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Abstract

The binary Mumford-Shah model is a widespread tool for image segmentation and can be
considered as a basic model in shape optimization with a broad range of applications in com-
puter vision, ranging from basic segmentation and labeling to object reconstruction. This paper
presents robust a posteriori error estimates for a natural error quantity, namely the area of the
non-properly segmented region. To this end, a suitable uniformly convex and non-constrained
relaxation of the originally non-convex functional is investigated and Repin’s functional ap-
proach for a posteriori error estimation is used to control the numerical error for the relaxed
problem in the L2-norm. In combination with a suitable cut out argument, fully practical es-
timates for the area mismatch are derived. This estimate is incorporated in an adaptive mesh
refinement strategy. Two different adaptive primal-dual finite element schemes, a dual gradient
descent scheme, and the most frequently used finite difference discretization are investigated
and compared. Numerical experiments show qualitative and quantitative properties of the esti-
mates and demonstrate their usefulness in practical applications.

1 Introduction
Since the introduction of the image denoising and edge segmentation model by Mumford and Shah
in the late 80’s [35], there has been much effort to find effective and efficient numerical algorithms
to compute minimizers of different variants of this variational problem. The original model is
based on the functional EMS[u,K] = ∫Ω/K ∣∇u∣2 + α(u − u0)

2 dx + βHn−1(K) with α,β > 0,
where u0 ∈ L

∞(Ω, [0,1]) is a scalar image intensity on the bounded image domain Ω ⊂ Rn, u the
reconstructed image intensity and K the associated set of edges, on which the image intensity u
jumps. Here, Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. The space of functions
of bounded variation BV(Ω) turned out to be the proper space to formulate the problem in a
mathematical rigorous way. Indeed, existence in the context of the space of special functions of
bounded variation SBV(Ω) was proved by Ambrosio (see [2, Theorem 4.2]). For details on these
spaces we refer to [3]. Restricting u to be piecewise constant instead of piecewise smooth, one
is lead to a basic and widespread image segmentation model. This model is discussed from a
geometric perspective in the book by Morel and Solimini [34]. In the case of just two intensity
values c1, c2 ∈ [0,1], the associated energy can be rewritten in terms of a characteristic function
χ ∈ BV(Ω,{0,1}) as

E[χ] = ∫
Ω
θ1χ + θ2(1 − χ)dx + ∣Dχ∣(Ω) . (1.1)
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Here, θi = 1
ν
(ci −u0)

2 for i = 1,2, the new weight ν = β/α and the resulting binary model is given
by u = c1χ + c2(1 − χ). For fixed χ, one immediately obtains the optimal constants

c1[χ] = (∫
Ω
χdx)

−1

∫
Ω
χu0 dx and c2[χ] = (∫

Ω
1 − χdx)

−1

∫
Ω
(1 − χ)u0 dx . (1.2)

For fixed c1 and c2 one aims at minimizing the energy over the non-convex set of characteristic
functions χ ∈ BV(Ω,{0,1}). In the general case, one is interested in a triple (χ, c1, c2) as a
minimizer of E w.r.t. the set BV(Ω) × [0,1]2. Henceforth, if not otherwise stated we assume the
intensity values to be fixed.

Nikolova, Esedoglu and Chan [36] showed that the non-convex minimization problem for χ
can be solved via relaxation and thresholding–a breakthrough for both reliable and fast algorithms
in computer vision [40, 17]. Here, at first one asks for a minimizer of E over all u ∈ BV(Ω, [0,1])
and then thresholds u for any threshold value s ∈ [0,1) to obtain the solution χ = χ[u>s] of the
original minimization problem. The relaxed problem coincides with a constrained version of the
classical image denoising model by Rudin, Osher and Fatemi (ROF) [45]. Numerical schemes for
an effective and efficient minimization of this model have extensively been studied. Making use
of a dual formulation, Chambolle [14] introduced an iterative finite difference scheme and proved
its convergence. Hintermüller and Kunisch [30] proposed a predual formulation for a generalized
ROF model and applied a semismooth Newton method for a regularized variant. Chambolle and
Pock [20] deduced a primal-dual algorithm with guaranteed first order convergence and applied
their approach to different variational models in BV such as image denoising, deblurring and in-
terpolation. The scheme is based on an alternating discrete gradient scheme for the discrete primal
and the discrete dual problem. Bartels [6] used the embedding BV(Ω) ∩ L∞(Ω) ↪ H

1
2 (Ω) to

improve the step-size restriction for BV functionals. Wang and Lucier [47] employed a finite dif-
ference approximation of the ROF model and derived an a priori error estimate for the discrete
solution based on suitable projection operators. Following Dobson and Vogel [23], the total vari-
ation regularization can be approximated smoothly via

√
∣∇u∣2 + ε. In [26], the convergence of

the L2-gradient flow of this smooth approximation to the TV flow in L2 is shown under strong
regularity assumptions on the solution.

Furthermore, approximations of the original Mumford-Shah model have been studied exten-
sively. An early overview of different approximation and discretization strategies was given by
Chambolle in [13]. Ambrosio and Tortorelli [4] proposed a phase field approximation of this func-
tional and proved its Γ-convergence. Chambolle and Dal Maso [18] proposed a discrete finite
element approximation and established its Γ-convergence. Bourdin and Chambolle [9] picked up
this approach and studied the generation of adaptive meshes iteratively adapted in accordance to
an anisotropic metric depending on the current approximate solution. In [46], Shen introduced
a Γ-converging approximation of the piecewise constant Mumford-Shah segmentation, where the
length term in the Mumford-Shah model is approximated via an approach originating from the
phase field model by Modica and Mortola [33]. A simple and widespread level set approach was
proposed by Chan and Vese [21].

The goal of this paper is to derive a posteriori error estimates for the characteristic function χ.
To this end, we proceed as follows: We take into account a suitable uniformly convex relaxation
of the binary Mumford-Shah functional already studied in [8], which is related to more general
relaxation approaches suggested by Chambolle [15] and does not require any constraint in the
minimization. For this relaxation, we consider its predual and set up a corresponding primal-dual
algorithm [5, 20, 29]. Then, following Bartels [5], we use Repin’s primal-dual approach [42, 43] to
derive functional a posteriori error estimates for the relaxed solution based on upper bounds of the
duality gap (cf . also the book by Han [28] with respect to mechanical applications) (see Section
2). These estimates can be used together with a suitable cut out argument to derive an a posteriori
estimate for the characteristic function χ minimizing the original functional (1.1). In addition, a
sensitivity analysis of χ depending on c1, c2 and of c1, c2 depending on χ is studied (see Section 3).
Moreover, two adaptive finite element discretization schemes and one conventional, non adaptive
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finite difference scheme are investigated (see Section 4). Based on these discretization schemes, a
primal-dual algorithm and a dual gradient descent are introduced in Section 5. Finally, we apply
the resulting estimate to these schemes incorporating an appropriate post smoothing and present
the numerical results (see Section 6).

2 Uniformly Convex Relaxation and Functional Error Estimates
Henceforth, we use the notation χA to denote the indicator function of a measurable set A ⊂ Ω and
define [u > c] ∶= {x ∈ Ω ∶ u(x) > c}. We use generic constants c and C throughout this paper.
Furthermore, if not stated otherwise, we assume the intensity values c1 and c2 to be fixed with
c1, c2 ∈ [0,1] and c1 ≠ c2. Rewriting the binary Mumford-Shah functional (1.1) as

E[χ] = ∫
Ω
(θ1 − θ2)χdx + ∣Dχ∣(Ω) + ∫

Ω
θ2 dx , (2.1)

one observes that adding a constant to θ1 and θ2 leaves the minimizers χ unchanged. Thus, we
may assume that θ1, θ2 ≥ c > 0. Let us introduce the following relaxed functional

Erel
[u] = ∫

Ω
u2θ1 + (1 − u)2θ2 dx + ∣Du∣(Ω) , (2.2)

which is supposed to be minimized over all u ∈ BV(Ω,R). Indeed, Erel[χ] = E[χ] for character-
istic functions χ and one retrieves the original binary Mumford-Shah model. Proving existence of
minimizers of (2.2) via the direct method in the calculus of variations is straightforward, for details
we refer to [3, 25]. Furthermore, (2.2) is uniformly convex by our above assumptions on θ1 and θ2.
Loosely speaking, a preference for the values 0 and 1 for u is encoded in the quadratically growing
data term. The minimizers of both functionals (1.1) and (2.2) are related in the following sense (cf .
[8]):

Proposition 2.1 (Convex relaxation and thresholding). Under the above assumptions, a minimizer
u ∈ BV(Ω) of the functional Erel exists, u(x) ∈ [0,1] for a.e. x ∈ Ω and

χ[u>0.5] ∈ argmin
χ∈BV(Ω,{0,1})

E[χ] .

Proposition 2.1 is an instance of a more general result, which can be found in [15, 19, 31]. In
fact, let Ψ ∶ Ω ×R → R be measurable, Ψ(⋅, t) ∈ L1(Ω) for a.e. t ∈ R, Ψ(x, ⋅) ∈ C1(R) be strictly
convex for a.e. x ∈ Ω, Ψ(x, t) ≥ c∣t∣−C and EΨ[u] = ∫Ω Ψ(x,u)dx+ ∣Du∣(Ω) . Then, there exists
a minimizer u ∈ argminũ∈BV(Ω)EΨ[ũ] and for s ∈ R

χs ∶= χ[u>s] ∈ argmin
χ∈BV(Ω,{0,1})

∫
Ω
∂tΨ(x, s)χdx + ∣Dχ∣(Ω) .

For Ψ(x, t) = t2θ1(x)+ (1− t)2θ2(x) the property u(x) ∈ [0,1] follows directly when comparing
with the energy of the function min(1,max(0, u)). Furthermore, choosing s = 1

2
allows to verify

the main claim of Proposition 2.1. Indeed, for t ∈ R and χ ∈ BV(Ω,{0,1}), let Erel
t [χ] ∶=

∫Ω ∂tΨ(x, t)χdx + ∣Dχ∣(Ω). For our specific choice of Ψ,

Erel
t [χ] = ∫

Ω
(2t(θ1(x) + θ2(x)) − 2θ2(x))χdx + ∣Dχ∣(Ω)

implies that minimizing the functional Erel
1
2

is equivalent to minimizing the functional E because

Erel
1
2

[χ] = E[χ] − ∫Ω θ2 dx.
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Remark. The particular advantage of our model compared to the relaxation approach by Nikolova,
Esedoglu and Chan [36] is that the relaxed problem has not to be constrained to functions u with
values in [0,1]. One could also consider a ROF type functional choosing Ψ(x, t) = 1

2
(t− (θ2(x)−

θ1(x)))
2 (cf. [7]) and obtain the functional Erel

0 [χ] for the threshold value s = 0, but in this case
the L∞ bound of the relaxed solution depends on the L∞ bounds of 1

ν
(ci − u0)

2 (cf. Proposition
2.1) and requires a more involved cutoff scheme (see Section 3).

In what follows, we make use of convex analysis to derive a duality formulation for the min-
imization problem of the relaxed functional (2.2) and derive functional a posteriori estimates for
this problem. Primal and dual formulation will later be used in the a posteriori estimates. The dual
of BV(Ω) is very difficult to characterize and not suitable for computational purposes. Thus, for
a generalized ROF model Hintermüller and Kunisch [29] proposed to consider the corresponding
BV functional as the dual of another functional, which we refer to as the predual functional. Bar-
tels [5] made use of this approach in the context of a posteriori estimates for the ROF model. Here,
we follow this procedure and investigate the predual of (2.2).

Recall that the Fenchel conjugate J∗ of a functional J ∶X → R̄ on a Banach spaceX with R̄ =

R∪{∞} is a functional on the dual spaceX ′ with values in R̄, defined as J∗[x′] = supx∈X{⟨x′, x⟩−
J[x]} , where ⟨⋅, ⋅⟩ denotes the duality pairing. Furthermore, we denote by Λ∗ ∈ L(Y ′,X ′) the
adjoint operator of Λ ∈ L(X,Y ) and by ∂J the subgradient of J (cf . [24]).

Now, we investigate an energy functional

Drel
[q] = F [q] +G[Λq] q ∈ Q (2.3)

with F ∶ Q→ R̄ andG ∶ V → R̄ being proper, convex and lower semicontinuous functionals, V and
Q being reflexive Banach spaces and Λ ∈ L(Q,V). In our case, the predual of the convex relaxed
binary Mumford-Shah model is given by

F [q] = IB1
[q] = {

0 if ∣q∣ ≤ 1 a.e.
+∞ else , G[v] = ∫

Ω

1
4
v2 + vθ2 − θ1θ2

θ1 + θ2
dx ,

with Λ = div, Q = HN(div,Ω) and V = L2(Ω). Recall the definition of the spaces H(div,Ω) =

{q ∈ L2(Ω,Rn) ∶ div q ∈ L2(Ω)}, endowed with the norm ∥q∥2
H(div,Ω) = ∥q∥2

L2(Ω)+∥div q∥2
L2(Ω),

and HN(div,Ω) = H(div,Ω) ∩ {q ⋅ ν = 0 on ∂Ω}, where ν is the outer normal on ∂Ω and the
operator div is understood in the weak sense. Moreover, Λ∗ = −∇ holds in the sense

(Λ∗v, q)L2(Ω) = (v,div q)L2(Ω) ∀v ∈ V, q ∈ Q .

Based on this duality and for the particular choice of Drel, we easily verify that (Drel)∗ = Erel.
Indeed, from the general theory in [24, pp. 58 ff.], we can deduce (Drel)∗[v] = F ∗[−Λ∗v]+G∗[v].
As a result of the denseness of C1

c (Ω) in HN(div,Ω) with respect to the norm ∥ ⋅ ∥H(div,Ω), we
can infer for any v ∈ BV(Ω)

∣Dv∣(Ω) = sup
q∈Q,∥q∥∞≤1

∫
Ω
v div q dx = sup

q∈Q
(−∫

Ω
v div q dx − IB1

[q]) ,

which leads to
F ∗

[−Λ∗v] = sup
q∈Q

(−∫
Ω
v div q dx − IB1

[q]) = ∣Dv∣(Ω) .

On the other hand, the Fenchel conjugate of G can be computed as follows:

G∗
[v] = sup

w∈L2(Ω)
((v,w)L2(Ω) −G[w]) = ∫

Ω
v2θ1 + (1 − v)2θ2 dx ,

where the supremum is attained for w = 2v(θ1 + θ2) − 2θ2. This verifies the assertion.

4



The central insight is that
Drel

[p] = −(Drel
)
∗
[u] (2.4)

for a minimizer p of Drel and a minimizer u of (Drel)∗. A rigorous verification can be found
in [24, Chapter III.4] (see also [44, 42, 5]). Furthermore, one obtains that q̄ ∈ Q and v̄ ∈ V are
optimal if and only if −Λ∗v̄ ∈ ∂F [q̄] and v̄ ∈ ∂G[Λq̄], which can be deduced from the equivalence
J[x] + J∗[x′] = ⟨x′, x⟩⇐⇒ x′ ∈ ∂J[x] (see [24, Proposition I.5.1]).

In what follows, we investigate a posteriori error estimates associated with the energyDrel[q] =
F [q] +G[Λq] and its dual Erel[v] = F ∗[−Λ∗v] +G∗[v] (for fixed intensity values c1 and c2). A
crucial prerequisite is the uniform convexity of G∗, which is linked to the specific choice of the
relaxed Model Erel.

Recall that a functional J ∶ X → R is uniformly convex, if there exists a continuous functional
ΦJ ∶ X → [0,∞) such that J[x1+x2

2
] + ΦJ(x2 − x1) ≤ 1

2
(J[x1] + J[x2]) for all x1, x2 ∈ X

and ΦJ(x) = 0 if and only if x = 0. Furthermore, we denote by ΨJ a non-negative functional
such that ⟨x′, x2 − x1⟩ + ΨJ(x2 − x1) ≤ J[x2] − J[x1] for all x′ ∈ ∂J[x1] . Hence, ΨJ allows a
quantification of the strict monotonicity of J . If J ∈ C2 and λmin denotes the smallest eigenvalue
of D2J , then ΦJ and ΨJ admit the representation ΦJ(x) = 1

8
λmin(D

2J)∥x∥2 and ΨJ(x) =
1
2
λmin(D

2J)∥x∥2 , which follows readily via a Taylor expansion.

Remark. The optimal Ψ∗
J coincides with the Bregman distance (cf . [11]), i.e.

ΨJ(x2 − x1) ≤ Ψ∗
J(x2 − x1) ∶= J[x2] − J[x1] − sup

x′∈∂J[x1]
⟨x′, x2 − x1⟩

for any other ΨJ and x1, x2 ∈X .

Now, the a posteriori error estimate is based on the following direct application of a general
result by Repin [42]: Let u ∈ argminṽ∈V E

rel[ṽ] and q ∈ Q, v ∈ V ′ = V = L2(Ω). Then,

ΦG∗(v − u) +ΦF ∗(−Λ∗
(v − u)) +ΨErel(

v − u

2
) ≤

1

2
(Erel

[v] +Drel
[q]) . (2.5)

The proof of (2.5) relies on the above strict convexity estimates and the fundamental relation
Erel[u] ≥ −Drel[q] known as the weak complementarity principle [24], and can be found in [42, 5].

In the case of the binary Mumford-Shah model, we easily verify that

ΦF ∗ ≡ 0, ΦG∗(v) =
1

4
∫

Ω
v2

(θ1 + θ2)dx, ΨErel(v) = ∫
Ω
v2

(θ1 + θ2)dx ,

and the estimate (2.5) implies for any v ∈ V and q ∈ Q

∫
Ω
(u − v)2

(θ1 + θ2)dx ≤ Erel
[v] +Drel

[q] .

Finally, 1
2
(a − b)2 ≤ a2 + b2 with a = c1 − u0 and b = c2 − u0 yields 1

2ν
(c1 − c2)

2 ≤ θ1 + θ2. Thus,
we obtain the following theorem:

Theorem 2.2. Let u ∈ V be the minimizer of Erel. Then, for any v ∈ V and q ∈ Q it holds that

∥u − v∥2
L2(Ω) ≤ err2

u[v, q, c1, c2] ∶=
2ν

(c1 − c2)2
(Erel

[v] +Drel
[q]) . (2.6)

In the application, one asks for the (post-processed) discrete primal v and dual solution q which
ensure a small right hand side. Additionally, the estimator erru is consistent, i.e. err2

u[v, q, c1, c2]→
0 provided v and q converge to the extrema of the corresponding energy functionals w.r.t. the
topology of the associated Banach spaces.
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3 A Posteriori Error Estimates for the Binary Mumford-Shah
Model

In the sequel, we expand the a posteriori theory to the binary Mumford-Shah model. The key
observation is that for many images approximate solutions u ∈ L2(Ω) of the relaxed model are
characterized by steep profiles, where the actual solution of the original binary Mumford-Shah
model jumps. We proceed as follows. We define

a[v, η] = ∥χ[ 1
2−η≤v≤

1
2+η]

∥
L1(Ω)

for η ∈ (0, 1
2
) , which measures the area of the preimage of the interval of size 2η centered

at the threshold value s = 1
2

(cf . Section 2). Based on the above observation, the set Sη =

[ 1
2
− η ≤ v ≤ 1

2
+ η] can be regarded as the set of non-properly identified regions. Combining this

definition with the thresholding argument presented in Proposition 2.1, we obtain the subsequent
theorem:

Theorem 3.1 (A posteriori error estimator for χ). For fixed c1 and c2, let u ∈ BV(Ω) and χ =

χ[u> 1
2 ]

∈ BV(Ω,{0,1}) be a minimizer of the relaxed functional Erel (see (2.2)) and the binary
Mumford-Shah functional E (see (1.1)), respectively. Then for all v ∈ V = L2(Ω) and q ∈ Q =

HN(div,Ω) we have that

∥χ − χ[v> 1
2 ]
∥
L1(Ω)

≤ errχ[v, q] ∶= inf
η∈(0, 12 )

(a[v, η] +
1

η2
err2

u[v, q, c1, c2]) . (3.1)

Recall that χ[v> 1
2 ]

is the indicator function of the set [v > 1
2
]. Let us remark that χ[v> 1

2 ]
is the

result of the same thresholding, which relates χ to the solution u of the relaxed problem (2.2), i.e.
χ = χ[u> 1

2 ]
, this time applied to v.

Proof. Any minimizer u of Erel fulfills 0 ≤ u ≤ 1 and χ[u> 1
2 ]

minimizes E (see Proposition 2.1).
For all η ∈ (0, 1

2
), we obtain the following set relation for the symmetric difference of the sets

[u > 1
2
] and [v > 1

2
] (∆ denoting the symmetric difference of two sets):

[u > 1
2
]∆ [v > 1

2
] ⊆ {x ∈ Ω ∣ 1

2
− η ≤ v(x) ≤ 1

2
+ η} ∪ {x ∈ Ω ∣ ∣u(x) − v(x)∣ > η} . (3.2)

Now, using Theorem 2.2 the Lebesgue measure of the rightmost set can be estimated as follows

L
n
(∣u − v∣ > η) ≤ ∫

{∣u−v∣>η}

∣u − v∣2

η2
dx ≤

1

η2
err2

u[v, q, c1, c2] ,

where η ∈ (0, 1
2
). Finally, taking the infimum for all η ∈ (0, 1

2
) concludes the proof.

In the application, the computational cost to find the optimal η is of the order of the degrees
of freedom for the discrete solution and thus affordable. Let us emphasize that the error estimator
errχ is not tailored to a specific finite element approach. Indeed, we can project any primal and
dual solution onto the spaces V = L2(Ω) and Q =HN(div,Ω), respectively.

Remark. (i) We can obtain an a posteriori error estimate for the segmentation also for intensity
values c̃i, which are only known to be in intervals [ci − ε, ci + ε] around some value ci for i =
1,2 and ε > 0. Indeed, applying straightforward monotonicity arguments, we obtain the estimate
supc̃i∈Bε(ci), i=1,2 err2

u[v, q, c̃1, c̃2] ≤ err2,ε
u [v, q, c1, c2] for

err2,ε
u [v, q, c1, c2] ∶= ∫

Ω

2ν
(∣c1−c2∣−2ε)2 (v

2θmax1 + (1 − v)2θmax2 + ∣∇v∣

+
1
4 (div q)2

θmin1 +θmin2
+max{

(div q)θmax2

θmin1 +θmin2
,
(div q)θmin2

θmax1 +θmax2
} −

θmin1 θmin2

θmax1 +θmax2
)dx
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provided that 2ε < ∣c1 − c2∣. Here, θmaxi (x) = 1
ν

max{(ci + ε−u0)
2, (ci − ε−u0)

2} and θmini (x) =
1
ν

min{(ci + ε − u0)
2, (ci − ε − u0)

2} for i = 1,2. Thus, for the minimizer χ̃ ∈ BV(Ω,{0,1}) of
E[ ⋅ , c̃1, c̃2] the a posteriori estimate

∥χ̃ − χ[v> 1
2 ]
∥
L1(Ω)

≤ errεχ[v, q, c1, c2] ∶= inf
η∈(0, 12 )

(a[v, η] +
1

η2
err2,ε

u [v, q, c1, c2]) (3.3)

holds for all v ∈ V = L2(Ω) and q ∈ Q =HN(div,Ω).

(ii) The optimal intensity values for a given characteristic function χ are given in (1.2). For the
sensitivity of theses values on χ, we straightforwardly obtain the estimates

∣c1[χ] − c1[χ̃]∣ ≤
2 ∥χ̃−χ∥L1(Ω)

∥χ∥L1(Ω)−∥χ̃−χ∥L1(Ω)
, ∣c2[χ] − c2[χ̃]∣ ≤

2 ∥(χ̃−χ)∥L1(Ω)
∥1−χ∥L1(Ω)−∥(χ̃−χ)∥L1(Ω)

(3.4)

assuming ∥(χ̃ − χ)∥L1(Ω) < min{∥χ∥L1(Ω), ∥1 − χ∥L1(Ω)}.

(iii) Given the sensitivity results from (i) and (ii) one might ask for an a posteriori error estimate
both for χ and the intensity values c1, c2. In fact, if (χ, c1, c2) is a minimizer of the in general
non-convex energy E = ∫Ω

1
ν
(c1 − u0)

2χ + 1
ν
(c2 − u0)

2(1 − χ)dx + ∣Dχ∣(Ω) and one assumes
a priori that each of the initially chosen intensity values is already in some ε neighborhood of the
corresponding ci–value, then the estimates (3.3) and (3.4) can be combined to obtain an a posteriori
error estimate for the numerical approximation of (χ, c1, c2). Unfortunately, the estimate (3.3) is
not sufficiently sharp to ensure that the resulting estimated error in the intensities does actually
improve compared to the a priori assumption and a bootstrapping argument could not be applied
to further improve the resulting estimates. We refer to Section 6 for an explicit evaluation of the
sensitivity of the relaxed solution.

4 Finite Element and Finite Difference Discretization
In this section, we investigate different numerical approximation schemes for the primal and the
dual solution of the relaxed problem (2.2) on adaptive meshes and the refinement of the meshes
based on the a posteriori error estimates derived in Section 3. In the context of image processing
applications with input images usually given on a regular rectangular mesh, an adaptive quadtree
for n = 2 (or octree for n = 3) turned out to be an effective choice for an adaptive mesh data
structure. In what follows, we pick up the finite element approach for a variational problem on
BV proposed by Bartels [6] and a simplified version of the latter. Furthermore, we consider the
widespread finite different scheme proposed by Chambolle [14]. In all numerical experiments in
this paper, we choose Ω = [0,1]2.

(FE) Finite element scheme on an induced adaptive triangular grid. On the domain Ω, we
consider an adaptive meshMh described by a quadtree with cells C ∈Mh being squares, which
are recursively refined into four squares via an edge bisection. We suppose that the level of refine-
ment between cells at edges differs at most by one. Thus, on a single edge at most one hanging
node appears. Let h indicate the spatially varying mesh size function on Ω, where h on a grid cell
C ranges from an initial mesh size 2−Linit to a finest mesh size 2−L0 (usually determined by the
image resolution). For all discretization approaches investigated here, the degrees of freedom are
associated with the non-hanging nodes. Let us denote by Nv the number of these nodes, which
will coincide with the number of degrees of freedom of discrete primal functions. The finite ele-
ment discretization is based on a triangular mesh Sh spread over the adaptive quadtree mesh via
a splitting of each quadratic leaf cell into simplices T ( “cross subdivision”). We ask for discrete
primal functions uh in the space of piecewise affine and globally continuous functions on Sh de-
noted by Vh. Thus, for functions vh ∈ Vh the values at hanging nodes are interpolated based on the
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values at adjacent non-hanging nodes, which are associated with the actual degrees of freedom. By
Qh = {qh ∈ V

n
h ∶ qh ⋅ ν = 0 on ∂Ω} we denote the discrete counterpart of Q. To accommodate this

boundary condition, the boundary nodes are modified after each update of the dual solution in a
post-processing step. On Vh, we define discrete counterparts of the continuous functionals F and
G as follows:

Gh[vh] ∶= ∫
Ω

1
4
v2
h + vhθ2,h − θ1,hθ2,h

θ1,h + θ2,h
dx , Fh[qh] ∶= IB̄1

[qh] ,

where θi,h = Ih(θi) = Ih( 1
ν
(ci−u0)

2) for i = 1,2 with Ih denoting the Lagrange interpolation. In
the application on images, we suppose that u0 ∈ V0, where V0 is the simplicial finite element space
corresponding to the full resolution image on the finest grid level L0 representing the full image
resolution. Furthermore, we consider two different scalar products. On Vh, we take into account
the L2-product and on Qh the lumped mass product (qh, ph) ↦ ∫Ω Ih(qh ⋅ ph)dx and identify Vh
and Qh with their dual spaces with respect to the L2- and the lumped mass product, respectively.
Then, the associated dual operators are

G∗
h[vh] = ∫

Ω
v2
hθ1,h + (1 − vh)

2θ2,h dx , F ∗
h [qh] = ∫

Ω
Ih(∣qh∣)dx .

Finally, we define the discrete divergence Λh ∶ Qh → Vh, qh ↦ Ph div qh, where Ph denotes the
L2-projection Ph ∶ L2(Ω) → Vh. Following Bartels [5] and taking into account the above scalar
products on Vh and on Qh, we obtain for the discrete gradient −Λ∗

h ∶ Vh → Qh, vh ↦ −Λ∗
hvh, the

defining duality

∫
Ω
Ih(−Λ∗

hvh ⋅ qh)dx = ∫
Ω
vhPh div qh dx (4.1)

for all qh ∈ Qh and vh ∈ Vh.

(FE’) Finite element scheme based on a simple gradient operator. Instead of the above defined
discrete gradient operator −Λ∗

h, we alternatively consider the piecewise constant gradient ∇vh on
the simplices T of the simplicial mesh for functions vh ∈ Vh. To this end, we choose Qh as the
space of piecewise constant functions on the simplicial mesh, and take into account the standard
L2-product on both spaces. The above definitions of the functionals Gh and Fh are still valid.
Moreover, G∗

h remains the same, only F ∗
h changes to F ∗

h [qh] = ∫Ω ∣qh∣dx. The discrete divergence
Λh ∶ Qh → Vh is defined via duality starting from the preset discrete gradient as

∫
Ω
Ih(Λhqhvh)dx = −∫

Ω
qh ⋅ ∇vh dx ,

which indeed ensures that −Λ∗
hvh = ∇vh. This simplified ansatz leads to a non-conforming it-

erative solution scheme (see Section 5), since the space of piecewise constant finite elements is
not contained in HN(div,Ω) (cf . [6]). After each modification of the (piecewise constant) dual
solution the values on the corresponding boundary cells are set to 0 to satisfy the boundary condi-
tion. To apply the derived a posteriori error estimates a projection onto the space HN(div,Ω) is
required. To this end, we replace the solution ph ∈ Qh by its L2-projection onto the space Vnh after
each execution of the algorithm.

(FD) Finite difference scheme on a regular mesh. The finite difference scheme for the nu-
merical solution of functionals on BV proposed by Chambolle [14] is extensively used in many
computer vision applications and applies to image data defined on a structured non adaptive mesh.
We compare the a posteriori error estimator for this scheme on non-adaptive meshes with the
above finite element schemes on adaptive meshes. To this end, we denote by Vh ∈ RNv and
Qh ∈ RnNv nodal vectors on the regular lattice for primal and dual solutions, respectively. Here,
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Nv = (h−1+1)n, where h denotes the fixed grid size of the finite difference lattice. Integration is re-
placed by summation and we obtain the following discrete analogues Gh and Fh of the continuous
functionals F and G as functions on RNv and RnNv , respectively:

Gh[Vh] ∶=
Nv

∑
i=1

⎛

⎝

1
4
(Vi

h)
2 +Vi

hΘi
2,h −Θi

1,hΘi
2,h

Θi
1,h +Θi

2,h

⎞

⎠
, Fh[Qh] ∶= max

i=1,...,Nv
IB̄1

[Qi
h]

with Θi
1,h, Θi

2,h denoting the pointwise evaluation of θ1 and θ2, respectively, and IB̄1
[Qi

h] = 0 for
∣Qi

h∣ ≤ 1 and +∞ otherwise. The associated dual operators for the standard Euclidean product as
the duality pairing are

G∗
h[Vh] =

Nv

∑
i=1

(Vi
h)

2Θi
1,h + (1 −Vi

h)
2Θi

2,h , F∗
h[Qh] =

Nv

∑
i=1

∣Qi
h∣ .

Finally, we take into account periodic boundary conditions (by identifying degrees of freedom on
opposite boundary segments) and use forward difference quotients to define the discrete gradient
operator −Λ∗

h ∶ R
Nv → RnNv , i.e.

((−Λ∗
h)Vh)

i
=
⎛

⎝

V
N (i,j)
h −Vi

h

h

⎞

⎠
j=1,...,n

,

where N (i, j) is the index of the neighboring node in direction of the jth coordinate vector. As
a consequence, the matrix representing the discrete divergence operator Λh ∶ R

nNv → RNv is just
the negative transpose of the matrix representing the discrete gradient and thus corresponds to a
discrete divergence based on backward difference quotients.

To use the a posteriori error estimate in the finite difference context, we consider as a simplest
choice the piecewise bilinear functions uh and ph uniquely defined by the solution vectors Uh and
Ph, respectively. The boundary condition for ph is taken care of in exactly the same way as in the
case (FE).

5 Duality-Based Algorithms
For the numerical solution of the different discrete variational problems, we primarily use the
primal-dual algorithm proposed by Chambolle and Pock [20, Algorithm 1], which computes both
a discrete primal and a discrete dual solution to be used in the a posteriori error estimates. Note that
we use [20, Algorithm 1] instead of [20, Algorithm 2] even though G∗

h is uniformly convex. As
we will see later, evaluating (Id + τ∂G∗

h)
−1 requires the inversion of a matrix depending on τ . In

Algorithm 1, τ is fixed and the inverse can be computed once using a Cholesky decomposition for
the sparse, symmetric and positive-definite matrix (for details see [22]), whereas in Algorithm 2 the
decomposition of the linear system has to be performed in each iteration. Moreover, using diagonal
preconditioning one can improve the convergence speed of Algorithm 1 without any further step
size control (see [38]). There is a variety of alternative algorithms to solve this convex minimization
problem, e.g. the split Bregman method [27], the semi-implicit dual gradient descent [14], the
alternating descent method for the Lagrangian [5, Algorithm A’] or the alternating direction method
of multipliers (ADMM) (see [10] and the references therein). For distinct images we compare
below the aforementioned algorithm by Chambolle and Pock with a dual gradient descent in terms
of the quantity of the error estimator.

Before we discuss the algorithm due to Chambolle and Pock in the more conventional matrix-
vector notation, let us rewrite the finite element approaches correspondingly. Let Nv = dimVh
(the number of non-hanging nodes) and Nq = dimQh (for (FE) Nq = nNv and for (FE’) Nq is n
times the number of simplices). In what follows, we will use uppercase letters to denote a vector
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of nodal values, e.g. Vi
h = vh(X

i) if Xi is the ith non-hanging node. The two scalar products are
encoded via mass matrices. Here, Mh ∈ R

Nv,Nv represents the standard L2-product on Vh and is
given by MhVh ⋅Uh = ∫Ω vhuh dx for all vh, uh ∈ Vh. Furthermore, M̃h ∈ RNq,Nq is the mass
matrix associated with the space Qh.

For the approach (FE) this is given as the lumped mass matrix with M̃hPh ⋅Qh = ∫Ω Ih(ph ⋅

qh)dx for all ph, qh ∈ Qh, whereas for the discretization (FE’) M̃hPh ⋅ Qh = ∫Ω ph ⋅ qh dx for
all ph, qh ∈ Qh defines a classical (diagonal) mass matrix. For the matrix representations Λh and
−Λ∗

h of the discrete divergence and the discrete gradient, respectively, we obtain the relation (cf .
[5])

Λ∗
h = M̃−1

h ΛT
hMh . (5.1)

Moreover, for the discretization (FD) we have Λ∗
h = ΛT

h . Altogether, the discrete predual energy
Drel
h ∶ RNq → R and the discrete energy Erel

h ∶ RNv → R are defined as follows:

Drel
h [Qh] = Fh[Qh] +Gh[ΛhQh] ,

Erel
h [Vh] = F∗

h[−Λ∗
hVh] +G∗

h[Vh] .

In the case of all finite element discretizations, the functionals Gh,Fh,G
∗
h and F∗

h are defined
using the corresponding functions on the finite element spaces, e.g. G∗

h[Vh] ∶= G
∗
h[vh].

Now, we are in the position to formulate the primal-dual algorithm. For a fixed mesh, fixed
intensity values c1, c2 and initial data (U0

h,P
0
h) ∈ RNv × RNq , the Algorithm 1 proposed by

Chambolle and Pock [20, Algorithm 1] computes a sequence (Uk
h,P

k
h), which converges to the

tuple (Uh,Ph) of the discrete primal and dual solution provided τσ∥Λh∥
2 < 1. Indeed, by using

k = 0;
while ∥Uk+1

h −Uk
h∥∞ >THRESHOLD do

Pk+1
h = (Id + σ∂Fh)

−1[Pk
h − σΛ∗

hŪ
k
h];

Uk+1
h = (Id + τ∂G∗

h)
−1[Uk

h + τΛhP
k+1
h ];

Ūk+1
h = 2Uk+1

h −Uk
h;

k = k + 1;
end

Algorithm 1: The primal-dual algorithm used to minimize Erel
h .

inverse estimates for finite elements (see [37] for a computation of the constants) the operator norm
can be bounded in the case (FE’) for n = 2 as follows: ∥Λh∥

2 ≤ 48(3 + 2
√

2)h−2
min ≈ 279.8h−2

min,
where hmin denotes the minimal mesh size occurring inMh. Moreover, to estimate the operator
norm for the case (FE) we use (4.1) and obtain

∥Λh∥
2
=( max

vh∈Vh,∥vh∥L2=1
max

qh∈Qh,∥qh∥L2=1
∫

Ω
Ih(−Λ∗

hvh ⋅ qh)dx)

2

=( max
vh∈Vh,∥vh∥L2=1

max
qh∈Qh,∥qh∥L2=1

∫
Ω
vhPh div qh dx)

2

≤ max
qh∈Qh,

∥qh∥L2=1

∥Ph div qh∥
2
L2(Ω) ≤ max

qh∈Qh,
∥qh∥L2=1

∥div qh∥
2
L2(Ω) ≤ 96(3 + 2

√
2)h−2

min .

Finally, following [14] we can estimate ∥Λh∥
2 ≤ 8h−2

min for the discretization (FD).
Suitable stopping criteria are a threshold on the maximum norm of the difference of successive

solutions Uk+1
h −Uk

h (which we apply here) or on the primal-dual gap Erel
h [Uk

h] +Drel
h [Pk

h]. To
compute the resolvents (Id+∂Fh)

−1[Qh] and (Id+∂G∗
h)

−1[Vh] we use a variational ansatz (for
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details see [44]), i.e. for the resolvent of a subdifferentiable functional J with an underlying scalar
product (⋅, ⋅) we have that

(Id + τ∂J)−1
[x] = argmin

y
(x − y, x − y) + 2τJ(y) .

The resolvent of Fh for the approaches (FE) and (FD) is given by

(Id + σ∂Fh)
−1

[Qh] = (
Qi
h

max{∣Qi
h
∣,1})

i=1,...Nv

(5.2)

with Qi
h = qh(X

i). In the case (FE’), the above evaluation is performed on each cell. For the
discretizations (FE) and (FE’), we denote by Mh[Wh]Uh ⋅ Vh = ∫Ωwh uhvh dx the weighted
mass matrix for functions uh, vh ∈ Vh and a weight wh ∈ Vh. Then, the resolvent of Gh reads as

(Id + τ∂G∗
h)

−1
[Vh] = (Mh[1 + 2τ(Θ1,h +Θ2,h)])

−1
Mh (Vh + 2τΘ2,h) .

In the case (FD), the resolvent is given by

(Id + τ∂G∗
h)

−1
[Vi

h] =
Vi
h + 2τΘi

2,h

1 + 2τ (Θi
1,h +Θi

2,h)
for 1 ≤ i ≤ Nv .

In our numerical experiments, we have chosen THRESHOLD = 10−8.
In the sequel, we consider a projected dual gradient descent for the minimization of Erel using

the discretization (FE), and picking up Chambolle’s semi-implicit gradient descent w.r.t. the dual
variable for the ROF model using a finite difference scheme [14]. We remark that the algorithm can
analogously be derived for the discretization scheme (FE’). Starting from the first order condition
κ ∶= −(2uθ1 + 2(u − 1)θ2) ∈ ∂TV[u] for Erel with TV[u] = ∣Du∣(Ω), we can infer u ∈ ∂TV∗

[κ]
due to [24, Chapter I, Corollary 5.2], which is the first order condition of the functional

∫
Ω

1

4(θ1 + θ2)
(κ − 2θ2)

2
dx +TV∗

[κ] .

Thus, the unique minimizer is given by κ = PS[2θ2], where PS denotes the orthogonal projection
onto the set S = {div p ∣p ∈HN(div,Ω), ∥p∥L∞(Ω) ≤ 1} w.r.t. the weighted L2-space with weight
w = (4(θ1 + θ2))

−1, denoted by L2(Ω,w). Note that w ∈ L∞(Ω,R>0) due to the assumptions
regarding θi. The primal solution is given by u =

2θ2−PS[2θ2]
2(θ1+θ2) . For the computation of PS[2θ2]

we have to solve argminι∈S ∥ι − 2θ2∥
2
L2(Ω,w), which is computed by alternatingly performing a

gradient descent for the unconstrained problem and a projection onto S. To be precise, for a
fixed step size τ > 0 the usual gradient descent update scheme reads pk+1 = pk + τ∇(w(div pk −
2θ2)). After a multiplication by a test function ϑ ∈ Qh, applying ∫Ω Ih( ⋅ )dx on both sides,
replacing ∇ and div by the differential operators −Λ∗

h and Λh as introduced in the discretization
(FE), respectively, and using (4.1) one obtains

∫
Ω
Ih(p

k+1
⋅ ϑ)dx = ∫

Ω
Ih(p

k
⋅ ϑ)dx + τ ∫

Ω
(w(Λhp

k
− 2θ2))Ph divϑdx . (5.3)

Let M̃h be the lumped mass matrix, LjUh ⋅Vh = ∫Ω uh ⋅∂jvh dx, j = 1,2, for all uh, vh ∈ Vh, and
Wi

h = w(Xi). Then (5.3) implies

[Pk+1
h ]j = [Pk

h]j + τM̃
−1
h Lj(Wh(ΛhP

k
h − 2Θ2,h)) for j = 1,2 . (5.4)

After each update of the dual variable (5.4) a projection onto S is performed (cf . (5.2)). The step
size is taken as τ = γ ⋅ minC ∈Mh

h(C ). The stopping criterion for the resulting algorithm relies
on the L∞-distance of two successive dual solutions (in our case, THRESHOLD = 10−8). For a

11



converge analysis of this approach we refer to [12]. In the sequel, we will denote results obtained
with the discretization scheme (FE) and this algorithm by (FED).

The adaptive mesh refinement is implemented as follows. Given a mesh, fixed intensity values
and initial data for the primal and dual solution, we run one of the above algorithms and compute
the relaxed discrete primal-dual solution pair (uh, ph). In the case of the finite difference approach
(FD), we define them as the multilinear interpolation on the cells C of the regular mesh. The
corresponding discrete solution of the original problem (2.1) is then given as χh = χ[uh> 1

2 ]
. Based

on uh and ph, we evaluate the local error estimator for every cell C0 of the full resolution image
grid as follows:

err2
u,C0

[uh, ph] ∶=
2ν

(c1 − c2)2
( ∫

C0

v2
hθ1 + (1 − vh)

2θ2 + ∣∇vh∣

+

1
4
(div qh)

2 + (div qh)θ2 − θ1θ2

θ1 + θ2
dx) .

To this end, a higher order Gaussian quadrature is used. In fact, for (FE), (FED) and (FE’) we use
a Gaussian quadrature of order 4 on the simplices T0 composing the cell C0 on the finest mesh
with full image resolution, where the θi (i = 1,2) are originally defined, and for (FD) a Gaussian
quadrature of order 5 directly on the cells C0. The resulting local error estimator for a cell C ∈Mh

and the global estimator are given as

err2
u,C [uh, ph] = ∑

C0⊂C

err2
u,C0

[uh, ph] and err2
u[uh, ph] = ∑

C ∈Mh

err2
u,C [uh, ph] ,

respectively. We mark those cells C for refinement for which

err2
u,C [uh, ph] ≥ α max

C ′∈Mh

err2
u,C ′[uh, ph] , (5.5)

where α is a fixed threshold in (0,1). Since this method is prone to outliers, we additionally sort
all local estimators err2

u,C according to their size (starting with the smallest) and mark the cells
in the upper decile for refinement as well. For the input data from Figure 1 we refine up to the
resolution of the initial image.

6 Numerical Results
In what follows, we show numerical results for four different input images shown in Figure 1. Prior
to executing the primal-dual scheme (Algorithm 1) or the dual gradient descent scheme, we choose
suitable values for c1 and c2 by applying Lloyd’s Algorithm (see [32]) for the computation of a
2-means clustering (with initial values 0 and 1). The resulting initial values are given in Figure 1
together with the values for ν.

The pixels of the input images are interpreted as nodal values of the function u0 on a uniform
mesh with mesh size h = 2−L0 (L0 = 9 for (d), L0 = 11 else). The algorithm is then started on a
uniform mesh of mesh size h = 2−Linit (Linit = 3 for (d), Linit = 5 else). In all computations we use
τ = 10−5 and σ = 5 ⋅ 10−5 (Algorithm 1), γ = 0.05 for the dual gradient descent and α = 0.2. We
perform 10 cycles of the adaptive algorithm and refine cells until the depth L0 of the input image
is reached.

We observe slight local oscillations for the finite element approaches (FE), (FED) and (FE’),
which deteriorate the result of the a posteriori estimator (cf . the numerical results in [5]). Thus, in
a post-processing step, we compensate these oscillations prior to the evaluation of the estimator by
an application of a smoothing filter. The filter is defined via an implicit time step of the discrete heat
equation using affine finite elements on the underlying adaptive mesh, i.e. we apply the operator
(Mh + ιSh)

−1Mh to the solutions, where Sh denotes the stiffness matrix. For the discretizations
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image (a) (b) (c) (d)
resolution 2049 × 2049 2049 × 2049 2049 × 2049 513 × 513
c1 0.999772 0.893734 0.664404 0.602566
c2 1.99 ⋅ 10−4 0.030416 0.167763 0.092273
ν 5 ⋅ 10−3 5 ⋅ 10−3 10−3 5 ⋅ 10−3

Figure 1: Input images together with the corresponding image resolution and the model parameters
c1, c2, and ν (flower image: photo by Derek Ramsey, Chanticleer Garden, cameraman image:
copyright by Massachusetts Institute of Technology).

(FE) and (FED), we choose ι = c ⋅ h2
min, where hmin denotes the minimal mesh size of the current

adaptive grid, with c = 3 and c = 6 for the primal and the dual solution, respectively. Moreover, in
the case (FE’) the smoothing is only applied to the dual solution with parameter ι = 0.75 ⋅ h0.9

a ,
where ha denotes the average cell size on the adaptive mesh. In our experiments, we observed that
these smoothing methods and parameters outperformed other tested choices for the corresponding
discretizations. We call the resulting post-processed functions ūh and p̄h, respectively, and replace
the local error estimator by err2

u,C [ūh, p̄h].
Table 1 lists (scaled) primal and dual energies, err2

u, ηoptimal (the η value corresponding to the
optimal a posteriori error bound for given err2

u) as well as errχ for all input images after the 10th

refinement step of the adaptive algorithm. The value of errχ peaks for the application (d) due to
the relatively low image resolution. Figure 2 plots the error estimator err2

u after each refinement
step for all input images and all finite element discretizations. In most of our numerical experi-
ments, the scheme (FE) performs comparably to the discretization (FED), but slightly better than
the scheme (FE’). For the flower image, the sequence of adaptive meshes and solutions resulting
from the adaptive algorithm for the discretization (FE’) is depicted in Figure 3. Figure 4 displays
solutions for the discretization (FE’) and the corresponding adaptive meshes together with color
coded deciles of uh, and the graphs of η ↦ a[Uh, η] and η ↦ errχ. Note that the displayed deciles
explicitly indicate the sets Sη for η = 0.1, 0.2, 0.3, 0.4.

Figures 5 and 6 show the relaxed solution uh and the thresholded solution χh for the input
images (b) to (d) using the discretization schemes (FE) and (FD), the corresponding results for
(FED) are not depicted since they are almost not distinguishable from the results for (FE).

It is known that solutions of the Mumford-Shah problem are in general not unique. We pick
up a classical example for this non-uniqueness in Figure 7 with alternating intensity values 0 and 1
on quadrants. We demonstrate the sensitivity of our adaptive scheme with respect to the topology
of the segmentation. In fact, we compute a segmentation using the discretization (FE) (with initial
intensity values c1 = 1, c2 = 0 and ν = 0.01) for slightly perturbed versions of the original image.
I.e. solely the four pixels in the center of the image of resolution 2049 × 2049 are either set black
or white, respectively. The resulting segmentations are shown in Figure 7 along with the adaptive
mesh and the decile plots. The adaptive algorithm is capable to detect properly the decision for one
of the two segmentation solutions. The issue of non-uniqueness is closely related to the flatness
of the relaxed solution in the center, in particular leading to an increase of the a posteriori error
contribution a[v, η].

Moreover, we applied the above methods to an analytic function consisting of a weighted sum
of two Gaussian kernels. To this end, in each step the functionals and the error estimator are
evaluated on the current adaptive grid and not on a prefixed full resolution grid. The results are
shown in Figure 8 (with parameters c1 = 0.495349, c2 = 0.0568447 and ν = 5 ⋅ 10−3).
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(a) (b) (c) (d)

2ν
(c1−c2)2E[uh]

(FE) 0.022422 0.078461 0.124137 0.203797
(FED) 0.022421 0.078632 0.124659 0.204353
(FE’) 0.022249 0.077981 0.122572 0.202494
(FD) 0.022493 0.078814 0.122777 0.205645

2ν
(c1−c2)2D[ph]

(FE) -0.021736 -0.075971 -0.117785 -0.183819
(FED) -0.021757 -0.075870 -0.117973 -0.181720
(FE’) -0.020973 -0.071333 -0.111234 -0.166114
(FD) -0.021520 -0.075455 -0.119865 -0.188600

err2
u

(FE) 6.86e-04 0.002490 0.006352 0.019978
(FED) 6.63e-04 0.002761 0.006686 0.022633
(FE’) 0.001276 0.006647 0.011338 0.036380
(FD) 9.73e-04 0.003359 0.002912 0.017045

ηoptimal

(FE) 0.39 0.3225 0.2825 0.3075
(FED) 0.385 0.325 0.2725 0.315
(FE’) 0.45 0.3675 0.31 0.3275
(FD) 0.4375 0.345 0.24 0.3025

errχ

(FE) 0.008847 0.038502 0.160912 0.373173
(FED) 0.008704 0.041019 0.167892 0.394317
(FE’) 0.009816 0.068514 0.227060 0.545201
(FD) 0.008223 0.0425225 0.109039 0.339256

Table 1: Rescaled dual and primal energy evaluated on the discrete solution (uh, ph), error es-
timator for the relaxed solution, optimal threshold ηoptimal computed for uh and the resulting a
posteriori estimator errχ for the L1-error of the characteristic function χ (after 10 cycles of the
adaptive algorithm).

In addition, we evaluated the sensitivity of the error estimates with respect to variations in the
intensity values. Figure 9 shows the function plot of ε↦ err2,ε

u [uh, ph, c1, c2] with fixed primal uh
and dual solution ph obtained with the discretization (FE) after the 10th iteration for the images
(b) and (c). The error estimator for image (b) is less sensitive to small fluctuations in the intensity
values compared to image (c) due to the stronger variation of intensity values along the boundary
of the segmentation in image (b).

Finally, the proposed discretization schemes were compared in terms of the relative CPU time
for the images images (b) and (d) in the last iteration. To enforce comparable conditions the
stopping criterion was set to ∥Pk+1

h −Pk
h∥∞ < 10−6 and the primal and dual solution were initialized

with constant values. In comparison with the discretization scheme (FE), the scheme (FE’) required
comparable CPU time (image (b): −6.7%, image (d): +6.5%), whereas (FED) performed slower
for larger images (image (b): +30.4%, image (d): −0.1%).

7 Conclusions
We have investigated the a posteriori error estimation for the binary Mumford-Shah model and
applied this estimate to three different adaptive finite element discretizations in comparison to a
non-adaptive finite difference scheme on a regular grid. The proposed finite element discretizations
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Figure 2: The values of err2
u and errχ are displayed in relation to the number of degrees of freedom

in a log-log plot for the applications (a) (upper left), (b) (upper right), (c) (lower left) and (d) (lower
right).

in combination with the adaptive mesh refinement strategy lead to a substantial reduction of the
required degrees of freedom with error values err2

u and errχ of about the same magnitude as for a
standard finite difference scheme on a non-adaptive mesh with mesh size equal to the finest mesh
size of the adaptive meshes. To improve the resulting estimate of the duality gap Erel[v]+Drel[q],
the finite element schemes require some oscillation damping smoothing in a post-processing step.

The proposed approach to a posteriori estimates for the binary Mumford-Shah model derived
in this paper can be applied to more general problems in computer vision. In fact, the calibra-
tion method developed by Alberti, Bouchitté and Dal Maso [1] provides a convex relaxation of
non-convex functionals of Mumford-Shah type via the lifting of a variational problem on a n-
dimensional domain to a minimization problem over characteristic functions of subgraphs in n+ 1
dimensions. In the context of non-convex functionals in vision, this approach was studied by Pock
et al. [39, 40]. Applications of such functionals include the computation of minimal partitions
[16, 41], the depth map identification from stereo images or the robust extraction of optimal flow
fields [40]. Here, an adaptive mesh strategy is expected to have an even larger pay-off due to the
increased dimension.
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