We as-
sume, that the given possibly noisy and locally de-
stroyed image contains primarily structures with
straight edges and corners with right angles. Fur-
thermore, we assume that the orientation of these
structures varies in space. In particular we do not
fix an orientation a priori. The aim is now to extract
a cartoon representation of image shapes, while pre-
serving or even enhancing edges and sharp corners.
This extraction can also be regarded as an image
restoration technique.

Let us briefly review the state of the art. There al-
ready exists a large variety of approaches to feature
preserving image restoration, as for example non-
linear diffusion methods [26] (see also Fig. 6) and
the Rudin-Osher-Fatemi (ROF) model. The ROF-
model is the fundamental basis for a wide range of
image decomposition models, which separate the
input signal into a cartoon part u and a texture
part v (c. f. for instance [2, 3]). Inspired by Y.
Meyer’s idea [17] to characterize textures by func-
tions with a bounded ‖·‖∗ norm, i. e., the dual norm
of the BV -norm, the key ingredient for decomposi-
tion problems is the study of qualitative properties
for different norms in which the fidelity u − u0 is
measured.

Several methods were introduced to approximate
this problem by related problems, that are com-
putationally feasible and yield qualitatively similar
results [20, 13]. Recently, decomposition models
based on a L1-fidelity have attracted much attention
due to their desirable scale decomposition proper-
ties [15, 7, 28].

It is well known, that the restored image of the
ROF-model often suffers from a significant loss of

contrast. An iterative procedure based on Breg-
man iterations leads to a sequence of decreasing
scale, converging back to the original image, where
the loss of contrast is compensated already in very
early stages of the iteration [23, 19, 6, 5]. In the
continuous setting, this process can be interpreted
as an inverse scale space. The focus of this pa-
per is the study of the classical ROF model with
an anisotropic BV -norm. Based on the theory of
anisotropically aligned microstructures [27, 1, 25],
the concept of so-called Wulff shapes has been used
to denoise surfaces [9] and images [12] using es-
timated a-priori information about the shape of
the object to be denoised. In [18] the anisotropic
structure of blood vessels has been determined in
a first estimation step and subsequently deblurred
by “cigar-like” Wulff shapes with locally volume-
preserving mean-curvature flow.

In this paper, we propose a joint classification of
image anisotropies and a discontinuity-preserving
denoising model based on an anisotropic variant of
the ROF-model. To avoid round-off of non-smooth
parts of the boundary of the shapes, Esedoglu and
Osher [12, 4] considered the minimization of

Eγ [u] :=

Z
Ω

γ(∇u) dx +

Z
Ω

λ(u0 − u)2 dx (1)

which already generalized the original ROF model,
in which γ(∇u) = |∇u|. Here, γ encodes the
anisotropic area. In this paper we further generalize
this approach to tackle real applications in which
the orientation of the anisotropy usually varies in
space.

The joint estimation of feature anisotropies and
the corresponding image cartoon decomposition
also yields a convenient method of reconstructing
lost shape information, e. g., partially destroyed
edges or corners.

2 A Variational Approach

Let us first state the main goals of the model. For the
restored image u it is desirable to preserve the func-
tional features of the signal such as discontinuities
of codimension one (e.g. edges for twodimensional
images) and at the same time geometric features,
such as the shape of the level sets of the original
signal, with its characteristics of codimension two.
For the non-texture part of images it can often be



assumed that in many areas the anisotropic struc-
ture does not vary strongly in space. Hence, we aim
not only at the preservation of geometric features
but also at restoration in smaller areas, where strong
corruption of the morphology can still be recovered
by the shape information in the vicinity.

We consider anisotropy functions γ from a suit-
able restricted space of admissible anisotropies
which are parameterized over space. Previous mod-
els for anisotropic image or surface denoising typi-
cally rely on estimated shape classification [10, 18],
which is used to specify a given anisotropy a priori.
This two-step method is either fairly expensive or
inaccurate, and hence we want to solve both prob-
lems simultaneously. Thus we consider a joint clas-
sification and smoothing approach encoded in one
energy functional.
As described in [12], an anisotropic version of the
total variation semi-norm on L1

loc(Ω) is given by

‖v‖BVγ := sup
g∈C1

c (Ω;Rd)

g(x)·n≤γ(n)∀n∈Rd,x∈Ω

−
Z

Ω

v divg dx.

It is crucial to note that ‖ · ‖BVγ is topologically
equivalent to ‖ · ‖BV on L1

loc(Rd). For the ease
of presentation we use instead the widerspread for-
mal notation

R
Ω

γ(∇v) dx. Here γ is assumed to
be positive and one-homogeneous.

The Frank diagram Fγ and the corresponding
Wulff shape Wγ are defined by

Fγ :=
n

z ∈ Rd : γ(z) = 1
o

,

Wγ :=

(
z ∈ Rd : γ∗(z) := sup

n∈Sd−1

〈z, n〉
γ(n)

= 1

)
.

Wulff shapeFrank−Diagram
F W{γ = 1}

We essentially exploit the well-known fact, that the
Wulff shape has the optimal geometry, if normal di-
rections in Sd−1 are measured in terms of γ.

We eventually want to formulate a variational
problem over admissible anisotropies γ and im-
ages u, however the differentiation w.r.t. a general
space of anisotropies γ is not straightforward. We
aim at posing the problem over a restricted set of
anisotropies – well suited in particular for our ap-
plication on aerial images – that yields a convenient

differentiable structure and provides enough free-
dom for typical configurations in images with ac-
centuated edges, as in aerial images of urban re-
gions. Let us first assume a fixed preferred align-

The original images scaled to make all noise
visible.

Evolution with the isotropic ROF-method.

Our method without Bregman iterations.

Our method with two Bregman iterations.

Figure 1: Reconstruction of an artificial edge: In
the top row from left to right are the original im-
ages: A clean edge with noise, the same edge ar-
tificially destroyed, this destroyed edge with noise.
The noise is equally distributed in [−0.3, 0.3]. The
images have been intensity-scaled to show the full
range of noise. In the rows beneath we show the re-
sults from different methods. One can observe that
the isotropic ROF method always evolves rounded
edges whereas our method is able to produce sharp
corners.

ment of edges, namely horizontal and vertical struc-
tures. In this case, the anisotropy would be ex-
pressed by

γ(z) =

˛̨̨̨„
1
0

«
z

˛̨̨̨
+

˛̨̨̨„
0
1

«
z

˛̨̨̨
= |z1|+ |z2|,
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Figure 2: Left: Rotated Wulff shapes overlaying a
test example. Right: The definition of p and q.

which is the 1-norm with the unit square as the re-
spective Wulff shape.

In order to yield an alignment for arbitrary right
angles we have to rotate the Wulff shape. Conse-
quently, we introduce a free parameter α, which
represents the angle of the rotation.
We confine on the background of our application to
a rotated l1-norm as a Wulff shape and are inter-
ested in structures with right angles and an orienta-
tion given by an angle α. Therefore we introduce a
vector p = p(α) which is collinear to the base line
of the Wulff shape and a vector q = q(α) which is
orthogonal to it (see Figure 2):

p(α) :=

„
cos α
sin α

«
, q(α) :=

„
− sin α
cos α

«
.

We denote by M(α) :=

„
cos α sin α
− sin α cos α

«
the

orthogonal matrix for a rotation by −α. This leads
to the anisotropic energy

Eγ [u, α] :=
λ

s

Z
Ω

|u−u0|s dx+

Z
Ω

|M(α)∇u|1 dx,

where 1 ≤ s < ∞. Typical choices are s = 2 or
s = 1. Furthermore, we have to control the varia-
tion of the free parameter α. Recall, that the focus
of the proposed restoration method is the treatment
of corners, which are co-dimension two objects. In
case of a simple Dirichlet type regularization, we
would observe a lack of regularity from the Sobolev
embedding theorem. Thus, we consider a higher or-
der regularization energy, namely:

Eα[α] :=

Z
Ω

1

2

`
µ1|∇α|2 + µ2|∆α|2

´
dx.

Now, the total energy to be minimized is given by

E[u, α] = Eγ [u, α] + Eα[α].

The first term of the energy Eγ ensures, that the
evolution does not differ too much from the orig-
inal image, the second term is the rotated 1-norm
taking care of the prefered shapes. Furthermore, the
energy Eα limits the spatial variations of the orien-
tation parameter α.

Let us have a closer look at the second term of

Original Isotropic ROF

Anisotropic ROF, α = 0
constant

Anisotropic ROF, α
variable

Anisotropic ROF, α
variable, 2 Bregman

iterations
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π
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Result of α

Figure 3: Reconstruction of two artificial rectangles
with different methods.

Eγ :

|M(α)∇u|1 = |p · ∇u|+ |q · ∇u|.

Assume for simplicity |∇u| = 1, then |p · ∇u| =
cos β is the length of the projection of ∇u onto p
where β is the angle between p and ∇u (see Figure
4). Analogously, |q · ∇u| = sin β is the length
of the projection of ∇u onto q. Thus, we have



|M∇u|1 = |p·∇u|+|q·∇u| = cos β+sin β which
is minimal if β is 0 or π

2
. But this just holds if and

only if either p or q are orthogonal to∇u. Therefore

p

α
q

∇u
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cos β + sin β

β
β

u = c

Figure 4: The energy attains a minimum if p is
collinear or orthogonal to ∇u.

it is energetically preferable to choose the angle α
in such a way, that the coordinate system spanned
by p and q is aligned to the image edges. At cor-
ners, we will switch then from an alignment of p
to an alignment of q or vice versa (cf. Figure 3).
This alignment requirement together with the regu-
larity of α ensured by Eα will lead to a smoothing
of curved structures as well.

Figure 5: Reconstruction of the teaser image with-
out (left), with one (middle), and with two Bregman
iteration (right).

Figure 6: Qualitative comparison of our method
(middle) to anisotropic diffusion based on structure
tensors [26] (right). Already at a very early stage of
the evolution, anisotropic diffusion tends to signifi-
cantly round off corners.

3 Implementation

Regularization of the functional. First of all we
have to regularize the corner singularities in the

anisotropy γ. Thus, we replace the l1-norm by its
regularized version |x|1,δ = |x1|δ + |x2|δ with
|z|δ =

p
|z|2 + δ2 and obtain for the correspond-

ing regularized energy

Eδ =

Z
Ω

λ

2
|u− u0|2 + |M [α]∇u|1,δ

+
1

2

`
µ1|∇α|2 + µ2|∆α|2

´
dx.

As discussed in [11] the regularization parameter δ
has to be coupled with the grid size h of the com-
putational grid. δ is usually chosen proportional to
h.

Postprocessing by Bregman iteration. The co-
efficients have to be chosen adequately to balance
the fidelity energy and the anisotropic length func-
tional. This has to be done in such a way that the
sharpening of edges is indeed energetically more
preferable than just keeping destroyed edges in their
initial shape, thereby reducing the fidelity term.
This balance with a rather small coefficient in front
of the fidelity term leads to a significant loss of con-
trast. To compensate for this loss, we proceed itera-
tively for with the minimization problems resulting
from the following Bregman iteration [19]:

(uk+1, αk+1) := arg min
(u,α)

n Z
Ω

|M(α)∇u|1,δ dx

+
λ

2

Z
Ω

(u0 + vk − u)2 dx + Eα[α]
o

,

vk+1 := vk + u0 − uk+1

where v0 := 0, k = 0, . . .. As can be seen in Figure
5, we retain high contrast already in the early stage
of the iteration.

Interestingly, the Bregman iteration for ROF-
type models does also have a geometric interpre-
tation, namely the successive approximation of the
normals of the input image. Employing Bregman it-
erations using an anisotropic BV -norm, we obtain
an even more precise shape approximation in the
early stage of the iteration. However, we also ex-
pect the sequence of iterations to converge back to
the original signal as in the isotropic case.

Minimization Algorithm. We employ an simulta-
neous minimization algorithm to compute the min-
imum of the regularized energy for u and α in
each Bregman iteration. This means we search for
uk+1 ∈ BV (Ω) and αk+1 ∈ H2,2(Ω) such that
δuEk

δ [uk+1, αk+1] = 0 and δαEk
δ [uk+1, αk+1] =



0. Here δuEk
δ [u, α] and δαEk

δ [u, α] denote the first
variations of Ek

δ [u, α] (cf. Appendix), the energy to
be minimized in the k-th Bregman iteration, which
differs from Eδ only by a different function u0 in
the fidelity term.
For this sake we use a gradient flow with metric

g(w1, w2) = (w1, w2)L2 +
δ2

2
(∇w1,∇w2)L2 ,

where wi = (ui, αi) (cf. [8]). The step-size τ of
the gradient flow is controlled by the Armijo-rule
(cf. [16]).

Finite Element Discretization. We consider a uni-
form rectangular mesh C covering the whole image
domain Ω and use a standard bilinear Lagrange fi-
nite element space.
The integrals

R
Ω

vw dx and
R
Ω
∇ξ · ∇ϑ dx result

in the usual mass (M ) and stiffness (L) matrices.
Since we deal with piecewise bilinear finite ele-
ments, we introduce a second unknown w = −∆α
and write

R
Ω

∆α∆ϑ =
R
Ω
∇w · ∇ϑ, which leads

to the matrix LM−1L. We use a numerical Gauss
quadrature scheme of order three (cf. [22]) to com-
pute the integrals in the corresponding matrices and
vectors.

4 Discussion & Outlook

We have demonstrated the benefits of an anisotropic
Rudin-Osher-Fatemi-model for the cartoon extrac-
tion from images whose shapes are primarily rect-
angular with spatially varying orientation. Degrees
of freedom are the local orientation and the re-
stored image intensity. They are computed via
a minimization of a joint variational classification
and cartoon extraction approach. An anisotropic
shape prior reflects the preference for rectangular
shapes, whereas a higher order regularization en-
ergy for the orientation controls its spatial varia-
tion. As a prototype application we have considered
aerial images of urban areas with predominantly
right-angled structures (see the Figures on page 7
and the colorplate Figure 7, which both show the
original image, the cartoon and the estimated an-
gular structure). Furthermore, we have shown that
this approach can also be used to recover blurred
corners. Obviously, natural images can reveal far
more complex structures. Corner singularities with
opening angle different from π

2
have to be tackled

via a further generalized model - a focus for fu-
ture studies. Furthermore, besides the improvement

of anisotropic cartoon extraction, also the identifi-
cation of the image texture component can benefit
from an anisotropic variational treatment.
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5 Appendix

In this section, we give for the readers convenience
a complete list of the variations of our energy in the
case of s = 2. To simplify notation we introduce
the following abbreviations: ∂p(α)u = ∇u·p(α) =
∇u · (cos α, sin α)T and ∂q(α)u = ∇u · q(α) =
∇u · (− sin α, cos α)T (see also Figures 2 and 4).
Using this we get the following first variation with
respect to u:

δuEδ[u, α](v) = λ

Z
Ω

(u− u0)v dx

+

Z
Ω

∂p(α)u

|∂p(α)u|δ
∂p(α)v +

∂q(α)u

|∂q(α)u|δ
∂q(α)v dx.

The first variations with respect to α turns out to be:

δαEδ[u, α](ϑ)

= µ1

Z
Ω

∇α · ∇ϑ dx + µ2

Z
Ω

∆α∆ϑ dx

+

Z
Ω

∂p(α)u ∂q(α)u

|∂p(α)u|δ
ϑ−

∂q(α)u ∂p(α)u

|∂q(α)u|δ
ϑ dx.
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Figure 7: Application of our method to 4 different aerial images of city areas. Left: original image. Middle:
result of our algorithm. Right: color-coded angle of the anisotropic structure of the image.


