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Abstract The use of discriminative dictionaries is exploited for the
segmentation of sulci in digital photos of the human cortex. Manual
segmentation of the geometry of sulci by an experienced physician on
training data is taken into account to build pairs of such dictionaries.
It is demonstrated that this approach allows a robust segmentation of
these brain structures on photos of the brain as long as the training data
contains sufficiently similar images. Concerning the methodology an im-
proved minimization algorithm for the underlying variational approach
is presented taking into account recent advances in orthogonal matching
pursuit. Furthermore, the method is stable since it ensures an energy
decay in the dictionary update.

1 Introduction

In neurosurgery, a major challenge is the adaption of pre-surgery acquired brain
images and cortex geometry to the intra-interventional brain configuration. Dig-
ital photos can be easily taken through the microscope and provide information
on the currently observed brain shift. Sulci are the most prominent geometric
characteristics visible on such photos. As illustrated by Figure 1, the detection
of sulci in such images is a very challenging task. For instance, some of the sulci
are covered by blood vessels while the very same blood vessels also cover part of
the gyri. Therefore, pixelwise segmentation approaches based on the color values
cannot be sufficient to handle this segmentation problem, not even when color
distributions learned from images manually marked by an expert are used. In
this paper, we use the concept of learned discriminative dictionaries to segment
the geometry of sulci in 2D digital photos. Thereby, on a training data set an
experienced physician marks the sulci geometry, which will then be used to built
a suitable discriminative dictionary.



Nowadays, sparse signal representations based on overcomplete dictionaries
are used for a wide range of signal and image processing tasks. The key assump-
tion of these models is that finite dimensional signals can be well approximated
by sparse linear combinations of so-called atoms or atom signals. Due to their
finite dimensionality, the signals and the atoms are considered to be elements
of RN . A set of atoms d1, . . . , dK is called dictionary and represented by the
matrix D ∈ RN×K whose j-th column is the atom dj .

There are two main variants of the sparse approximation problem, the error-
constrained approaches and the sparsity-constrained approaches. Here, we are
considering an approach of the latter type: For a given input signal y (in our
application a patch from a digital photo of the brain) we ask for its best approx-
imation under the constraint that at most L ∈ N atoms are used, i. e.

min
x∈RK

‖y −Dx‖2 such that ‖x‖0 ≤ L,

where ‖·‖0 denotes the l0 “norm”, i. e. the number of nonzero components.

One of the major challenges in the context of sparse representations is the
design of suitable dictionaries. The sparse representation itself usually is just a
means to an end and used to solve a certain task like, for instance, denoising or
compression. Thus, the dictionary has to be tailored to the actual imaging task.
In general, there are two distinct approaches to dictionary design: The simpler
and more traditional route is to use a predefined dictionary generated by a
transform like the short-time Fourier transform [2], the wavelet [12], curvelet [6]
or contourlet transform [8], to name just a few. The more sophisticated approach
is to learn the dictionary from the input data or some representative training
data. A very popular and highly efficient representative of this kind is the K-SVD
algorithm [1].

Like K-SVD, most of the existing dictionary learning algorithms aim at gener-
ating reconstructive dictionaries, i. e. dictionaries that are optimized to sparsely
represent a certain class of input signals or images. In this paper, our goal is
to detect sulci on the human cortex in digital photographs. Thus, we need to
distinguish between different types of signals which gives rise to so-called discrim-
inative dictionaries. These kind of dictionaries not only aim to give a suitable
representation of a given type of signals, but are also optimized to be not as
suitable for the reconstruction of a different given class of signals. Mairal et al.
[10] introduced a variational approach to learning discriminative dictionaries for
local image analysis and presented a multiscale extension applied to class-specific
edge detection [11].

Zhao et al. [15] combine the discriminative dictionary model from [10] with
additional pre- and post-processing stages to optimize the discriminative ap-
proach for text detection in images. Zhang and Li [14] propose a different route
to discriminative dictionary learning: They extend the K-SVD algorithm to solve
for a dictionary and a classifier simultaneously and claim that this kind of al-
gorithm is less likely to get stuck in local minima than the one from [10]. Let
us remark here, that their K-SVD extension still uses an alternating minimiza-



tion scheme to solve a non-convex minimization problem. Hence, there is no
guarantee that the global optimum is finally found.

The contributions of this paper are twofold: On the one hand, we introduce an
improved minimization algorithm for the variational approach to discriminative
dictionaries from [10]. This algorithm is more efficient because it incorporates
recent advances in orthogonal matching pursuit made by Rubinstein et al. [13]
and it is more stable since it ensures an energy decay in the dictionary update
unlike the truncated Newton iteration used in [10,11]. On the other hand, we
study the applicability of discriminative dictionaries to detect sulci on the intra-
operative digital photographs of the human cortex. As we will see in this paper,
manually marked images can indeed be used to learn a discriminative dictionary
pair and thereby allow to detect sulci on images as long as the training data
contains sufficiently similar brain images.

Figure 1. Four typical digital photographs of the exposed human cortex (top row) and
the sulci regions of the cortex manually marked by an expert (bottom row).

2 Learning Discriminative Dictionaries

Given M input patches y1, ..., yM ∈ RN , a reconstructive dictionary tailored to
these patches can be learned with the minimization problem

min
X∈RK×M ,D∈RN×K

M∑
l=1

R(yl, D, xl) such that ‖xl‖0 ≤ L for 1 ≤ l ≤M.

Here, xl denotes the l-th column of X and R(y,D, x) := ‖y −Dx‖2 is the re-
construction error of a patch y ∈ RN for a dictionary D ∈ RN×K and dictionary
coefficients x ∈ RK . Well-known algorithms to tackle this minimization problem
are the method of optimal directions (MOD) [9] or K-SVD [1].



Denoting the coefficients of the sparse best approximation of y using D by

x∗(y,D) := argmin
x∈RK ,‖x‖0≤L

R(y,D, x),

the best approximation error is R(y,D) := R(y,D, x∗(y,D)). Then the mini-
mization problem for reconstructive dictionary learning is equivalent to

min
D∈RN×K

M∑
l=1

R(yl, D). (1)

With this notation we can formulate the discriminative dictionary approach of
Mairal et al. [10]. Since our application, the detection of sulci on the human
cortex, only requires two labels, we here explicitly formulate only the two label
case. The extension to multiple labels is straightforward and our algorithm can
be easily adapted to more than two labels.

Given input patches y1, ..., yM1+M2 of two different classes P1 and P2, where
Pi := {yl : l ∈ Si}, S1 = {1, . . . ,M1} and S2 = {M1 + 1, . . . ,M1 +M2}, a pair
of discriminative dictionaries can be found solving the minimization problem

min
D1,D2

2∑
i=1

1

Mi

∑
l∈Si

[
Cλ
(
(−1)i+1(R(yl, D2)−R(yl, D1))

)
+ λγR(yl, Di)

]
. (2)

Here, Cλ denotes the logistic loss function, i. e. Cλ(s) = ln(1+exp(−λs)), and λ, γ
are nonnegative constant parameters. The last summand is already known from
the reconstructive learning problem (1) and handles the reconstructive properties
of our dictionary pair. The first summand is responsible for the discriminative
properties of the dictionaries. For instance, for i = 1 and l ∈ S1 we have

Cλ
(
(−1)2(R(yl, D2)−R(yl, D1))

){≈ 0 R(yl, D1)� R(yl, D2)

� 0 R(yl, D1)� R(yl, D2).
(3)

In other words, this logistic loss term is small, if and only if D1 is more suitable
to reconstruct P1 (the signals from the first class) than D2 is.

3 Minimization Algorithm

The discriminative minimization problem (2) is highly nonconvex and requires
a carefully chosen numerical minimization strategy. Like [10], our minimization
strategy is based on the K-SVD algorithm and consists of a sparse coding stage
and a codebook update stage.

In the sparse coding stage, the sparse approximation coefficients are com-
puted for all patches using the current estimates for both dictionaries, i. e.
xil ≈ x∗(yl, Di) for i = 1, 2 and l = 1, . . . ,M1 +M2, cf. Algorithm 1.1. Instead of
using OMP for this as suggested in [10,11], we propose to use the Batch-OMP
algorithm from [13]. This algorithm is based on the fact that the same dictionary



is used to code a large set of signals. In particular, it exploits the fact that in the
atom selection step of OMP neither the residual r nor the coefficients x need to
be known, but only DT r. As shown in [13], Batch-OMP is almost an order of
magnitude faster than OMP when used on sufficiently many input signals.

In [11], a different way to speed up the algorithm from [10] is proposed: Also
noting that the sparse coding stage is computationally expensive, they propose
to update the dictionaries and the coefficients with fixed sparsity pattern in the
codebook update stage by alternating till convergence instead of doing so only
once to reduce the number of sparse coding steps. This idea is complementary
to our proposal to speed up the algorithm and thus can be used in combination
with it.

In the codebook update stage, the dictionaries and the coefficients are up-
dated while keeping the obtained sparsity pattern fixed during the sparse coding
stage. [10,11] propose to do this update with a truncated Newton method. “Trun-
cated” here refers to the fact that this method neglects the second derivatives of
Cλ. In our experiments with manually marked images of the human cortex, this
algorithm unfortunately had numerically stability problems and didn’t always
produce sufficiently discriminative dictionary pairs. This is most likely because
the truncated Newton method does not guarantee an energy decay of the target
functional due to the lack of an appropriate step size control. Furthermore, Cλ
is not approximately linear at 0, the transition between the nearly linear and
the nearly constant part of Cλ which is the important transition region between
the two cases outlined in (3). Therefore, neglecting of the second derivatives of
Cλ is questionable.

To update a single entry of one of the dictionaries, we use a step size controlled
gradient descent on the functional from (2) while freezing the coefficients, i. e.
R(yl, Di) is approximated by R(yl, Di, x

i
l) and thus we use the functional

E[D1, D2] =

2∑
i=1

1

Mi

∑
l∈Si

[
Cλ
(
(−1)i+1(R(yl, D2, x

2
l )−R(yl, D1, x

1
l ))
)

+ λγR(yl, Di, x
i
l)
]

and update d1j by d1j − τ∂d1jE[D1, D2] where τ is determined using the Armijo

rule [3,5]. Note that the specific choice of the step size control is not important
here, but it is important to use a step size control that guarantees an energy
decay. Like K-SVD, we assume the dictionary entries to be normalized, i. e.∥∥dij∥∥ = 1, and therefore scale the dictionary entry accordingly after the gradient
descent update. Using a straightforward calculation one obtains

∂d1jE[D1, D2] = 2

2∑
i=1

∑
l∈Si

wil(x
1
l )j
(
D1x

1
l − yl

)
,

where

wil =
1

Mi

(
(−1)iC ′λ

(
(−1)i+1(R(yl, D2, x

2
l )−R(yl, D1, x

1
l ))
)

+ δi1λγ
)
.



Denoting the j-th entry of x1l by (x1l )j and using

E1
l [D, j] =

(
yl −Dx1l + (x1l )jdj

)
as well as the indices of patches that use d1j , i. e. ω1

j :=
{
l : (x1l )j 6= 0

}
, the

variation can be expressed as

∂d1jE[D1, D2] = 2

2∑
i=1

∑
l∈Si∩ω1

j

wil(x
1
l )j
[
(x1l )jd

1
j − E1

l [D1, j]
]
.

Replacing the sum
∑
l∈Si

by
∑
l∈Si∩ω1

j
is crucial to keep the computational cost

for the codebook update stage within reasonable limits. The same replacement
can be done in E when it needs to be evaluated for the Armijo rule. After
updating a dictionary entry, we update the corresponding coefficients keeping
the sparsity pattern. Similarly to the representation of ∂d1jE, one now obtains

∂(x1
l )j
E =

2∑
i=1

wil∂(x1
l )j
R(yl, D1, x

1
l ) = ∂(x1

l )j
R(yl, D1, x

1
l )

2∑
i=1

wil .

Therefore, ∂(x1
l )j
E = 0 holds when ∂(x1

l )j
R(yl, D1, x

1
l ) = 0. Using

∂(x1
l )j
R(yl, D1, x

1
l ) = 2

(
(x1l )j

∥∥d1j∥∥2 − E1
l [D1, j] · d1j

)
and

∥∥d1j∥∥2 = 1 leads to the update formula (x1l )j ← E1
l [D1, j]·d1j . The dictionary

D2 and its corresponding coefficients can be updated analogously.
Like [10], we use an ascending series for the parameter λ and a descending

series for γ. Since our codebook update stage is guaranteed not to increase E, we
do not need the sophisticated strategy to adaptively adjust the parameters used
in [10]. Instead, in all our experiments, we simply used λ = 100k and γ = 1/k
in the k-iteration of the algorithm. A sketch of this computational procedure is
given in Algorithm 1.1.

4 Segmentation with Discriminative Dictionaries

For the detection of sulci in images of the human cortex, we assume to be
given a number of human cortex images where the sulci were manually marked
by a physician. These images are then separated into small patches of a user
selectable patch size and the patches are divided into two sets, sulci and non-
sulci patches depending on whether the central pixel of the patch belongs to
the sulci region marked by the physician. Using these two sets of patches, a
discriminative dictionary pair is learned using the Algorithm 1.1.

Using this dictionary pair, images can be segmented into sulci and non-sulci
regions using a binary Mumford–Shah model where the reconstruction errors
with the two dictionaries are used as the two indicator functions. A global min-
imizer of this model is calculated using the convex reformulation of the problem
proposed in [4] and using [7, Algorithm 2] to efficiently calculate a minimizer of
the convex functional.



Algorithm 1.1: General minimization strategy

given input patches y1, ..., yM1+M2 of two different classes P1 and P2;
initialize D1 and D2 with K-SVD from P1 and P2 respectively;
initialize k = 0;
repeat

k ← k + 1;
λ = 100k, γ = 1/k;
Sparse coding stage;
for i = 1 to 2 do

for l = 1 to M1 +M2 do
Calculate xil ≈ x∗(yl, Di) using Batch-OMP;

end

end
Codebook update stage;
for i = 1 to 2 do

for j = 1 to K do
Calculate ωi

j =
{
l : (xil)j 6= 0

}
;

dij ← dij − τ∂dijE determining τ using the Armijo rule;

dij ← dij/
∥∥dij∥∥;

for l ∈ ωi
j do

(xil)j ← Ei
l [Di, j] · dij .;

end

end

end

until convergence;

5 Results

As first experiment we verify the general applicability of our discriminative dic-
tionary approach to detect sulci on intra-operative images of the human cortex.
For this we learn a discriminative dictionary pair from a single manually marked
image as described in the previous section. The first row of Figure 2 shows that in
this optimal case, the segmentation almost perfectly matches the manual mark-
ings made by the expert. Here, we used a patch size of 13 × 13, and K = 256,
L = 4 and γ = 0.00002 as parameters, where γ denotes the weighting of the
regularity term in the Mumford–Shah model segmentation model.

In order to cut down the computational time given the fact that there are
considerably more non-sulci than sulci input patches, we randomly selected 30%
of the non-sulci patches instead of using all of them for the dictionary learning
in a second experiment, cf. second row of Figure 2. Indeed, this only slightly
reduces the accuracy of the segmentation. Henceforth, we only use 30% of the
non-sulci patches to learn the dictionaries in the remaining experiments.

In the next experiment, we use three frames from an intra-operative video, all
with sulci manually marked by a physician, to learn a discriminative dictionary
pair. We use the same values for K, L and γ as in the previous experiments and



Figure 2. Discriminative dictionary pairs learned from the manually marked image
shown on the left of Figure 1 and segmentation of this image based on these dictionary
pairs. In the top row all available non-sulci patches were used to learn the dictionaries,
while in the bottom row only 30% of the non-sulci patches were used.

a patch size of 12×12 and 20×20. Figure 3 shows the resulting dictionaries while
Figure 4 shows the segmentation obtained with these dictionaries. Segmentation
on the frames already used in the learning phase is almost perfect. There are only
a few minor artifacts compared to the manual segmentation performed by the
physician. Although not surprising, this confirms that a discriminative dictionary
pair has no problems encoding information from multiple input frames. It can
also be seen from this figure that increasing the patch size from 12×12 to 20×20
slightly improves the results. The second row of Figure 4 is more interesting: It
shows that the dictionaries can also be used to segment frames that were not
used during the learning process. The dictionary based segmentation shows some
artifacts away from the cortex region, but this is due to the fact that images
used to learn the dictionaries were cropped to the cortex region and thus the
dictionaries cannot contain information about these areas. This kind of effect can
also be seen inside the cortex region: On the top right of the manual markings
of the physician for this image is a small sulci that is not found in the dictionary
based segmentation. This is just natural since the physician did not mark this
sulci in the frames that were used for the learning, cf. top row of Figure 4.

In the final set of experiments, we use thirteen manually marked images, the
three images already used in the previous experiment and ten from another intra-
operative video to learn discriminative dictionaries. We use the same values for
K, L and γ as in the previous experiments and a patch size of 13×13 and 19×19.
Figure 5 shows the resulting dictionaries while Figure 6 shows the segmentation
obtained with these dictionaries on multiple frames. The first three images were



Figure 3. Discriminative dictionary pairs with patch size of 12 × 12 (left pair) and
20× 20 (right pair) learned from three frames of an intra-operative video.

Figure 4. Two cortex images (first column), manual segmentation of the sulci by an
expert (second column) and segmentation obtained using the dictionaries from Figure 3
of patch size 12× 12 (third column) and 20× 20 (forth column). Note that the manual
marking from the top row was used during the dictionary learning but the one from
the bottom row was not.

used in the dictionary learning process, so it comes as no surprise that the
obtained segmentations are close to the manual markings. One observation here
is remarkable though. In the image shown in the third row, the physician did
not mark the sulci in the lower right part of the image even though he marked
that sulci in other frames of the same video sequence, for instance in the frame
shown in the second row. Nevertheless, the dictionary based segmentation is able
to detect traces of these sulci because underlying information is encoded of more
than just the marking of this single image and thus the method can average out
conflicting markings.

The remaining four rows show results of the dictionary based segmentation
on images that were not used while learning the dictionaries. While the seg-
mentation understandably is not as good on these frames as on the frames used
during the learning, the sulci structures are still clearly identified in the forth
to sixth row. Here, it is also evident that increasing the patch size from 13× 13
to 19 × 19 has a positive effect on the quality of the segmentation. With the



larger patch size the width of the detected sulci is more accurate and there are
less artifacts in the non-sulci regions. Finally, in the last row, the limits of the
dictionary based segmentation approach become visible. The cortex region in
this frame differs too much from the cortex regions in the learning frames and
thus the sulci are not properly detected here.

Figure 5. Discriminative dictionary pairs with patch size of 13 × 13 (left pair) and
19 × 19 (right pair) learned from a total of thirteen different frames originating from
two different intra-operative videos.

6 Conclusion

We have studied the applicability of discriminative dictionaries to segment the
geometry of sulci in intra-operative digital photographs of the human cortex.
It turned out that human cortex images manually marked by an experienced
physician can be used to learn discriminative dictionary pairs that allow for a
robust segmentation of these brain structures on photos of the cortex as long as
the training data contains sufficiently similar images.

Furthermore, we have presented an improved minimization strategy for the
discriminative dictionary functional of Mairal et al. [10] that is more efficient by
leveraging recent advances in orthogonal matching pursuit and more stable due
to a new dictionary update step that ensures an energy decay.
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