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Abstract. In this paper the space of images is considered as a Riemannian manifold using the metamorphosis
approach [28, 40, 41], where the underlying Riemannian metric simultaneously measures the cost of image transport
and intensity variation. A robust and effective variational time discretization of geodesics paths is proposed. This
requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals over a
set of image intensity maps and pairwise matching deformations. For square-integrable input images the existence
of discrete, connecting geodesic paths defined as minimizers of this variational problem is shown. Furthermore,
Γ-convergence of the underlying discrete path energy to the continuous path energy is proved. This includes a
diffeomorphism property for the induced transport and the existence of a square-integrable weak material derivative
in space and time. A spatial discretization via finite elements combined with an alternating descent scheme in the set
of image intensity maps and the set of matching deformations is presented to approximate discrete geodesic paths
numerically. Computational results underline the efficiency of the proposed approach and demonstrate important
qualitative properties.

1. Introduction. The study of spaces of shapes from the perspective of a Riemannian
manifold allows to transfer many important concepts from classical geometry to these usu-
ally infinite-dimensional spaces. During the past decade, this Riemannian approach had an
increasing impact on the development of new methods in computer vision and imaging, rang-
ing from shape morphing and modeling, e.g. [21], and shape statistics, e.g. [14], to com-
putational anatomy [4]. A variety of Riemannian shape spaces has been investigated in the
literature. Some of them are finite-dimensional and consider polygonal curves or triangulated
surfaces as shapes [21, 24], but most approaches deal with infinite-dimensional spaces of
shapes. Prominent examples with a full-fledged geometric theory are spaces of planar curves
with curvature-based metric [25], elastic metric [37] or Sobolev-type metric [10, 26, 39]. The
concept of optimal transport was used to study the space of images, where image intensity
functions are considered as probability measures, e.g. Zhang et al. [44] minimize the Monge-
Kantorovich functional

∫
D
|ψ(x)−x|2ρ0(x) dx over all mass preserving mappings ψ :D→D.

Benamou and Brenier [6] used a flow reformulation of optimal transport, which nicely fits
into the Riemannian context.

For only a few nontrivial application-oriented Riemannian spaces geodesic paths can
be computed in closed form (e.g. [43, 38]), else the system of geodesic ODEs has to be
solved using numerical time stepping schemes (e.g. [22, 5]). Alternatively, geodesic paths
connecting shapes can also be approximated via the minimization of discretized path length
[36] or path energy functionals [15, 42]. In this paper, we will develop such a variational time
discretization on the space of images using the metamorphosis approach proposed by Trouvé
and Younes [41, 40, 19]. This approach is a generalization of the flow of diffeomorphism
approach initiated by Dupuis, Grenander and Miller [13].

The concept of variational time discretization is a powerful tool in the discretization of
gradient flows and for Hamiltonian mechanical systems. The analog of the time discrete
path energy considered here is a discrete action sum. For a historic account we refer to [16].
Numerical analysis was exploited from the Γ-convergence perspective in [30], and from the
ODE-discretization perspective under the name of variational integrators in [23, 33]. Thereby,
the time continuous Lagrangian on some time interval is replaced by a time discrete functional
related to our functionalW and defined directly on configuration variables and not involving
momentum variables.

Instead of discretizing the underlying flow and incorporating the target configuration at
the end time via a constraint, the variational discretization is based on the direct minimization
of a discrete path energy subject to data given at the initial and the end time. This approach
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turned out to be very stable and robust, and even for very small numbers of time steps one ob-
tains qualitatively good results. Furthermore, proceeding from coarse to fine time discretiza-
tion, an efficient cascadic minimization strategy can be implemented. In the context of shape
spaces, this concept has already been used in the space of viscous objects [15, 42, 34], but
without a rigorous mathematical foundation. In [35], a discrete geodesic calculus on finite-
and on certain infinite-dimensional shape spaces with the structure of a Hilbert manifolds was
developed and a full-fledged convergence analysis could be established. This theory immedi-
ately applies for instance to the (finite-dimensional) Riemannian manifold of discrete shells
[18, 17]. In this paper, we expand part of this theory to the metamorphosis model, which
lacks a Hilbert manifold structure.

In what follows, we will briefly review both the flow of diffeomorphism and the meta-
morphism approaches as a basis for the discussion of our time discrete metamorphosis model
and the Γ-convergence analysis to be presented in this paper.

Flow of diffeomorphism. Here, we give a very short exposition and refer to [13, 5, 20,
27] for more details. Following the classical paradigm by Arnold [1, 2], one studies the
temporal change of image intensities from the perspective of a family of diffeomorphisms
(ψ(t))t∈[0,1] : D̄ → Rd on the closure of the image domain D ⊂ Rd for d = 2, 3 describing
a flow, which transports image intensities along particle paths. In what follows, we suppose
that D is a bounded domain with Lipschitz boundary. A path energy

E[(ψ(t))t∈[0,1]] =

∫ 1

0

∫
D

L[v(t), v(t)] dxdt

is associated with each path (ψ(t))t∈[0,1] in the space of images, where v(t) = ψ̇(t) ◦ψ−1(t)
represents the Eulerian velocity of the underlying flow and L is a quadratic form corre-
sponding to a higher order elliptic operator. Physically, the metric gψ(t)(ψ̇(t), ψ̇(t)) =∫
D
L[v(t), v(t)] dx describes the viscous dissipation in a multipolar fluid model as investi-

gated by Nečas and Šilhavý [31]. From this perspective, a suitable choice for the viscous
dissipation is given by a combination of a classical Newtonian flow and a simple multipolar
dissipation model, namely

L[v(t), v(t)] := λ
2 (trε[v])2 + µtr(ε[v]2) + γ|Dmv|2 , (1.1)

where ε[v] = 1
2 (∇v + ∇vT ), m > 1 + d

2 and λ, µ, γ > 0 (throughout this paper gradient
∇, divergence div, and higher order derivatives Dm are always evaluated with respect to
the spatial variables). The first two terms of the integrand represent the usual dissipation
density in a Newtonian fluid, whereas the third term represents a higher order measure for
friction. Under suitable assumptions on L it is shown in [13, Theorem 2.5] that paths of finite
energy, which connect two diffeomorphisms ψ(0) = ψA and ψ(1) = ψB , are indeed one-
parameter families of diffeomorphisms. Furthermore, for any minimizing sequence of paths a
subsequence converges uniformly to an energy minimizing path, in particular the minimizing
path solves ψ̇(t, ·) = v(t, ψ(t, ·)) for every t ∈ [0, 1], where v is the energy minimizing
velocity (cf. [13, Theorem 3.1]). Given two image intensity functions uA, uB ∈ L2(D), an
associated geodesic path is a family of images u = (u(t) : D → R)t∈[0,1] with u(0) = uA
and u(1) = uB , which minimizes the path energy. The associated flow of images is given by
u(t) = uA◦ψ−1(t). In medical applications [4], the diffeomorphisms represent deformations
of anatomic reference structures described by some image uA. Thus, each diffeomorphism
ψ(t) : D̄ → Rd for t ∈ [0, 1] represents a particular anatomic configuration or shape of these
structures. Let us remark that this model is obviously invariant under rigid body motions, i.e.
rigid body motions are generated by motion fields v with spatially constant, skew symmetric
Jacobian, for which ε[v] = 0 and Dmv = 0.

2



Metamorphosis. The metamorphosis approach was first proposed by Miller and Younes
[28] and comprehensively analyzed by Trouvé and Younes [41]. It allows in addition for
image intensity variations along motion paths. Conceptually and under the assumption that
the family of images u is sufficiently smooth, the associated metric for some parameter δ > 0
can be written as

g(u̇, u̇) = min
v:D̄→Rd

∫
D

L[v, v] +
1

δ
(u̇+∇u · v)2 dx

and induces the path energy E[u] =
∫ 1

0
g(u̇(t), u̇(t)) dt . Let D

∂tu = u̇ + ∇u · v denote the
material derivative of u. Obviously, the same temporal change u̇(t) in the image intensity can
be implied by different motion fields v(t) and different associated material derivatives D

∂tu,
i.e. u̇(t) = D

∂tu−∇u · v. In fact, one introduces a nonlinear geometric structure on the space
of images by considering equivalence classes of pairs (v, D∂tu) as tangent vectors in the space
of images, where such pairs are supposed to be equivalent iff they imply the same temporal
change u̇. Hence, to evaluate the metric on such tangent vectors one has to minimize over the
elements of the equivalence class and computing a geodesic path requires to optimize both the
temporal change of the image intensity and the motion field. Thereby, the first term L[v, v]
reflects the cost of the underlying transport and the term 1

δ (D∂tu)2 penalizes the variation of
the image intensity along motion paths.

However, typically images are not smooth and paths in image space are neither smooth
in time nor in space. Thus, the classical notion of the material derivative u̇ + ∇u · v is not
well-defined. In [40] Trouvé and Younes established a suitable generalization of the above
nonlinear geometric structure on L2(D) := L2(D,R), which is used as the space of images,
based on a proper notion of weak material derivatives. Here, we recall the fundamental
ingredients of this approach. In fact, for v ∈ L2((0, 1),Wm,2(D,Rd) ∩W 1,2

0 (D,Rd)) the
function z ∈ L2((0, 1), L2(D)) is defined as a weak material derivative of a function u ∈
L2((0, 1), L2(D)) if∫ 1

0

∫
D

ηz dx dt = −
∫ 1

0

∫
D

(∂tη + div(vη))udx dt (1.2)

for η ∈ C∞c ((0, 1) × D). Here, Wm,2 denotes the usual Sobolev space of functions with
square-integrable derivatives up to order m, and W 1,2

0 is the space of functions in W 1,2 with
vanishing trace on the boundary. In terms of Riemannian manifolds, Trouvé and Younes
equipped the space of images L2(D) with the following nonlinear structure: Let

Nu =

{
w = (v, z) ∈W :

∫
D

zη + udiv(ηv) dx = 0 ∀η ∈ C∞c (D)

}
.

ForW = (Wm,2(D,Rd)∩W 1,2
0 (D,Rd))×L2(D) the tangent space at u ∈ L2(D) is defined

as TuL2(D) = {u} × W/Nu and elements in this tangent space, which are equivalence
classes, are denoted by (u, (v, z)). The tangent bundle is given by

TL2(D) =
⋃

u∈L2(D)

TuL
2(D).

Furthermore, let π(u, (v, z)) = u be the projection onto the image manifold. Indeed, this is a
weak formulation of the above notion of a tangent space as an equivalence class. Following
the usual Riemannian manifold paradigm, a curve u ∈ C0([0, 1], L2(D)) in the space of
images is called continuously differentiable, iff there is a continuous curve t 7→ w(t) =
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(v(t), z(t)) inW such that for any η ∈ C∞c (D) the mapping t 7→
∫
D
u(t)η dx is continuously

differentiable (denoted by u ∈ C1([0, 1], L2(D))) and

d

dt

(∫
D

u(t)η dx

)
=

∫
D

z(t)η + u(t)div(ηv(t)) dx . (1.3)

In fact, for a curve t → γ(t) =
(
u(t), (v(t), z(t))

)
in TL2(D) the function z is the (weak)

material derivative if (1.3) holds for all test functions η ∈ C∞c ([0, 1] × D) and all times
t ∈ (0, 1). Furthermore, a curve u ∈ C0([0, 1], L2(D)) is defined to be regular in the space
of images (denoted by u ∈ H1((0, 1), L2(D))), if there exists a measurable path γ : [0, 1]→
TL2(D) with π(γ) = u and bounded L2-norm in space and time, such that

−
∫ 1

0

∫
D

u∂tη dx dt =

∫ 1

0

∫
D

zη + udiv(ηv) dx dt (1.4)

for all η ∈ C∞c ((0, 1)×D). In fact, a continuously differentiable path u ∈ C1([0, 1], L2(D))
is always regular, i.e. u ∈ H1((0, 1), L2(D)) (cf. [40, Proposition 4]). Now, for a regular path
u ∈ H1((0, 1), L2(D)) and for the quadratic form L[v, v] being coercive on Wm,2(D,Rd)∩
W 1,2

0 (D,Rd) (which can be easily verified for L given in (1.1) using Korn’s Lemma) one can
rigorously define the path energy

E [u] =

∫ 1

0

inf
(v,z)∈Tu(t)L2(D)

∫
D

L[v, v] +
1

δ
z2 dxdt . (1.5)

In [40], Trouvé and Younes proved the existence of minimizing paths for given boundary data
in time. Adapted to our notion, they have shown that for m > 1 + d

2 and γ, δ > 0 and given
images uA, uB ∈ L2(D) there exists a curve u ∈ H1((0, 1), L2(D)) with u(0) = uA and
u(1) = uB such that

E [u] = inf{E [ũ] : ũ ∈ H1((0, 1), L2(D)), ũ(0) = uA, ũ(1) = uB} .

Moreover, the infimum in (1.5) is attained for all t ∈ [0, 1], i.e. there exist minimizing (v, z) ∈
Tu(t)L

2(D).
The proof relies on the observation that Wm,2(D) ∩W 1,2

0 (D) compactly embeds into
C1,α

0 (D) for α < m − 1 − d
2 . The existence of a geodesic path then follows from [40,

Theorem 6], whereas the addendum is a consequence of [40, Theorem 2].

2. The variational time discretization. In what follows, we develop a variational ap-
proach for the time discretization of geodesic paths in the metamorphosis model. This will
be based on a time discrete approximation of the above time continuous path energy (1.5).
In what follows, we suppose that γ, δ > 0, m > 1 + d

2 , and define for arbitrary images
u, ũ ∈ L2(D) and for a particular energy density W a discrete energy

W[u, ũ] = min
φ∈A

∫
D

W (Dφ) + γ|Dmφ|2 +
1

δ
|ũ ◦ φ− u|2 dx , (2.1)

whereA is the set of admissible deformations. Throughout this paper, we make the following
assumptions with regard to the energy density function W :

(W1) W is non-negative and polyconvex,
(W2) W (A) ≥ β0(detA)−s − β1 for β0, β1, s > 0 and every invertible matrix A with

detA > 0, W (A) =∞ for detA ≤ 0, and
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(W3) W is sufficiently smooth and the following consistency assumptions with respect to
the differential operator L hold true: W (1) = 0, DW (1) = 0 and

1

2
D2W (1)(B,B) =

λ

2
(trB)2 + µtr

((
B +BT

2

)2
)
∀B ∈ Rd,d .

Furthermore, the set of admissible deformations is

A = {φ ∈Wm,2(D,D) : detDφ > 0 a.e. in D,φ = 1 on ∂D} .

Note that we use the symbol 1 both for the identity mapping x 7→ x and the identity matrix.
The first two assumptions ensure the existence of a minimizing deformation in (2.1) and thus
the well-posedness of the discrete energyW[u, ũ] for u, ũ ∈ L2(D). Note that [3, Theorem
1] already implies the global invertibility (a.e.) of every φ ∈ A because A ⊂ W 1,p(D) for a
p > d. The third assumption states that the definition ofW is consistent with the underlying
dissipation described by the quadratic form L.

Now, we consider discrete curves u = (u0, . . . , uK) ∈ (L2(D))K+1 in image space and
define a discrete path energy as the sum of pairwise matching functionals W evaluated on
consecutive images of these discrete curves as follows

EK [u] := K

K∑
k=1

W[uk−1, uk] . (2.2)

We refer to [35] for the introduction of such a variational time discretization on shape mani-
folds. Based on this path energy, we can define discrete geodesic paths as follows.

DEFINITION 2.1. Let uA, uB ∈ L2(D) and K ≥ 1. A discrete geodesic connecting
uA and uB is a discrete curve in image space that minimizes EK over all discrete curves
u = (u0, . . . , uK) ∈ (L2(D))K+1 with u0 = uA and uK = uB .

Due to the assumption (W3), the energy on the right-hand side of (2.1) scales quadrat-
ically in the displacement φ − 1, which itself is expected to scale linearly in the time step
τ = 1

K . This already motivates the coefficient K in front of the discrete path energy. For the
rigorous justification, we refer to the proof of Theorem 4.1 on the Γ-convergence estimates.

In general, we want the energy density to fulfill two desirable properties: isotropy and
rigid body motion invariance. A suitable choice for an isotropic and rigid body motion in-
variant energy density W in the case d = 2, which fulfills the assumptions (W1-3), is given
by

W (Dφ) = a1

(
tr(DφTDφ)

)q
+ a2(detDφ)r + a3(detDφ)−s + a4 (2.3)

with q, r ≥ 1 and coefficients a1 = 2−qµ
q , a2 = λ+µ−µq−µs

r2+rs , a3 = λ+µ−µq+µr
rs+s2 and a4 =

µ(q2−rs−q(1+r−s))−λq
qrs , which is a special case of an Ogden material. Indeed, it is possible to

choose for given λ, µ > 0 the parameters q, r, s in such a way that the resulting coefficients
a1, a2 and a3 are positive. Obviously, DφTDφ and detDφ are invariant with respect to
rotations of the observer frame. The third term of the energy density ensures the required
response of the energy on strong compression. Both rigid body motion invariance and also
this compression response cannot be realized with a simple quadratic energy density. For
the definition of a corresponding energy density in the case d = 3, we refer to [11, Section
4.9/4.10].

In the discrete path energy, two opposing effects can be observed. For a given discrete
curve u and (minimizing) deformations φ1, . . . , φK , the last term penalizes intensity varia-
tions along the discrete motion path (x, φ1(x), (φ2 ◦φ1)(x), . . . , (φK ◦ . . .◦φ1)(x)), whereas
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the first two terms penalize deviations of the (discrete) flow along these discrete motion paths
from rigid body motions. We will see that K(uk ◦ φk − uk−1) reflects a time discrete mate-
rial derivative along the above discrete motion path, whereas the first two terms represent a
discrete dissipation density. Let us remark that minimizers of the discrete energy reversed in
order are in general no minimizers of EK for the reversed boundary constraint u0 = uB and
uK = uA. Only asymptotically in the limit for K →∞, we will obtain this symmetry based
on our convergence theory below.

3. Well-posedness of the discrete path energy and existence of discrete geodesics.
In this section, we will show that for images u, ũ ∈ L2(D) a minimizing deformation in the
definition of W[u, ũ] exists, which renders the definition of the discrete path energy well-
posed. Furthermore, we will prove existence of a minimizing path u of the discrete path
energy EK and thereby establish the existence of a discrete geodesic.

PROPOSITION 3.1 (Well-posedness of W ). Under the above assumptions (W1-2) and
for u, ũ ∈ L2(D), there exists a deformation φ ∈ A depending on u and ũ such that
W[u, ũ] =WD[u, ũ, φ], where

WD[u, ũ, φ] :=

∫
D

W (Dφ) + γ|Dmφ|2 +
1

δ
|ũ ◦ φ− u|2 dx .

Moreover, φ is a diffeomorphism and φ−1 ∈ C1,α(D̄) for α ∈ (0,m− 1− d
2 ).

Proof. The proof proceeds in four steps.
Step 1. Due to (W1), we know that 0 ≤ W := infφ∈AWD[u, ũ, φ] and since 1 ∈

A we have that WD[u, ũ,1] < ∞. Consider a minimizing sequence (φj)j∈N ⊂ A with
monotonously decreasing energy WD[u, ũ, φj ] < ∞ that converges to W. In particular,
W =WD[u, ũ, φ1] <∞ is an upper bound. As a consequence of Korn’s inequality and the
Gagliardo-Nirenberg inequality for bounded domains (see [32, Theorem 1]), we can deduce
that the minimizing sequence is bounded in Wm,2(D). Hence, due to the reflexivity of this
space, there is a weakly convergent subsequence in Wm,2(D), again denoted by φj , such
that φj ⇀ φ and by the Sobolev embedding theorem we can assume uniform convergence of
φj → φ in C1,α(D̄) for α ∈ (0,m− 1− d

2 ).
Step 2. We show that the deformation φ belongs to A. To this end, we will control the

measure of the set Sε = {x ∈ D |detDφ ≤ ε} for sufficiently small ε > 0. Indeed, by using
(W1), (W2) and Fatou’s lemma, we obtain

β0ε
−s|Sε| ≤ β0

∫
Sε

(detDφ)−s dx ≤
∫
Sε

W (Dφ) dx+ β1|D|

≤ lim inf
j→∞

∫
Sε

W (Dφj) dx+ β1|D| ≤W + β1|D|

and thus |Sε| ≤ (W+β1|D|)εs
β0

, which shows |S0| = 0 and detDφ > 0 a. e. on D. This
implies φ ∈ A (note φ ∈ W 1,p for a p > d) and due to [3, Theorem 1] and φ ∈ Wm,2(D)
the deformation φ is injective and a homeomorphism. By Sard’s theorem for Hölder spaces
(cf. [7]) we additionally know that (φj)−1, φ−1 are uniformly bounded in C1,α(D̄).

Step 3. Next, we consider the convergence of the matching functional. To this end, using
the above diffeomorphism property, we estimate∫

D

|ũ ◦ φj − u|2 − |ũ ◦ φ− u|2 dx ≤
∫
D

(|ũ ◦ φj − u|+ |ũ ◦ φ− u|)|ũ ◦ φj − ũ ◦ φ|dx

≤ C
(
‖ũ ◦ φj‖L2(D) + ‖ũ ◦ φ‖L2(D) + ‖u‖L2(D)

)
‖ũ ◦ φj − ũ ◦ φ‖L2(D)

≤ C
(
‖ũ‖L2(D) + ‖u‖L2(D)

)
‖ũ− ũ ◦ ψj‖L2(D)
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with ψj = φ ◦ (φj)−1. Due to the convergence of ψj to the identity in C1,α(D̄), we ob-
serve that the right hand side of the above estimate convergences to 0. To see this, we can
approximate ũ in L2(D) by a sequence of C1 functions (ũi)i∈N and obtain

‖ũ− ũ ◦ ψj‖L2(D) ≤ ‖ũ− ũi‖L2(D) + ‖ũi − ũi ◦ ψj‖L2(D) + ‖ũi ◦ ψj − ũ ◦ ψj‖L2(D) .

The first and the third term on the right hand side converge to 0 for i → ∞ and fixed j,
whereas the second term converges to zero for j → ∞ and fixed i. This establishes the
convergence of the matching functional.

Step 4. Finally, we show the lower semicontinuity for the whole functional. Let j(ε) ∈ N
be such thatWD[u, ũ, φj ] ≤ WD[u, ũ, φj(ε)] ≤ W + ε for all j ≥ j(ε) . Furthermore, we
can enlarge j(ε) if necessary such that for all j ≥ j(ε)∣∣∣∣∫

D

|ũ ◦ φj(x)− u(x)|2 − |ũ ◦ φ(x)− u(x)|2 dx

∣∣∣∣ ≤ ε .
Again using (W1), (W2) and Fatou’s lemma, we infer

WD[u, ũ, φ] =

∫
D

W (Dφ) + γ|Dmφ|2 +
1

δ
|ũ ◦ φ− u|2 dx

≤ lim inf
j→∞

∫
D

W (Dφj) + γ|Dmφj |2 +
1

δ
|ũ ◦ φj − u|2 dx+

ε

δ
≤W + ε+

ε

δ
,

which proves the claim.
Next, for a given discrete path u = (u0, . . . , uK) ∈ (L2(D))K+1, we define a discrete

path energy explicitly depending on a K-tuple of deformations Φ = (φ1, . . . , φK) ∈ AK as
follows:

ED
K [u,Φ] := K

K∑
k=1

WD[uk−1, uk, φk] .

As an immediate consequence of Proposition 3.1, there exists a vector of deformations Φ ∈
AK such that ED

K [u,Φ] = EK [u]. If the images u0, . . . , uK are sufficiently smooth, the
corresponding system of Euler-Lagrange equations for φk is given by∫

D

W,A(Dφk) : Dθ + 2γDmφk : Dmθ +
2

δ
(uk ◦ φk − uk−1)(∇uk ◦ φk) · θ dx = 0

for all 1 ≤ k ≤ K and all test deformations θ ∈ Wm,2(D,Rd) ∩W 1,2
0 (D,Rd), which is a

system of nonlinear PDEs of order 2m. Here “:” denotes the sum over all pairwise products
of two tensors.

Before we discuss the existence of discrete geodesics, we first present the following
partial result, which can be regarded as a counterpart of Proposition 3.1 because it establishes
the existence of an energy minimizing vector of images u for a given vector of deformations
Φ.

PROPOSITION 3.2. Let uA, uB ∈ L2(D) and K ≥ 2. Assume a vector Φ ∈ AK
is given. Then, there exists a unique u = (u0, . . . , uK) ∈ (L2(D))K+1 with u0 = uA,
uK = uB such that

ED
K [u,Φ] = inf

ũ∈(L2(D))K+1, ũ0=uA, ũK=uB
ED
K [ũ,Φ] .
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Proof. Let ûj = (uj1, . . . , u
j
K−1) ⊂ (L2(D))K−1 be a minimizing sequence for the en-

ergy ED
K [(uA, ·, uB),Φ] with ED

K as a finite upper bound for this energy along this sequence.
This upper bound is obtained setting uk = k

KuB + (1− k
K )uA. Thanks to the estimate

‖ujk‖2 ≤ ‖u
j
k+1◦φk+1−ujk‖2 +‖ujk+1◦φk+1‖2 ≤

(
δED

K

) 1
2

K−
1
2 +‖ujk+1◦φk+1‖2 (3.1)

we can deduce via induction (starting from k = K − 1) that ûj is uniformly bounded in
(L2(D))K−1 independently of j. Thus, there exists a weakly convergent subsequence in
(L2(D))K−1 with weak limit û = (u1, . . . , uK−1).

We still have to show the uniqueness of this minimizer. To this end we take into account
the transformation rule∫

D

(uk ◦ φk − uk−1)2 + (uk+1 ◦ φk+1 − uk)2 dx

=

∫
D

(uk − uk−1 ◦ φ−1
k )2(detDφk)−1 ◦ φ−1

k + (uk+1 ◦ φk+1 − uk)2 dx

and derive from the Euler-Lagrange equation ∂ukE
D
K [u,Φ] = 0 the pointwise condition(

(uk − uk−1 ◦ φ−1
k )

(
(detDφk)−1 ◦ φ−1

k

)
+ (uk − uk+1 ◦ φk+1)

)
(x) = 0 for a.e. x ∈ D ,

which can also be written as

uk(x) =
uk+1 ◦ φk+1(x) + (uk−1 ◦ φ−1

k (x))((detDφk)−1 ◦ φ−1
k (x))

1 + (detDφk)−1 ◦ φ−1
k (x)

(3.2)

for a.e. x ∈ D. This leads to a linear system of equations for (u1, . . . , uK−1), where evalua-
tions at deformed positions are combined with evaluations at non-deformed positions, which
we can consider as a block tridiagonal operator equation. In fact, defining for each x ∈ D
the discrete transport path X(x) = (X0(x), X1(x), X2(x), . . . , XK(x))T ∈ RK+1 with
X0(x) = x and Xk(x) = φk(Xk−1(x)) for k ∈ {1, . . . ,K} and the vector of associated
intensity values

U(û,Φ)(x) := (u1(X1(x)), u2(X2(x)), . . . , uK−1(XK−1(x)))T ∈ RK−1 (3.3)

we obtain for K ≥ 3 and a.e. x ∈ D a linear system of equations

A[Φ](x)U(û,Φ)(x) = R[Φ](x) (3.4)

on RK−1. In this case, A[Φ](x) ∈ RK−1,K−1 is a tridiagonal matrix with

(A[Φ](x))k,k+1 =− 1

1 + (detDφk)−1 ◦ φ−1
k (Xk(x))

= − 1

1 + (detDφk)−1(Xk−1(x))
,

(A[Φ](x))k,k = + 1 ,

(A[Φ](x))k,k−1 =−
(detDφk)−1 ◦ φ−1

k (Xk(x))

1 + (detDφk)−1 ◦ φ−1
k (Xk(x))

= − (detDφk)−1(Xk−1(x))

1 + (detDφk)−1(Xk−1(x))
,

and R[Φ](x) ∈ RK−1 is given by

R[Φ](x) =

(
uA(x)(detDφ1)−1(x)

1 + (detDφ1)−1(x)
, 0 , . . . , 0 ,

uB(XK(x))

1 + (detDφK−1)−1(XK−2(x))

)T
.
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For any vector of regular deformations Φ ∈ AK , we recall that detDφk > 0 for k =
1, . . . ,K and Φ ∈ (C1(D))K . From this we deduce that for a.e. x ∈ D the matrix A[Φ](x)
is irreducibly diagonally dominant, which implies invertibility. Thus, for all x ∈ D there
exists a unique solution U(û,Φ)(x) solving (3.4).

REMARK 3.3 (Inherited regularity). (i) If the input images uA and uB are in L∞(D),
then the images u1, . . . , uK−1 ∈ L∞(D) and they share the same upper and lower bound as
the input images. This follows immediately from the fact that uk(Xk(x)) can be written as
a convex combination of uk−1(Xk−1(x)) and uk+1(Xk+1(x)) for k = 1, . . . ,K − 1 due to
(3.2).
(ii) If the input images uA and uB are in C0,α(D̄) for α ≤ m − 1 − d

2 , then the proof of
Theorem 3.2 also shows that uk ∈ C0,α(D̄) for all k = 1, . . . ,K − 1.
(iii) The intensity values along the discrete transport path X(x) depend in a unique way on
the values at the two end points x and XK(x) and each uk(Xk(x)) is a weighted average
of the intensities uA(x) and uB(XK(x)), where the weights reflect the compression and
expansion associated with the deformations along the discrete transport paths.

Now, we are in the position to prove the existence of discrete geodesics making use of
the existence of a minimizing family of deformations for the energy ED

K and a given discrete
image path as a consequence of Proposition 3.1 and the existence of an optimal discrete image
path for a given family of deformations as stated in Proposition 3.2.

THEOREM 3.4 (Existence of discrete geodesics). Let uA, uB ∈ L2(D) and K ≥ 2.
Then there exists û ∈ (L2(D))K−1 such that

EK [(uA, û, uB)] = inf
v̂∈(L2(D))K−1

EK [(uA, v̂, uB)] .

Proof. Let us assume that (ûj)j∈N ∈ (L2(D))K−1 with ûj = (uj1, . . . , u
j
K−1) is

a minimizing sequence of the discrete path energy EK [(uA, ·, uB)], where EK is an up-
per bound of the discrete path energy. Due to Proposition 3.1, for every ûj there exists a
family of optimal deformations Φj = (φj1, . . . , φ

j
K) ∈ AK with ED

K [(uA, û
j , uB),Φj ] ≤

ED
K [(uA, û

j , uB),Φ′] for all Φ′ ∈ AK . Furthermore, we can assume (by possibly replac-
ing ûj and thereby further reducing the energy) that ûj already minimizes the discrete path
energy ED

K [(uA, v̂, uB),Φj ] over all v̂ ∈ (L2(D))K−1. We note that due to the coerciv-
ity estimate ‖Dmφjk‖22 ≤

EK
γ and the Gagliardo-Nirenberg inequality the deformations φjk

are uniformly bounded in Wm,2(D,Rd) for k = 1, . . . ,K. Together with the compact em-
bedding of Wm,2(D,Rd) into C1,α(D̄,Rd) for 0 < α < m − 1 − d

2 , this implies that
(up to the selection of another subsequence) Φj converges to Φ = (φ1, . . . , φK) weakly in
(Wm,2(D,Rd))K and uniformly in (C1,α(D̄,Rd))K . Following the same line of arguments
as in Step 2 of the proof of Proposition 3.1, we in addition infer that detDφk > 0 a.e. in D
for k = 1, . . . ,K and thus Φ ∈ AK .

Due to (3.1) we know that the resulting images ujk, which are associated with the above
subsequence of deformations, are uniformly bounded for k = 1, . . . ,K − 1 inL2(D). Hence,
a subsequence of (ujk)j∈N converges weakly in L2(D) to some uk. Finally, we deduce from
the strong convergence of Φj in (C1,α(D̄,Rd))K that

K∑
k=1

∫
D

(uk ◦ φk − uk−1)2 dx ≤ lim inf
j→∞

K∑
k=1

∫
D

(ujk ◦ φ
j
k − u

j
k−1)2 dx .

Together with the weak lower semi-continuity of φ 7→
∫
D
W (Dφ) + γ|Dmφ|2 dx we obtain
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with û = (u1, . . . , uK−1) that

EK [uA, û, uB ] = ED
K [(uA, û, uB),Φ]

≤ lim inf
j→∞

ED
K [(uA, û

j , uB),Φj ] = lim inf
j→∞

EK [uA, û
j , uB ] .

This proves the claim.

4. Convergence of discrete geodesic paths. In what follows, we will study the conver-
gence of minimizers of our discrete variational model (2.2) for K → ∞ to minimizers of
the continuous model (1.5) and thus the convergence of discrete geodesic paths to continuous
geodesic paths. To this end, we prove Γ-convergence estimates for a natural extension of the
discrete path energy. For an introduction to Γ-convergence, we refer to [12].

At first, let us discuss a suitable interpolation of continuous paths. For fixed K ≥ 2 and
time step size τ = 1

K , let tk = kτ denote the time step corresponding to a vector of images
u = (u0, . . . , uK) ∈ (L2(D))K+1. For a vector Φ = (φ1, . . . , φK) ∈ AK of optimal
deformations resulting from the minimization in (2.1), we define for k = 1, . . . ,K the motion
field vk = K(φk − 1) and the induced transport map yk(t, x) = x + (t − tk−1)vk(x)
with t ∈ [tk−1, tk]. Note that yk(tk−1, x) = x and yk(tk, x) = φk(x). If one assumes
that ‖Dφk − 1‖∞ := supx∈D max|v|=1 |(Dφ(x) − 1)v| < 1, then yk(t, ·) = 1 + K(t −
tk−1)(φk − 1) is invertible. Thus, denoting the inverse of yk(t, ·) by xk(t, ·) one obtains the
image interpolation u = UK [u,Φ] with

UK [u,Φ](t, x) = uk−1(xk(t, x)) +K(t− tk−1)(uk ◦ φk − uk−1)(xk(t, x)) (4.1)

for t ∈ [tk−1, tk]. This interpolation represents on each interval [tk−1, tk] the blending be-
tween the images uk−1 = UK [u,Φ](tk−1, ·) and uk = UK [u,Φ](tk, ·) along affine transport
paths

{(t, yk(t, x)) | t ∈ [tk−1, tk]}

for x ∈ D. Based on this interpolation, a straightforward extension EK : L2((0, 1) ×D) →
[0,∞] of the discrete path energy EK is given by

EK [u] =

 ED
K [u,Φ] ; if u = UK [u,Φ] with u ∈ (L2(D))K+1 and

Φ is a minimizer of ED
K [u, ·] over AK

+∞ ; else
.

Now, we are in the position to discuss the Γ-convergence estimates. The statements of the the-
orem are sufficient to prove that subsequences of discrete geodesics converge to a continuous
geodesic (cf. Theorem 4.2).

THEOREM 4.1 (Γ-convergence estimates). Under the assumptions (W1-3), the time dis-
crete path energy EK Γ-converges to the time continuous path energy E in the following
sense. The estimate lim infK→∞ EK [uK ] ≥ E [u] holds for every sequence (uK)K∈N ⊂
L2((0, 1)×D) with uK ⇀ u (weakly) inL2((0, 1)×D). Furthermore, for u ∈ L2((0, 1)×D)
there exists a sequence (uK)K∈N ⊂ L2((0, 1) × D) with uK → u in L2((0, 1) × D) such
that the estimate lim supK→∞ EK [uK ] ≤ E [u] holds.

Let us at first briefly outline the structure of the proof to facilitate the reading. The proof
itself refers to the outline with corresponding paragraph headlines. To verify the lim inf
estimate we proceed as follows:
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(i) Reconstruction of a flow and a weak material derivative. For a sequence of images
uK = UK [uK ,ΦK ] in L2((0, 1) ×D) with uK = (uK0 , . . . , u

K
K) ∈ (L2(D))K+1,

we consider a set of associated optimal matching deformations and construct the
induced underlying motion field, for which the mismatch energy turns out to be the
weak material derivative in the limit.

(ii) Weak lower semicontinuity of the path energy. Using a priori bounds for the se-
quence of motion fields and material derivatives, we obtain weakly convergent sub-
sequences and, using a Taylor expansion of the energy density functionW , we show
a lower semicontinuity result required for the lim inf inequality.

(iii) Identification of the limit of the material derivatives as the material derivative for
the limit image sequence. We still have to show that the pair of the weak limits of the
velocity fields and the material derivatives is indeed an instance of a tangent vector
at the limit image. The core insight is that instead of taking the limit in the defining
equation (1.4) of the weak material derivative in Eulerian coordinates one has to use
an equivalent flow formulation in Lagrangian coordinates.

(iv) Convergence of the discrete image sequences pointwise everywhere in time. In step
(iii) we need that an image sequence with bounded path energy converges not only
weakly in L2((0, 1) × D), but for every time t ∈ [0, 1] the image sequence evalu-
ated at that time converges already weakly in L2(D). We use a trace theorem type
argument to verify this.

The proof of the lim sup estimate consists of the following steps:
(i) Construction of the recovery sequence. The key observation is that the construction

of a recovery sequence is not based on some (time-averaged) interpolation of the
given image path u ∈ L2((0, 1) × D). In fact, one considers for fixed K a local
time averaging of an underlying motion field leading to a bounded path energy, and
constructs from this via integration of the associated material derivative along the
induced transport path a discrete family of images (uK0 , · · · , uKK).

(ii) Proof of the lim sup inequality. The key ingredient for the proof of the lim sup
inequality is the convexity of the total viscous dissipative functional, which we ex-
ploit based on the above construction of the recovery sequence via an application
of Jensen’s inequality. This requires that the discrete motion fields are indeed de-
fined via local time averaging of the given continuous motion field. Furthermore,
we again use a Taylor expansion of the energy density function W .

(iii) Convergence of the discrete image sequences. Due to the fact that the recovery
sequence of images (uK)K∈N is defined via integration of the material derivative
and not by simple time averaging, we are still left to verify that uK converges to u
in L2((0, 1)×D).

Proof. Throughout the proof we will use a generic constant C independent of K.

The liminf—estimate:

(i) Reconstruction of a flow and a weak material derivative. Let {uK}K∈N ⊂ L2((0, 1)×
D) be any sequence of images that converges weakly inL2((0, 1)×D) to u ∈ L2((0, 1)×D).
To exclude trivial cases, i.e. lim infK→∞ EK [uK ] = ∞, we may assume EK [uK ] ≤ E < ∞
for all K ∈ N, which implies uK = UK [uK ,ΦK ] for uK = (uK0 , . . . , u

K
K) ∈ (L2(D))K+1

and an associated vector of deformations ΦK = (φK1 , . . . , φ
K
K), which is defined as a vec-

tor of (not necessarily unique) solutions of the pairwise matching problems (2.1). Each
ΦK generates on each time interval [tk−1, tk) affine transport paths with motion veloc-
ity ṽKk (t, y) = K(φKk − 1)(xKk (t, y)). Here, we use the notation tk = k

K (for the sake
of brevity without explicit reference to the sequence index K) and xKk is the above de-
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fined pullback associated with the deformation φKk on the interval [tk−1, tk]. As it will be
shown below in (4.6), for sufficiently large K a piecewise affine reconstruction of uK along
straight line segments from x to φKk (x) can be performed using (4.1). Thus, the difference
quotient K

(
uKk (φKk (x))− uKk−1(x)

)
is the material derivative of uK for all yk(t, x) with

t ∈ (tk−1, tk), i.e.

zK(t, y) =
d

ds
uK(t+ s, y + sṽKk (t, y))

∣∣
s=0

= K
(
uKk ◦ φKk − uKk−1

)
(xKk (t, y)) (4.2)

is the classical material derivative of uK . Hence, the regularity of ΦK stated in Proposition
3.1 implies that zK fulfills the equation for the weak material derivative (1.2), i.e.∫

D

∫ 1

0

zKϑ dtdx = −
∫
D

∫ 1

0

(∂tϑ+ div(ṽKϑ))uK dtdx (4.3)

for all ϑ ∈ W 1,2
0 ((0, 1) × D) and with ṽK(t, y) = ṽKk (t, y) for t ∈ [tk−1, tk). Let us

remark that ṽK(t, ·) vanishes on the boundary ∂D for t ∈ (0, 1), which corresponds to the
assumption on the continuous velocity v in the metamorphosis model from the introduction.
As a next step we show

lim
K→∞

∫
D

∫ 1

0

∣∣zK∣∣2 dtdx = lim
K→∞

K

K∑
k=1

∫
D

|uKk ◦ φKk − uKk−1|2 dx . (4.4)

Indeed, using (4.2) one obtains∫
D

∫ tk

tk−1

∣∣zK∣∣2 dtdx =

∫
D

∫ tk

tk−1

K2
((
uKk ◦ φKk − uKk−1

)
(xKk (t, x))

)2
dtdx

=

∫
D

∫ tk

tk−1

K2
((
uKk ◦ φk − uKk−1

)
(x)
)2

detDyKk (t, x) dtdx ,

whereDyKk (t, x) = 1+K(t− tk−1)(DφKk (x)−1). From the uniform bound on the energy,
we deduce

K∑
k=1

∫
D

K(uKk ◦ φKk − uKk−1)2 dx ≤ δE . (4.5)

Furthermore, we can estimate∥∥det
(
1+K(·−tk−1)(DφKk −1)

)
−1
∥∥
L∞(( k−1

K , kK )×D)
≤ C‖φKk − 1‖C1(D̄) .

The Sobolev estimate ‖φ− 1‖C1,α(D̄) ≤ C ‖φ− 1‖Wm,2(D) for α ≤ m − 1 − d
2 and the

Gagliardo-Nirenberg interpolation inequality ‖φ− 1‖Wm,2(D) ≤ C ‖Dmφ‖L2(D) (cf. [32])

for φ ∈Wm,2(D,Rd) ∩W 1,2
0 (D,Rd) imply

∥∥φKk − 1∥∥2

C1,α(D̄)
≤

K∑
l=1

C
∥∥DmφKl

∥∥2

L2(D)
≤ CE
γK

. (4.6)

Together with (4.5) this proves (4.4).
(ii) Weak lower semicontinuity of the path energy. Next, from (4.5) and (4.4) we deduce

that the material derivatives zK are uniformly bounded in L2((0, 1) × D) independently of
12



K. Thus, there exists a subsequence, again denoted by (zK)K∈N, which converges weakly in
L2((0, 1)×D) to some z ∈ L2((0, 1)×D) as K →∞. By the lower semicontinuity of the
L2-norm, one achieves∫

D

∫ 1

0

|z|2 dtdx ≤ lim inf
K→∞

∫
D

∫ 1

0

∣∣zK∣∣2 dtdx .

Now, we will prove that there exists a velocity field v ∈ L2((0, 1),W 1,2
0 (D) ∩Wm,2(D))

such that (v, z) ∈ TuL2 and∫ 1

0

∫
D

L[v, v] dxdt ≤ lim inf
K→∞

K

K∑
k=1

∫
D

W (DφKk ) + γ|DmφKk |2 dx .

The second order Taylor expansion around tk−1 of the function t 7→W (1+(t− tk−1)DvKk )
at t = tk gives

W (DφKk ) =W (1) +
1

K
DW (1)(DvKk ) +

1

2K2
D2W (1)(DvKk , Dv

K
k ) +O(K−3|DvKk |3)

=
1

K2

(
λ

2

(
trε[vKk ]

)2
+ µtr(ε[vKk ]2)

)
+O(K−3|DvKk |3)

with vKk (x) = K(φKk (x)− x). The second equality follows from (W3). Then

K

K∑
k=1

∫
D

W (DφKk ) + γ|DmφKk |2 dx

≤ 1

K

K∑
k=1

∫
D

λ

2
(trε[vKk ])2 + µtr(ε[vKk ]2) + γ

∣∣DmvKk
∣∣2 dx+ C

K∑
k=1

K

∫
D

K−3|DvKk |3 dx.

The last term is of order K−
1
2 , which follows from the boundedness of the energy and by

applying (4.6), i.e.

K∑
k=1

K

∫
D

K−3|DvKk |3 dx ≤ C max
k=1,...,K

‖φKk − 1‖C1(D̄)

K∑
k=1

K
∥∥φKk −1∥∥2

Wm,2(D)
≤ CK− 1

2 .

Next, for K →∞ the limes inferior of the remainder can be estimated as follows. We define
vK ∈ L2((0, 1)×D) via vK(t, ·) = vKk for t ∈ [tk−1, tk). Due to the uniform bound of the
discrete path energy vK is uniformly bounded inL2((0, 1),Wm,2(D)) and up to the selection
of a subsequence vK converges weakly in L2((0, 1),Wm,2(D,Rd)∩W 1,2

0 (D,Rd)) to some
v ∈ L2((0, 1),Wm,2(D,Rd) ∩W 1,2

0 (D,Rd)) for K →∞. Then, by a standard weak lower
semicontinuity argument we obtain

lim inf
K→∞

1

K

K∑
k=1

∫
D

λ

2
(trε[vKk ])2 + µtr(ε[vKk ]2) + γ

∣∣DmvKk
∣∣2 dx

= lim inf
K→∞

∫ 1

0

∫
D

λ

2
(trε[vK ])2 + µtr(ε[vK ]2) + γ

∣∣DmvK
∣∣2 dxdt

≥
∫ 1

0

∫
D

λ

2
(trε[v])2 + µtr(ε[v]2) + γ |Dmv|2 dxdt .
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(iii) Identification of the limit of the material derivatives as the material derivative for the
limit image sequence. It remains to verify that we can pass to the limit in (4.3) for K → ∞
with v also being the weak limit of ṽK in L2((0, 1) × D). This will indeed imply that z is
the weak material derivative for the image path u and the velocity field v fulfilling (1.4) and
hence (v, z) ∈ TuL

2(D). To this end, the main difficulty is to prove the weak continuity
of (u, v) 7→ udiv(vη). In [40, Theorem 2] (with the essential ingredient, which we actually
required here, given in [40, Lemma 6]) it is shown that for the family of diffeomorphisms
ψ : [0, 1]→ C1(D̄) resulting from the transport

ψ̇(t, ·) = v(t, ψ(t, ·)) (4.7)

for some velocity field v ∈ L2((0, 1),Wm,2(D)∩W 1,2
0 (D)) and for given initial data ψ(0) =

1 the integral formula

u(t, x) = u(0, ψt,0(x)) +

∫ t

0

z(s, ψt,s(x)) ds (4.8)

for an image path u, a function z ∈ L2((0, 1), L2(D)) and for a. e. x ∈ D with ψt,s =
ψ(s, (ψ(t, ·))−1) is equivalent to (1.4). We refer to [13, Lemma 2.2] for the existence of a
unique solution ψ of (4.7). From (4.2) we deduce that (uK , ṽK , zK) obeys

uK(t, x) = uK(0, ψKt,0(x)) +

∫ t

0

zK(s, ψKt,s(x)) ds , (4.9)

where ψKt,s = ψK(s, (ψK)−1(t, ·)) with ψK : [0, 1] → C1(D̄) denoting the time discrete
family of diffeomorphisms induced by the motion field ṽK and solving

ψ̇K(t, x) = ṽK(t, ψK(t, x)) (4.10)

for all x ∈ D. In what follows, we will show strong convergence of ψK to ψ, for which
(4.7) holds. At first, we observe that

∥∥yKk (t, ·)
∥∥
C1,α(D̄)

≤ C(1 + K−1
∥∥vKk (t, ·)

∥∥
C1,α(D̄)

)

for yKk (t, x) = x+ (t− tk)vKk (x) and t ∈ [tk−1, tk). By Sard’s theorem in Hölder spaces [7]
and (4.6) we deduce that

∥∥xKk (t, ·)
∥∥
C1,α(D̄)

≤ C(1+K−1
∥∥vKk (t, ·)

∥∥
C1,α(D̄)

) for the inverse

xKk (t, ·) = yKk (t, ·)−1. Using the definition of ṽKk , the C1,α-estimate for the concatenation
of C1,α-functions, and (4.6) we get∥∥ṽKk (t, ·)

∥∥
C1,α(D̄)

≤ C
∥∥vKk (t, ·)

∥∥
C1,α(D̄)

(
1 +K−1

∥∥vKk (t, ·)
∥∥
C1,α(D̄)

)
≤ C

∥∥vKk (t, ·)
∥∥
C1,α(D̄)

.

The uniform boundedness of vK inL2((0, 1),Wm,2(D)) and the continuity of the embedding
of Wm,2(D) into C1,α(D̄) imply that ṽK is uniformly bounded in L2((0, 1), C1,α(D̄)). Fol-
lowing [40, Lemma 7] (in a straightforward generalization for velocities uniformly bounded
in L1((0, 1), C1,α(D̄))) one shows via Gronwall’s inequality that ψK defined in (4.10) is
uniformly bounded in L∞((0, 1), C1,α(D̄)). Finally, using this bound and once again the
C1,α-estimate for the concatenation of C1,α-functions we obtain from (4.10) the estimate

∥∥ψK(t, ·)− ψK(s, ·)
∥∥
C1,α(D̄)

≤ C
∫ t

s

∥∥vK(r, ·)
∥∥
C1,α(D̄)

dr

≤ C(t− s) 1
2

(∫ t

s

∥∥vK(r, ·)
∥∥2

C1,α(D̄)
dr

) 1
2

≤ C(t− s) 1
2 ,
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which proves that ψK is uniformly bounded in C0, 12 ([0, 1], C1,α(D̄)). Thus, for some β with
0 < β < min{ 1

2 , α} and up to the selection of a subsequence ψK converges strongly in
C0,β([0, 1], C1,β(D̄)) to some ψ ∈ C0, 12 ([0, 1], C1,α(D̄)) and ψ solves (4.7) (cf. [40, Theo-
rem 9]). In addition, the mapping

(
t 7→ (ψK(t, ·))−1

)
K∈N, which solves (4.10) backward in

time, is uniformly bounded in C0, 12 ([0, 1], C1,α(D̄)) (cf. [40, Lemma 9]). Next, we obtain
from (4.9) for functions uK with bounded energy EK the following estimate:

∥∥uK(t+ τ, ψK(t+ τ, ·))− uK(t, ψK(t, ·))
∥∥2

L2(D)

≤
∫
D

(∫ t+τ

t

zK(s, ψK(s, x)) ds

)2

dx

≤ τ
∥∥detD((ψK)−1)

∥∥
L∞((0,1)×D)

∫ t+τ

t

∥∥zK(s, ·)
∥∥2

L2(D)
ds

≤ Cτ
∥∥zK∥∥2

L2((0,1)×D)
≤ Cτ (4.11)

for all t ≥ 0, τ > 0 with t + τ ≤ 1. The analogous estimate holds for uK , ψK , and zK

replaced by u, ψ, and z, respectively (cf. [40]). From this and the uniform smoothness of ψK

and ψ we deduce that for a subsequence (again denoted by (uK)K∈N) uK(t) ⇀ u(t) weakly
in L2(D) for all t ∈ [0, 1]. A detailed verification is given in the last step of the proof below.
Then, multiplying (4.9) with a test function η ∈ C∞c (D) and integrating over D yields

0 =

∫
D

uK(t, x)η(x) dx−
∫
D

uK(0, ψKt,0(x))η(x) dx−
∫ t

0

∫
D

zK(s, ψKt,s(x))η(x) dxds

=

∫
D

uK(t, x)η(x) dx−
∫
D

uK(0, y)η((ψKt,0)−1(y))(detDψKt,0)−1((ψKt,0)−1(y)) dy

−
∫ t

0

∫
D

zK(s, y)η((ψKt,s)
−1(y))(detDψKt,s)

−1((ψKt,s)
−1(y)) dy ds . (4.12)

Based on the weak convergence of uK , zK and the strong convergence of t 7→ (ψK(t, ·))−1

and ψK we can pass to the limit in (4.12) and obtain

0 =

∫
D

u(t, x)η(x) dx−
∫
D

u(0, y) η((ψt,0)−1(y)) (detDψt,0)−1((ψt,0)−1(y)) dy

−
∫ t

0

∫
D

z(s, y) η((ψt,s)
−1(y)) (detDψt,s)

−1((ψt,s)
−1(y)) dy ds

=

∫
D

u(t, x)η(x) dx−
∫
D

u(0, ψt,0(x))η(x) dx−
∫ t

0

∫
D

z(s, ψt,s(x))η(x) dxds ,

which shows that u and z fulfill (4.8) for a. e. x ∈ D. Since (4.8) is equivalent to (1.4), this
finally proves (1.4).

(iv) Convergence of the discrete image sequences pointwise everywhere in time. It re-
mains to prove that for a subsequence of the discrete intensity functions uK (again denoted
by (uK)K∈N) uK(t) ⇀ u(t) weakly in L2(D) for all t ∈ [0, 1]. To this end consider an
arbitrary test function η ∈ C∞c (D), t ∈ (0, 1) and τ > 0 sufficiently small (in what follows
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for t = 0: t− τ is replaced by t and for t = 1: t+ τ is replaced by t). Then, we obtain∫
D

(
uK(t, x)− u(t, x)

)
η(x) dx

= −
∫ t+τ

t−τ

∫
D

(
uK(t, x)− uK(s, x)

)
η(x)− (u(t, x)− u(s, x)) η(x) dx ds

+ −
∫ t+τ

t−τ

∫
D

(
uK(s, x)− u(s, x)

)
η(x) dxds . (4.13)

Here, −
∫ t+τ
t−τ f(s) ds = 1

2τ

∫ t+τ
t−τ f(s) ds is the time-averaged integral of f on (t−τ, t+τ). Due

to the weak convergence of uK ⇀ u in L2((0, 1)×D) the second integral on the right-hand
side of (4.13) vanishes as K →∞. Setting

η̃K(t, y) = η(ψK(t, y)) detDψK(t, y) , η̃(t, y) = η(ψ(t, y)) detDψ(t, y)

we can rewrite the first term in the first integral on the right-hand side of (4.13) and get

−
∫ t+τ

t−τ

∫
D

uK(t, ψK(t, y))η̃K(t, y)− uK(s, ψK(s, x))η̃K(s, y) dy ds

= −
∫ t+τ

t−τ

∫
D

(
uK(t, ψK(t, y))− uK(s, ψK(s, y))

)
η̃K(t, y) dy ds

+−
∫ t+τ

t−τ

∫
D

uK(s, ψK(s, y))
(
η̃K(t, y)− η̃K(s, y)

)
dy ds . (4.14)

The second integral on the right-hand side of (4.14) vanishes due to the smoothness of η and
ψK as τ → 0. Furthermore, using (4.11) the first integral can be estimated by∣∣∣∣−∫ t+τ

t−τ

∫
D

(
uK(t, ψK(t, y))− uK(s, ψK(s, y))

)
η̃K(t, y) dy ds

∣∣∣∣
≤ sup
s∈[t−τ,t+τ ]

∥∥uK(t, ψK(t, ·))− uK(s, ψK(s, ·))
∥∥
L2(D)

∥∥η̃K(t, ·)
∥∥
L2(D)

≤ Cτ 1
2

∥∥η̃K(t, ·)
∥∥
L2(D)

,

and thus also vanishes for τ → 0. Analogous estimates apply to the remaining expression
in (4.13) replacing uK , η̃K , and ψK by u, η̃, and ψ, respectively. Altogether, this proves
uK(t) ⇀ u(t) weakly in L2(D) for all t ∈ [0, 1].

The limsup—estimate:

(i) Construction of the recovery sequence. Consider an image curve u ∈ L2((0, 1)×D).
Without any restriction we assume that the energy

E [u] =

∫ 1

0

∫
D

L[v, v] +
1

δ
|z|2 dxdt

is bounded, where v ∈ L2((0, 1),Wm,2(D) ∩ W 1,2
0 (D)) and z ∈ L2((0, 1) × D) are an

optimal velocity field and a corresponding weak material derivative, respectively. Now, we
define an approximate, piecewise constant (in time) velocity field

vK
∣∣
[tk−1,tk)

= vKk := K

∫ tk

tk−1

v dt
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for k = 1, . . . ,K and again denoting tk = k
K .

Obviously, vK converges to v in L2((0, 1),Wm,2(D)). We denote by ψK the associ-
ated flow of diffeomorphism generated by the flow equation ψ̇K(t, x) = ṽK(t, ψK(t, x)) as
in (4.10) (for ṽK deduced from φKk = 1 + K−1vKk ) with ψK(0, x) = x and by ψKt,s =

ψK(s, (ψK)−1(t, ·)) the induced relative deformation from time t to time s. From this, we
also obtain the underlying vector of consecutive deformations ΦK = (φK1 , . . . , φ

K
K) with

φKk = ψKtk−1,tk
. Following [13] we easily verify that the evolution equation for ψK , the

uniform smoothness of ψK and the bound on the energy E [u] imply that ψK is uniformly
bounded in C0, 12 ([0, 1], C1,α(D̄)) (cf. the proof of the lim inf-estimate above).

Next, the approximate discrete image path uK = (uK0 , . . . , u
K
K) is defined by a discrete

counterpart of (4.8), namely

uKk (x) = u(0, ψKtk,0(x)) +

∫ tk

0

z(s, ψKtk,s(x)) ds (4.15)

for k = 0, . . . ,K. Using (4.1) one obtains uK = UK [uK ,ΦK ] as the requested approxima-
tion of u for given K ∈ N.

(ii) Proof of the lim sup inequality. At first, we verify that lim supK→∞ EK [uK ] ≤ E [u].
From the minimizing property of UK [uK ,ΦK ] we deduce

EK [uK ] = EK [uK ] ≤ K
K∑
k=1

∫
D

W (DφKk ) + γ|DmφKk |2 +
1

δ
|uKk ◦ φKk − uKk−1|2 dx .

Using the Cauchy-Schwarz inequality we derive from (4.15)

∫
D

|uKk ◦ φKk (x)− uKk−1(x)|2 dx =

∫
D

∣∣∣∣∣
∫ tk

tk−1

z(s, ψKtk−1,s
(x)) ds

∣∣∣∣∣
2

dx

≤ 1

K

∫ tk

tk−1

∫
D

|z(s, x)|2 detD(ψKtk−1,s
)−1(x) dxds

≤ 1

K

∫ tk

tk−1

(
1 + CK−

1
2

)∫
D

|z(s, x)|2 dx ds ,

where we have taken into account the estimate |1− detD(ψKtk−1,s
)−1(x)| ≤ CK−

1
2 , which

follows from the uniform bound for ψK in C0, 12 ([0, 1], C1,α(D̄)). Furthermore, we obtain
via Taylor expansion and the consistency assumption (W3)∫

D

W (DψKtk−1,tk
) + γ|DmψKtk−1,tk

|2 dx

≤
∫
D

1

2K2
D2W (1)(DvKk , Dv

K
k ) +

γ

K2
|DmvKk |2 dx+ C

∫
D

1

K3
|DvKk |3 dx

=
1

K2

∫
D

L[vKk , v
K
k ] dx+

C

K3

∫
D

|DvKk |3 dx .

The definition of vKk together with Jensen’s inequality implies∫
D

L[vKk , v
K
k ] dx ≤ K

∫
D

∫ tk

tk−1

L[v, v] dtdx .
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To estimate the remainder of the Taylor expansion we proceed as follows. At first, we obtain

∥∥vKk ∥∥2

C1(D̄)
≤ C

K∑
l=1

∥∥vKl ∥∥2

Wm,2(D)
≤ CK

∫ 1

0

‖v(t, ·)‖2Wm,2(D) dt ≤ CK

using the Sobolev embedding theorem together with the Cauchy-Schwarz inequality and the
boundedness of the energy E [u]. Hence, maxk=1,...,K

∥∥vKk ∥∥C1(D̄)
≤ CK 1

2 , which implies

K∑
k=1

∫
D

|DvKk |3 dx ≤ max
k=1,...,K

∥∥vKk ∥∥C1(D̄)

K∑
k=1

∫
D

(
K

∫ tk

tk−1

Dv(t, x) dt

)2

dx

≤ CK 1
2
K2

K

K∑
k=1

∫
D

∫ tk

tk−1

|Dv(t, x)|2 dtdx ≤ C K 3
2 .

From these estimates we finally deduce

EK [uK ] ≤
∫ 1

0

∫
D

L[v, v] +
1

δ
|z|2 dx dt+ CK−

1
2 +

C

δ
K−

1
2 .

(iii) Convergence of the discrete image sequences. We are still left to demonstrate that uK →
u in L2((0, 1) × D). To see this, we first observe that by the theorem of Arzelà-Ascoli and
after selection of a subsequence ψK converges to ψ in C0,β([0, 1], C1,α(D̄)) with β < 1

2 and
α < m− d

2 − 1. From this and the quantitative control of the inverse of the diffeomorphisms
(cf . [40, Lemma 9]) we deduce that ψKt,s, its inverse, and also DψKt,s converge uniformly in
x, t, and s. Thus, we get that for every t ∈ (0, 1)∥∥z(·, ψKt,·(·))− z(·, ψt,·(·))∥∥L2((0,1)×D)

→ 0 ,
∥∥u(0, ψKt,0(·))− u(0, ψt,0(·))

∥∥
L2(D)

→ 0

for K → ∞. Indeed, in case of the first claim we argue as follows. Due to the uniform
bound on z in L2((0, 1) × D) we only have to show that

∫ 1

0

∫
D
z(s, ψKt,s(x))qη(s, x) dxds

converges to
∫ 1

0

∫
D
z(s, ψt,s(x))qη(s, x) dx ds for all η ∈ C∞c ((0, 1) × D) and q = 1, 2.

This is easily seen via integral transform, i.e.∫ 1

0

∫
D

z(s, ψKt,s(x))qη(s, x)− z(s, ψt,s(x))qη(s, x) dxds

=

∫ 1

0

∫
D

z(s, y)q
(
η(s, (ψKt,s)

−1(y))(detDψKt,s)
−1(ψKt,s)

−1(y)

−η(s, (ψt,s)
−1(y))(detDψt,s)

−1(ψt,s)
−1(y)

)
dy ds ,

where the right-hand side converges to 0 for K →∞. The argument for u(0, ·) is analogous.
Hence, we can pass to the limit on the right-hand side of (4.15) and achieve in analogy to the
corresponding argument in the proof of the lim inf-estimate(

(t, x) 7→ u(0, ψKt,0(x)) +

∫ t

0

z(s, ψKt,s(x)) ds

)
→
(

(t, x) 7→ u(0, ψt,0(x)) +

∫ t

0

z(s, ψt,s(x)) ds

)
= u ,

where the convergence is in L2((0, 1)×D). From this the claim follows easily.
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THEOREM 4.2 (Convergence of discrete geodesic paths). Let uA, uB ∈ L2(D) and
suppose that (W1-3) holds. Furthermore, for every K ∈ N, let uK be a minimizer of EK
subject to uK(0) = uA, u

K(1) = uB . Then, a subsequence of (uK)K∈N converges weakly
in L2((0, 1)×D) to a minimizer of the continuous path energy E and the associated sequence
of discrete energies converges to the minimal continuous path energy.

Proof. The proof is standard in Γ-convergence theory (cf. [9]). Choosing uKk = k
KuB +

(1 − k
K )uA and φKk = 1 we obtain an a priori bound for the discrete energy EK , which

implies an a priori bound for zK in L2((0, 1) × D). Using (4.9), the strong convergence of
ψK , and the Cauchy-Schwarz inequality we get that for the uKk , which are associated with
the minimizer of EK , the estimate ‖uKk ‖2L2(D) ≤ C(‖uA‖2L2(D) + k

K ‖z
K‖2L2((0,1)×D)) holds.

From this we deduce that uK is uniformly bounded inL∞((0, 1), L2(D)). Hence, there exists
a subsequence, again denoted by (uK)K∈N, with uK ⇀ u (weakly) in L2((0, 1) × D) to
some u ∈ L2((0, 1)×D). Now, let us assume that there is an image path ũ with E [ũ] < E [u].
Then, by the lim sup-estimate of Theorem 4.1 there exists a sequence (ũK)K∈N with ũK ∈
L2((0, 1)×D) such that lim supK→∞ EK [ũK ] ≤ E [ũ] and together with the lim inf-estimate
we obtain

E [u] ≤ lim inf
K→∞

EK [uK ] ≤ lim sup
K→∞

EK [ũK ] ≤ E [ũ] ,

which is a contradiction. Hence, u minimizes the continuous path energy over all admissible
image paths.

REMARK 4.3 (Inherited smoothness). Continuous solutions u of the metamorphosis
model inherit for all t ∈ (0, 1) the regularity of the input images uA and uB (up to the Hölder
regularity for the exponent α). This can be seen as follows. For a minimizer of the continuous
path energy on L2((0, 1) × D) with u(0) ∈ L2(D) and u(1) ∈ L2(D), Trouvé and Younes
give in [40, Theorem 4] and [40, Theorem 2] a direct representation of the intensity function,
namely

u(t, ·) = u(0, ψ(t)−1(·)) +

(
z0

∫ t

0

(detDψ(s))−1 ds

)
◦ ψ(t)−1

for some z0 ∈ L2(D) and ψ(t) = ψ(t, ·) the underlying flow of diffeomorphisms. Now,
evaluating this equation for t = 1 gives

z0 = (u(1, ψ(1, ·))− u(0))

(∫ 1

0

(detDψ)−1(s) ds

)−1

.

Hence, z0 is as regular as uA and uB (up to the Hölder regularity for the exponent α) and the
same holds true for u(t, ·) for all t ∈ [0, 1]. For discrete solutions uK , the analog statement
is already given in Remark 3.3.

5. Spatial discretization. We consider a regular quadrilateral grid on a two-dimen-
sional, rectangular image domain D consisting of cells Cm with m ∈ IC , where IC is the
index set of all cells. Based on this grid, we define the finite element space Vh of piecewise
bilinear continuous functions (cf. [8]) and denote by {Θi}i∈IN the set of basis functions,
where IN is the index set of all grid nodes xi. Now, we investigate spatially discrete defor-
mations Φk : D → D with Φk ∈ V2

h (k = 1, . . . ,K) and spatially discrete image maps
Uk : D → R (k = 0, . . . ,K) with Uk ∈ Vh and U0 = UA = IhuA, UK = UB = IhuB .
Here, Ih denotes the nodal interpolation operator. Given a finite element function W ∈ Vh,
we denote by W̄ = (W (xi))i∈IN the corresponding vector of nodal values. Furthermore, we
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define a fully discrete counterpart EK,h of the so far solely time discrete path energy EK as
follows

EK,h[(U0, . . . , UK)] := min
Φk∈V2

h,Φk|∂D=1,
k=1,...,K

ED
K,h[(U0, . . . , UK), (Φ1, . . . ,ΦK)] .

Here, ED
K,h[(U0, . . . , UK), (Φ1, . . . ,ΦK)] is the discrete counterpart of ED

K and obtained by
approximating the integrals of ED

K on each cell with the Simpson quadrature rule. Here,
the standard 3-point Simpson quadrature rule in 1D is extended to 2D with 9 points using the
tensor product. In our numerical experiments, this 9–point quadrature rule performed well. In
particular, compared to lower order quadrature rules, it avoids blurring effects in the vicinity
of image edges. Let us remark that due to the concatenation with the deformation an exact
integration with standard quadrature rules is not possible.

Next, we study the numerical minimization of the fully discrete energy ED
K,h for fixed

(Φ1, . . . ,ΦK). For m ∈ IC the Simpson quadrature takes into account nine quadrature
points. Let xmq denote the q-th quadrature point in Cm and wmq the corresponding quadra-
ture weight for q ∈ {0, . . . , 8}. Then, the entries of the weighted mass matrix Mh[Φ,Ψ] =
(Mh[Φ,Ψ]i,j)i,j∈IN with basis functions being transformed via deformations Φ,Ψ and eval-
uated via quadrature are given by

Mh[Φ,Ψ]i,j :=
∑
l∈IC

8∑
q=0

wlq(Θ
i ◦ Φ)(xlq) (Θj ◦Ψ)(xlq) .

To evaluate the entries of this matrix numerically, we use cell-wise assembly. For m ∈ IC ,
let Θm

α denote the basis function in the cell Cm with local index α ∈ {0, 1, 2, 3} and I(m,α)
the global index corresponding to the local index α in the cell Cm, i.e. ΘI(m,α) = Θm

α on Cm.
The cell-wise assemble procedure works as follows. First, Mh[Φ,Ψ] is initialized as the zero
matrix. Then, for every l ∈ IC and every q ∈ {0, . . . , 8} one identifies the cells Cm, Cm′ with
Φ(xlq) ∈ Cm and Ψ(xlq) ∈ Cm′ , respectively. Finally, for all pairs of local indices (β, β′) with
β, β′ ∈ {0, 1, 2, 3} one adds wlqΘ

m
β (Φ(xlq))Θ

m′

β′ (Ψ(xlq)) to Mh[Φ,Ψ]I(m,β),I(m′,β′).
Now, we are in the position to derive a linear system of equations for the vector Ū =

(Ū1, . . . , ŪK−1) of images that describes a minimizer of ED
K,h for a fixed vector of spatially

discrete deformations Φ̄ = (Φ̄1, . . . , Φ̄K). Indeed, we can rewrite the last term in the energy
ED
K,h as follows

K∑
k=1

∑
l∈IC

8∑
q=0

wlq
(
|Uk ◦ Φk − Uk−1|2

)
(xlq)

=

K∑
k=1

(
Mh[Φk,Φk]Ūk · Ūk − 2Mh[Φk,1]Ūk · Ūk−1 + Mh[1,1]Ūk−1 · Ūk−1

)
.

From this, we obtain for the variation of the energy ED
K,h with respect to the k-th image map

∂ŪkE
D
K,h = 2 (Mh[Φk,Φk] + Mh[1,1]) Ūk − 2Mh[Φk,1]T Ūk−1 − 2Mh[Φk+1,1]Ūk+1

for k = 1, . . . ,K − 1. In the semi-Lagrangian approach for the flow of diffeomorphisms
model, a similar computation appears in the context of the single matching penalty with
respect to the given end image (cf. [5]). For a fixed set of deformations a necessary condition
for Ū to be a minimizer of ED

K,h is that Ū solves the block tridiagonal system of linear
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equations A[Φ]Ū = R[Φ], where A[Φ] is formed by (K − 1) × (K − 1) matrix blocks
Ak,k′ ∈ RIN×IN and R[Φ] consists of K − 1 vector blocks Rk ∈ RIN with

Ak,k−1 = −Mh[Φk,1]T , Ak,k = Mh[Φk,Φk] + Mh[1,1] , Ak,k+1 = −Mh[Φk+1,1] ,

R1 = Mh[Φ1,1]T ŪA , R2 = R3 = . . . = RK−2 = 0 , RK−1 = Mh[ΦK ,1]ŪB .

The energy
∑
l∈IC

∑8
q=0 w

l
q

(
|Uk ◦ Φk − Uk−1|2

)
(xlq) is convex in Uk (as a quadratic func-

tion of convex combinations of components of Uk) and strictly convex in Uk−1. Here, we use
that the quadrature rule integrates affine functions exactly. Hence, ED

K,h is strictly convex in
U and there is a unique minimizer U = U[Φ] for fixed Φ. This implies that A is invertible
and by solving the linear system A[Φ]Ū = R[Φ] one computes this unique minimizer. Nu-
merically, the corresponding system of linear equations (cf. line 12 of Algorithm 1) is solved
with a conjugate gradient method with diagonal preconditioning.

For fixed U, the deformations Φ1, . . . ,ΦK are independent of each other and thus can
be updated separately. In the case of bilinear finite elements, we consider only even m and
replace the integrand |Dmv|2 by |∆m

2 v|2 in the quadratic form (1.1) and correspondingly
|Dmφ|2 by |∆m

2 φ|2 in the energy (2.1). By elliptic regularity theory, all of the results above
directly transfer to this modified functional. Furthermore, we use the same quadrature rule as
before for the elastic energy and obtain the fully discrete energy

ED
K,h[(U0, . . . , UK), (Φ1, . . . ,ΦK)] =

K∑
k=1

( ∑
l∈IC

8∑
q=0

wlqW (DΦk(xlq))

+γ
∑
n=1,2

Mh(M−1
h Sh)

m
2 Φ̄nk · (M−1

h Sh)
m
2 Φ̄nk

+
1

δ

∑
l∈IC

8∑
q=0

wlq
(
|Uk ◦ Φk − Uk−1|2

)
(xlq)

)
,

where Sh[Φ,Ψ]i,j :=
∑
l∈IC

∑8
q=0 w

l
q∇Θi(xlq) ·∇Θj(xlq) is the stiffness matrix and Φnk the

n-th component of Φk. The actual minimization of ED
K,h with respect to Φk (the numerical

solution of a simple registration problem) is implemented based on a step size controlled
Fletcher-Reeves nonlinear conjugate gradient descent scheme with respect to a regularized
H1-metric on the space of deformations [39]. Thereby, the gradient of the energy ED

K,h with
respect to the deformation Φk in a direction Θ is given by

< ∂ΦkE
D
K,h[(U0, . . . , UK), (Φ1, . . . ,ΦK)],Θ >=

K∑
k=1

(∑
l∈IC

8∑
q=0

wlqW,A(DΦk(xlq))(DΘ(xlq)) + 2γ
∑
n=1,2

Mh(M−1
h Sh)

m
2 Φ̄nk · (M−1

h Sh)
m
2 Θ̄n

+
2

δ

∑
l∈IC

8∑
q=0

wlq (Uk ◦ Φk − Uk−1) (xlq) ((∇Uk ◦ Φk) ·Θ) (xlq)
)
.

Furthermore, we take into account a cascadic approach starting with a coarse time discretiza-
tion and then successively refine the time discretization. In each step of this approach, we
minimize the discrete path energy and perform a prolongation to the next finer level of the
time discretization. The prolongation is based on the insertion of new midpoint images be-
tween every pair of consecutive images. To this end, we compute an optimal deformation
between a pair of images and insert the middle image of the resulting warp. To improve the
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Data: input images UA and UB
Result: approximate minimizer (UA = UJ0 , U

J
1 , . . . , U

J
K = UB) of EK

1 smooth U0
0 = UA and U0

1 = UB with the Gaussian filter with variance σ2;
2 for j = 1 to J do
3 K = 2j ;
4 U j2k = U j−1

k for k = 0, 1, . . . ,K/2;
5 for k = 0 to K/2− 1 do
6 calculate Φ ∈ argminΦ̃∈V2

h
ED
K [(U j2k, U

j
2k+2), Φ̃];

7 U j2k+1 = U j2k+2 ◦ (1+ 0.5(Φ− 1));
8 end
9 repeat

10 Ūj,old = (U j1 , . . . , U
j
K−1);

11 compute Φj = (Φj1, . . . ,Φ
j
K) ∈ argminΦ∈(V2

h
)K ED

K [(UA, Ū
j , UB),Φ];

12 calculate Ūj = (U j1 , . . . , U
j
K−1) via Ūj = A[Φj ]−1R[Φj ] ;

13 until
∥∥Ūj,old − Ūj

∥∥
2
≤ threshold;

14 end

Algorithm 1: The alternating gradient descent scheme to compute the geodesic path.

robustness of the algorithm, we additionally use a Gaussian filter with variance σ2 = 5
4h

(color images) or σ2 = 5
8h (black-and-white images) to pre-filter the input images and damp

noise, where h is the mesh size. The resulting alternating minimization algorithm is summa-
rized in Algorithm 1. In the applications, it is frequently appropriate to ensure that deforma-
tions are not restricted too much by the Dirichlet boundary condition Φ = 1 on ∂D. This can
practically be obtained by enlarging the computational domain and considering an extension
of the image intensities with a constant gray or color value or by taking into account natu-
ral boundary conditions for the deformations. This can theoretically be justified by adding
constraints on the mean deformation and the angular momentum. In our computations, such
constraints are usually not required to avoid an unbounded rigid body motion component of
the numerical solution.

6. Numerical Results. In this section, we discuss numerical results for the metamor-
phosis model, which are obtained with Algorithm 1 proposed in the preceding section. Be-
sides the original model (2.1), we consider a simplified model, which gives results of compa-
rable visual quality with less computational effort. In the original model, we use as discussed
above form = 4 instead of |D4v|2 the term |∆2v|2 in the quadratic form (1.1). The simplified
model is associated with the quadratic form

L[v(t), v(t)] := Dv : Dv + γ∆v ·∆v , (6.1)

where γ > 0. A choice for the discrete energy, which is consistent with this quadratic form,
is given by

W[u, ũ] = min
φ

∫
D

Dφ : Dφ+ γ∆φ ·∆φ+
1

δ
|ũ ◦ φ− u|2 dx . (6.2)

In fact, this retrieves a very basic model for the registration of the two images u and ũ con-
sisting of a simple thin plate spline regularization and the most basic fidelity term (cf. [29]).

Let us emphasize that in the spatially continuous setting both the existence theory and
the Γ-convergence result require the full set of assumptions. In particular, the definitions
(6.1) for L[·, ·] and (6.2) forW (contrary to the full model with W proposed in (2.3)) do not
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K = 4,
using (2.1), (2.3)
with δ = 10−2,
λ = 1, µ = 1

2
,

q = r = 3
2

,
s = 1

2
, γ = 10−5

K = 4,
using (6.2) with
γ = 10−3,
δ = 10−1

K = 16,
using (6.2) with
γ = 10−3,
δ = 10−1

FIG. 6.1. Metamorphosis for two slices of a MRT data set of a human brain (data courtesy of H. Urbach,
Neuroradiology, University Hospital Bonn). We compare the original model (first row) with the simplified model and
K = 4 (second row), K = 16 (third to fifth row).

comply with (W2) and (W3). However, in case of the definition (6.2), the regularization term
of the deformation energyW is quadratic and enables a significant speedup of the algorithm
compared to the theoretically justified fully nonlinear model. We compare both models in our
first example and use the simplified model in all other applications. The parameter threshold
is set to 10−6 in the algorithm.

Figure 6.1 depicts a discrete geodesic path obtained with the full model (with parameters
K = 4, δ = 10−2, λ = 1, µ = 1

2 , q = r = 3
2 , s = 1

2 and γ = 10−5) and with the simplified
model (with parameters K ∈ {4, 16}, γ = 10−3, δ = 10−1), where uA and uB are different
slices of a 3D magnetic resonance tomography of a human brain.

Figure 6.2 shows a geodesic path between two faces from female portrait paintings1

computed with the simplified model with parameters γ = 10−3 and δ = 10−2. The local
contributions ED

K [(Uk−1, Uk),Φk] for k = 1, . . . ,K of the total energy and its components
are shown in Figure 6.3. Note that the method seems to prefer an approximate equidistribution
of the total path energy in time.

Finally, we consider time discrete geodesic paths in the space of color images. To this

1first painting by A. Kauffmann (public domain, see http://commons.wikimedia.org/wiki/File:
Angelika_Kauffmann_-_Self_Portrait_-_1784.jpg), second painting by R. Peale (GFDL, see
http://en.wikipedia.org/wiki/File:Mary_Denison.jpg)
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K = 4,
using (6.2) with
γ = 10−3,
δ = 10−2

K = 16,
using (6.2) with
γ = 10−3,
δ = 10−2

FIG. 6.2. Metamorphosis between two faces from female portrait paintings.
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FIG. 6.3. Energy contributions of the regularization functional
∫
D DΦk : DΦk + γ∆Φk · ∆Φk dx (red)

and the matching functional 1
δ

∫
D |Ũk ◦Φk − Uk−1|2 dx (green) for the discrete geodesic path in Figure 6.2 with

K = 4 (left) and K = 16 (right).

end, we take into account a straightforward generalization of the model for scalar (gray)
valued image maps to vector-valued image maps. One can even enhance the model with
further channels. Such additional channels can represent segmented regions of the images,
which one would like to ensure to be properly matched by transport and not by blending
of intensities. The only required modification of the method is that |uk+1 ◦ φk+1 − uk|
is now the Euclidean norm of the (extended) color vector. As an application, we consid-
ered the metamorphosis between two self-portraits by van Gogh (see Figure 6.5) 2. Since
the background colors of both self-portraits differ considerably in the RGB color space, we
adjusted the background color of one of the images (i.e. replacing ũB by uRGBB in Fig-
ure 6.5). In this application, a fourth (segmentation) channel is used to ensure the proper

2both paintings by V. van Gogh (public domain, http://en.wikipedia.org/wiki/File:
SelbstPortrait_VG2.jpg, http://upload.wikimedia.org/wikipedia/commons/7/71/
Vincent_Willem_van_Gogh_102.jpg)
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uRGBA uSA ũRGBB uRGBB uSB

FIG. 6.5. Original van Gogh self-portraits uRGBA , ũRGBB and the background modulated input image uRGBB

together with the associated fourth channel segmentations uSA and uSB .

FIG. 6.4. Pullback uRGBB ◦
Φ of image map uRGBB along the
path.

matching of the ears and the clothing. The time-discrete
geodesic path for the van Gogh self-portraits is shown in Fig-
ure 6.6 for K = 8 along with the temporal change of the
fourth channel. Again, we used the simplified model with
parameters γ = 10−3 and δ = 10−2. Figure 6.4 depicts
the pullback uRGBB ◦ Φ along the flow induced deformation
Φ = ΦK ◦ ΦK−1 ◦ . . . ◦ Φ1 corresponding to the geodesics
in Figure 6.6. Finally, Figure 6.7 visualizes the deformations
and the corresponding accumulated weak material derivative
along the discrete geodesic path. The color wheel on the lower
left in the first row indicates both the direction and the mag-
nitude of the discrete velocities K(Φk − 1). Obviously, the
motion field is not constant in time. Furthermore, to visualize the change of the image in-
tensity along motion paths, the accumulated weak material derivative Zl (l = 1, . . . , 8) with
Zl = K

∑l
k=1(Uk ◦ Φk − Uk−1) ◦ Xk−1 using the notation (3.3) is plotted using an equal

rescaling for all l.

7. Conclusions and outlook. We have developed a robust and effective time discrete
approximation for the metamorphosis approach to compute shortest paths in the space of im-
ages. Thereby, the underlying discrete path energy is a sum of classical image matching func-
tionals. The approach allows for edge type singularities in the input images. We have proven
existence of minimizers of the discrete path energy and convergence of minimizing discrete
paths to a continuous path, which minimizes the continuous path energy. This analysis is
based on a combination of the variational perspective of (discrete) geodesics as minimiz-
ers of the continuous (1.5) and discrete path energy (2.2), respectively, with the continuous
((4.7), (4.8)) and discrete flow perspective ((4.10), (4.9)). In particular, this combination is
the basis of a compensated compactness argument for the weak material derivative. Indeed,
using the flow perspective (4.8), we are able to compensate for the loss of compactness in
time, when trying to pass to the limit in the weak definition of the discrete material derivative
(4.3). Using a finite element ansatz for the spatial discretization, a numerical algorithm has
been presented to compute discrete geodesic paths. Qualitative properties of the algorithm
are discussed for three different examples including an application to multi-channel images.
Particularly interesting future research directions are

- the use of duality techniques in PDE constraint optimization to derive a Newton type
scheme for the simultaneous optimization of the set of deformations and the set of
images associated with the discrete path,

- a full-fledged discrete geodesic calculus based on the general procedure developed
in [34, 35] and including a discrete logarithmic map, a discrete exponential map, and

25



FIG. 6.6. Metamorphosis between two “van Gogh self-portraits” using the energy (6.2) for K = 8 and
δ = 10−2 including the fourth (segmentation) channel (bottom row).

a discrete parallel transport, and
- a concept for discrete geodesic regression and geometric, statistical analysis in the

space of images.
Furthermore, the close connection to optimal transportation offers interesting perspectives,
which should be exploited.

Acknowledgements. The authors acknowledge support of the Hausdorff Center for
Mathematics, the Bonn International Graduate School in Mathematics and the Collabora-
tive Research Centre 1060 funded by the German Science foundation. B. Berkels was funded

26



FIG. 6.7. Discrete motion fields K(Φk − 1) (first row) and accumulated weak material derivative Zl (second
row) for k = 1, . . . , 9.
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[31] J. NEČAS AND M. ŠILHAVÝ, Multipolar viscous fluids, Quarterly of Applied Mathematics, 49 (1991),

pp. 247–265.
[32] L. NIRENBERG, An extended interpolation inequality, Annali della Scuola Normale Superiore di Pisa, 20

(1966), pp. 733–737.
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