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Abstract. An edge-sensitive variational approach for the restoration of
optical flow fields is presented. Real world optical flow fields are fre-
quently corrupted by noise, reflection artifacts or missing local informa-
tion. Still, applications may require dense motion fields. In this paper,
we pick up image inpainting methodology to restore motion fields, which
have been extracted from image sequences based on a statistical hypoth-
esis test on neighboring flow vectors. A motion field inpainting model
is presented, which takes into account additional information from the
image sequence to improve the reconstruction result. The underlying
functional directly combines motion and image information and allows
to control the impact of image edges on the motion field reconstruction.
In fact, in case of jumps of the motion field, where the jump set coin-
cides with an edge set of the underlying image intensity, an anisotropic
TV-type functional acts as a prior in the inpainting model. We compare
the resulting image guided motion inpainting algorithm to diffusion and
standard TV inpainting methods.

1 Introduction

Many methods have been proposed to estimate motion in image sequences. Yet,
in difficult situations such as multiple motions, aperture problems or occlusion
boundaries optical flow estimates are often incorrect. These incorrect flow pat-
terns can be detected and removed from the flow field e.g. by means of confidence
measures [1–3]. But since many applications demand a dense flow field, it would
be beneficial to reconstruct a reliable dense vector field based on information
from the surrounding flow field. A similar task has been addressed in the field of
image reconstruction and is called inpainting, picking up a classical term from
the restoration of old and damaged paintings. The digital reconstruction of cor-
rupted images was first proposed by Masnou and Morel [4]. Over the last decade
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a wide range of methods has been developed for the inpainting of grayscale or
color images. Edge preserving TV inpainting and curvature-driven diffusion in-
painting was suggested by Chan and Shen [5, 6]. Transport based methods with
a fast marching type inpainting algorithm were proposed by Telea [7] and im-
proved by Bornemann and März [8]. The relation to fluid dynamics was studied
by Bertalmio et al. [9] and Chan and Shen [10] investigated texture inpainting.
Already in 1993, Mumford et al. [11] proposed to study a variational approach
which treats contour lines as elastic curves. In [12], Ballester et al. introduced
a variational approach based on the smooth continuation of isophote lines. A
variational approach based on level sets and a Perimeter and Willmore energy
was presented by Ambrosio and Masnou in [13]. A combination of TV inpainting
and wavelet representation was proposed in [14].

The inpainting methodology has been generalized to video sequences with
occluding objects by Patwardhan [15]. The reconstruction of motion fields has
lately been proposed in the field of video completion. In case of large holes with
complicated texture, previously used methods are often not suitable to obtain
good results. Instead of reconstructing the frame itself by means of inpaint-
ing, the reconstruction of the underlying motion field allows for the subsequent
restoration of the corrupted region even in difficult cases. This type of motion
field reconstruction called “motion inpainting” was first introduced for video sta-
bilization by Matsushita et al. in [16]. The idea is to continue the central motion
field to the edges of the image sequence, where the field is lost due to camera
shaking. This is done by a basic interpolation scheme between four neighboring
vectors and a fast marching method. Chen et al. [17] refined the approach of
Matsushita et al. to obtain a robust motion inpainting approach, which can deal
with sudden scene changes by means of Markov Random Field based diffusion
and applied it to spatio-temporal error concealment in video coding. In [18],
Kondermann et al. proposed to improve motion fields by only computing a few
reliable flow vectors and filling in the missing vectors by means of a diffusion
based motion inpainting approach.

In general, the variational reconstruction of optical flow fields can be ac-
complished by straightforward extension of inpainting functionals for images to
two dimensional vector fields. However, these methods usually fail in situations
where the course of motion discontinuity lines is unclear, e.g. if objects with
curved boundary move or junctions occur in overlapping motion. Since image
edges often correspond to motion edges the information drawn from the image
sequence can be important for the reconstruction, especially in such cases where
the damaged vector field does not contain enough information to determine the
shape of the motion discontinuity.

In the special case of optical flow extracted from an image sequence, the
underlying image sequence itself provides additional information, which can be
used to guide the reconstruction process in ambiguous cases. So far, optical
flow fields have already been used for the reconstruction of images in video
restoration, e.g. in [15]. Here, we use the underlying image data to improve the
reconstruction of the optical flow field. The resulting functional is nonlinear and
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can be minimized by means of the finite element method. We compare our results
to diffusion based and TV inpainting methods.

To prepare the discussion of the proposed new motion field inpainting model,
let us briefly review some basic image inpainting methodology. Given an image
u0 : Ω → R and an inpainting domain D ⊂ Ω, one asks for a restored image
intensity u : Ω → R, such that u|Ω\D = u0 and u|D is a suitable and regular
extension of the image intensity u0 outside D. The simplest inpainting model is
based on the construction of a harmonic function u on D with boundary data
u = u0 on ∂D. Based on the Dirichlet principle, this model is equivalent to the
minimization of the Dirichlet functional Eharmon[u] = 1

2

∫
D
|∇u|2 dx for given

boundary data. Due to standard elliptic regularity the resulting intensity func-
tion u is smooth – even analytic – inside D but does not continue any edge type
singularity of u0 prominent at the boundary ∂D. To resolve this shortcoming
the above mentioned TV-type inpainting models have been proposed. They are
based on the functional ETV[u] = 1

2

∫
D
|∇u| dx. Then the minimizing image in-

tensity is a function of bounded variation; hence characterized by jumps along
rectifiable edge contours. It solves - in a weak sense - the geometric PDE h = 0
where h = div (|∇u|−1∇u) is the mean curvature on level sets or edge contours.
Making use of the coarea formula (cf. [19]) one sees that minimizing ETV cor-
responds to minimizing the lengths of the level lines of u. Thus, the resulting
edges will be straight lines.

In many applications the assumption of a sharp boundary ∂D turns out to
be a significant restriction. In fact, the reliability of the given image intensity
gradually deteriorates from the outside to the inside of the inpainting region.
This can be reflected by a relaxed formulation of the variational problem. In
fact, one considers the functional

Eε[u] =
∫
Ω

|u− u0|2Hε + λ(1−Hε) |∇u|p dx ,

where λ > 0, p = 1 or 2, and Hε is a convoluted characteristic function χD
and ε indicates the width of the convolution kernel [5]. In our case this blending
function will depend on a confidence measure.

Contribution. In this paper, we address the restoration problem for locally cor-
rupted optical flow fields. The underlying image information has not been ex-
ploited previously for optical flow restoration. We propose a novel anisotropic
TV-type variational approach, where the anisotropy takes into account edge in-
formation of the underlying image sequence. To identify unreliable flow vectors,
a confidence measure is used. This non binary measure can be taken into account
as a weight in the functional. We validate our method on test data and on real
world motion sequences with given ground truth.

2 The variational model

In this section we derive our restoration approach for optical flow fields. Given an
image sequence, we denote by u0 the image intensity and by v0 the corresponding
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estimated motion field at a fixed time t. Let us suppose that a confidence measure
ζ is given together with a user selected threshold θ, such that the set

[ζ < θ] := {x ∈ Ω : ζ(x) < θ}

is the region of low confidence on the estimated optical flow field v0. Hence, we
aim at inpainting v in the region [ζ < θ].

Design of an anisotropic prior. Let us first construct the regularizing prior that
is supposed to fill in the missing parts of the vector field. We choose the function
g(s) = (1 + s2

µ2 )−1 (first proposed by Perona and Malik [20]) evaluated on the
slope

∣∣∇uδ0∣∣ of the image intensity as an edge-sensitive weight. To ensure robust-
ness, the intensity gradient is regularized via convolution with a Gaussian-type
kernel Gδ(y) = 1

2πδ exp(− y2

2δ2 ), i. e. ∇uδ0 = Gδ ∗ u0. In the spatially discrete
model, we will realize this convolution via a single time step of the discrete heat
equation (cf. Section 4). Thus, the weight g(|∇uδ0|) masks out edges of u0.

In the vicinity of edges, we use a strongly anisotropic norm γ(∇uδ0,Dv) of
the Jacobian Dv of the motion field v depending on the regularized gradient of
the image intensity and defined as follows

γ(∇uδ0,Dv) =
√
ν2 |Dv nδ|2 + |Dv (11− nδ ⊗ nδ)|2. (1)

Here, nδ = ∇uδ0
|∇uδ0|

is the regularized edge normal on the underlying image and

11 denotes the identity matrix of size 2. Furthermore, x⊗ y:=(xiyj)i,j=1,2 is the
usual definition of a rank one matrix which renders 11−nδ⊗nδ as the orthogonal
projection on the direction orthogonal to the normal nδ. Hence, for a small
parameter ν > 0 and a point x near a motion edge the value γ(∇uδ0(x),Dv(x))
will be small if the motion edge is locally aligned with the underlying image edge
and vice versa. In two space dimensions, one obtains

∣∣Dv (11− nδ ⊗ nδ)∣∣2 =
2∑
i=1

(
(nδ)⊥ · ∇vi

)2
,

where (nδ)⊥ = (nδ2,−nδ1). This easily follows for the unit length property (nδ1)2+
(nδ2)2 = 1 of the normal field nδ. Hence, the anisotropy γ(∇uδ0(x),Dv(x)) sim-
plifies to

γ(∇uδ0,Dv) =

√√√√ 2∑
i=1

(
ν2 (nδ · ∇vi)2 + ((nδ)⊥ · ∇vi)2

)
.

Finally, we obtain the following prior

β(∇uδ0,Dv) = g(|∇uδ0|)|Dv|+ (1− g(|∇uδ0|))γ(∇uδ0,Dv) . (2)

Locally minimizing this prior will favor sharp motion edges aligned with edges
in the underlying image. Apart from edges, a usual TV prior is applied to the
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motion field. In particular, for larger destroyed regions this leads to an effective
image based guidance in the reconstruction of motion edges. For ν values close
to 1 there is no preference for any orientation of a motion edge and we obtain
the classical TV-type inpainting model on motion fields.

Note that Nagel and Enkelmann [21] pioneered the idea of anisotropic image-
driven smoothing in the context of optical flows and proposed an anisotropic
prior that is closely related to the anisotropic part of β (second part of (2)),
while the isotropic part of β (first part of (2)) was already proposed by Alvarez
et al. [22]. In this regard, β can be seen as an interpolation between existing
isotropic and anisotropic priors. However, both [21] and [22] used their corre-
sponding priors in the context of optical flow estimation, whereas we use the
combined prior to inpaint the flow field in low confidence regions of the optical
flow estimation.

Dirichlet boundary conditions. Based on the prior β, we can define the energy

ED[v] =
∫

[ζ<θ]

β(∇uδ0(x),Dv(x)) dx (3)

that has to be minimized on the set of functions A := {v|v = v0 on ∂[ζ < θ]}.
Note that with this model, it is crucial to choose the threshold θ conservatively
to ensure the validity of the values of v0 on ∂[ζ < θ]. If the chosen threshold
is too low, the values used for the Dirichlet boundary conditions are possibly
corrupted and may lead to undesirable inpainting results.

Smooth overlapping blending. Surely, the criterium to identify the inpainting
domain, i.e. [ζ < θ], is not sharp. Thus, we may select a parameter ε > 0 for
the width of the transition interval between full confidence and no confidence
and define the blending function x → Hε(sdf[ζ − θ](x)), where Hε(x) := 1

2 +
1
π arctan

(
x
ε

)
(cf. the active contour approach by Chan and Vese [23]) and sdf[f ]

denotes the signed distance function of the set [f < 0]. Given this diffusive weight
function, we can define the total energy

E [v] =
∫
Ω

1
2

(v(x)− v0(x))2Hε(sdf[ζ − θ](x)) (4)

+ λβ(∇uδ0(x),Dv(x))(1−Hε(sdf[ζ − θ](x)− ρ)) dx ,

which consists of two terms. The first term measures the distance from the
precomputed motion field v0 and acts as a relaxed penalty to ensure that v ≈ v0
in the region of confidence. The second term is a spatially inhomogeneous and
anisotropic prior, primarily active on the complement of the confidence set. The
parameter ρ > 0 leads to an overlap of the regions where the first and second
term are active. If omitted, there are artifacts in the inpainting, cf. Figure 1.

3 First variation of the energy

As a core ingredient of the minimization algorithm we have to compute descent
directions of the energy functional E [·]. Thus, let us derive explicit formulas
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a) b) c) d)

Fig. 1. Effect of the overlapping of the fidelity and the regularity energy term (4), con-
trolled by the parameter ρ. a) Corrupted flow field, b) Underlying image and corruption
indicated by the red shape, c) Reconstructed flow field with ρ = 0, d) Reconstructed
flow field with ρ = 9h.

for the variation of the different terms in the integrant of E with respect to v.
We denote by 〈∂wf, ϑ〉 a variation of a function f with respect to a parameter
function w in a direction ϑ. Using straightforward differentiation, for sufficiently
smooth v, we obtain for i ∈ {1, 2}

〈∂viγ(∇uδ0,Dv), ϑ〉 =

(
ν2(nδ · ∇vi)nδ +

(
(nδ)⊥ · ∇vi

)
(nδ)⊥

)
∇ϑ

γ(∇uδ0,Dv)
,

〈∂viβ(∇uδ0,Dv), ϑ〉 = g(|∇uδ0|)
∇vi
|Dv|

· ∇ϑ+

1− g(|∇uδ0|)
γ(∇uδ0,Dv)

(
ν2(nδ · ∇vi)nδ + ((nδ)⊥ · ∇vi)(nδ)⊥

)
· ∇ϑ .

Finally, we derive the following variation 〈∂viE [v], ϑ〉 of the energy E [·] with
respect to the i-th component of the motion field v:

〈∂viE [v], ϑ〉 =
∫
Ω

Hε(sdf[ζ − θ])(vi − vi,0)ϑ

+λ(1−Hε(sdf[ζ − θ]))
[
g(|∇uδ0|)

∇vi
|Dv|

· ∇ϑ+ (5)

1− g(|∇uδ0|)
γ(∇uδ0,Dv)

(
ν2(nδ · ∇vi)nδ + ((nδ)⊥ · ∇vi)(nδ)⊥

)
· ∇ϑ

]
dx .

The variation 〈∂viED[v], ϑ〉 is computed analogously.

4 The Algorithm

For the spatial discretization, we use the finite element (FE) method (cf. [24]):
The whole domain Ω = [0, 1]2 is covered by a uniform quadrilateral mesh C, on
which a standard bilinear Lagrange finite element space is defined. We consider
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the image u0 and the components of the vector fields as sets of pixels, where each
pixel corresponds to a node of the finite element mesh C. Let N = {x1, ..., xn}
denote the nodes of C. The FE basis function of the node xi is defined as the
continuous, piecewise bilinear function determined by ϕi(xi) = 1 and ϕi(xj) = 0
for i 6= j. To compute the integrals necessary to evaluate the energy E and its
variations we employ a numerical Gauss quadrature scheme of order three (cf.
[25]). All numerical calculations are done with double precision arithmetic.

As minimization method we use the following explicit gradient flow scheme
with respect to a metric g. Initialize v0 with the input vector field v0 and iterate

vk+1
j = vkj − τ [E , vk, F [vk]]G−1Fj [vk].

Here, G denotes the matrix representation of the metric g and the timestep width
τ [E , vk, F [vk]] is determined by the Armijo step size control [26] and depends by
construction on the target functional E , the current iterate of the solution vk

and the descent direction F [vk]. Let us emphasize that the choice of g does not
affect the energy landscape itself, but solely the descent path towards the set of
minimizers.

The choice of the metric depends on the model used. In case of the smooth
overlapping blending model (4), we chose g, inspired by the Sobolev active con-
tour approach [27], to be a scaled version of the H1 metric, i.e.

g(ϑ1, ϑ2) =
∫
Ω

ϑ1 · ϑ2 +
σ2

2
Dϑ1 : Dϑ2 dx

on variations ϑ1, ϑ2 of v and where σ represents a filter width of the correspond-
ing time discrete and implicit heat equation filter kernel and A : B = tr(ATB).
The i-th component of the descent direction Fj [vk] is given by (Fj [vk])i =〈
∂vjE [v], ϕi

〉
.

In case of the Dirichlet boundary model (3), we choose g as the Euclidean
metric, i.e. G = 11 and the i-th component of the descent direction Fj [vk] is
given by

(Fj [vk])i =

{
0 ; xi Dirichlet node or xi 6∈ D,〈
∂vjED[v], ϕi

〉
; else.

Let us remark, that by construction of F in the energy descent the Dirichlet
boundary values are preserved. The step size control significantly speeds up the
descent and at least experimentally ensures convergence.

The absolute value function is regularized by |z|η =
√
z2 + η2 (here η = 0.1 is

used). Alternatively to the gradient descent scheme the nonlinear Euler Lagrange
equation could be solved iteratively by a freezing-coefficient technique [28]. The
more sophisticated and very efficient method for Total Variation Minimization
based on the dual formulation of the BV norm proposed by Chambolle [29]
unfortunately cannot be applied to TV inpainting directly, because the weight
of the fidelity term can vanish inside the inpainting domain.
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5 Numerical Experiments and Applications

As already explained in the introduction, for applications such as motion com-
pensation, motion segmentation or the computation of divergences in fluid dy-
namical flows, dense motion fields are required. To demonstrate the applicability
of the presented approach for the inpainting of motion fields in regions indicated
by a confidence measure we apply our method to artificial and real world data.

Reconstruction of artificial motion fields. As a first test case we consider the
reconstruction of a corrupted rectangular and circular motion field. Figure 2
shows the color coded ground truth flow field on the left hand side (a), the red
shape indicating the region to be reconstructed in the second image column (b),
the corrupted input flow field that is also used as the initialization of the image
guided motion inpainting algorithm in the third column (c), and the result of
the algorithm on the right hand side (d). Obviously the method successfully
retrieves the motion edge along the boundary of the square (first row) and the
circle (second row). We used the following set of parameters: µ = 50 and ν = 0.1.

a) b) c) d)

Fig. 2. a) Ground truth flow field, b) Underlying image and corruption indicated by
the red shape, c) Corrupted flow field which is the initialization of the image guided
inpainting algorithm, d) Reconstruction result.

If the flow field to be inpainted not only contains destroyed regions, but is
also corrupted by noise, enforcing Dirichlet boundary values on the boundary of
the inpainting domain is not feasible. The blending model (4) on the other hand
is well suited to handle such cases. In Figure 3 the motion edge is reconstructed
along the boundary of the square present in the underlying image. Due to the
nature of the regularization term, the reconstructed region does not contain
any noise, while the noise is preserved in the complement of the inpainting
domain. In between there is a smooth transition whose size is controlled by the
regularization parameter of Hε. Note that the regularized region is bigger than
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the inpainting domain because of the overlap induced by ρ. We used the following
set of parameters: λ = 0.01, µ = 1, ν = 0.1.

a) b) c)

Fig. 3. Results of the blending model (4) on noisy input data. a) Corrupted flow field,
b) Underlying image and corruption indicated by the red shape, c) Reconstructed flow
field with ρ = 3h.

Reconstruction of real world motion fields. Let us now consider real world exam-
ples and reconstruct the motion field of a sequence taken from the Middlebury
dataset [30]. Special attention should be on the effect of the parameters µ and
ν on the reconstruction result. Figure 4 shows the Rubber Whale sequence with
corrupted regions indicated by a confidence measure and marked by red outlines
(a), the ground truth flow field (b), the result of the image guided reconstruction
algorithm (c) and the angular error (d). We used the following set of parameters:
µ = 1 and ν = 0.1.

To investigate the effect of the parameter ν we take a closer look at two
different regions in the scene: the upper left corner of the turning wheel on
the left hand side and the flap of the box on the right hand side. At the upper
boundary of the wheel the image contrast is low which renders the reconstruction
along image edges difficult. Hence, the sensitivity of the method concerning the
image gradient should be high and the method’s inclination to follow image edges
should be large as well, which would lead to a preference for small values µ, ν.

At the flap of the box the configuration is converse. The image contrast is
large, but the motion edge does, in fact, not follow the stronger but the upper
weaker edge. Hence the inclination of the method to follow image edges should
be reduced, which would result in a higher value for ν.

The effect of different parameter constellations for both regions is shown
in Figure 5. The results demonstrate that for low ν values the wheel can be
reconstructed quite well, but the motion field also follows the sharp edge of the
box flap and yields errors in that part of the sequence. In contrast, for high ν
values the box flap can be reconstructed well, but the wheel is reconstructed by
a straight edge which does not follow its original contour.

Comparison to diffusion and TV inpainting. We compare the image guided mo-
tion inpainting algorithm to a linear diffusion and a TV inpainting method in
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a) b)

c) d)

Fig. 4. a) Original Rubber Whale frame, b) Ground truth flow field, c) Reconstructed
flow field, d) Resulting angular error.

case of the corrupted Marble sequence. Note that we confine the comparison to
these relatively simple priors, because more sophisticated image driven priors like
the one proposed by Nagel and Enkelmann [21] so far only have been used in the
context of optical flow estimation but not for motion inpainting. Figure 6 shows
the original corrupted sequence and the results of the diffusion based, the TV-
based and the image guided motion inpainting methods. Not surprisingly, the
diffusion based motion inpainting fails to reconstruct motion edges. In contrast,
by means of TV motion inpainting flow edges can be reconstructed. However, the
lower right corner of the central marble block cannot be reconstructed properly,
because the exact course of the edges near the junction is unclear. Our image
guided motion inpainting uses the image gradient information to correctly re-
construct the motion boundary of the central marble block as well. Here we used
the following set of parameters: µ = 50 and ν = 0.1.

Finally, we consider a part of the Marble sequence that shows the junction
mentioned before and apply artificial noise to the corrupted input. As noted ear-
lier, using the Dirichlet boundary model is not feasible in such a case. Hence, the
blending model (4) is used for the reconstruction. In Figure 7, the motion edge
junction is properly reconstructed based on the information from the underlying
image. We used the following set of parameters: λ = 0.01, µ = 1, ν = 0.1.
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ν = 0.01 ν = 0.1 ν = 0.5 ν = 1.0

µ = 1 µ = 10 µ = 50 µ = 100

Fig. 5. Upper row: results for different values of ν for µ = 50, lower row: results for
different values of µ for ν = 0.1.

a) original b) 2.00 ± 3.87 c) 0.93 ± 3.75 d) 0.39 ± 1.38

Fig. 6. Comparison of the proposed inpainting algorithm to diffusion and TV inpaint-
ing; the numbers indicate the average angular error within the corrupted regions after
reconstruction; a) Original corrupted Marble sequence, b) Reconstruction result of
diffusion based motion inpainting, c) Reconstruction result of TV based motion in-
painting, d) Reconstruction result of image guided motion inpainting.

6 Conclusion and outlook

Given an image sequence and an extracted underlying motion field together
with a local measure of confidence for the motion estimation, we have proposed
a variational approach for the restoration of the motion field. This restoration
is vital for a number of applications requiring dense motion fields. Based on a
confidence measure, regions of corrupted motion can be detected. The underly-
ing image data is still available and reliable. We make use of this information
to improve the restoration of the motion field. The approach is based on an
anisotropic TV-type functional, where the anisotropy takes into account edge
information extracted from the underlying image data. The approach has been
applied to test data and to two different real world optical flow problems. The re-
sults are compared to harmonic vector field inpainting and TV-type inpainting.
We demonstrate that inpainting guided by the underlying intensity data outper-
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a) b) c)

Fig. 7. Results of the blending model (4) on noisy input data. a) Corrupted flow field,
b) Underlying image and region of corrupted motion field indicated by the red shape,
c) Reconstructed flow field with ρ = 6h.

forms purely flow driven approaches. We consider this as a feasibility study for
the coupling of motion field and image sequence data in variational inpainting
approaches. Robustness and reliability might be improved based on a fully joint
approach, where the motion field and the image sequence are jointly restored.
Furthermore, a restoration in space time would be promising as well.

Finally, a weakness of the proposed method is that for some motion fields the
optimal performance is obtained in different locations for different parameter
values (cf. Figure 5). To obtain the optimal performance in all locations, one
should develop a methodology to locally adapt the parameters automatically
after specifying a global set of parameters for the entire image.
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