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Abstract Median averaging is a powerful averaging

concept on sets of vector data in finite dimensions. A

generalization of the median for shapes in the plane is

introduced. The underlying distance measure for shapes

takes into account the area of the symmetric difference

of shapes, where shapes are considered to be invari-

ant with respect to different classes of affine transfor-

mations. To obtain a well–posed problem the perime-

ter is introduced as a geometric prior. Based on this

model, an existence result can be established in the

class of sets of finite perimeter. As alternative invari-

ance classes other classical transformation groups such

as pure translation, rotation, scaling, and shear are

investigated. The numerical approximation of median

shapes uses a level set approach to describe the shape

contour. The level set function and the parameter sets

of the group action on every given shape are incorpo-

rated in a joint variational functional, which is min-

imized based on step size controlled, regularized gra-

dient descent. Various applications show in detail the

qualitative properties of the median.
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1 Introduction

In this paper, we develop a notion of a median of shapes

in 2D. Median averaging is regarded as a particularly

powerful and robust concept on a set of vectorial data

in finite dimensions. It can be phrased in terms of an
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optimization problem. Given x1, ..., xn ∈ Rd,

m∗ = m∗[x1, ..., xn]

is called the Euclidean median if it fulfills

m∗ ∈ argmin
m∈Rd

n∑
i=1

|m− xi| .

Compared to a minimization of squared differences in

case of the classical arithmetic mean, the linear growth

ensures robustness with respect to outliers. A well

known property of this median is that it is not unique.

Indeed, for x1, x2 ∈ Rd we have

min
m∈Rd

(|m− x1|+ |m− x2|) = |x2 − x1| ,

and the minimum is attained for each convex combina-

tion of x1 and x2. Generalizing this averaging approach

to shapes requires first a suitable definition of distances

between shapes and then a transfer of the optimality

property into the context of shapes. Our intention is

to derive a rigorous definition of shape medians and to

highlight some of the resulting properties by a set of

characteristic examples.

Very basic notions of averaging include the arith-

metic mean of landmark positions [12], and the image

obtained by the arithmetic mean of the matching defor-

mations [27,6]. Chen and Parent [11] investigated av-

erages of 2D contours already in 1989. Jiang et al. [20]

defined median shapes of polygonal curves based on

weights for edit operations, which transfer one curve

into the other. A generalization of this approach has

been presented by Jiang et al. [19]. Furthermore, the

computation of shape distances naturally appears when

matching shapes in images. Yezzi and Soatto [34] have

investigated shape averages in image structure recon-

struction and joint registration.
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Conceptually, in the last decade correlations of

shapes have been studied on the basis of a general

framework of a space of shapes and its intrinsic struc-

ture. The notion of a shape space was already intro-

duced by Kendall [23] in 1984. Charpiat et al. [9,10]

discuss shape averaging and shape statistics based on

the notion of the Hausdorff distance and on the H1

norm of the difference of the signed distance functions

of shapes. They study gradient flows for energies de-

fined as functions over these distances for the warping

between two shapes. As the underlying metric they use

a weighted L2 metric, which weights translational, rota-

tional, and scale components different than the compo-

nent in the orthogonal complement of all these trans-

forms. Furthermore, they investigated in this general

framework also an PCA-analysis of shapes.

Fletcher et al. [15] studied transformation groups on

polygonal medial axis models for shapes in 3D. Here,

the average of a set of input shapes is defined as a shape

reconstructed from an averaged medial axis. The aver-

aged medial axis minimizes a sum of tangent vectors in

the Lie group of the transformation group, which re-

produce the set of input medial axes, if the exponential

map is applied to them.

Understanding the shape space as an infinite-

dimensional Riemannian manifold, Miller et al. [25,24]

defined the average shape S of samples S1, . . . ,Sn as

the minimizer of
∑n
i=1 d(Si,S)2 for some metric d(·, ·),

e. g. a geodesic distance in the space of shapes. This

generalization of the geometric mean for objects on a

Riemannian manifold has originally been proposed by

Fréchet already in [17] and further analyzed by Karcher

[22]. Beg et al. [3] introduced a geodesic distance be-

tween images or shapes based on a regularizing metric

on Eulerian transport fields generating Lagrangian

deformation between objects. The metric involves L2

scalar products of higher derivatives. This approach

was used in comparative medical anatomy for instance

by Joshi et al. [21] and Avants and Gee [2].

In [29,28], the average shape is defined as the shape

which minimizes the sum of all elastic energies stored

in optimal elastic deformations from the different input

shapes onto the selected shape. This approach concep-

tually differs from the Riemannian approach. Fuchs et

al. [18] proposed a viscoelastic notion of the distance be-

tween shapes given as boundaries of physical objects.

A link between elastic shape matching and a Rieman-

nian geodesic distance is investigated in [33]. Fletcher

et al. [16] propose to use a shape median instead of

the geometric shape mean. They investigate the median

concept for rotations, tensors and for planar, polygonal

shape contours.

By definition, the overall shape averaging problem

falls into the class of shape optimization. We refer to

the book by Soko lowski and Zolésio [31] for a compre-

hensive overview on this topic.

In this paper, we are investigating shapes which

are implicitly described via non-binary images. Hence,

shape information has to be extracted from the given

data. A first example is depicted in Figure 1. We con-

Fig. 1 Given nine pears and five apples as input shapes, the me-

dian shape is computed by the proposed method. The underlying

definition of the median includes the invariance with respect to
rigid body motions (second last contour on the bottom right) and

with respect to area (and orientation) preserving affine transfor-

mations (right most contour on the bottom line).

sider a joint approach based on a Mumford–Shah type

variational formulation [26] that handles the median

as a free discontinuity set. For the implementation we

pick up the robust and effective approximation of the

Mumford–Shah functional proposed by Chan and Vese

[8]. As a distance measure between shapes we con-

sider the area of the symmetric difference between sets.

Thereby, shapes are equivalence classes of sets with re-

spect to certain finite dimensional groups of transfor-

mations in the plane. Examples for such transformation

groups studied here are translations, rotations, scal-

ing, and shear. For a general outline of infinite dimen-

sional diffeomorphic group actions on shapes we refer to

Dupuis et al. [13]. Computationally, the involved trans-

formation group requires a simultaneous minimization

over the actual median shape and a set of transfor-

mations. If the transformation group is finite the sec-

ond problem is a labeling problem. In our case the
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transformations groups are continuous and smoothly

parametrized over a small set of real valued parame-

ters, which enables an effective continuous minimiza-

tion approach. In the underlying numerical approxima-

tion, the median shape is represented as the zero level

set of a level set function. When averaging n shapes

the nodal values of a piecewise multilinear finite ele-

ment representation of this level set function and the

parameter sets of the n transformations of the indi-

vidual shapes are considered as degrees of freedom for

the variational problem. In addition, contrast values re-

lated to the Mumford–Shah segmentation model are

taken into account as degrees of freedom, which will be

investigated below. We give various examples for the

qualitative behavior and the overall performance of the

resulting algorithm. We note that a preliminary version

of part of the work reported in this article has appeared

in the proceedings paper [4].

The paper is organized as follows: In Section 2,

we define the underlying shape distance and discuss

the invariance with respect to different transformation

classes, whereas Section 3 gives a variational definition

of the shape median. In Section 4, existence of regular-

ized shape medians in the class of set of finite perimeter

is established. The numerical approximation based on a

level set representation of shapes in a multilinear finite

element space and the resulting algorithm are discussed

in Section 5.

2 An area based distance measure

To derive the variational model for a shape median

we will first investigate the underlying distance mea-
sure between two sets in R2. The latter is based on the

area of the symmetric difference and takes into account

a particular invariance class of affine transformations.

Even though our particular focus is on SL(2) invari-

ance, we will discuss other transformation classes as

well along with suitable parametrizations. Given this

distance measure we then define the actual shape me-

dian and investigate the underlying problem of well-

posedness.

2.1 A transformation invariant symmetric distance

between sets

A standard tool for the comparison of sets is the sym-

metric difference. Given two measurable sets A, B ⊂ R2

one defines A4B = A\B∪B\A . Hence, a correspond-

ing measure for the difference of the two sets is the area

of the symmetric difference

d(A,B) := |A4B| .

One easily verifies that for given sets A, B, C and

x ∈ A4B either x ∈ A4C or x ∈ C4B. This implies

the triangle inequality d(A,B) ≤ d(A,C)+d(C,B), and

together with the obvious symmetry d(A,B) = d(B,A)

and the positive definiteness d(A,B) ≥ 0 (d(A,B) =

0 ⇔ A = B (up to a set of measure zero)) it follows

that d(·, ·) is a metric on subsets of R2. For the actual

comparison of two shapes one has to take into account

the invariance with respect to certain underlying group

actions. Let us suppose that T is a group of area pre-

serving deformations φ : R2 → R2. Examples to be con-

sidered later are translations, rigid body motions, and

in particular area preserving affine mappings. Given a

particular transformation group T of area preserving

transformations we define a distance between shapes

represented by sets A, B ⊂ R2 with respect to T by

dT (A,B) := inf
φ∈T

d(A, φ(B)) . (1)

One easily verifies that dT defines a metric on equiva-

lence classes of subsets of R2 with respect to the trans-

formation group T . Indeed, from the fact that φ ∈ T is

area preserving we deduce

d(A, φ(B)) = d(φ−1(A), φ−1(φ(B))) = d(B,φ−1(A))

and hence

dT (A,B) = inf
φ∈T

d(B,φ−1(A)) = dT (B,A)

follows from the group property of T . Finally, with

ψ = argminφ∈T d(A, φ(C)) the triangle inequality fol-

lows from the estimate

inf
φ∈T

d(A, φ(B)) ≤ d(A,ψ(C)) + inf
φ∈T

d(ψ(C), φ(B))

= dT (A,C) + inf
φ∈T

d(C,ψ−1 ◦ φ(B))

= dT (A,C) + dT (C,B).

For later reference let us remark that the metric (1) on

the space of 2D shapes can be represented in integral

form

dT (A,B) = inf
φ∈T

∫
R2

(1− χA)χφ(B) + χA(1− χφ(B)) dx ,

(2)

where χC denotes the characteristic function of a set

C.

2.2 Different classes of transformations

In this paper, we confine to subclasses of the group of

affine transformations φ with φ(x) = Ax + b, where

A ∈ GL(2) and b ∈ R2. A particularly simple group is
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the translation group Ttrans with A = 1I (the identity

matrix). As usual the group of rotations

Q =

(
cos θ sin θ

− sin θ cos θ

)
is denoted by SO(2) so that we obtain the group of rigid

body motions TSO(2) via φ(x) = Ax+b with A ∈ SO(2).

The largest area (and orientation) preserving group in

the set of affine transformations is described by ma-

trices A ∈ SL(2) = {A ∈ GL(2) |detA = 1}, here de-

noted by TSL(2). Obviously, TSO(2) is a subgroup of TSL(2).

In many applications the shapes to be averaged are

of significantly different enclosed area, which renders

the SL(2) invariant median computation questionable.

Hence, throughout this paper in case of a median com-

putation with respect to the transformation group TSL(2)

we a priori scale all input shapes (after standard binary

Mumford–Shah segmentation) to ensure that they are

all of equal enclosed area. Based on the polar decom-

position formula they can be parametrized as follows

A = Q

(
β γ

γ 1+γ2

β

)
with Q ∈ SO(2). For example shearing in x direction is

a one dimensional subgroup of SL(2) given by matrices

A =

(
1 γ

0 1

)
and anisotropic area preserving scaling, another sub-

group, is given by matrices

A = QT
(
α 0

0 α−1

)
Q

with α ∈ R+ and Q ∈ SO(2). With respect to the vari-

ational model for a shape median to be developed in

this paper, we will take into account different groups

of area preserving transformations restricting ourselves

not to only subgroups but to just subsets, such as the

set of concatenations of rotation and shear. In many

applications invariance with respect to scaling is a de-

sirable property. To incorporate isotropic scaling in our

model the distance measure has to be modified. This

goes beyond the scope of the current paper. Thus, we

confine here to a simple incorporation of scale invari-

ance in the current model, even though the under-

lying dT (·, ·) is no longer a metric. Figure 2 shows

the impact of the transformation group on the aver-

age shape - to be defined in the next paragraph - of

two different shapes. Figure 3 complements the pre-

vious figure by depicting φ1(A1) and φ2(A2) overlaid

with the median for the same experiment. Throughout

this paper, shapes are described via image contours.

To show the underlying transformation, we render in

Fig. 2 Averaging of two shapes, “1” and “7”, with different
choices of the transformation group T : The first row shows the

two input images, the second row shows the average shape in case

of the transformation class of simple translations Ttrans (first),
rigid body motions combined with isotropic scaling Tτ,SO(2) (sec-

ond), the concatenation of rigid body motion, shearing and
isotropic scaling Tτ,shear (third), and TSL(2) (forth), respectively.

Fig. 3 The transformed input shapes are overlaid with the me-
dian shape contour for the group of translations Ttrans (top left

block), concatenation of rigid body motion and isotropic scaling
from Tτ,SO(2) (top right block), concatenation of rigid body mo-

tion, shearing and isotropic scaling Tτ,shear (bottom left block),

and the transformation group TSL(2) (bottom right block).

figures also the transformed image domain φ−1([0, 1]2)

on a black background. With respect to the numerical

algorithm - to be discussed in Section 5 - let us dis-

cuss the parametrization of the aforementioned trans-

formation classes. In general, we will consider mappings

φ(q, x) = A(q)x+ b(q), where A(q) ∈ GL(2), b(q) ∈ R2

and q denotes a suitable parametrization of the degrees

of freedom of the affine transformations we allow for.

In fact, we have one parameter set qi for every input

shape Ai with i = 1, · · · , n. All of our invariance classes

T will contain translations, since translation invariance

is fundamental in all applications. First, we introduce

the matrices

Q(θ) :=

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
,

S(β, γ) :=

(
1 tan(β)

tan(γ) 1

)
with parameters θ, β, and γ, respectively. In case of

rigid body motions from the class TSO(2) we choose qi =
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(θi, b
1
i , b

2
i ), where

φi(qi, x) = Q(θi)x+ bi

with bi = (b1i , b
2
i ). If we enlarge the transformation class

by isotropic scaling we obtain the class Tτ,SO(2) (in par-

ticular skipping the area preservation assumption) and

consider qi = (τi, θi, b
1
i , b

2
i ) with φi(qi, x) = τiQ(θi)x+bi

and τi > 0. Taking into account an axially aligned shear

in the reference configuration of all images, we obtain

the parameter vector qi = (βi, γi, θi, b
1
i , b

2
i ) describing

the transformation

φi(qi, x) = Q(θi)S(βi, γi)x+ bi.

from the class Tshear. Furthermore, multiplication with

a isotropic scaling factor τi as above we obtain the class

Tτ,shear of concatenations of isotropic scaling, rigid body

motion, and shearing and set qi = (τi, βi, γi, θi, b
1
i , b

2
i ).

Finally, we obtain a parametrization of the transforma-

tion group TSL(2) with

φi(qi, x) =Q(θi)B(βi, γi)x+ bi where

B(β, γ) :=

(
β γ

γ 1+γ2

β

)

and the parameter vector qi = (βi, γi, θi, b
1
i , b

2
i ).

3 A variational description of the shape median

In this Section, we will see that in the context of sets

a suitable regularization process has be taken into ac-

count to derive a proper definition of a median of a set of

input shapes. Here, we will derive a suitable variational

model for which we will prove existence in Section 4.

The numerical discretization in Section 5 picks up this

model and discretizes it via a level set approach.

3.1 Imposing regularity of the median shape

Recalling the definition of the median in the context

of vectors in Rn, a preliminary definition of a median

M∗ of shapes S1, · · · , Sn ⊂ R2 and a set T of invariant

transformations is given by

M∗ ∈ argmin
M⊂R2

n∑
i=1

dT (M,Si).

As in the case of the median of numbers (cf. Section 1)

the median is not unique. As an example let us consider

a square S1 = [0, a]2 and a rectangle S2 = [0, a]× [0, b]

with a < b in combination with T = Ttrans. Obviously,

every rectangle M = [0, a] × [0, c] with a ≤ c ≤ b ren-

ders the sum of distances
∑2
i=1 dT (M,Si) to be (b−a)a,

which is equal to dT (S1, S2) and thus the minimal value.

a

a b0

a

0 a b

Fig. 4 Without the boundary length penalization shape medians
turn out to be fairly irregular.

Unfortunately, the set of minimizers is even larger. We

can split the rectangle [0, a] × [a, b] into any two dis-

joint measurable subsets S̃1, S̃2 and M = S1 ∪ S̃1 will

be a minimizer as well (cf. Figure 4). To select from the

set of minimizers a proper candidate for the median we

have to filter out irregular “median” shapes. Thus, let

M[S1, · · · , Sn] be the set of all sets M ⊂ R2 which min-

imize the sum of shape distances. Then, select from this

set the shape M∗ with the smallest perimeter (bound-

ary length) and define this set as the shape median,

i. e.

M∗ ∈ argmin
M∈M[S1,··· ,Sn]

Per (M) , (3)

where Per (A) denotes the length of the boundary ∂A

of A if ∂A is rectifiable and else is set to ∞. Still the

shape median might not be unique, as pointed out by

the following example. Let

S1 =B1(0) \A
(

1

2
,

3

4
,−π

2
,
π

2

)
∪A

(
1, 2,− π

16
,
π

16

)
S2 =B1(0) \A

(
1

2
,

3

4
,
π

4
,

3π

4

)
\A

(
1

2
,

3

4
,−3π

4
,−π

4

)
∪A

(
1, 2,−π

8
,
π

8

)
where

A(r1, r2, α1, α2)

= {x = (r sin(α), r cos(α)) | r ∈ [r1, r2], α ∈ [α1, α2]}.

We observe that

M(β) =B1(0) \
[
A

(
1

2
,

3

4
,
π

4
,
π

2
− β

)
∪A

(
1

2
,

3

4
,−π

2
− β,−π

4

)]
∪ A

(
1, 2,− π

16
− β, π

16
− β

)
for every β ∈ [− π

16 ,
π
16 ] is a rigid body motion invariant

median shape, with respect to the definition (3) (cf.

Figure 5). But in general variations of the median shape

appear to be strongly limited (in this case there is only a

one parameter family). Let us point out the conceptual

similarity to the non uniqueness of the median of a point

sets in Rd.
The above definition based on a selection princi-

ple from a candidate set based on the perimeter is nei-

ther analytically nor computationally very handsome.
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Fig. 5 For the two shapes S1 and S2 on the top, three different

median shapes M(− π
16

), M(0), and M( π
16

) from a one parameter
family of median shapes are depicted in the bottom row.

Hence, in what follows we consider a regularized median

shape as the minimizer of a regularized functional. We

introduce a γ–median shape M∗γ as a minimizing set

of the energy 1
n

∑n
i=1 dT (M,Si) + γPer (M) , where γ

is a small, positive constant. For the applications con-

sidered in this paper we have chosen γ = 0.0005, where

the images from which the shapes are extracted via seg-

mentation are defined on the image domain [0, 1]2 (see

below). Figure 6 depicts the resulting shape median in

case of a letter represented in different fonts. Due to the

Fig. 6 Median of four “B” (right most), with respect to the
transformation class TSL(2).

built-in transformation invariance of the distance mea-

sure dT (·, ·) we have to minimize not only over the set

of shapes M but at the same time over the set of trans-

formations φ1, · · · , φn ∈ T appearing in d(M,φi(Ai)).

Thus, we are led to a joint minimization problem for

the functional

Eγ [M,Φ] =
1

n

n∑
i=1

d(M,φi(Si)) + γPer (M) . (4)

where Φ = (φ1, · · · , φn) is defined as the n-tuple of

transformations (in the implementation the finite di-

mensional vector of all transformation parameters). In

the next section we will generalize the problem in the

context of shapes being described via image contours

and comment on the embedding of the above set based

problem.

3.2 A shape median for shapes encoded in images

As already mentioned in the introduction, in practi-

cal applications the input data usually is not a number

of sets S1, · · · , Sn, but images with intensity functions

u1, · · · , un : Ω → R, each of them encoding a shape.

Throughout the applications considered in this paper,

the domain Ω is considered to be the unit square [0, 1]2.

Furthermore, we replace the set M by a characteristic

function m with M = {x ∈ Ω |m+(x) = 1} and con-

sider BV (Ω) as the natural space for these functions.

Here, m+ is the approximate lim sup of m. If the image

functions ui are characteristic functions, i. e. ui = χSi ,

and m ∈ BV then based on the observation in (2) we

obtain for the above energy

Eγ [m,Φ] =
1

n

n∑
i=1

∫
Ω

(1−m ◦ φi)u2i +m ◦ φi(1− ui)2 dx

+ γ |Dm|(Ω) ,

(5)

where |Dm|(Ω) denotes the total variation of m on Ω.

We have chosen an exponent 2 in the above functional

to stress the relation to a more general image model,

which will be introduced in what follows. Obviously, one

can rephrase this minimization problem considering the

functional

Ẽγ [m,Φ] =
1

γ n

( n∑
i=1

∫
Ω

(1−m ◦ φi)χSi

+m ◦ φi(1− χSi) dx−D
)

+ |Dm|(Ω) ,

where D = infM⊂R2

∑n
i=1 dT (M,Si). Thus, the open

problem - which is beyond the scope of this paper - is

if Ẽγ Γ -converges to the functional Ẽ with respect to

the weak ? topology in BV , where Ẽ [m,Φ] = |Dm|(Ω)

for
∑n
i=1

∫
Ω

(1 −m ◦ φi)χSi + m ◦ φi(1 − χSi) dx = D

and ∞ else. For a comprehensive introduction to BV

we refer to the text book by Ambrosio et al. [1]. To

allow the evaluation of m◦φ at points x ∈ Ω with φ(x)

outside Ω we introduce the convention that m = 0 out-

side Ω. In case of general images, shapes are frequently

extracted via segmentation. Here, we pick up the piece-

wise constant Mumford–Shah model as the underlying

segmentation model and suppose that a shape Si in

image ui corresponds to an approximate gray value cini ,

whereas the complement Ω \Si is represented by an ap-

proximate gray value cexti . To phrase the shape median

in terms of these images, we formulate a simultaneous

segmentation model based on the energy

Eγ [m,Φ, C] =
1

n

n∑
i=1

∫
Ω

(1−m ◦ φi)(ui − cexti )2

+m ◦ φi(ui − cini )2 dx

+ γ |Dm|(Ω) .

(6)

Here, C = (cini , c
ext
i )i=1,...,n denotes the vector of all gray

values. Alternatively, one could consider a L1 − TV
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approach to improve robustness with respect to noise.

We confine here to an L2 − TV to limit the computa-

tional complexity. A perfect match of the median shape

and the input shape encoded in image ui is charac-

terized by ui = cini on the pull back of the median

shape M described by m under the deformation φi
and ui = cexti on the pull back of the complement

of M . In (5) cexti = 0 and cini = 1 by assumption

and if we in addition describe sets M and Si by their

characteristic functions m and ui, respectively, we get

back to the initial formulation for sets (4). Indeed,

Eγ [M,Φ] = Eγ [χM , Φ, ((1, 0), . . . (1, 0))].

In this generalized model the values cini , cexti for

i = 1, . . . , n are additional degrees of freedom in our

model, typically compensating contrast variations in

the underlying images. Figure 7 shows the minimizing

intensity values cini and cexti in the introductory exam-

ple from Figure 1. Figure 8 demonstrates how contrast

modulation in the given shapes might effect the result-

ing shape average.

Fig. 7 Foreground and background of the TSL(2) invariant me-

dian shape from the application depicted in Figure 1 are shaded
with the intensity values cini and cexti , respectively, for every input

image ui with i = 1, . . . , 14.

4 Existence of a shape median

In this section, we state and prove existence of a γ-

median shape of a given set of input shapes under a

suitable non degeneracy assumption. Here, we take into

account the variational approach on a set of input im-

ages which we actually consider in the numerical ap-

Fig. 8 Strong variations of contrast in a single shape might lead

to wrong matching between the median shape and this shape.
One of the input images from Figure 1 (first) is contrast modu-
lated (second). The corresponding shape deformations overlayed

with the different resulting average shapes are depicted on the
right (third and fourth) based on the transformation group TSL(2)

(cf. Figure 13).

plications in this paper. For the sake of simplicity, we

assume the images to be characteristic functions. Gen-

eralizations are straightforward for general binary im-

age data with a sufficient contrast between foreground

and background. In explicit, we obtain

Theorem 1 (Existence of a minimizer for the bi-

nary Mumford–Shah model (6)) Suppose that a

set of input shapes S1, . . . , Sn ⊂ Ω, which are rep-

resented by image functions ui with ui = χSi on a

bounded image domain Ω with Lipschitz boundary, is

given. These shapes are assumed to be non degenerate

in the sense that there exist fixed constants µ, δ > 0

and a set of points y1, . . . , yn such that Bδ(yi) ⊂ Si
and (|Ω| − |Si|) ≥ µ|Ω| for i = 1, . . . , n. Further-

more, assume 2γ < δµ2. Then, there exists a mini-

mizer (m∗, Φ∗, C∗) of the energy Eγ defined in (6) in the

class of functions {m ∈ BV (Ω)|m(x) ∈ {0, 1} a. e.},
vectors of area preserving affine transformations Φ =

(φi)i=1,...,n, and contrast values C ∈ R2n. The corre-

sponding median shape M∗ := {x ∈ Ω | (m∗)+(x) = 1}
is non degenerate, in the sense that there exist ε > 0

and y ∈ Ω with Bε(y) ⊂M∗.

Proof We prove the theorem applying the direct

method in the calculus of variations, making use of

the weak lower semi continuity of the total variation

on the space BV and controlling the set of transforma-

tions in a uniform way. We proceed in several steps.

Step 1. For fixed m, Φ the contrast values cexti and cini
are functions of m and φi for i = 1, . . . , n. In fact, from

the Euler Lagrange equations for cexti and cini we deduce

cexti [m,φi] =

∫
Ω

(1−m ◦ φi)ui dx∫
Ω

(1−m ◦ φi) dx

cini [m,φi] =

∫
Ω
m ◦ φi ui dx∫
Ω
m ◦ φi dx

(7)

and write C[m,Φ] = (cini [m,φi], c
ext
i [m,φi])i=1,...,n. As

a convention, in case of a vanishing denominator in

the above expressions we define the corresponding gray

value as zero. Indeed this choice does not have any im-

pact on the energy because the resulting value is eval-

uated on a set of measure zero in the functional.

Step 2. Let us consider a minimizing sequence

(mk, Φk, C[mk, Φk])k=1,...

and denote by E the infimum and by E the maxi-

mal value of Eγ [mk, Φk, C[mk, Φk]] on this sequence.

From |Dmk|(Ω) ≤ 1
γ E and mk(x) ∈ {0, 1} a. e. on

the bounded domain Ω we deduce that (mk)k=1,...

is bounded in BV (Ω). Thus, there exists a subse-

quence, for the sake of simplicity again denoted by

(mk)k=1,..., such that mk converges weak-∗ to some
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m∗ in BV (cf. Thm 3.23 in [1]). In particular mk con-

verges strongly in L1, which implies that m∗ = χM∗

with M∗ := {x ∈ Ω | (m∗)+(x) = 1}. Furthermore, by

the weak lower semicontinuity of the total variation we

obtain that |Dm∗|(Ω) ≤ lim infk=1,... |Dmk|(Ω).

Step 3. Now, we show that M∗ itself is also non degener-

ate, i. e. it contains a ball of radius δ > 0. If M∗ = ∂M∗

then we deduce from the boundedness of the total vari-

ation of m∗ and the definition of 1- and 2-dimensional

Hausdorff measures that |M∗| = 0. Hence, we can re-

place M∗ by the empty set and m∗ by 0 without in-

creasing the limit energy, i. e. we obtain that

E =
1

n

n∑
i=1

∫
Ω

(
χSi −

|Si|
|Ω|

)2

dx

=
1

n

n∑
i=1

∫
Ω

χ2
Si − 2

|Si|
|Ω|

χSi +
|Si|2

|Ω|2
dx

=
1

n

n∑
i=1

|Si|
(

1− |Si|
|Ω|

)
.

Now, we replace M∗ by Bδ(y) for some y ∈ Ω with

Bδ(y) ⊂ Ω and correspondingly replace m∗ by χBδ(y).

Furthermore, we define Ψ̃ by φ̃i(x) = x − yi + y and

choose C̃ with c̃ini = 1 and c̃exti = |Si|
|Ω| . Then, we can

estimate

Eγ [χBδ(y), Ψ̃ , C̃]

=
1

n

n∑
i=1

∫
Ω

(1− χBδ(y)(x− yi + y))

(
χSi −

|Si|
|Ω|

)2

+ χBδ(y)(x− yi + y)(χSi − 1)2 dx

+ 2πδγ

≤ E + 2πδγ − πδ2µ2 .

From this estimate and our assumption that 2γ < δµ2

we obtain the inequality Eγ [χBδ(y), Ψ̃ , C̃] < E which con-

tradicts the definition of E . Hence, there exist a ε > 0

and a y ∈ Ω such that Bε(y) ⊂M∗.
Step 4. Now, we investigate the convergence of the

vector of affine area preserving transformations Φk =

(φki )i=1,...,n. Each transformation φki can be rewritten

as φki (x) = Aki x + bki , where Aki ∈ SL(2) and bki ∈ R2.

Applying the polar decomposition, we can rewrite

Aki = QkiB
k
i = QkiR

k
i diag(λki , (λ

k
i )−1)(Rki )T ,

where Qki and Rki are rotation matrices in R2 corre-

sponding to rotation angles αki and βki , respectively,

and Bki is a symmetric matrix which is in the second

step diagonalized. Rotation angles can be constrained

to the interval [0, 2π). Hence, to prove boundedness of

the transformation φki we have to show that there ex-

ists C, λ, λ, such that |bki | ≤ C and λ ≤ λki ≤ λ for

all i = 1, . . . , n and all k = 1, . . . . We prove this by

contradiction. Thus, let us assume that on a subse-

quence of transformations, again denoted by (φki )k=1,...

the translation vectors bki or λki diverge for k → ∞.

Here, we remark that if λki →∞ then (λki )−1 → 0. Then

mk ◦ φki → 0 a. e. on Ω. Thus, as above cext,ki → |Si|
|Ω|

and by the Lebesque convergence theorem∫
Ω

(1−mk ◦ φki )(ui − cext,ki )2 +mk ◦ φki (ui − cin,ki )2 dx

→
∫
Ω

(
χSi −

|Si|
|Ω|

)2

dx = |Si|
(

1− |Si|
|Ω|

)
.

Now, we replace for all k = 1, . . . the transformations

φki , and the contrast values cin,ki , and cext,ki by φ̃i : x 7→
diam(Ω)

2δ (x−yi)+xΩ (where xΩ is chosen such that Ω ⊂
B diam(Ω)

2
(xΩ)), c̃ini = 1, and c̃exti = |Si|

|Ω| , respectively.

Obviously,

B 2δε
diam(Ω)

(
yi +

2δ

diam(Ω)
(y − xΩ)

)
= φ̃−1i (Bε(y)) ⊂ φ̃−1i (M∗) ⊂ Bδ(yi) ⊂ Si.

Therefore, we can estimate∫
Ω

(1−m∗ ◦ φ̃i)(ui − c̃exti )2 +m∗ ◦ φ̃i(ui − c̃ini )2 dx

≤ |Si|
(

1− |Si|
|Ω|

)
− 4πδ2ε2

diam(Ω)2

(
1− |Si|
|Ω|

)2

and finally observe that replacing on the minimizing

sequence φki by φ̃i the infimum of the energy E can be

further reduced, which is a contradiction. Hence, the

above boundedness of the sequence of transformation

vectors (Φk) is established.

Step 5. Finally, we are able to prove lower semicontinu-

ity of the total energy Eγ . Therefore, given the bound-

edness of the transformations we select another sub-

sequence, as above again denoted (mk, Φk)k=1,... , such

that the φki converge to some φ∗i for all i = 1, . . . , n. The

contrast values cini and cexti are continuous functionals

with respect to weak-∗ convergence of m in BV and

convergence of φi as long as
∫
R2 m (χΩ ◦ (φ∗i )

−1
) dx > 0

and
∫
R2(1−m) (χΩ ◦ (φ∗i )

−1
) dx > 0. This can easily be

seen extending the integrals in (7) from Ω to R2 and

applying an integral transform to achieve

cexti [m,φi] =

∫
R2(1−m) (uiχΩ) ◦ φ−1i dx∫
R2(1−m) (χΩ ◦ φ−1i ) dx

,

cini [m,φi] =

∫
R2 m (uiχΩ) ◦ φ−1i dx∫
R2 m (χΩ ◦ φ−1i ) dx

.
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Here we have taken into account that detDφi = 1 and

φi(R2) = R2. Hence,∫
Ω

(1−mk ◦ φki )(ui − cext,ki )2 +mk ◦ φki (ui − cin,ki )2

→
∫
Ω

(1−m∗ ◦ φ∗i )(ui − c
ext,∗
i )2 +m∗ ◦ φ∗i (ui − c

in,∗
i )2

To verify this we again applying the convergence of φi,

cini [m,φi], and cexti [m,φi] for i = 1, . . . , n and the strong

convergence of m in L1(Ω). Let us remark, that from

Step 4 we deduce
∫
R2 m (χΩ ◦ (φ∗i )

−1
) dx > 0. In case∫

R2(1−m) (χΩ ◦ (φ∗i )
−1

) dx = 0 continuity of cexti [m,φi]

is not required to prove convergence of the above part

of the energy, because
∫
Ω

(1−mk ◦φki )(ui− cext,ki )2 → 0

for k →∞. Together with the lower semi continuity of

the total variation from Step 2, we finally obtain, that

Eγ [m∗, Φ∗, C[m∗, Φ∗]] ≤ E , which proves the minimizing

property of (m∗, Φ∗, C[m∗, Φ∗]). ut

A straightforward modification of the arguments in

the above proof allows us to establish an existence result

also in the simpler situation of the variational formula-

tion in (5). Here the domain Ω no longer plays an essen-

tial role, as long as it contains a sufficient large neigh-

borhood of all input shapes. Indeed, for S compactly

contained in BR0 := BR0(0) and R > R0 we achieve

Per(S,BR) := |DχS |(BR) = Per(S,BR0
). Thus, we also

do not need the second and technical non degeneracy

assumption on the input shapes. Hence, we obtain the

following theorem.

Theorem 2 (Existence of a minimizer for the

BV model (5)) Suppose that a set of input shapes

S1, . . . , Sn ⊂⊂ BR0 ⊂ BR = Ω with finite perimeter
is given. These shapes are assumed to be non degener-

ate in the sense that there exist a fixed constant δ > 0

and a set of points y1, . . . , yn such that Bδ(yi) ⊂ Si
for i = 1, . . . , n. Then, for R0 fixed and R suffi-

ciently large there exists a non degenerate median shape

M∗ = {x ∈ R2 | (m∗)+(x) = 1} for m∗ ∈ BV (BR) and

a vector of affine transformations Φ∗ such that (m∗, Φ∗)

is a minimizer of the energy Eγ defined in (5) in the

class of functions {m ∈ BV (BR)|m(x) ∈ {0, 1} a. e.}
and vectors of area preserving affine transformations

Φ = (φi)i=1,...,n. For sufficiently large radius R the me-

dian shape M∗ is independent of this radius.

5 Numerical Discretization

In what follows, we will derive a numerical algorithm

for the minimization of the functional given in (6) along

the lines of the approach by Chan and Vese [8]. In

fact, we replace in the variational approach (6) the

BV function m by a level set function ζ assuming that

m(x) = 1 for ζ < 0, else m(x) = 0. Hence, the cor-

responding median shape M is given as the sub level

set, i. e. M = {x ∈ Ω | ζ(x) < 0} on the actual com-

putational domain Ω. Utilizing the Heaviside function

H, defined as H(z) = 1 for z > 0 and 0 elsewhere,

one can rewrite the characteristic function of the pull

back of the domain M under the transformation φ as

χ(φi)−1(M) = 1−H(ζ ◦φi). Furthermore, the perimeter

of the median shape is equal to the total variation of

H(ζ), i. e. Per (M) = |DH ◦ ζ|(Ω).

5.1 A regularized functional

With respect to a numerical relaxation of the corre-

spondingly rewritten functional we have to regularize

the Heaviside function as usual. In fact, we consider

Hδ(z) = 1
2 + 1

π arctan
(
z
δ

)
for a given small scale pa-

rameter δ > 0. Let us emphasize that the desired guid-

ance of the initial zero level line to the boundary of

the median shape relies on the nonlocal support of this

regularized Heaviside function (cf. [7]). Furthermore, we

regularize the absolute value used in the total variation

term by |x|ρ =
√
x2 + ρ2, to ensure classical differentia-

bility of the resulting functional. Throughout this paper

we have chosen ρ = 0.1. We end up with the following

approximation of the energy Eγ :

Eδ,ργ [(cini , c
ext

i )i, (φi)i, ζ] =γ

∫
Ω

|∇Hδ(ζ)|ρ dx

+
1

n

n∑
i=1

Eδi [cini , c
ext

i , ζ ◦ φi]

where

Eδi [cini , c
ext

i , ξ] =

∫
Ω

(1−Hδ(ξ))(ui − cini )2

+Hδ(ξ)(ui − cexti )2 dx.

For the spatial discretization of the level set function

ζ we consider bilinear Finite Elements on a regular

quadrilateral mesh. Furthermore, each pixel value of

the images ui corresponds to a node value of the Fi-

nite Element representation of the level set function ζ.

Thus, we are finally led to a finite dimensional varia-

tional problem whose numerical minimization will be

discussed in the next paragraph.

5.2 The relaxation algorithm

Following [8] we propose an alternating minimization

algorithm for the involved unknowns, namely the con-

trast values c1i , c
2
i for the joint segmentation problem
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on the images ui for i = 1, · · · , n, the transformation

parameters qi parametrizing the deformations φi, and

the vector of nodal values of the level set function ζ

describing the median shape. Let us first discuss how

to minimize Eδ,ργ with respect to the different degrees

of freedom separately.

Updating the contrast values The energy Eδ,ργ is

quadratic in cexti and cini . Thus, as above in Section 4 we

can directly compute the minimizing contrast values

by the update formulae

(cexti )
k+1

=

∫
Ω
Hδ(ζ

k ◦ φki )ui dx∫
Ω
Hδ(ζk ◦ φki ) dx

,

(cini )
k+1

=

∫
Ω

(1−Hδ(ζ
k ◦ φki ))ui dx∫

Ω
(1−Hδ(ζk ◦ φki )) dx

(8)

for a given level set function ζk and deformations

φk1 , . . . , φ
k
n. Thereby, we trivially extend ζk to some pos-

itive value outside Ω.

Gradient descent The Euler-Lagrange equations for ζ

and qi, respectively, are nonlinear. Thus, we consider a

step size controlled gradient descent in these degrees of

freedom. Thus, we consider a step size controlled gra-

dient descent in these degrees of freedom. As step size

control we apply Armijo’s rule with widening [5]: Given

an energy E, a position x and a descent direction d, we

choose τ such that

E(x)− E(x+ τd) ≥ − 1
2τ∇E(x) · d.

This ensures that at least half of the energy decay pre-

dicted by ∇E is realized by the chosen step size.

The first variation with respect to the level set func-

tion ζ in a direction ϑ turns out to be:

∂ζEδ,ργ [(cini , c
ext

i )i, (qi)i, ζ](ϑ)

=

∫
Ω

∇(H ′δ(ζ)ϑ) · ∇ζ
|∇ζ|ρ

dx+

1

n

n∑
i=1

∫
Ω

{ [
(ui(φ

−1
i )− cexti )2 − (ui(φ

−1
i )− cini )2

]
χΩ ◦ φ−1i

∣∣detDφ−1i
∣∣H ′δ(ζ)ϑ

}
dx .

Here Dφi is the Jacobian of the deformation φi. Let us

remark, that using integration by parts the first term

can be rewritten as −
∫
Ω
H ′δ(ζ)div

(
∇ζ
|∇ζ|ρ

)
ϑ dx consid-

ered to be the L2 product of a weighted, regularized

mean curvature and ϑ. In the finite element implemen-

tation this can be encoded in terms of a nodal vec-

tor for this weighted, regularized mean curvature. The

first variation of the energy with respect to one of the

parametrization vectors qj is given by:

∂qjEδ,ργ [(cini , c
ext

i )i, (qi)i, ζ]

=
1

n

∫
Ω

{
H ′δ(ζ ◦ φj)∇ζ(φj) ·Dqjφj(

(uj − cextj )2 − (uj − cinj )2
)}

dx.

We refer to Section 2 for explicit parametrizations of

different classes of transformations.

Inspired by the Sobolev active contour approach [32],

the descent step in ζ is based on a regularizing metric

g(ϑ1, ϑ2) =

∫
Ω

ϑ1ϑ2 +
σ2

2
∇ϑ1 · ∇ϑ2 dx

on variations ϑ1, ϑ2 of the level set function, where σ

represents a filter width of the corresponding time dis-

crete and implicit heat equation filter kernel. Let us

emphasize that the resulting regularized descent does

not affect the energy landscape itself, but solely the de-

scent path towards the set of minimizers.

Initialization In our numerical examples the initializa-

tion of the process turned out to be usually not that im-

portant. An exception is the case of shapes with holes

where the overall procedure needs some care with re-

spect to the choice of the initial level set function (cf.

the discussion below). Usually we choose ζ as the signed

distance function of a circle. The qi are initialized such

that φi = φ(qi, ·) is the identity, and finally the initial

value for (cini , c
ext
i )i is obtained by applying (8) using

the initial values for ζ and qi.

Constraints By definition the averaged shape is de-

scribed up to a transformation from the corresponding

transformation class T . Explicitly, if [(cini , c
ext
i )i, (φi)i, ζ]

is a minimizer, then due to the invariance property

[(cini , c
ext
i )i, (ψ ◦ φi)i, ζ ◦ ψ−1] also is a minimizer for all

ψ ∈ T . To get rid of this ambiguity in the descent algo-

rithm, we have to select a suitable representative trans-

formation. Thus, we constrain the center of mass of the

median shape to the center point xΩ of Ω by imposing

the constraint∫
Ω

(1−Hδ(ζ(x)))xdx = xΩ .

The constraint is imposed by translating ζ such that

the constraint is fulfilled and adjusting (φi)i accord-

ingly after each gradient descent step. There are fur-

ther ambiguities with respect to the different classes of

transformations. We take care of them via the following

additional linear constraints:
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- the sum of the scaling parameters has to equal the

number of images,

- the sum of the shearing values has to be 0,

- the sum of the rotation angles has to be 0.

Multiscale minimization The energy landscape is fairly

complicated in basically all non trivial applications. In

order not to get stuck in local minima we propose to

apply a multiscale strategy. As scale parameter we con-

sider the regularization parameter σ in the definition

of the metric g(·, ·). Initially, we choose a fairly large

value for σ, i. e. σ = 1.0. Then, during the gradient

descent we successively refine σ. Furthermore, we pro-

ceed similarly with the regularization parameter δ of

the Heaviside function. This implies that in early stages

of the algorithm far reaching contour interaction takes

place, whereas in later stages the perimeter functional

is effectively approximated.

Shapes with inner contours Due to the lack of convex-

ity of Eδ,ργ with respect to the level set function ζ, the

reliable computation of median shapes that contain in-

ner contours is difficult and it may be necessary to take

into account a two pass multi scale relaxation approach

in order to capture the inner contours. For details on

this we refer to [4]. Furthermore, let us remark that the

generation of inner contours in shape optimization is

associated with the notion of a topological derivative

[30].

Here, we confine to showing an example for the com-

putation of a median shape with inner contours that in

fact did not need any special energy relaxation strategy,

cf. Figure 9.

Fig. 9 Averaging shapes “B” and “8”: The first and sec-
ond image are the input images, the third one renders∣∣u1 ◦ (φ1)−1 − u2 ◦ (φ2)−1

∣∣ overlaid with the zero line of ζ, and
the fourth depicts the actual median shape with respect to the
transformation group TSL(2).

Figure 10 shows the decay of the different energy

contributions in the algorithm for the example in Fig-

ure 2.

5.3 Further numerical results

Figures 11 and 12 render the average of 15 images with

nine pears and five apples as input shapes (cf. Figure 1).

Fig. 10 The development of the different energy contributions
is plotted over the descent steps of the minimization algorithm.

The “+”s represent the total energy, whereas the “�”s and “∗”s
indicate the shape distance from the first and the second shape,

respectively. Finally, the “×”s show the scaled boundary length

of the computed average shape. From left to right and from top
to bottom the diagrams correspond to the group of translations

Ttrans (first), concatenation of rigid body motions and isotropic

scaling Tτ,SO(2)(second), concatenations of rigid body motions,
shearing and isotropic scaling Tτ,shear(third), and the transfor-

mation group TSL(2) (fourth).

In the first figure, we consider the transformation group

Tτ,SO(2) consisting of rigid body motion and isotropic

scaling. The images show the deformations φi acting

on the domain Ω = [0, 1]2 and visualize the difference

between the median shape M and the deformed shapes

φi(Si). In Figure 11 the transformation class consists

just of rigid body motions and scaling, whereas in Fig-

ure 12 also shear is taken into account. A comparison

of the two figures underlines the impact of shear on the

symmetric difference between the deformed shapes and

the median shape - effectively sheared apples are “al-

most” of pear shape. Furthermore in Figure 13 the cor-

responding result for the invariance group TSL(2) is de-

picted. The required CPU time increases with increas-

Fig. 11 Transformed images ui ◦ (φi)
−1 overlaid with the zero

line of the level set function ζ in case of the transformation class

Tτ,SO(2) consisting of the concatenation of scaling and rigid body
motion.

ing degrees of freedom in the transformation class. On a

single processor Pentium 4 with 3.6 GHz and 2 GByte

memory the CPU time of the non performance opti-
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Fig. 12 Transformed images ui ◦ (φi)
−1 overlaid with the zero

line of ζ where the transformation class Tτ,shear based on a con-
catenation of scaling, rigid body motion, and shearing is taken

into account.

Fig. 13 Transformed images ui ◦ (φi)
−1 overlaid with the zero

line of ζ where the underlying transformation group is TSL(2).

mized code ranges from 103 to 121 minutes in this appli-

cation. The computational complexity basically scales

linear in the number of input shapes.

Finally, we consider a large set (n = 19) of digital

photographs of different wine bottles (namely Burgun-

der and Riesling bottles). Figure 14 renders the 19 im-

ages we have used as input and also depicts the result-

ing median shape and the correspondingly transformed

photographs. Here the transformation group is Tτ,SO(2)

consisting of rigid body motions and isotropic scaling.

6 Conclusions

We have presented a shape averaging method for two

dimensional shapes based on the symmetric area dif-

ference and a notion of a corresponding median shape

which factors out different classes of affine transforma-

tions. To avoid arbitrarily irregular median contours a

suitable regularization is investigated. A combination

with a binary Mumford–Shah type segmentation model

allows the application on shapes described via images.

In this context, existence of a median shapes is proven

for TSL(2) as the underlying group of transformations.

The developed approach has been implemented via

a level set method and various qualitative effects of

the median approach are studied for different sets of

input shapes and different transformation invariance

classes. The focus of this paper is surely on the con-

ceptual discussion of the model and its mathematical

foundation. The combination of our averaging model

with recent global optimization approaches in image

segmentation [14] would probably significantly speed

up the algorithm. Furthermore, a rigorous investigation

of the shape median as minimizer of (4) in the limit

Fig. 14 A set of input images of wine bottles is rendered in the

first four rows. The transformed images ui ◦ (φi)
−1 overlaid with

the zero line of ζ are shown underneath. The bottom right im-
age represents the median shape. The underlying transformation

group used here is Tτ,SO(2).

γ → 0 is still open.
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