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Abstract. Brain shift, i. e. the change in configuration of the brain after
opening the dura mater, is a key problem in neuronavigation. We present
an approach to co-register intra-operative microscope images with pre-
operative MRI data to adapt and optimize intra-operative neuronavi-
gation. The tools are a robust classification of sulci on MRI extracted
cortical surfaces, guided user marking of most prominent sulci on a mi-
croscope image, and the actual variational registration method with a
fidelity energy for 3D deformations of the cortical surface combined with
a higher order, linear elastica type prior energy. Furthermore, the actual
registration is validated on an artificial testbed and on real data of a
neuro clinical patient.

1 Introduction

The development of medical imaging in the last decades quickly triggered intense
interest from the medical world to translate this progress on the imaging side to
clinical diagnostics and treatment planning. In that respect image registration
and in particular recently also the fusion of 2D and 3D image data is a fun-
damental task in image–guided medical intervention. In [1] 2D photographs of
human faces are registered with a triangulated facial surface extracted from MRI
data using rigid deformations. A registration method for sparse but highly accu-
rate 3-D line measurements with a surface extracted from volumetric planning
data based on the consistent registration idea and higher order regularization is
introduced in [2].

The matching of photographic images with pre-operative MRI data is a par-
ticular challenge in cranial neuronavigation. The photograph–MRI registration
problem in the context of intracranial electroencephalography has been inves-
tigated via a control point matching approach in [3]. Recently, normalized mu-
tual information has been applied for the rigid transformation co-registration
of brain photographs and MRI extracted cortical surfaces [4]. A major limita-
tion of note, however, is that due to the brain shift the surgeon’s view of the
operating site is not in a rigid transformation correspondence to pre-operative
images. Indeed, standard intracranial neuronavigation devices do not correct for
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this movement of brain [5]. The main contributions of this paper are a novel clas-
sification method for crease pattern such as sulci on implicit (cortical) surfaces
and the actual 2D-3D registration method, where a non-rigid 3D deformation of
the cortical surface is identified based on user marked sulci on photographs and
the camera parameters.

2 Materials and Methods

The aim of this paper is to register a photograph of the exposed human cor-
tex with the cortex geometry extracted from an MRI data set, see Fig. 1, us-
ing the sulci as fiducials. The main ingredients of the proposed approach are a
sulci classification on the cortex geometry (Section 2.1) and on the photograph
(Section 2.2), as well as a model that uses the two classifications to register

Fig. 1. Input photograph, MRI graph surface

photograph and cortical ge-
ometry (Section 2.3). The
2D digital photographs were
taken intra-operatively after
supratentorial craniotomy and
durotomy, and before cortico-
tomy, using a digital camera
with 10 mega pixel resolution
positioned 20 cm above the craniotomy. The MR imaging was performed on a 3T
MRI scanner. A T1-weighted MP2RAGE sequence (1×1×1m3 , 256×256×176
matrix) was segmented into gray and white matter using BrainVoyager QX [6]
and then converted into a signed distance function of the cortical surface using
a fast marching method.

2.1 Sulci Classification on MRI Data

In this section, we describe how to classify creases on the contour surface of
a 3D object B ⊂ Ω represented via its signed distance function d : Ω → R

on a computational domain Ω. In the application the object is a brain volume

Fig. 2. Moment-based classification

and the creases are
the sulci on the cor-
tical surface. We aim
for a moment based
analysis of the (corti-
cal) surface C := ∂B
and define the zero
moment shift of the
implicit surface C as follows M0

ǫ [B](x) = 1
|Bǫ(x)|

∫

Bǫ(x)
d(y)(y − x)dy which re-

turns larger values in flat regions of C than in edge regions and even smaller near
corners (cf. [7] for a related moment based classification on explicit surfaces). We
define the scalar classification C(x) = gβ

(

‖M0
ǫ [B](x)‖/ǫ

2
)

, where gβ(t) =
1

1+βt2
.

Fig. 2 illustrates the behavior of the classifier C on three simple shapes and a
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cortical surface extracted from an MRI using a white-green-blue-red color cod-
ing. We observe a robust distinction for a single set of parameters (β = 20 and
ǫ = 8h or 4h, where h denotes the grid width).

2.2 Generation of Annotated Cortex Photographs

Fig. 3. Cortex photograph and dic-
tionary based pre-classification

Essential problems for the classification of
sulci on photographs are additional struc-
tures and their misinterpretation. Most
prominent are cortical veins, which in
addition partially occlude sulci (these
veins are almost invisible in MRI in the
used MP2RAGE sequence). On this back-
ground we here confine to a still manual
marking of sulci by an expert who is supported by the results of a prior auto-
matic pre-classification of sulci based on learned discriminative dictionaries, cf.
Fig. 3, where the method from [8] is used.

2.3 Registration of Photograph and Cortex Geometry

The co-registration of an MRI extracted cortical surface C ⊂ R
3 and a pho-

tograph to compensate for effects such as the brain shift is based on a co-
registration of the sulci classifiers on C and the photograph. To this end, we

Fig. 4. Geometric configuration

suppose C to be described as a graph

C = {(x, z(x)) ∈ R
3|x ∈ ω}

with parameter domain ω ⊂ R
2 and graph

function z : ω → R. We are interested in
a local registration described by the cran-
iotomy, where such a graph representation
can be easily derived from the signed dis-
tance function used in Section 2.1. Fur-
thermore, let g ∈ L2(Ω) denote the sulci
classifier on the photograph domain Ω (cf.
Section 2.2), and f ∈ L2(ω) the corresponding classifier on the cortical surface
given as a function on the parameter domain ω, obtained by a suitable clamping
of C and rescaling of the values to the unit interval [0, 1] (cf. Section 2.1). Both
classifiers are supposed to be close to 1 in the central region of the sulci and small
outside. Finally, we denote by P : R3 → Ω the projection of points in R

3 onto
the image plane Ω derived from known camera parameters. Let us remark that
we thereby implicitly rule out self occlusions of the graph surface C under the
image plane projections. Now, we ask for a deformation Ψ : ω → R

3 defined on
the parameter domain ω of the graph function z that matches C to its deformed
configuration represented under the projection P in the photograph. Thereby,
matching is encoded via the coincidence of the surface classifier f(x) on the MRI
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described cortical surface and the image classifier g(P (ψ(x))) evaluated at the
projected deformed position P (ψ(x)) for all x on the parameter domain ω. Thus,
proper matching can be encoded via the minimization of the matching energy

Ematch[ψ] =
1

2

∫

ω

[g(P (ψ(x))) − f(x)]2A(x)dx

based on a surface integral over C with the area element A(x) = (1+ |∇z(x)|2)
1
2 ,

to consistently reflect the cortex geometry. In the overall variational approach
the matching energy is complemented by a suitable elastic regularization energy,
which acts as a prior on admissible deformations ψ. Here, we consider the second
order, elastic energy

Ereg[ψ] =
1

2

∫

ω

|∆ψ1(x)|
2 + |∆ψ2(x)|

2 + |∆ψ3(x) −∆z(x))|2dx.

Note that a simple first order regularization like the Dirichlet energy of the dis-
placement ψ − (·, z(·)) is not sufficient since matching information is mostly given
on a low dimensional subset where proper nonlinear extrapolation is required
and bending modes play an important role. Obviously, Ereg is rigid body motion
invariant (cf. [9]). Finally, we combine the matching energy Ematch and the regu-
larization energy Ereg to the total energy functional E[ψ] = Ematch[ψ] + λEreg[ψ]
on deformations ψ encoding the deformation of the cortical surface C, where λ
is a positive constant controlling the strength of the regularization.

To minimize the objective functional we use a time discrete regularized gra-
dient descent taking into account a suitable step size control combined with a
cascadic descent approach to handle the registration in a coarse to fine manner.
The first variation necessary for the descent algorithm is

〈E′[ψ], ζ〉 =

∫

ω

[g(P (ψ(x))) − f(x)]∇g(P (ψ(x))) ·DP (ψ(x))ζ(x)A(x)dx

+ λ

∫

ω

(∆2ψ1, ∆
2ψ2, ∆

2(ψ3 − z)) · ζdx,

where the natural boundary conditions ∂ν∆ψ = ∆ψ = 0 on ∂ω for the nor-
mal ν on ∂ω are considered and ψ is initialized as the identity on C, i. e.
ψ(x) = (x, z(x)). For the spatial discretization we consider bilinear Finite El-
ements on a rectangular mesh overlaying ω and Ω, and approximate the bi-
Laplacian ∆2 by the squared standard discrete Laplacian ∆2

h = M−1LM−1L.
Here, M and L denote the standard (lumped) mass and stiffness matrices, re-
spectively.

3 Results

We have applied our registration approach both to test data and to real data.
For the test data a cortical surface segmented on a 3D MRI data set has been
taken as input together with an image generated from this surface via a given
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manual
segmentation

moment-based
segmentation

before registration after registration

Fig. 5. Both for the test data (top row) and the pair of a true photograph and an
MRI extracted cortical surface (bottom row) we show (from left to right) the input
image with marked sulci (computed image and real photograph respectively), the sulci
classification on the 3D cortical surface segmented from MRI data, the initial misfit
of the sulci marking on the 2D image projected on the cortical surface overlaying the
cortical surface itself, and the final registration result.

projection concatenated with an additional 3D nonrigid deformation. Then on
the projected image selected sulci have been marked by hand. This pair of input
data together with the computed registration result are depicted in Fig. 5.

Furthermore, we considered a photograph of the brain surface seen through
a left fronto-temporo-parietal craniotomy performed in a patient before place-
ment of a subdural electrode grid for investigation of drug-resistant cryptogenic
epilepsy. We segmented sulci using the procedure in Section 2.2. This is then reg-
istered via the proposed approach with the cortical surface extracted from the
corresponding pre–interventional 3D MRI data. Again input data and achieved
registration are shown in Fig. 5.

4 Discussion

We have proposed a novel method for the registration of photographs (2D) of the
brain with the cortical surface extracted from 3D MRI data. The method turns
out to be effective and robust both on test and on real data. It can be considered
as an alternative to intra-operative MRI allowing subsequent co-registration with
neuronavigation [10]. Currently, we aim for a validation study with an increased
number of cases considering also data of patients with substantially smaller cran-
iotomies.

Furthermore, there is potential, that the iterative 2D/3D surface registration
of digital images together with morphological 3D MRI data sets will enable to
build up a“dictionary”of brain surface features. Ultimately, the creation of such a
dictionary might, to a certain extent, permit “intelligent” automatic recognition
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of brain surface features, where the 2D brain surface, seen through the intra-
operative microscope standardly used during intra-cerebral procedures, would
directly be co-registered to pre–interventional 3D MRI data.

As already discussed, the sensitivity of MRI and photography is substantially
different for different anatomic structures, e. g. veins are very prominent on im-
ages yet not on the MRI modality used here. One could incorporate multiple
MRI sequences and fuse vein sensitive images with the present images to im-
prove the registration results. Finally, let us remark that one could also consider
stereo photographs of the deformed surface to improve the methods performance.
In that respect our approach can easily be adapted summing over copies of the
matching energy.
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