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Abstract. Within a manifold framework, the interpolation of tomo-
graphic image time series is investigated. To this end, the metamorphosis
model of a manifold of images is taken into account. Based on a vari-
ational time discretization, discrete geodesic paths in this space of im-
ages are computed. The space discretization is based on finite elements
spanned by tensor product cubic B-splines. An efficient implementation
is obtained by utilizing graphics hardware and a proper combination of
GPU and CPU computation. First results for time series of optical co-
herence tomography images of a macular degeneration demonstrate the
applicability of this geometric concept.

1 Introduction

This paper deals with the interpolation of images considered as objects in a
Riemannian manifold M of images. In this context, image interpolation can
naturally be phrased as computing a geodesic path between the input images.
Geodesics on Riemannian manifolds are minimizers of the path energy, which
in particular implies that they also minimize the path length and are arclength
parametrized. The path energy of a path u : [0, 1] → M, t 7→ u(t), is given by

E [u] =
∫ 1

0
gu(u̇, u̇) dt, where u̇ is the time derivative of the curve. In our case,

t 7→ u(t) is a curve of images and the metric gu(v, v) is a bilinear form measuring
the cost of an infinitesimal variation u+δv of an image u. To define the metric, we
follow the metamorphosis model, which was analyzed by Trouvé and Younes [1].
The associated metric is defined as an integral over the image domain Ω ⊂ R2

and reflects

– the cost caused by viscous Newtonian and multipolar dissipation |Dv|2 +
γ|D2v|2 due to friction, where Dv, D2v are the Jacobian and Hessian of v,

– the cost of the intensity modulation (u̇ + v · ∇u)2 along transport paths
described via the so-called material derivative u̇+ v · ∇u.

To evaluate the metric, we take into account the flow field v, which causes the
minimal cost. Altogether, we obtain for a fixed δ > 0 the path energy

E [u] =

∫ 1

0

min
flow fields v

∫
Ω

|Dv|2 + γ|D2v|2 +
1

δ
(u̇+ v · ∇u)2 dxdt . (1)
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Geodesic paths in the space of images, i.e. minimizers of this path energy, provide
smooth interpolations between the input images. In [2], Berkels et al. introduced
a variational time discretization of the path energy and proved Γ -convergence
to the time continuous path energy under slightly stronger assumptions. This in
particular implies the convergence of the minimizers of the discrete path energy
to (time continuous) geodesics. Furthermore, they proposed an algorithm to
numerically compute time discrete geodesics, for which a spatial discretization
of the underlying deformations and image intensities by piecewise affine finite
elements is employed.

Here, we improve the robustness and approximation quality taking into ac-
count cubic spline spaces. The algorithm is based on an alternating descent
scheme, during which multiple images are updated. To speed up these registra-
tion subproblems, which are the computational bottleneck, a GPU implementa-
tion (cf. [3]) significantly improves the performance of the proposed method.

In this paper, we demonstrate the applicability of this approach to optical
coherence tomography (OCT) images in age-related macular degeneration, the
most common cause of irreversible visual loss in industrial countries. In this
retinal disease, in-vivo imaging by OCT allows to detect and monitor progres-
sive microstructural changes of the outer retina that lead to photoreceptor cell
degeneration and thus functional loss (cf. [4]). As shown below, the approach
generates suitable interpolations equipped with explicitly computed pointwise
motion fields and intensity modulations. Furthermore, we compare a piecewise
geodesic path between images recorded annually against geodesic paths spanning
a four year period to test the prediction quality of the geodesic interpolation.

2012 2013 2014 2015

Fig. 1. Ophthalmoscopy (background) and a slice (perpendicular to the green line)
from an optical coherence tomography of a human eye (foreground) show an age-related
macular degeneration in four consecutive years.

2 Materials and Methods

2.1 Time discrete geodesics in the metamorphosis model

This section summarizes the time discrete metamorphosis model from [2], which
builds on a variational time discretization. To approximate the path energy (1),
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we consider a time discrete curve u = (u0, . . . , uK) in the space of images (with
uk : Ω → R being a gray valued intensity map) and define a dissimilarity measure

WD[u, ũ, φ] :=

∫
Ω

|D(φ− Id)|2 + γ|D2φ|2 +
1

δ
|ũ ◦ φ− u|2 dx

for two images u, ũ, and a deformation φ : Ω → Ω. By minimizing w.r.t. all
deformations φ with φ(x) = x for all x ∈ ∂Ω, we actually solve a very simple
(elastic) matching problem between the template image ũ and the reference im-
age u. Now, we define W[u, ũ] := minφWD[u, ũ, φ] as the optimal matching cost

and use this to introduce a discrete path energy EK [u] = K
∑K
k=1W[uk−1, uk]

summing over the (minimal) dissimilarity measure of consecutive image pairs.
Indeed, [2] shows that the first two terms in WD approximate the viscous fric-
tion reflected in the first two terms of the path energy (1), whereas the last term
approximates the squared material derivative term appearing in (1). Here, the
associated time step is τ = 1

K .
Now, a discrete geodesic connecting two images uA and uB is a discrete curve

in the space of images that minimizes EK over all discrete curves u with u0 = uA
and uK = uB . For a curve u and deformations φ = (φ1, . . . , φK), we set

EK,D[u,φ] = K

K∑
k=1

WD[uk−1, uk, φk].

Thus, a discrete geodesic from uA to uB is obtained by minimizing EK,D[u,φ]
with respect to u and φ while fixing u0 = uA and uK = uB . Minimizing with
respect to φ for fixed images u results in K independent image registration
problems (registering uk−1 to uk), while minimizing with respect to u for fixed
deformations φ leads to a linear system of equations for u, i.e. for k = 1, . . . ,K−1(

1 + (detDφk)−1 ◦ φ−1k
)
uk = uk+1 ◦ φk+1 + (uk−1 ◦ φ−1k )

(
(detDφk)−1 ◦ φ−1k

)
.

2.2 Spatial discretization and computation of geodesics

We consider the unit square [0, 1]2 as our computational domain Ω. To reduce the
complexity, we take into account a fine grid Gh for the image discretization and
a coarse grid GH for the deformation discretization – both regular and quadrilat-
eral. Grid elements of Gh and GH are denoted by eh and eH , respectively. For the
space of discrete images, we use the piecewise bilinear finite element space. The
space of discrete deformations is the Cartesian product space of (vector valued)
cubic splines.

Given K + 1 discrete images U = (U0, . . . , UK) with U0 = IhuA and UK =
IhuB (Ih is the nodal interpolation operator onto the discrete image space),
and K discrete deformations Φ = (Φ1, . . . , ΦK), we use a numerical quadrature
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Fig. 2. Left: speedup for assembly of the energy without (blue) and with (red) image
warping at image size (2d+1)×(2d+1). Right: Same data shown for gradient assembly.

scheme to compute the discrete path energy

EK,D
h,H [U,Φ] = K

K∑
k=1

( ∑
eH∈GH

3∑
Q=0

ωeHQ

(
|DΦk−Id|2(xeHQ ) + γ |D2Φk|2(xeHQ )

)
+

1

δ

∑
eh∈Gh

8∑
q=0

ωehq
(
Uk ◦ Φk(xehq )− Uk−1(xehq )

)2)
.

Here, we use Gauss-Legendre quadrature of order 3 in 2D on elements of GH to
compute the prior with quadrature points xeHQ and weights ωeHQ . The fidelity term
is computed using a tensor product Simpson quadrature on Gh with quadrature
points xehq and weights ωehq . Alternatively, we also use cubic splines for the image
intensity discretization on Gh and adapted the quadrature accordingly.

2.3 GPU accelerated computation of geodesics

In the numerical applications, it became apparent that the time-critical step in
the computation of geodesics was the solution of the registration subproblem.
The assembly of the discrete energy as well as the gradient exhibit data par-
allelism as the same integrand has to be evaluated on all elements during the
numerical integration. As GPUs are particularly well suited for the computation
of the data parallel parts of the program, the energy and gradient assembly are
implemented on the graphics card. Elements in the mesh are identified with a
thread on the GPU. For the assembly of the discrete energy, a reduction scheme
is employed to perform the integration on each element embedded into streams
to overlap computation on the GPU. As the assembly of the energy and the
gradient involves the evaluation of deformed images, the assembly can be fur-
ther accelerated by a pre-computing of deformed images via existing GPU image
warping tools (cf. Figure 2 for some speed up results).

3 Results

We applied the proposed method to two OCT image sequences, each consisting of
four images taken in consecutive years (cf. Figure 1 for one of the sequences) and
computed a piecewise geodesic curve interpolating these input images consisting
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of 3 ·K + 1 images (K = 27). Figure 3 shows the input images in red boxes and
the interpolated intermediate time steps u9 and u18 in between. Furthermore, the
corresponding velocity fields 1

τ (φk−Id) and the intensity modulation given by the
discrete material derivative 1

τ (uk ◦φk−uk−1) are shown. Finally, selected images
from a direct geodesic connection (K = 27) between the 2012 and 2015 images
are shown together with the associated velocity fields and intensity modulations.
This in particular enables a comparison of this wide span temporal geodesic
interpolation with the images recorded for the years in between.

4 Discussion

Based on the tool of discrete geodesics, we are able to compute interpolation
paths for a given time series of images. The method also provides information
on a probable motion field reflecting the actual deformation process of tissue
structures in tomographic images. In our application, a detailed analysis of dy-
namic disease evolution in age-related macular degeneration may serve for a
better understanding of the underlying pathogenetic processes, an identification
of prognostic biomarkers for progression and for the evaluation of new therapeu-
tical strategies. In addition, we compared the piecewise geodesic interpolation
with key frames for every year with the geodesic interpolation of a four year span.
A qualitative comparison of recorded and interpolated images allows a validation
of the physical model underlying the image manifold. Indeed, the obtained inter-
polation properly shows the progressive thinning of the outer retinal layers, while
subtle dynamic hyperreflective dots–presumably reflecting migration of retinal
pigment epithelium cells–are less accurately detectable by the long range inter-
polation. For the assessment of velocity fields, an accurate alignment of images
at different visits using the hyperreflective outer band of the retinal pigment ep-
ithelium as a reference should be incorporated. Motivated by the quality of the
obtained interpolation–even over wider time spans–we aim for the computation
of image extrapolation to predict the progression of the decease based on in-vivo
imaging. This might be of particular importance for future interventional clinical
trials that aim to prevent blinding retinal diseases.
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Fig. 3. First/fourth row: piecewise geodesic interpolation for four consecutive years of
human eyes for two patients (input data in red boxes). Second/third row: the associated
discrete velocity field (the hue refers to the direction and the intensity is proportional
to the norm) and the intensity modulation of the first patient. Fifth to seventh row:
geodesic interpolation between the years 2012 and 2015 of the second patient and the
associated discrete velocity field and intensity modulation, respectively.


