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Abstract

Median averaging is a powerful averaging concept
on sets of vector data in finite dimensions. A gen-
eralization of the median for shapes in the plane is
introduced. The underlying distance measure for
shapes is based on the area of the symmetric dif-
ference of shapes and takes into account different
invariance classes. These classes are generated by
classical transformation groups such as translation,
rotation, anisotropic scaling, and shear. As in the
finite dimensional case, non-uniqueness of the me-
dian is observed. The numerical approximation of
shape medians is based on a level set approach for
the description of the shape contour. The level set
function and the parameter sets of the group ac-
tion on every given shape are incorporated in a joint
variational functional, which is minimized based on
step size controlled, regularized gradient descent.
Various applications show in detail the qualitative
behavior of the method.

1 Introduction

In this paper we develop a notion of a median of
shapes in 2D. Median averaging is renown as a
particularly powerful and robust concept on a set
of vectorial data in finite dimensions. It can be
phrased in terms of an optimization problem. Given
x1, ..., xn ∈ R

d, the Euclidean medianm∗ =
m∗[x1, ..., xn] is defined as

m
∗ := argmin

m∈Rd

n
X

i=1

|m− xi| .

Compared to a minimization of squared differences
in case of the classical arithmetic mean, the lin-
ear growth ensures robustness with respect to out-
liers. A well known property of this median is that
it is not unique. Indeed, forx1, x2 ∈ R

d we have
minm∈Rd (|m− x1| + |m− x2|) = |x2 − x1|,

and the minimum is attained for each convex com-
bination ofx1 andx2. Generalizing this averaging
approach to shapes requires first a suitable defini-
tion of distances between shapes and then a transfer
of the optimality property into the context of shapes.
Our intention is to derive a rigorous definition of
shape medians and to highlight some of the result-
ing properties by a set of characteristic examples.

Chen and Parent [6] investigated averages of
2D contours already in 1989. Jiang et al. [9]
defined median shapes of polygonal curves based
on weights for edit operations, which transfer one
curve into the other. A generalization of this ap-
proach has been presented by Jiang et al. [8]. Fur-
thermore, the computation of shape distances nat-
urally appears when matching shapes in images.
Yezzi and Soatto [16] have investigated shape av-
erages in image structure reconstruction and joint
registration. Beg et al. [3] introduced a geodesic

Figure 1: Given nine pears and five apples as input
shapes, the median shape (lower right) is computed
by the proposed method. The underlying definition
of the median includes the invariance with respect
to rigid body motions.

distance between images or shapes based on a regu-
larizing metric on Eulerian transport fields generat-
ing Lagrangian deformation between objects. The
metric involvesL2 scalar products of higher deriva-
tives. This approach was used among others for in-
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stance by Joshi et al. [10] and Avants and Gee [2]
in comparative medical anatomy. In the simplified
case of planar curves Mumford and Michor [12] de-
veloped a Riemannian calculus. By definition, the
overall problem falls into the class of shape opti-
mization. We refer to the book by Sokołowski and
Zolésio [14] for a comprehensive overview on this
topic.

In this paper we are investigating shapes which
are implicitly described via non-binary images.
Hence, shape information has to be extracted from
the given data. A first example is depicted in Fig-
ure 1. We consider a joint approach based on a
Mumford Shah type variational formulation [13] for
the average as a free discontinuity set. For the im-
plementation we pick up a robust and efficient ap-
proximation of the Mumford–Shah functional pre-
sented by Chan and Vese [5] in the context of piece-
wise constant image segmentation. As a distance
measure between shapes we consider the area of
the symmetric difference between sets and regard
shapes as equivalence classes of sets with respect
to certain finite dimensional groups of transforma-
tions in the plane. Examples for such transforma-
tion groups studied here are translations, rotations,
scaling, and shear. A general outline of infinite di-
mensional diffeomorphic group actions on shapes
is discussed by Dupuis et al. [7]. In the underlying
numerical approximation the average shape is rep-
resented as the zero level set of a level set function.
When averagingn shapes the degrees of freedom
of a piecewise multilinear finite element representa-
tion of this level set function and the parameter sets
of then transformations of the individual shapes are
considered as degrees of freedom for the variational
problem. We give various examples for the quali-
tative behavior and the overall performance of the
resulting algorithm.

2 An area based distance measure

A standard tool for the comparison of sets is the
symmetric difference. Given two setsA, B ⊂ R

2

one definesA△B = A\B∪B\A . Hence, a corre-
sponding measure for the difference of the two sets
is the area of the symmetric difference

d(A,B) := |A△B| .

One easily verifies that for given setsA, B, C and
x ∈ A△B either x ∈ A△C or x ∈ C△B.

This implies the triangle inequalityd(A,B) ≤
d(A,C) + d(C,B), and together with the obvious
symmetryd(A,B) = d(B,A) and the positive def-
initenessd(A,B) ≥ 0 (d(A,B) = 0 ⇔ A = B) it
follows thatd(·, ·) is a metric on subsets ofR

2. The
actual comparison of two shapes has to take into ac-
count the invariance with respect to certain underly-
ing group actions. Let us suppose thatT is a group
of area preserving deformationsφ : R

2 → R
2. Ex-

amples to be considered later are translations, rigid
body motions, or area preserving scalings. Given
a particular transformation groupT we finally de-
fine a distance between shapes represented by sets
A, B ⊂ R

2 with respect toT by

dT (A,B) := inf
φ∈T

d(A,φ(B)) .

One easily verifies thatdT defines a met-
ric on equivalence classes of subsets ofR

2

with respect to the transformation group
T . Indeed, from the fact thatφ ∈ T is
area preserving we deduced(A, φ(B)) =
d(φ−1(A), φ−1(φ(B))) = d(B,φ−1(A)) and
hence dT (A,B) = infφ∈T d(B,φ

−1(A)) =
dT (B,A) follows from the group property ofT .
Finally, with ψ = argminφ∈T d(A, φ(C)) the
triangle inequality follows from the estimate

inf
φ∈T

d(A,φ(B))

≤ d(A,ψ(C)) + inf
φ∈T

d(ψ(C), φ(B))

= dT (A,C) + inf
φ∈T

d(C,ψ−1 ◦ φ(B))

= dT (A,C) + dT (C,B).

For later reference let us remark that this metric on
the space of 2D shapes can be represented in inte-
gral form

dT (A,B) = inf
φ∈T

Z

R2

(χφ◦A − χB)2 dx ,

whereχC denotes the characteristic function of a
setC.

3 Transformation groups

In this paper we confine to subgroups of the group
of affine transformationsφ with φ(x) = Ax + b,
whereA ∈ GL(2) and b ∈ R

2. A particularly



simple group is the translation groupTtrans withA =
11. As usual the group of rotations

Q =

„

cos θ sin θ
− sin θ cos θ

«

is denoted bySO(2) so that we obtain the group
of rigid body motionsTrigid via φ(x) = Ax + b

withA ∈ SO(2). The largest area preserving group
in the set of affine transformations is described by
matricesA ∈ SL(2) with detA = 1. Based
on the polar decomposition formula they can be
parametrized as follows

A =

„

a c

c 1+c2

a

«

Q

with Q ∈ SO(2). Shearing inx direction is
a one dimensional subgroup ofSL(2) given by

matricesA =

„

1 α

0 1

«

. Anisotropic area

preserving scaling is given by matricesA =

QT

„

α 0
0 α−1

«

Q with α ∈ R
+ and Q ∈

SO(2). With respect to the variational model for a
shape median to be developed in this paper, we will
take into account different groups of transforma-
tions and relax the definition, restricting ourselves
not to only subgroups but to just subsets, such as the
set of concatenations of rotation and shear, cf. Sec-
tion 7. In many applications invariance with respect
to scaling is a desirable property. To incorporate
isotropic scaling in our model the distance measure
has to be modified. This goes beyond the scope of
the current paper. Thus, we confine here to an incor-
poration of scale invariance in the current model,
even though the underlyingdT (·, ·) is no longer a
metric. Figure 2 shows the impact of the transfor-
mation group on the average shape of two different
shapes. Figure 3 complements the previous figure
by depictingφ1(A1) andφ2(A2) overlaid with the
median for the same experiment.

In general, we will consider mappingsφ(q, x) =
A(q)x + b(q), whereA(q) ∈ GL(2), b(q) ∈ R

2

andq denotes a suitable parametrization of the de-
grees of freedom of the affine transformations we
allow for. All of our invariance classesT will con-
tain translations, since translation invariance is fun-
damental in all applications.

Figure 2: Averaging of two shapes, “1” and “7”,
with different choices of the transformation group
T : The first and second image show the two input
images, the third to fifth one the outline of the av-
erage shape in case of the transformation class of
simple translations (third), rigid body motions com-
bined with isotropic scaling (fourth), and a combi-
nation of translation, rotation, isotropic scaling, and
shearing (fifth), respectively.

Figure 3: φi(Ai) overlaid with the median shape
contour withT allowing translation (first column),
translation, rotation, and isotropic scaling (second
column), and translation, rotation, isotropic scaling,
and shearing (third column).

4 A variational definition of the
shape median

Recalling the definition of the median in the con-
text of vectors inRn, a first definition of a median
M∗ of shapesA1, · · · , An ⊂ R

2 and a setT of
invariant transformations is given by

M
∗ = argmin

M⊂R2

n
X

i=1

dT (M,Ai).

As in the case of the median of numbers (cf. Sec-
tion 1) the median is not unique. As an example let
us consider a squareA1 = [0, a]2 and a rectangle
A2 = [0, a] × [0, b] with a < b. Obviously, every
rectangleM = [0, a] × [0, c] with a ≤ c ≤ b ren-
ders the sum of distances

P2
i=1 dT (M,Ai) to be

(b − a)a, which is equal todT (A1, A2) and thus
the minimal value. Unfortunately, the set of min-



a

a b0

a

0 a b

Figure 4: Without the boundary length penalization
shape medians turn out to be fairly irregular.

imizers is even larger. We can split the rectangle
[0, a] × [a, b] into any two disjoint measurable sub-
setsÃ1, Ã2 andM = A1∪ Ã1 will be a minimizer
as well (cf. Figure 4). To select from the set of
minimizers a proper candidate for the median we
have to filter out irregular “median” shapes. Thus,
let M[A1, · · · , An] be the set of all setsM ⊂ R

2

which minimize the sum of shape distances. Then,
select from this set the shapeM∗ with the least
perimeter (boundary length) and define this set as
the shape median, i.e.

M
∗ = argmin

M∈M[A1,··· ,An]

Per (M) ,

wherePer (A) denotes the length of the boundary
∂A ofA if ∂A is rectifiable and is set to∞ else. For

Figure 5: On the bottom right the average of five
“B” with T allowing rotation, translation, isotropic
scaling, and shearing.

the actual numerical computation we simplify the
definition and consider aγ–median shape, defined
as the minimizing setM∗ of the energy

Eγ [M ] =
1

n

n
X

i=1

dT (M,Ai) + γPer (M) ,

whereγ is a small constant. For the applications
considered in this paper we have choosenγ =
0.0005. Figure 5 depicts the resulting shape aver-
age in case of a letter represented in different fonts.
Due to the built-in transformation invariance of the
distance measuredT (·, ·) we have to minimize not

only over the set of shapesM but at the same time
over the set of transformationsφ1, · · · , φn ∈ T ap-
pearing ind(M,φi(Ai)). Thus, we are led to a joint
minimization problem for the functional

Eγ [φ1, · · · , φn,M ] =
1

n

n
X

i=1

d(M,φi(Ai))

+ γPer (M) .

As already mentioned in the introduction, in prac-
tical applications input data usually are not shapes
A1, · · · , An, but imagesu1, · · · , un : Ω → R,
each of them encoding a shape. Throughout this
paper, the domainΩ is considered to be the unit
square[0, 1]2. To phrase the shape median in terms
of these images, we consider a simultaneous seg-
mentation of the input images based on a piecewise
constant Mumford–Shah model. Hence, we extend
our energy to

Eγ [(φi)i,M, (c1i )i, (c
2
i )i] = γPer (M)

+
1

n

n
X

i=1

„
Z

(φi)−1(M)

(ui − c
1
i )

2 dx

+

Z

(φi)−1(Ω\M)

(ui − c
2
i )

2 dx

«

.

(1)

Here, a set of parameters(φi)i,M, (c1i )i, (c
2
i )i seg-

ments the imageui into a piecewise constant func-
tion with intensityc1i on the pull back(φi)

−1(M)
of the shapeM andc2i on the pull back(φi)

−1(Ω \
M) of the complement of the shapeM under the
transformationφi. Hence, the valuesc1i , c2i are
additional degrees of freedom in our model, which
compensate for variations in the constrast of the
shapes described in the imagesui for i = 1, · · · , n.
Figure 6 shows the intensity valuesc1i andc2i that
minimize the energyEγ [·] in the introductory ex-
ample from Figure 1. Figure 7 demonstrates how
constrast modulation in the given shapes might ef-
fect the resulting shape average.

5 Level set formulation and numerical
approximation

In what follows, we will derive a numerical algo-
rithm for the minimization of the functional given
in (1) along the lines of the approach by Chan and
Vese [5]: We represent the unknown shape median
M via a level set functionζ, i.e.

M = {x ∈ Ω | ζ(x) < 0},



Figure 6: Median shape contour (red) andc1i , c
2
i for

the averaging problem given in Figure 1.

Figure 7: Strong variations of contrast in a sin-
gle shape might lead to wrong matching between
the average shape and this shape. One of the in-
put images from Figure 1 (first) is contrast modu-
lated (second). The corresponding shape deforma-
tions overlayed with the different resulting average
shapes are depicted on the right (third and fourth)
based on the same transformation group as in Fig-
ure 11.

whereΩ is the actual computational domain. Utiliz-
ing the Heaviside functionH, defined asH(z) = 1
for z > 0 and0 elsewhere, one can rewrite the char-
acteristic function of the pull back of the domain
M under the transformationφ as χ(φi)−1(M) =
1 − H(ζ ◦ φi). Thus, the integrals in (1) can be
expressed in terms of the Heaviside function:

Z

φ
−1

i
(M)

(ui − c
1
i )

2dx =

Z

Ω

(1−H(ζ(φi)))(ui−c
1
i )

2dx

Z

φ
−1

i
(Ω\M)

(ui − c
2
i )

2dx =

Z

Ω

H(ζ(φi))(ui−c
2
i )

2dx

Furthermore, the perimeter of the median shape
is equal to the total variation ofH(ζ), i. e.
Per (M) =

R

Ω
|∇(H(ζ))| dx [1]. Hence, we can

reformulate the Mumford–Shah functional in (1) as
a BV type functional involving the Heaviside func-
tion. With respect to a numerical relaxation of this
rewritten functional via a gradient descent method,
we have to regularize the Heaviside function. In
fact, we considerHδ(z) = 1

2
+ 1

π
arctan

`

z
δ

´

for a

given small scale parameterδ > 0. Let us empha-
size that the desired guidance of the initial zero level
line to the boundary of the median shape relies on
the nonlocal support of this regularized Heaviside
function (cf. [4]). We end up with the following
approximation of energyEγ :

E
δ
γ

ˆ

(c1i , c
2
i )i, (φi)i, ζ

˜

=

γ

Z

Ω

|∇Hδ(ζ)|ρ dx+
1

n

n
X

i=1

E
δ
i

ˆ

c
1
i , c

2
i , ζ ◦ φi

˜

where

E
δ
i [c1i , c

2
i , ξ] =

Z

Ω

(1 −Hδ(ξ))(ui − c
1
i )

2

+Hδ(ξ)(ui − c
2
i )

2 dx.

Note that we also applied a standard regularization
of the absolute value used in the total variation term,
i.e. |x|ρ =

p

x2 + ρ2, to ensure classical differen-
tiability of the resulting functional. Throughout this
paper we have chosenρ = 0.1. For the spatial dis-
cretization of the level set functionζ we consider
bilinear Finite Elements on a regular quadrilateral
mesh. Furthermore, each pixel of the imagesui cor-
responds to a node value of the Finite Element mesh
used forζ. As already discussed, we take into ac-
count a parameter vectorqi for every transformation
φi. Thus, we are finally led to a finite dimensional
variational problem whose numerical minimization
will be discussed in the next section.

6 Algorithm

Following [5] we propose an alternating minimiza-
tion algorithm for the involved unknowns, namely
the constrast valuesc1i , c

2
i for the joint segmenta-

tion problem on the imagesui for i = 1, · · · , n, the
transformation parametersqi parametrizing the de-
formationsφi, and the vector of nodal values of the
level set functionζ describing the averaged shape.
Let us first discuss how to minimizeEδ

γ with re-
spect to the different unknowns separately.

Updating the contrast values. We observe thatEδ
γ

is quadratic incji (cf. [5]). Therefore we can di-
rectly compute the minimizing contrast values by



the update formulae

`

c
1
i

´k+1
=

R

Ω
(1 −H(ζk ◦ φk

i ))ui dx
R

Ω
(1 −H(ζk ◦ φk

i )) dx
, (2)

`

c
2
i

´k+1
=

R

Ω
H(ζk ◦ φk

i )ui dx
R

Ω
H(ζk ◦ φk

i ) dx
(3)

for a given level set functionζk and deformations
φk

1 , · · · , φ
k
n.

Usually,φ ∈ T does not map fromΩ to Ω. Hence,
we have to extend functions outsideΩ. For the sake
of simplicity, we trivially extend all functions by0.

Gradient descent. The Euler-Lagrange equations
for ζ andqi, respectively, are nonlinear. Thus, we
consider a step size controlled gradient descent in
these degrees of freedom. As step size control we
apply Armijo’s rule with widening [11]. The first
variation with respect to the level set functionζ in a
directionϑ turns out to be:

∂ζE
ρ
γ [(c1i , c

2
i )i, (qi)i, ζ](ϑ)

=
1

n

n
X

i=1

Z

Ω

n

˛

˛detDφ−1
i

˛

˛H
′
δ(ζ)ϑ

ˆ

(ui(φ
−1
i ) − c

2
i )

2 − (ui(φ
−1
i ) − c

1
i )

2˜

o

dx

+

Z

Ω

∇(H ′
δ(ζ)ϑ) ·

∇ζ

|∇ζ|ρ
dx.

HereDφi is the Jacobian of the deformationφi.
The first variation of the energy with respect to one
of the parametrization vectorsqj is given by:

∂qj
E

ρ
γ [(c1i , c

2
i )i, (qi)i, ζ]

=
1

n

Z

Ω

n

H
′
δ(ζ ◦ φj)∇ζ(φj) ·Dqj

φj

`

(uj − c
2
j )

2 − (uj − c
1
j )

2´

o

dx.

We refer to Section 7 for explicit parametrizations
of different classes of transformations.
Inspired by the Sobolev active contour approach
[15], the descent step inζ is based on a regularizing
metric

g(ϑ1, ϑ2) =

Z

Ω

ϑ1ϑ2 +
σ2

2
∇ϑ1 · ∇ϑ2 dx

on variationsϑ1, ϑ2 of the level set function, where
σ represents a filter width of the corresponding
time discrete and implicit heat equation filter ker-
nel. Let us emphasize that the resulting regularized

descent does not affect the energy landscape itself,
but solely the descent path towards the set of mini-
mizers.

Initialization. The initialization of the process is
usually not that important. An exception is the case
of shapes with holes where the overall procedure
needs some care with respect to the choice of the
initial level set function (cf. the discussion below).
Usually we chooseζ as the signed distance function
of a circle. Theqi are initialized such thatφi =
φ(qi, ·) is the identity, and finally the initial value
for thecji is obtained by applying (2) and (3) using
the initial values forζ andqi.

Constraints. By definition the averaged shape is
described up to the set of transformationsT . Ex-
plicitly, if [(c1i , c

2
i )i, (φi)i, ζ] is a minimizer, then

[(c1i , c
2
i )i, (ψ◦φi)i, ζ ◦ψ

−1] also is a minimizer for
all ψ ∈ T . To get rid of this ambiguity with respect
to transformations from the classT , we have to se-
lect a suitable representative average shape. Indeed,
we constrain the center of mass of the median shape
to a fixed center pointxΩ of Ω. In other words, we
impose the contraint

Z

Ω

(1 −Hδ(ζ(x)))x dx = xΩ . (4)

If this is omitted, the numerical algorithm tends to
translate the zero line ofζ out of our image do-
main, essentially resulting inE = 0. The ambigui-
ties with respect to the other possibly allowed affine
mappings are taken care of via the following linear
constraints:

- the sum of the scaling parameters has to equal
the number of images,

- the sum of the shearing values has to be0,
- the sum of the rotation angles has to be0.
Multiscale minimization. The energy landscape

is fairly complicated in basically all non trivial
applications. In order not to get stuck in local
minima we propose to apply a multiscale strategy.
As scale parameter we consider the regularization
parameterσ in the definition of the metricg(·, ·).
Initially, we choose a fairly large value forσ, i.e.
σ = 1.0. Then, during the gradient descent we
successively refineσ. Furthermore, we proceed
similarily with the regularization parameterδ
of the Heaviside function. This implies that in
early stages of the algorithm far reaching contour
interaction takes place, whereas in later stages the
perimeter functional is effectively approximated.



Figure 8: The development of the different energy
contributions is plotted over the descent steps of
the minimization algorithm. The “+”s represent
the total energy, whereas the “�”s and “∗”s indi-
cate the shape distance from the first and the sec-
ond shape, respectively. Finally, the “×”s show
the scaled boundary length of the computed average
shape. From left to right the diagrams correspond to
the transformation classes depicted already in Fig-
ure 2 ranging from pure translation to rigid body
motion and shear.

Figure 8 shows the decay of the different energy
contributions in the algorithm for the example in
Figure 2.

Shapes with inner contours. To reliably find a
median shape that contains inner contours, we first
use anL2 gradient flow forζ instead of the regu-
larized gradient flow (settingσ = 0) for coarse val-
ues of the parameterδ. Thereby one obtains a bet-
ter initialization of the image segmentation and the
transformation parameters. Given this initialization
we restart the algorithm, now successively decreas-
ing δ. Still, it appears to be appropriate to consider
small values forσ in this case. Figure 9 illustrates
the effect of this strategy.

Figure 9: Different iterates of the average shape
contour (outlined in red) together with a grey shad-
ing according tocj1 are displayed for the averag-
ing of images 1 and 4 from Figure 5. On the left
the computed initial contour is depicted, where the
outer shape is already a good approximation of the
final average shape contour. The still missing inner
contour then appears in a second run of the algo-
rithm involving a successive refinement of the edge
sharpness parameterδ. The second and third im-
age show intermediate configurations in the second
stage relaxation, whereas the rightmost image rep-
resents the final average of the two initial shapes.

7 Parametrized transformations

In what follows we discuss the parametrization of
the transformation classes considered in this paper.
At first let us define the following matrices,

Q(α) =

„

cos(α) sin(α)
− sin(α) cos(α)

«

,

S(β, γ) =

„

1 tan(β)
tan(γ) 1

«

with parametersα andβ, τ , respectively. In case
of rigid body motions we chooseqi = (αi, b

1
i , b

2
i ),

where

φi(qi, x) = Q(αi)x+ bi

with bi = (b1i , b
2
i ) ∈ R

2. If we enlarge the trans-
formation class by isotropic scaling (skipping the
area preservation assumption) we considerqi =
(si, αi, b

1
i , b

2
i ) with φi(qi, x) = siQ(αi)x + bi

andsi ∈ R. Anisotropic scaling as introduced in
Section 3 has not been taken into account in our
computational examples. If we take into account
an axially aligned shear in the reference configura-
tion of all images, we apply the parameter vector
qi = (βi, γi, αi, b

1
i , b

2
i ) describing the transforma-

tion

φi(qi, x) = Q(αi)S(βi, γi)x+ bi.

Finally, adding again a scaling by the factor
si as above we obtain a combination of shear,
rigid body motion, and isotropic scaling for
φi(qi, x) = siQ(αi)S(βi, γi)x + bi and qi =
(si, βi, γi, αi, b

1
i , b

2
i ).

8 Further results

Figures 10 and 11 show the average of 15 images
with nine pears and five apples as input shapes (cf.
Figure 1). These figures show the deformationsφi

acting on the unit squareΩ = [0, 1]2 and demon-
strate the difference between the averaged shapeM

and the deformed shapesφi(Ai). In Figure 10 the
transformation class consists just of rigid body mo-
tions and scaling, whereas in Figure 11 also shear
is taken into account. A comparison of the two fig-
ures underlines the impact of shear on the result-
ing shapes variance (effectively sheared apples are
“almost” of pear shape). The required CPU time
increases with increasing degrees of freedom in the



Figure 10: Transformed imagesui ◦ (φi)
−1 over-

laid with the zero line of the level set functionζ in
case of scaled, rigid body motions as transformation
class.

Figure 11: Transformed imagesui◦(φi)
−1 overlaid

with the zero line ofζ where scaling, rigid body
motion, and shear is taken into account.

transformation class. On a single processor Pentium
4 with 3.6 GHz and 2 GByte memory the CPU time
of the non performance optimized code ranges from
103 to 121 minutes in this application.

In the next numerical experiment we consider a
large set (n = 19) of digital photographs of differ-
ent wine bottles (namely Burgunder and Riesling
bottles). Figure 12 shows the19 images we have
used as input, whereas Figure 13 depicts the result-
ing median shape and the deformed photographs.
From this experiment we can see that the proposed
model is able to handle a larger number of input im-
ages, the only obvious difference to a smaller num-
ber of images is a basically linearly increased com-
puting time. Finally, Figure 14 shows the median
of two shapes representing the letter “B” and the
digit “8”, respectively.

Figure 12: 19 different wine bottles used as input
images.

Figure 13: Transformed wine bottle imagesui ◦
(φi)

−1 overlaid with the zero line ofζ.
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