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Abstract and the minimum is attained for each convex com-

bination ofz; andz2. Generalizing this averaging
Median averaging is a powerful averaging conceptpproach to shapes requires first a suitable defini-
on sets of vector data in finite dimensions. A gen+ion of distances between shapes and then a transfer
eralization of the median for shapes in the plane i%f the optimality property into the context of shapes.
introduced. The underlying distance measure foOur intention is to derive a rigorous definition of
shapes is based on the area of the symmetric dishape medians and to highlight some of the result-
ference of shapes and takes into account differenhg properties by a set of characteristic examples.
invariance classes. These classes are generated byChen and Parent [6] investigated averages of
classical transformation groups such as translatioreD contours already in 1989. Jiang et al. [9]
rotation, anisotropic scaling, and shear. As in thejefined median shapes of polygonal curves based
finite dimensional case, non-uniqueness of the mesn weights for edit operations, which transfer one
dian is observed. The numerical approximation ofcurve into the other. A generalization of this ap-
shape medians is based on a level set approach fgfoach has been presented by Jiang et al. [8]. Fur-
the description of the shape contour. The level sethermore, the computation of shape distances nat-
function and the parameter sets of the group acarally appears when matching shapes in images.
tion on every given shape are incorporated in a jointrezzi and Soatto [16] have investigated shape av-
variational functional, which is minimized based onerages in image structure reconstruction and joint
step size controlled, regularized gradient descentegistration. Beg et al. [3] introduced a geodesic
Various applications show in detail the qualitative

behavior of the method. ‘ ) ' ‘ ‘

1 Introduction

In this paper we develop a notion of a median of ‘ ' ' ‘ .

shapes in 2D. Median averaging is renown as
particularly powerful and robust concept on a set . s

of vectorial data in finite dimensions. It can be ‘ h ‘ O
phrased in terms of an optimization problem. Given

z1,..,on € RY the Euclidean mediam* =

m*[z1, ..., z,] is defined as Figure 1: Given nine pears and five apples as input
shapes, the median shape (lower right) is computed
by the proposed method. The underlying definition
of the median includes the invariance with respect
to rigid body motions.

Compared to a minimization of squared differences

in case of the classical arithmetic mean, the lin-distance between images or shapes based on a regu-
ear growth ensures robustness with respect to oularizing metric on Eulerian transport fields generat-
liers. A well known property of this median is that ing Lagrangian deformation between objects. The

it is not unique. Indeed, far;,z2 € R? we have metric involvesL? scalar products of higher deriva-
min,,cga (jm — z1| +|m —x2|) = |z2 — 21|, tives. This approach was used among others for in-

n
m" = argminz |m — x4 .
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stance by Joshi et al. [10] and Avants and Gee [2This implies the triangle inequalityl(A, B) <
in comparative medical anatomy. In the simplifiedd(A, C) + d(C, B), and together with the obvious
case of planar curves Mumford and Michor [12] de-symmetryd(A, B) = d(B, A) and the positive def-
veloped a Riemannian calculus. By definition, theinitenessi(A, B) > 0 (d(4,B) =0« A = B)it
overall problem falls into the class of shape opti-follows thatd(-, -) is a metric on subsets &°. The
mization. We refer to the book by Sokotowski andactual comparison of two shapes has to take into ac-
Zolésio [14] for a comprehensive overview on thiscount the invariance with respect to certain underly-
topic. ing group actions. Let us suppose tiats a group

In this paper we are investigating shapes whiclof area preserving deformatiogs: R? — R2. Ex-
are implicitly described via non-binary images.amples to be considered later are translations, rigid
Hence, shape information has to be extracted fronhody motions, or area preserving scalings. Given
the given data. A first example is depicted in Fig-a particular transformation group we finally de-
ure 1. We consider a joint approach based on éine a distance between shapes represented by sets
Mumford Shah type variational formulation [13] for A, B c R? with respect tdl’ by
the average as a free discontinuity set. For the im-
plementation we pick up a robust and efficient ap- dr(A, B) := inf d(A, ¢(B)).
proximation of the Mumford—Shah functional pre- ot
sented by Chan and Vese [S] in the context of piec€pne easily verifies thatdr defines a met-
wise constant image segmentation. As a distancg; on equivalence classes of subsets Bt
measure between shapes we consider the area \gfip, respect to the transformation group
the symmetric difference between sets and regargh Indeed, from the fact thay € T is

shapes as equivalence classes of sets with respeghy preserving we deducé(A, ¢(B)) =
to certain finite dimensional groups of transforma-;4-1(4) 4-1(¢(B))) = d(B, (2;71(14)) and

tions in the plane. Examples for such transformangnce dr(A,B) = infeerd(B,¢ ' (A) =
tion groups studied here are translations, rotationsdT(RA) follows from the group property of".
scaling, and shear. A general outline of infinite di'FinaIIy with ¢ = argmin, .y d(A, $(C)) the

mensional diffeomorphic group actions on Shape%iangle inequality follows from the estimate
is discussed by Dupuis et al. [7]. In the underlying

numerical approximation the average shape is rep- inf d(A, ¢(B))

resented as the zero level set of a level set function. ¢eT

When averaging: shapes the degrees of freedom < d(A,(C)) + inf d(¥(C), ¢(B))
of a piecewise multilinear finite element representa- ot L

tion of this level set function and the parameter sets =dr(A,C) + Inf, d(C,¢™" 0 ¢(B))

of then transformations of the individual shapes are
considered as degrees of freedom for the variational
problem. We give various examples for the quali-

=dr(A,C) +dr(C,B).

For later reference let us remark that this metric on

resulting algorithm. gral form

2 An area based distance measure ar(A,B) = inf [ (xson - xz)’ do,
R2

A standard tool for the comparison of sets is the o _

symmetric difference. Given two sets B ¢ R?  Wherexc denotes the characteristic function of a

one definesiAB = A\ BUB\ A. Hence, acorre- S€tC.

sponding measure for the difference of the two sets

is the area of the symmetric difference .
y 3 Transformation groups

d(A, B) := |AAB].
In this paper we confine to subgroups of the group
One easily verifies that for given sets B, C'and  of affine transformation® with ¢(z) = Az + b,
x € AAB eitherz € AAC orx € CAB. whereA € GL(2) andb € R?. A particularly



simple group is the translation grop..swith A =

1. As usual the group of rotations 1 7 i? ﬂ j/

Q= cosf  sinf ) ) . —

=\ _sinf cosd Fl_gure_ 2: Averag_lng of two shapes, “1 _and 7,
with different choices of the transformation group

) ] T The first and second image show the two input

is denoted bySO(2) so that we obtain the group jmages, the third to fifth one the outline of the av-

of rigid body motionsTiga via ¢(z) = Az +b  grage shape in case of the transformation class of

with A € SO(2). The largest area preserving groupsimple translations (third), rigid body motions com-

in the set of affine transformations is described byyined with isotropic scaling (fourth), and a combi-

matricesA € SL(2) with det A = 1. Based pation of translation, rotation, isotropic scaling, and
on the polar decomposition formula they can begnearing (fifth), respectively.

parametrized as follows

() 111

with @ € SO(2). Shearing inz direction is
a one dimensional subgroup &fL(2) given by

matrices A = ((1) Cf) Anisotropic area ? 1 7

preserving scaling is given by matriced =

QT 8‘ Oﬁl )Q with o € Rt andQ ¢

SO(2). With respect to the variational model for a Figure 3: ¢;(A;) overlaid with the median shape

shape median to be developed in this paper, we Wiﬁ:ontour_ withT aII_owing tre_mslatio_n (first_ column),
take into account different groups of transforma—tranSIat'on‘ rotation, _and |sotr_op|c_ scallng (sec_ond
column), and translation, rotation, isotropic scaling,

tions and relax the definition, restricting ourselves - .
not to only subgroups but to just subsets, such as thftl,\nd shearing (third column).

set of concatenations of rotation and shear, cf. Sec-

tion 7. In many applications invariance with respectq A variational definition of the
Fo scal!ng is a dgswable property._ To incorporate shape median

isotropic scaling in our model the distance measure

has to be modified. This goes beyond the scope Ghecalling the definition of the median in the con-

the current paper. Thus, we confine here to an inColy; of vectors inR™, a first definition of a median

poration of scale invariance in the current model,j ;« ¢ shapesd,,--- , A, C R? and a sefl of

even though the underlyingr (-, -) is no longer a  jyariant transformations is given by

metric. Figure 2 shows the impact of the transfor-

mation group on the average shape of two different . &

shapes. Figure 3 complements the previous figure M= a}{fgnﬂgnsz(M7 Ai).

by depictingg: (A1) andé2(A2) overlaid with the R i=1

median for the same experiment. As in the case of the median of numbers (cf. Sec-
In general, we will consider mappinggq, z) = tion 1) the median is not unigue. As an example let

A(q)x + blq), whereA(q) € GL(2), b(q) € R*  us consider a squatd; = [0,a]? and a rectangle

andq denotes a suitable parametrization of the deA> = [0, a] x [0,b] with a < b. Obviously, every

grees of freedom of the affine transformations weaectangleM = [0,a] x [0, ¢] with a < ¢ < bren-

allow for. All of our invariance class€g will con-  ders the sum of distanc@le dr(M, A;) to be

tain translations, since translation invariance is fun{b — a)a, which is equal tadr (A, A2) and thus

damental in all applications. the minimal value. Unfortunately, the set of min-



a a : only over the set of shaped but at the same time
! <> over the set of transformations, - - - , ¢, € T ap-
pearing ind(M, ¢;(A;)). Thus, we are led to a joint

0 a b0 a b A .
minimization problem for the functional
Figure 4: Without the boundary length penalization 1 &
shape medians turn out to be fairly irregular. Byl ¢n, M) = D d(M, ¢i(Ai)
=1

+ ~Per (M) .
imizers is even larger. We can split the rectangle ) ) ) . .
[0, a] x [a, b] into any two disjoint measurable sub- As already mentioned in the introduction, in prac-
setsA;. A, andM = A, U A, will be a minimizer tical applications input data usually are not shapes
as well (cf. Figure 4). To select from the set of A1, ", An, but imagesus, -, un : @ — R,
minimizers a proper candidate for the median wef@ch of them encoding a shape. Throughout this
have to filter out irregular “median” shapes. Thus,PaPer, the domaiii2 is considered to be the unit
let M[As,--- , A,] be the set of all setd! C R? squar€0, 1]°. To phrase the shape median in terms
which minimize the sum of shape distances. Thenf these images, we consider a simultaneous seg-
select from this set the shage™ with the least mentation of the input images based on a piecewise
perimeter (boundary length) and define this set a§onstant Mumford—-Shah model. Hence, we extend
the shape median, i.e. our energy to

B, [(¢i)i, M, ()i, (c})i] = yPer (M)

M* = argmin  Per (M),
MeM[AL,--,Ap] 1 ~ 1\2
— / u; —¢;)” dx 1
wherePer (A) denotes the length of the boundary TS N ()L @)

0A of Aif 0Aisrectifiable and is set teo else. For

—|—/ (ui—c?)2dx).
() ~H(Q\M)
Here, a set of paramete(s; ):, M, (c} )i, (¢7); seg-

)
B B ments the image; into a piecewise constant func-

tion with intensityc; on the pull back(¢;) ™" (M)

of the shapelf andc? on the pull back¢;) ™' (Q\
l O M) of the complement of the shapge under the
ZO transformationg;. Hence, the values!, c¢? are

additional degrees of freedom in our model, which

compensate for variations in the constrast of the

Figure 5: On the bottom right the average of fiveshapes described in the imagedori =1, - - , n.

“B” with T" allowing rotation, translation, isotropic Figure 6 shows the intensity values and¢? that

scaling, and shearing. minimize the energy, [-] in the introductory ex-
ample from Figure 1. Figure 7 demonstrates how

the actual numerical computation we simplify theconstrast modulation in the given shapes might ef-

definition and consider a—-median shape, defined fect the resulting shape average.

as the minimizing sed/ ™ of the energy

L& 5 Level set formulation and numerical
Ey[M] = — > dr(M, As) +~Per (M), approximation
=1

. . .. _In what follows, we will derive a numerical algo-
where~y is a small constant. For the applications . T ; .
rithm for the minimization of the functional given

considered in this paper we have choosen= . .

0.0005. Figure 5 depicts the resulting shape aver! (1) alc?ng the lines of the approach by Chan a_nd
- L Vese [5]: We represent the unknown shape median

age in case of a letter represented in different fonts

Due to the built-in transformation invariance of theM via a level set function, i.e.
distance measurér (-, -) we have to minimize not M ={z € Q|((x) <0},



given small scale parametér> 0. Let us empha-
‘ ‘ ‘ . ‘ size that the desired guidance of the initial zero level
line to the boundary of the median shape relies on
the nonlocal support of this regularized Heaviside

‘ ‘ ‘ ‘ ‘ function (cf. [4]). We end up with the following

approximation of energy,,:

‘ ‘ ‘ . O ES [(cied)i, (00)i, €] =

v [ IVHSO, dot ST B [eldco o]

Figure 6: Median shape contour (red) arjdc? for P
the averaging problem given in Figure 1.
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Figure 7: Strong variations of contrast in a sin- + Hs(&)(u; — ¢})? da.

gle shape might lead to wrong matching between

thet gveragefshap; and tlh'?. S?a.pe' Otne tOf thg "Note that we also applied a standard regularization
put images from Figure 1 (first) .'S contrast modu-¢yh e apsolute value used in the total variation term,
Igted (second). T_he corre_spondlng Sh?Pe deforma, |z| = y/x?% + p?, to ensure classical differen-
tions overlayed with the different resulting aVerag(:%iabilitypof the resulting functional. Throughout this

shapes are depicted on the right (third and f_ourt_h aper we have chosgn= 0.1. For the spatial dis-
based on the same transformation group as in Fi cretization of the level set functioq we consider
ure 11. bilinear Finite Elements on a regular quadrilateral
mesh. Furthermore, each pixel of the imagesor-
where() is the actual computational domain. Utiliz- responds to a node value of the Finite Element mesh
ing the Heaviside functiof/, defined adi(z) =1  used for¢. As already discussed, we take into ac-
for z > 0 and0 elsewhere, one can rewrite the char-count a parameter vectgrfor every transformation
acteristic function of the pull back of the domain ¢;. Thus, we are finally led to a finite dimensional
M under the transformatios as x(4,)-1(ay =  variational problem whose numerical minimization
1 — H(¢ o ¢;). Thus, the integrals in (1) can be will be discussed in the next section.
expressed in terms of the Heaviside function:

Juui—elyar = a-tc@M @l e g Agorithm

oy (M) Q2
) 2\2 _ 242 Following [5] we propose an alternating minimiza-
/(ul ¢i) dz 7/ H(C(¢4)) (uiei)"dw tion algorithm for the involved unknowns, namely
&7 HQ\M) Q2 the constrast values, ¢? for the joint segmenta-

Furthermore, the perimeter of the median shap(%rgzsfrgﬂz?o?]n tgzrr::t%e& fg:;n?e#iéi.r; ’Eéhdee-
is equal to the total variation of{(¢), i. e. P %P 9

Per (M) — fg IV(H(C))|de [1]. Hence, we can formationsg;, and the vector of nodal values of the

reformulate the Mumford—Shah functional in (1) aslfgteluzeftirstingité?:Essehs;vUt;?%nti:?ma}\zlg‘sag\]/\?i% srf:tpe.
a BV type functional involving the Heaviside func- ) v

tion. With respect to a numerical relaxation of thisSpECt to the different unknowns separately.
rewritten functional via a gradient descent methodUpdating the contrast values. We observe thaf]

we have to regularize the Heaviside function. Inis quadratic |nc{ (cf. [5]). Therefore we can di-
fact, we consideH;(z) = 1 + L arctan (%) fora  rectly compute the minimizing contrast values by



the update formulae descent does not affect the energy landscape itself,
. but solely the descent path towards the set of mini-
()" = Jo(1— H(C" 0 ¢7))u; da (2) Mmizers.
! Jo(1 = H(Ckok))de Initialization. The initialization of the process is
ko kY, usually not that important. An exception is the case

A Jo H(C" 0 ¢ )ui do (3) of shapes with holes where the overall procedure
needs some care with respect to the choice of the
initial level set function (cf. the discussion below).
Usually we choose as the signed distance function
of a circle. Theg; are initialized such thap;, =
¢(qi,-) is the identity, and finally the initial value
for the ¢’ is obtained by applying (2) and (3) using

2

() = o H(CF o gF) do

for a given level set functionjk and deformations
(bllc7 e 7¢lr€z

Usually,¢ € T does not map frorf to 2. Hence,

we have to extend functions outsife For the sake
of simplicity, we trivially extend all functions bg.

Gradient descent. The Euler-Lagrange equations the initial yalues for "?‘”."_qf- .
. . Congtraints. By definition the averaged shape is
for ¢ andgq;, respectively, are nonlinear. Thus, we

consider a step size controlled gradient descent iHescribed up to the set of transformatidfis Ex-
P g licitly, if [(ci,c?)i, (¢i)s,¢] is @ minimizer, then

these degrees of freedom. As step size control wg ;|

2 -1 ; i
- . . . ] iy Ci )i 0Pi)i, (O
apply Armijo’s rule with widening [11]. The first ¢i €i)ir (V0 i) .C i .} also _|sa_m|n_|m|zerfor
e ; L all ¢ € T. To get rid of this ambiguity with respect
variation with respect to the level set functi¢im a ’
o ) to transformations from the clags we have to se-
direction turns out to be:

lect a suitable representative average shape. Indeed,

84E$[(C%, Cg)h (g:):,C](9) we cc_)nstraln the ce_nter of mass of the median shape
n to a fixed center point, of 2. In other words, we
_ 1 =1y gyt impose the contraint
_ n;/ﬂ{|detD¢i | Hj(¢)o /
_ _ (I - Hs(¢(2)))xdr = zq. 4
[0 ") = ) = (wi(¢: ") = )] J o o
V¢ If this is omitted, the numerical algorithm tends to
! . d . . .
+/ (H5(0)9) vep, & translate the zero line of out of our image do
Q p

main, essentially resulting i’ = 0. The ambigui-
Here D¢; is the Jacobian of the deformatian. ties with respect to the other possibly allowed affine
The first variation of the energy with respect to onemappings are taken care of via the following linear

of the parametrization vectogs is given by: constraints:
- the sum of the scaling parameters has to equal
0a; BB [(ci,c})i, (ai)i, ] the number of images,
1 , - the sum of the shearing values has t@be
~n /Q {H5(C © $j)VC(¢5) - Dy; b5 - the sum of the rotation angles has tothe
- 1o Multiscale minimization. The energy landscape
((uj =) = (u; —¢j) ) } da. is fairly complicated in basically all non trivial

] o .. applications. In order not to get stuck in local
We refer to Section 7 for explicit parametrizations inima we propose to apply a multiscale strategy.

of different classes of transformations. As scale parameter we consider the regularization
Inspired by the Sobolev active contour approadbarameteh in the definition of the metrigy(-, -)

[151’_”‘3 descent step this based on aregularizing |hjtially, we choose a fairly large value far, i.e.
metric

o = 1.0. Then, during the gradient descent we
o2 successively refine. Furthermore, we proceed
g(01,92) = / 0192 + oV - V2 do similarily with the regularization parametef
o of the Heaviside function. This implies that in
on variationsd,, 92 of the level set function, where early stages of the algorithm far reaching contour
o represents a filter width of the correspondinginteraction takes place, whereas in later stages the
time discrete and implicit heat equation filter ker-perimeter functional is effectively approximated.
nel. Let us emphasize that the resulting regularized



N ; : 7 Parametrized transformations

In what follows we discuss the parametrization of
the transformation classes considered in this paper.
At first let us define the following matrices,

B * 2
s .
LI igu;; R

s
o+

o+

B

Figure 8: The development of the different energy

contributions is plotted over the descent steps of Q(a) < CO_S(a) 111(04))
the minimization algorithm. The-"s represent —sin(a)  cos(a)
the total energy, whereas th&l™s and “"s indi- (B,7) = ( 1 tan(ﬂ))
cate the shape distance from the first and the sec- tan(y) 1

ond shape, respectively. Finally, thex™s show
the scaled boundary length of the computed averag 1.9
shape. From left to right the diagrams correspond t(9f rigid body motions we choosg = (a, b;, b7,
the transformation classes depicted already in Flg Wwhere

ure 2 ranging from pure translation to rigid body 6i(q5, ) = Q(a)z + b

motion and shear.

\glth parametersy and 3, 7, respectively. In case

with b; = (b}, b?) € R2. If we enlarge the trans-

Figure 8 shows the decay of the different energ){:r ren;atlﬁ)ensgrlszzok;yézggr?]plgoic)a\l/lvr;g C(gl;g;;ﬁthe
contributions in the algorithm for the example in P P N

Figure 2. (s, 0,b7,b7) with ¢i(qi,2) = s:Q(cui)z + bi

T ith i i To reliably find ands; € R. Anisotropic scaling as introduced in
iapes With 1nner contours. - 10 reliably INd @~ geqtion 3 has not been taken into account in our
median shape that contains inner contours, we fir

AL dient flow forc instead of th S(Eomputational examples. If we take into account
use ant.2 gradient flow c_>r§ Instead ot the regu- 5, axially aligned shear in the reference configura-
larized gradient flow (setting = 0) for coarse val-

. tion of all images we apply the parameter vector
ues of the parametér Thereby one obtains a bet — (81,7, s, b, b?) describing the transforma-
ter initialization of the image segmentation and the!
transformation parameters. Given this |n|t|aI|zat|on
we resta_rt t_he algorithm, now succe_ssively decr_eas- #i(gi, ) = Q()S(Bi, vi)w + b;.
ing 6. Still, it appears to be appropriate to consider _ _ _
small values fow in this case. Figure 9 illustrates Finally, adding again a scaling by the factor
the effect of this strategy. s; as above we obtain a combination of shear,

rigid body motion, and isotropic scaling for

¢i(gi,x) = 8:Q(as)S(Bi,vi)x + b andg; =

IV 21V 21V S

8 Further results

Figure 9: Different iterates of the average shaperigures 10 and 11 show the average of 15 images
contour (outlined in red) together with a grey shad-with nine pears and five apples as input shapes (cf.
ing according toc; are displayed for the averag- Figure 1). These figures show the deformatigns
ing of images 1 and 4 from Figure 5. On the leftacting on the unit squar@ = [0, 1]? and demon-
the computed initial contour is depicted, where thestrate the difference between the averaged shépe
outer shape is already a good approximation of thend the deformed shapes(A;). In Figure 10 the
final average shape contour. The still missing innefransformation class consists just of rigid body mo-
contour then appears in a second run of the algations and scaling, whereas in Figure 11 also shear
rithm involving a successive refinement of the edgqs taken into account. A comparison of the two fig-
sharpness parametér The second and third im- yres underlines the impact of shear on the result-
age show intermediate configurations in the seconghg shapes variance (effectively sheared apples are
stage relaxation, whereas the rightmost image repalmost” of pear shape). The required CPU time
resents the final average of the two initial shapes. increases with increasing degrees of freedom in the
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Figure 10: Transformed images o (¢;)~" over- \

laid with the zero line of the level set functighin

case of scaled, rigid body motions as transformation

class. Figure 12: 19 different wine bottles used as input
images.
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Figure 11: Transformed imageso(¢;) " overlaid
with the zero line of¢ where scaling, rigid body
motion, and shear is taken into account.
Figure 13: Transformed wine bottle images o
(¢:)~* overlaid with the zero line of.

transformation class. On a single processor Pentium
4 with 3.6 GHz and 2 GByte memory the CPU time References
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