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EXTRACTING GRAIN BOUNDARIES AND MACROSCOPIC
DEFORMATIONS FROM IMAGES ON ATOMIC SCALE ∗

BENJAMIN BERKELS †, ANDREAS RÄTZ ‡, MARTIN RUMPF §, AXEL VOIGT ¶

Abstract. Nowadays image acquisition in materials science allows the resolution of grains at
atomic scale. Grains are material regions with different lattice orientation which are frequently in
addition elastically stressed. At the same time, new microscopic simulation tools allow to study
the dynamics of such grain structures. Single atoms are resolved experimentally as well as in sim-
ulation results on the data microscale, whereas lattice orientation and elastic deformation describe
corresponding physical structures mesoscopically. A qualitative study of experimental images and
simulation results and the comparison of simulation and experiment requires the robust and reliable
extraction of mesoscopic properties from the microscopic image data. Based on a Mumford–Shah
type functional, grain boundaries are described as free discontinuity sets at which the orientation
parameter for the lattice jumps. The lattice structure itself is encoded in a suitable integrand de-
pending on a local lattice orientation and an elastic displacement. For each grain a lattice orientation
and one global elastic displacement function are considered as unknowns implicitly described by the
image microstructure. In addition the approach incorporates solid–liquid interfaces. The resulting
Mumford–Shah functional is approximated with a level set active contour model following the ap-
proach by Chan and Vese. The implementation is based on a finite element discretization in space
and a step size controlled, regularized gradient descent algorithm.

Key words. image segmentation, elastic lattice deformation, grain boundary extraction, phase
field crystal model, transmission electron microscopy
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1. Introduction. This paper deals with the extraction of mesoscopic quantities
from microscopic image data in materials science. For many problems on an atomic
microscale, it is essential to link the underlying atomic structure to the material
properties (electrical, optical, mechanical, etc.). The actual material properties are
usually determined on a mesoscopic length scale on which non–equilibrium structures
exist, which form and evolve during material processing. For example, local varia-
tions of the inter atom distance can be understood as material deformation on the
mesoscale and the yield strength of a polycrystal varies with the inverse square of
the average grain size. Grains are material regions with different lattice orientation
which are typically not in equilibrium. In additional they are frequently observed in
an elastically deformed state. Experimental tools such as TEM (transmission elec-
tron microscopy) [15] today allow measurements down to an atomic resolution (cf.
Fig. 1.1). A reliable extraction of elastic deformations, grains and grain boundaries
from these TEM-images is essential for an efficient material characterization. On
the other hand, recent numerical simulation tools have been developed for physical
models of grain formation and grain dynamics on the atomistic scale. Concerning
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Fig. 1.1. On a TEM image (left), light dots render atoms from a single atom layer of alu-
minum, in particular this image shows a Σ11(113)/[1̄00] grain boundary [15] (courtesy of Geoffrey
H. Campbell, Lawrence Livermore National Laboratory). On a mesoscale elastic displacements are
implicitly encoded in a spatially varying inter atom distance (middle) (courtesy of Nick Schryvers,
Antwerpen University). Nowadays, there are physical models like the phase field crystal model which
enable numerical simulations of grains. Indeed, a time step from a numerical simulation (right) on
the microscale shows a similar atomic layer. In both images, grain boundaries are characterized by
jumps in the lattice orientation.

Fig. 1.2. Nucleation of grains in a phase field crystal simulation.

such simulations, we refer to numerical results obtained from a phase field crystal
(PFC) model [13] derived from the density function theory (DFT) of freezing [28].
Its methodology describes the evolution of the atomic density of a system accord-
ing to dissipative dynamics driven by free energy minimization. The resulting highly
nonlinear partial differential equation of sixth order can be solved applying a finite
element discretization [4]. Such simulations in particular will allow a validation of the
physical models based on the comparison of mesoscopic properties such as the propa-
gation speed of grain boundaries. Fig. 1.1 and 1.2 show a comparison of experimental
(TEM) and numerically simulated (PFC) single grain boundaries on the atomic scale
and the nucleation and growth of grains, respectively.

As mesoscopic material properties result from observations of microstructures
their robust and reliable extraction via image processing methodology is expected to
provide physical insight in the underlying materials. In this paper we focus on grain
segmentation and elastic grain lattice deformation. We aim at a reliable extraction of
grain boundaries and in addition of liquid–solid interfaces between the liquid and the
solid phase. Thus, we apply a variational approach based on the description of the
interfaces by level sets. Furthermore, we generalize the variational approach for the
extraction of elastic deformation and a full coupling of orientation and deformation
classification. We apply our method to phase field crystal simulation results and
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demonstrate the applicability of our approach to experimental images.
Next, let us introduce some basic notation which will be used throughout the

paper. We consider a single atom layer resolved on the microscale. In the phase
field crystal simulation results as well as in the experimental images, single atoms
are represented by blurry, dot-like structures. These dots are either described via
the image intensity of the TEM image or the phase field crystal function from the
simulation. Let us denote this intensity or phase field crystal by a function u : Ω ⊂
R2 → R, where Ω is the image domain or the computational domain, respectively.
Furthermore, we introduce the lattice orientation as a piecewise constant function
α : Ω ⊂ R2 → R. We take into account a decomposition of the domain Ω into grains,
each of them characterized by a constant lattice orientation α. The grain boundaries
form the jump set of the orientation function α. Furthermore, we assume a global
deformation ψ : Ω → R2 acting on all grains and reflecting the physical response for
instance due to an external loading.

The paper is organized as follows: In Section 2 we review related work. Then,
in Section 3 we discuss the case of a single grain with unknown orientation and elas-
tic deformation. The segmentation of grain boundaries in the non deformed case is
discussed in Section 4. In both sections we first introduce a variational problem in-
volving sharp interfaces on the microscale describing atomic dot pattern and on the
macroscale representing grain boundaries, then discuss a suitable smooth approxima-
tion, and derive a minimization algorithm based on a regularized gradient descent.
The particular case of a liquid phase beside the solid phase is treated in Paragraph 4.3.
Combining the different approaches in Section 5 we derive a joint approach for the
simultaneous extraction of grain domains classified by local lattice orientations and
the computation of an underlying elastic deformation. Finally, we draw conclusions
in Section 6.

2. Related work. Our method to be presented here differs to the best of our
knowledge significantly from other variational approaches in the literature. Our focus
is not on a general purpose texture classification and segmentation tool but on the
specific application in materials science. Texture segmentation can be regarded as a
two–scale problem, where the microscale is represented by the structure of the tex-
ture and the macroscale by the geometric structure of interfaces between differently
textured regions. In this sense, we have strong a priori knowledge on the geometric
structure of the texture on the microscale and incorporate this directly into the vari-
ational approach on the macroscale. Thus, the scale separation is more direct than in
other approaches based on a local, direction sensitive frequency analysis. Currently,
the post processing of experimental images and the pattern analysis is mostly based
on local, discrete Fourier filtering [25].

General image classification has extensively been studied in the last decades. It
consists of assigning a label to each point in the image domain and is one of the
basic problems in image processing. Classification can be based on geometric and
on texture information. Many models have been developed either based on region
growing [29, 23, 8], on statistical approaches [6, 7, 18, 19], and in particular recently
on variational approaches [3, 2, 10, 20, 31].

The boundaries of the classified regions can be considered as free discontinuity
sets of classification parameters, which connects the problem with the Mumford–Shah
approach [21] to image segmentation and denoising. A robust and efficient approxi-
mation of the Mumford–Shah functional has been presented by Chan and Vese [9] for
piecewise constant image segmentation and extended to multiple objects segmenta-
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tion based on a multiphase approach [30]. Thereby, the decomposition of the image
domain is implicitly described by a single or by multiple level set functions (for a
review on level sets we refer to [22, 26]). In [24], their approach has been further gen-
eralized for the texture segmentation using a directional sensitive frequency analysis
based on Gabor filtering. Texture classification based on the energy represented by
selected wavelet coefficients is investigated in [1]. Inspired by the work of Meyer [20]
on cartoon and texture decomposition, the classification of geometric and texture in-
formation has been investigated further in [3]. There a logic classification framework
from [24] has been considered to combine texture classification and geometry segmen-
tation. A combination of level set segmentation and filter response statistics has been
considered for texture segmentation in [14]. For a variational texture segmentation
approach in image sequences based on level sets we refer to [11].

3. Macroscopic elastic deformations from deformed lattices. As already
discussed in the introduction, grains are characterized by a homogeneous lattice ori-
entation. At first, let us suppose that there is no liquid phase and we focus on a single
grain.

3.1. Local identification of lattice parameters. The lattice is uniquely iden-
tified by a description of the local neighborhood of a single atom in the lattice. In a
reference frame with an atom at the origin, the neighboring atoms are supposed to
be placed at positions qi for i = 1, · · · ,m, where m is the number of direct neighbors
in the lattice. In case of a hexagonal packing each atom has six direct neighbors at
equal distances and we obtain

qi := d
(
cos
(
i
π

3

)
, sin

(
i
π

3

))
i = 1, · · · , 6 .

Here d > 0 denotes the distance between two atoms. If the lattice from the refer-
ence configuration is now rotated by an angle α and translated to a position x, the
neighboring atoms are located at the positions x+M(α)qi where M(α) is the matrix
representation of a rotation by α, i.e.

M(α) :=
(

cosα − sinα
sinα cosα

)
.

Given an elastic deformation ψ of the oriented reference lattice we finally observe
atoms at positions ψ(x+M(α)qi) around a center atom at ψ(x).

Let us suppose that θ is a suitable threshold for the identification of atom dots
described by the function u and define the indicator function

χ[u>θ](x):=
{

1; u(x) > θ
0; else .

Then, for a given lattice orientation α, an elastic deformation ψ and a point x with
χ[u>θ](ψ(x)) = 1, we expect χ[u>θ](ψ(x+M(α)qi)) = 1 as well for i = 1, · · · ,m. Let
us suppose that the average radius of a single atom dot is given by r and define the
maximal lattice spacing d:=maxi=1 ··· ,m |qi| . Next, we consider the following identi-
fication function f depending on a lattice orientation α and on a lattice deformation
function ψ, and evaluated pointwise at positions x:

f [α, ψ](x) =
d2

r2
χ[u>θ](ψ(x))Λ

((
χ[u>θ](ψ(x+M(α)qi))

)
i=1,··· ,m

)
(3.1)
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Here, (χi)i=1,··· ,m with χi:=χ[u>θ](ψ(x + M(α)qi)) is the vector of displaced and
rotated characteristic functions and Λ : {0, 1}m → R a function attaining its global
minimum at (1, · · · , 1) with Λ(1, · · · , 1) = 0. The scaling d2

r2 ensures a uniform upper
bound of order 1 (in particular independent of d and r) for the integral of f over the
domain of the grain. In what follows we will consider

Λ(χ1, · · · ,χm):=
1
m

∑
i=1,··· ,m

(1−χi) .

In case the lattice is just rotated and not further deformed, we consider ψ to be the
identical deformation 11 with 11(y) = y for all y and simply write f [α](x).

One easily verifies that f [α, ψ](x) = 0 if x is inside a deformed grain with perfect
lattice structure, orientation α, deformed by ψ, and the distance of x to the grain
boundary in the reference state is at least d.

3.2. Lattice deformation and lattice orientation on a single grain. At
first, we consider a bounded domain Ω with Lipschitz boundary to represent a single
grain and ask for an unknown fixed underlying orientation α and a deformation ψ.
We phrase this as a minimization problem on the class of constant orientation angles
α and deformations ψ. Thereby, a fidelity functional measures how well a given α
and ψ fit to the actually observed lattice structures, whereas a regularity functional
acts as a prior on the deformation. The fidelity functional is given by the following
integral over the lattice identification function f depending on both unknowns, the
orientation α and the grain deformation ψ:

EΩ[α, ψ] =
∫

Ω

f [α, ψ](x) dx (3.2)

For x close to the boundary of the grain Ω, this requires the evaluation of ψ and
u outside Ω. Thus, we suppose ψ to be defined on a sufficiently larger set D ⊃ Ω
with dist(Ω, ∂D) ≥ d. Furthermore, we set u(x) = 0 for x 6∈ Ω. The regularity
functional is expected to measure a smoothness modulus of the deformation ψ on
D. In the presence of a discontinuous integrant in the deformation - in our case
the characteristic function - existence of minimizers can by ensured using a suitable
nonlinear elastic regularization energy (for details we refer to [12]). Nevertheless, for
the sake of simplicity we confine here to a quadratic energy leading to a linearized
elastic regularization in the Euler Lagrange equations. In our model introduced so
far, there are effectively two deformations involved. At first, the reference lattice
is rotated applying M(α) and the new configuration is considered as the reference
configuration for the physical deformation ψ. Without any a priori knowledge there
is no way to separate a global rotational component in the physical deformation ψ from
the rotation taking care of the proper lattice orientation. But in case of a physically
stressed material the axiom of frame indifference applies and we are actually only
interested in the non rotational part of the deformation. Thus, taking into account a
linearized deformation model we consider the displacement ψ− 11 and the symmetric
part of its gradient Dψ +DψT − 2 11 and define the elastic regularization energy

Eelast[ψ] =
1
2

∫
D

∣∣Dψ(x) +Dψ(x)T − 2 11
∣∣2 dx . (3.3)

Here, we denote by |A| =
√
A : A the Frobenius norm on matrices, where A : B =

tr(ATB). Let us emphasize that we do not impose any specific linear elastic model.
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Furthermore, we assume the angular momentum of the deformation of the grain to
vanish, i. e. ∫

Ω

ψ2(x)x1 − ψ1(x)x2 dx = 0 . (3.4)

This constraint ensures a proper decoupling of a global rotation M(α) and the lin-
earized elastic deformation ψ with a vanishing global, linearized rotational component.
As an alternative - which turned out to be favorable in case of the numerical imple-
mentation - we have taken into account a constraint mean value of the skew symmetric
deformation gradient, i. e.

∫
Ω
Dψ(x)−(Dψ)T (x) dx = 0 , which rules out infinitesimal

rotations. Finally, we end up with the energy for the single grain case

Esingle[α, ψ] = EΩ[α, ψ] + µEelast[ψ] , (3.5)

and ask for a minimizer (α, ψ) of this energy over all admissible lattice rotation angles
α ∈ R and all admissible deformations

ψ ∈
{
ψ̃ ∈W 1,2(D,R2) :

∫
Ω

ψ2(x)x1 − ψ1(x)x2 dx = 0
}
.

Here W 1,2(D,R2) denotes the usual space of vector valued functions on D with locally
square integrable derivatives. Let us remark, that the energy Eelast[ψ] is translation
invariant. Thus, we can expect minimizers only up to a translation which is a multiple
of the lattice spacing in each lattice direction. Next, we consider the Euler Lagrange
equations for this variational problem. At first, we take into account variations of the
fidelity energy. To simplify notation, we rewrite the characteric function χ[u>θ] of a
super level set [u > θ] in terms of the heavyside function H : R → R, where H(t) = 1
for t > 0 and H(t) = 0 otherwise, and obtain for the indicator function f :

f [α, ψ](x) =
d2

mr2
H(u(ψ(x))− θ)

∑
i=1,··· ,m

(1− (H(u(ψ(x+M(α)qi))− θ))) .

For the variation of the energy with respect to the deformation in a direction ζ we
get

∂ψEΩ[α, ψ](ζ) =
d2

mr2

∫
[u◦ψ=θ]

∇u(ψ(x)) · ζ(x)
∑

i=1,··· ,m
(1−H(u(ψ(x+M(α)qi))− θ))dH1

− d2

mr2

∑
i=1,··· ,m

∫
[u◦ψ=θ]

H(u(ψ(x−M(α)qi))− θ)∇u(ψ(x)) · ζ(x) dH1 .

Here, we have applied a shift x′ = x + M(α)qi for the integration variable in the
second row. For the elastic energy we compute

∂ψEelast[ψ](ζ) =
∫
D

(
Dψ(x) +Dψ(x)T − 2 11

)
:
(
Dζ(x) +Dζ(x)T

)
dx

= 2
∫
D

(
Dψ(x) +Dψ(x)T − 2 11

)
: Dζ(x) dx

making use of the symmetry relation AT : B = A : BT . Now, let us consider test
functions ζ whose support does not intersect the boundary [u ◦ ψ = θ] of the atomic
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dots. Thus, there is no contribution from the variation of the grain energy. Applying
integration by parts and the fundamental lemma we end up with the system of partial
differential equations −2µ(∆ψ+∇ divψ) = 0 and the corresponding natural boundary
condition (DψT +Dψ) · ν = 0 on ∂D in case we do not impose the constraint (3.4).
Here ν denotes the outer normal on ∂D. In the constraint case of vanishing angular
momentum (3.4), there appears a Lagrange multiplier λ on the right hand side of

the differential equation and we achieve −2µ(∆ψ(x) + ∇ divψ(x)) = λ

(
0 −1
1 0

)
x

for x ∈ D \ [u ◦ ψ = 0] . Next, we consider test functions whose support intersects
[u◦ψ = θ] and observe that in this case integration by parts in the elastic energy term
leads to the jump term 2

[
(DψT +Dψ) · ν

]
, where ν(x) is the normal on [u ◦ ψ = θ]

at position x and [ξ] (x) := limε→0 ξ(x + εν(x)) − ξ(x + εν(x)) denotes the jump of
a vector valued function on the interface [u ◦ ψ = θ] at position x. Thus, we end up
with the following jump condition at point x on [u ◦ ψ = θ] :

[
(DψT (x) +Dψ(x)) · ν(x)

]
=

d2

2mµr2
∇u(ψ(x))

∑
i=1,··· ,m

(
H(u ◦ ψ(x+M(α)qi)− θ)− 1

+H(u ◦ ψ(x−M(α)qi)− θ)
)
.

The variation with respect to the scalar quantity α leads to the single scalar equation

∂αEΩ[α, ψ] = − d2

mr2

∑
i=1,··· ,m

∫
[u◦ψ=θ]

H(u◦ψ(x−M(α)qi)− θ)

∇u(ψ(x)) ·Dψ(x)M ′(α)qi dH1 , (3.6)

where

M ′(α) =
(

0 −1
1 0

)
M(α) .

Finally, the Euler Lagrange conditions to be fulfilled by a minimizer of the functional
(3.5) consist of a system of partial differential equations for the deformation ψ and a
single nonlinear equation for the constant orientation value α, subsumed as follows:

Theorem 3.1 (Euler Lagrange conditions in the single grain case). Suppose the
image u to be smooth and the interface [u ◦ ψ = θ] to be a set of piecewise smooth
curves. Furthermore, assume the minimizing deformation ψ of (3.5) to be sufficiently
smooth as well. Then the following conditions hold for a minimizer (α, ψ) of the above
variational problem: For x ∈ D \ [u ◦ ψ = θ] the deformation ψ solves the system of
partial differential equations well-known from linearized elasticity

−2µ(∆ψ(x) +∇ divψ(x)) = λ

(
0 −1
1 0

)
x ,

with a Lagrange multiplier λ ∈ R appearing on the right hand side, on the interface
[u ◦ ψ = θ] the jump condition for the elastic stresses

[
(DψT +Dψ) · ν

]
=

d2

2mµr2
(∇u) ◦ ψ

∑
i=1,··· ,m

(
1−H(u ◦ ψ(·+M(α)qi)− θ)

−H(u ◦ ψ(· −M(α)qi)− θ)
)
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is fulfilled, on ∂D the natural boundary condition

(DψT +Dψ) · ν = 0

for the outer normal ν on ∂D holds for the deformation ψ, and finally α solves

0 =
∑

i=1,··· ,m
M ′(α)qi ·

 ∫
[u◦ψ=θ]

H(u ◦ ψ(x−M(α)qi)− θ)Dψ(x)T∇u(ψ(x)) dH1

 ,

where M ′(α) =
(

0 −1
1 0

)
M(α) .

3.3. Regularization and numerical approximation. As we have seen above,
the discontinuous integrant of the energy EΩ leads to concentration on interfaces
bed by level lines in the Euler Lagrange equations. With respect to a robust min-
imization algorithm and an effective numerical approximation we have to regular-
ize the functionals. Thus, we replace the discontinuous heavyside function H in
the definition of the lattice identification function by a smeared out approximation
Hε(s) := 1

2 + 1
π arctan

(
s
ε

)
(cf. the regularized Mumford-Shah model by Chan and

Vese [9]), where ε > 0. In fact, H ′
ε(s) = ε

π(ε2+s2) converges to H ′ in the sense of
distributions. We get

fε[α, ψ](x) =
d2

mr2
Hε(u(ψ(x))− θ)

∑
i=1,··· ,m

(1− (Hε(u(ψ(x+M(α)qi))− θ)))

and deduce from that a regularized fidelity energy

EεΩ[α, ψ] =
∫

Ω

fε[α, ψ](x) dx

and correspondingly the total regularized energy Eεsingle[α, ψ] = EεΩ[α, ψ]+µEelast[ψ] .
We choose ε = h, where h is the grid size. Thus ε represents the data resolution on the
microscale of the atomic dot pattern. Next, we compute the variation of the energy
with respect to a variation ζ in the deformation:

∂ψE
ε
single[α, ψ](ζ) = 2µ

∫
D

(
Dψ(x) +Dψ(x)T − 2 11

)
: Dζ(x) dx

+
d2

mr2

∫
Ω

[
H ′
ε(u(ψ(x))− θ)(∇u)(ψ(x)) · ζ(x)

∑
i=1,··· ,m

(
1−Hε(u(ψ(x+M(α)qi)− θ))

−Hε(u(ψ(x−M(α)qi)− θ))
)]

dx .

Here, we again have applied the variable transformation x′ = x + M(α)qi and used
the zero extension property of u outside Ω. For the derivative of fε with respect to α
we obtain

∂αfε[α, ψ](x) = − d2

mr2

∑
i=1,··· ,m

(
∇u(ψ(x+M(α)qi)) ·Dψ(x+M(α)qi)M ′(α)qi

Hε(u(ψ(x))− θ)H ′
ε(u(ψ(x+M(α)qi))− θ)

)
.
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Finally, straightforward integration of ∂αfε over Ω leads to the variation of the energy
with respect to the lattice orientation α:

∂αE
ε
single[α, ψ] =

∫
Ω

∂αfε[α, ψ](x) dx .

A gradient descent algorithm is used for the minimization of the functional Eεsingle.
Each descent step consists of a descent in the deformation ψ, followed by a correspond-
ing descent in the scalar orientation variable α. The descent step in the deformation
is based on a regularizing metric

g(ζ1, ζ2) =
∫
D
ζ1(x) · ζ2(x) +

σ2

2
Dζ1(x) : Dζ2(x) dx (3.7)

on variations ζ1, ζ2 of the deformation, where σ represents a filter width of the cor-
responding time discrete and implicit heat equation filter kernel. First we perform a
nonconstraint descent in the deformation and then apply a back projection onto the
space of deformations with vanishing mean skew symmetric gradient. The gradient
descent method looks as follows:

Algorithm 3.1 (Gradient descent in the deformation and orientation on a single
grain). Starting from an initial guess ψ0 = 11 and α0 = 0 we compute a sequence
(αk, ψk)k=1,··· such that

g(ψ̃k+1 − ψk, ζ) = −τkψ∂ψEεsingle[α
k, ψk](ζ) ∀variations ζ ,

ψk+1 = ψ̃k+1 − S(· − xΩ) ,

where S =
1

2|Ω|

∫
Ω

Dψ̃k+1(x)− (Dψ̃k+1)T (x) dx , xΩ =
1
|Ω|

∫
Ω

dx ,

αk+1 = αk − τkα∂αE
ε
single[α

k, ψk+1] .

In both cases Armijo’s rule [16] is separately considered as a step size control resulting
in different timesteps τkψ and τkα.

Concerning the spatial discretization, we consider bilinear finite elements on the
regular grid for the spatial discretization of the deformation ψ. Each pixel of an
experimental image or each node of the regular simulation grid corresponds to a node
of the finite element mesh. Furthermore a multiscale minimization strategy is applied.
Thus, the algorithm starts with σ = 1 and performs the descent until the energy decay
per step falls below a given threshold. Then, we decrease σ by a factor 1

2 and continue
iteratively until a relaxation of the energy is achieved for a filter width σ less then the
spatial resolution of a single image pixel. This regularized descent controlled by the
scale parameter σ does not affect the energy landscape, but the descent path towards
minima. Thus, this type of regularization is conceptually different from the relaxation
of the energy itself. Here, the latter is represented by the smoothing of the heavyside
function controlled by the parameter ε. We observed that the regularized descent
alone already leads to satisfying results in the applications considered here.

In the applications below, the image resolution ranges from 129×129 to 513×513
resulting in a corresponding grid size from h = 0.0078125 to h = 0.001953125. The
parameters are chosen as follows: d = 0.072552 (test data), r = d, θ ≈ 0.5, ε = h.
The coefficient in front of the elastic energy varies from µ = 0.1 (test data) to µ = 1.0
(experimental data). In the second row in Figure 3.3 an even stronger elastic energy
contribution with µ = 10.0 turns out to be appropriate. The parameter d describing
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the dot pattern in the experimental images depends on the concrete type of image
and is measured based on a small image sample. Figure 3.1 gives an impression about
how many grid points are in the transition layer.

We tested the algorithm first on test data for

Fig. 3.1. Zoom up of a
PFC simulation result (left) and an
experimental TEM image (right)
showing the resolution of the un-
derlying grid

fixed orientation parameter α = 0 and without the
constraint on the skew symmetric part of the mean
deformation gradient. Thus, the deformation ψ is
expected to recover both a rigid body motion and
a non rotational and non translational deformation.
Figure 3.2 shows the recovery of different types of
deformation for test cases and 3.3 renders the output
deformation obtained for experimental data. Fur-
thermore, Figure 3.5 demonstrates the simultaneous
detection of α and ψ with back projection. Finally,
Figure 3.4 depicts the energy decay in a particular application of the descent algo-
rithm. The crosses mark time steps, where the scale parameter σ is refined.

4. Segmenting grain boundaries. In the following section, we will first intro-
duce a Mumford–Shah type model for the segmentation of grain boundaries in the
absence of an elastic deformation. Thereby, grains are identified by a homogeneous
lattice orientation. In a second step, we will explain how to expand this model in
case of an additional solid–liquid interfaces as it appears in particular in case of the
phase field crystal simulation of homogeneous nucleation. Later, in Section 5 elastic
deformations will be incorporated in the segmentation model and we combine the
computation of lattice deformation and orientation and the segmentation of grains in
a joint approach.

4.1. A Mumford Shah type model. Let us suppose that a domain Ω is par-
titioned into n open sets Ωj for j = 1, · · · , n, with Ωj ∩Ωk = ∅ and

⋃
j=1,··· ,n Ω̄j = Ω̄.

These sets are considered to represent the grains and each Ωj is supposed to be charac-
terized by a spatial homogeneous lattice orientation αj ∈ R. Furthermore, we suppose
that at most three grains meet at a point and that the faces Ω̄j ∩ Ω̄k between two
grains Ωj and Ωk are smooth curve segments. We gather the different orientations in
a piecewise constant function

α =
∑

j=1,··· ,n
αjχΩj

.

The grain domains Ωj and the grain orientations αj form the set of unknowns. Now,
we define a functional Egrain acting on the set of lattice orientations αj and open
grain domains Ωj in the spirit of the Mumford–Shah functional:

EMS[(αj ,Ωj)j=1,··· ,n] :=
∑

j=1,··· ,n

(
EΩj [αj , 11] + ηPer(Ωj)

)
(4.1)

=
∑

j=1,··· ,n

(∫
Ωj

f [αj ](x) dx+ ηPer(Ωj)

)
.

Here, Per(Σ) denotes the perimeter of a set Σ, i.e. the length of the boundary of the
set. The lattice identifier f [αj ] := f [αj , 11] plays the role of the segmentation criteria
for each grain. A minimizer of this energy is considered as a reliable identification of
lattice orientations and corresponding grains. Next, we compute the variation of this
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Fig. 3.2. The recovery of a deformation is shown in case of test data representing artificially
deformed lattices. The orientation is fixed α = 0 and the constraint on the skew symmetric part of
the mean deformation gradient is omitted. The input images u (top row) reflect different types of
deformation: a global rotation, a global shear and a non homogeneous and nonlinear deformation
(from left to right). The images u ◦ ψ (middle row) and deformations ψ (bottom row) are shown.

energy with respect to the shape of the grain domains Ωj and the lattice orientations
αj for j = 1, · · · , n. Hence, we consider variations ∂Ωj + vjνj of the grain boundary
in directions of the outward pointing normal νj for a scalar function vj : ∂Ωj → R.
Based on shape sensitivity analysis [27] we achieve for this normal variation

∂ΩjEMS[(αk,Ωk)k=1,··· ,n](vj) =
∫
∂Ωj

[f [·]] vj + ηκvj dH1 ,

where [f [·]] (x) = f [αj ](x) − f [αk](x) denotes the jump operator applied to f on a
face ∂Ωj ∩ ∂Ωk between the grain Ωj and an adjacent grain Ωk, and κ the curvature
with respect to the normal νj . Here we assume the variation vj to vanish on the
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Fig. 3.3. Results are depicted for experimental data (top row) showing single atom layers
of different metals / metal alloys: GaN, Al and NiTi. Again the deformation is computed for
fixed orientation without a constraint concerning rigid body motions. The pull back u ◦ ψ−1 of
the images u into a reference configuration via the computed deformations ψ are rendered in the
middle row, whereas the corresponding deformations ψ are plotted in the bottom row. The TEM-
image in the first column is courtesy of David M. Tricker (Department of Materials Science and
Metallurgy, University of Cambridge), the TEM-image in the second column is courtesy of Geoffrey
H. Campbell, Lawrence Livermore National Laboratory, the image in the third column is courtesy
of Nick Schryvers, Antwerpen University

outer boundary ∂Ω. In addition, we observe the usual condition (Young’s law) at
triple points, i.e. three grains always meet at equal angles of 2

3π. The variation of
the energy with respect to the lattice orientation αj is a straightforward localization
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Fig. 3.4. Plot of the energy descent in the relaxation algorithm for the deformation ψ applied
to the data in the first row of figure 3.2. The crosses mark refinements of the scale parameter σ.

Fig. 3.5. Simultaneous detection of α and ψ with back projection: results on an test image
deformed by a nonlinear deformation (top) and on experimental images (middle and bottom). From
left to right the input image u, the deformed and rotated image u ◦M(−α) ◦ ψ−1, the deformed
image u ◦ ψ−1, and the computed deformation ψ are depicted. The extracted rotation angles are
α = 0.119545 (top row), α = −0.152956 (middle row) α = −0.159562 (bottom row)

of (3.6) and we get

∂αjEMS[(αk,Ωk)k=1,··· ,n](vj) =

d2

mr2

m∑
i=1

∫
Ωj+M(αj)qi

∩[u=θ]

H(u(x−M(αj)qi)− θ)∇u(x) ·M ′(αj)qi dH1 .
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Finally, let us summarize the resulting Euler Lagrange conditions for the grain do-
mains Ωj and the grain orientations αj :

Theorem 4.1 (Euler Lagrange conditions for differently oriented grains). Sup-
pose the image u to be smooth and the interface [u ◦ ψ = θ] to be a set of piecewise
smooth curves. Then, a decomposition of Ω into grain domains Ω1, · · · ,Ωm of the
above discussed type and a set of grain orientations α1, · · · , αm which minimizes the
energy EMS fulfill the following conditions:
On faces Ω̄j ∩ Ω̄k between grain domains Ωj and Ωk

ηκ = −(f [αj ]− f [αk])

holds for the curvature κ evaluated with respect to the normal pointing outward of the
grain Ωj. At triple points the boundary segments of grains meet at angles 2

3π. Finally,
the orientation αj on grain Ωj solves the scalar, nonlinear equation

0 =
m∑
i=1

M ′(αj)qi ·

 ∫
Ωj+M(αj)qi

∩[u=θ]

H(u(x−M(αj)qi)− θ)∇u(x) dH1

 .

From these conditions we can derive a bound on the curvature κ of the grain boundary
segments. In fact, from 0 ≤ f [α] ≤ d2

r2 we deduce

|κ| ≤ d2

ηr2

and hence for fixed geometric parameters d, r and sufficiently large weight η in front
of the shape prior in the energy grain boundary segments tend to straighten.

In case of only two different lattice orientations α1 and α2 and corresponding
(possibly not connected) domains Ω1 and Ω2, we can formulate the variational problem
as a problem on the binary function α and the interface ΓG between the two sets Ω1

and Ω2 and obtain (up to the constant term Per(Ω)) the energy

EMS[α1, α2,ΓG] :=
∫

Ω1

f [α1] dx+
∫

Ω2

f [α2] dx+ 2ηH1(ΓG) ,

where H1(·) denotes the one-dimensional Hausdorff measure.

4.2. Chan–Vese type regularization and a level set implementation. To
solve the above free discontinuity problems, we again consider a Chan–Vese type
approach [9] and rewrite the variational formulation based on an implicit description
of the domains via level set functions. We focus here on two different unknown grain
orientations α1 and α2 and consider a level set function φ. Here, φ is supposed to
define the decomposition into the two grain domains Ω1 and Ω2, i. e. Ω1 = [φ < 0]
and Ω2 = [φ > 0] . Again, making use of the heavyside function, we can rewrite the
above Mumford–Shah type energy and obtain

ECV[α1, α2, φ]:=
∫

Ω

H(φ)f [α2] + (1−H(φ))f [α1] + 2ν|∇H(φ)|dx (4.2)

depending on the level set function φ and the two grain orientations α1 and α2.
The variational modeling of more than two grain orientations can be based on the
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multiple domain segmentation method by Chan and Vese [30] in a straightforward
way. In this paper, we confine to the case of only two orientations, but our latest
implementation also supports multiphase segmentation (cf. Fig. 4.4). Now, we again
take into account a regularized heavyside function Hδ(x) := 1

2 + 1
π arctan

(
x
δ

)
for

some δ > 0 and derive together with the regularization of the indicator function from
Section 3.2 a regularized Chan–Vese type energy

Eδ,εCV[α1, α2, φ]:=
∫

Ω

Hδ(φ)fε[α2] + (1−Hδ(φ))fε[α1] + 2ν|∇Hδ(φ)|dx . (4.3)

The desired guidance of the initial zero contour to the actual interfaces to be detected
requires a non-local support of the regularized heavyside function. The numerical
computation is again based on a gradient descent in the level set function φ and two
orientation values α1 and α2. Different from the grey value segmentation based on the
original approach by Chan and Vese, the energy is not quadratic in the orientation
parameters α1 and α2 and thus minimization over these two angles is already a non-
linear problem. Now, we compute the variation of the energy with respect to the level
set function φ and the orientations α1 and α2. At first, we consider the regularized
perimeter functional Perδ[φ] :=

∫
Ω
|∇Hδ(φ)|dx, and obtain

∂φPerδ[φ](ξ) =
∫

Ω

d
dε

(H ′
δ(φ+ εξ)|∇(φ+ εξ)|)

∣∣∣
ε=0

dx

=
∫

Ω

∇φ
|∇φ|

· (H ′′
δ (φ)∇φ ξ +H ′

δ(φ)∇ξ) dx =
∫

Ω

∇φ
|∇φ|

· ∇ (H ′
δ(φ)ξ) dx.

Thus, for the variation of the energy with respect to the level set function φ we get

∂φE
δ,ε
CV[α1, α2, φ](ξ) =

∫
Ω

H ′
δ(φ)ξ(fε[α2]− fε[α1]) + 2ν

∫
Ω

∇φ
|∇φ|

· ∇(H ′
δ(φ)ξ) dx

which reflects the sensitivity with respect to modifications of the implicit description
of the grain interface [φ = 0]. Furthermore, a variation of the energy with respect to
one of the grain orientations – we exemplarily pick here α1 – leads to

∂α1E
δ,ε
CV[α1, α2, φ] =

∫
Ω

(1−Hδ(φ))∂αfε[α1] dx .

Now, we again consider a regularized gradient descent in the level set function φ.
Hence, we use a transformation in the test function, replacing H ′

δ(φ)ξ by a new test
function again denoted by ξ. In analogy to (3.7) we define by

g(ξ1, ξ2) =
∫
D
ξ1(x)ξ2(x) +

σ2

2
∇ξ1(x) · ∇ξ2(x) dx (4.4)

a metric on scalar variations of the level set function. The resulting algorithm is based
on the following iterative descent scheme:

Algorithm 4.1 (Gradient descent for grain segmentation and deformation ex-
traction). Then, starting from an initial guess of the boundary contour encoded in a
level set function φ0 and initial values for the two orientation parameters α0

1, α
0
2 = 0,

we compute a sequence (αk1 , α
k
2 , φ

k)k=1,··· based on successive regularized gradient de-
scent steps in the level set representation

g

(
φk+1 − φk

H ′
δ(φ)

, ξ

)
= −τkφ

∫
Ω

2ν
∇φk

|∇φk|
· ∇ξ + ξ(fε[αk2 ]− fε[αk1 ]) dx ∀variations ξ
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for a time step size τφ alternated with the corresponding descent step for the two
orientation parameters

αk+1
1 = αk1 − τkα

∫
Ω

(1−Hδ(φ))∂α1fε[α
k
1 ] dx

αk+1
2 = αk2 − τkα

∫
Ω

Hδ(φ)∂α2fε[α
k
2 ] dx.

A separate Armijo’s rule is applied to control each of the two different time steps τkφ
and τkα.

As in Section 3.3 for the deformation ψ we now consider bilinear finite elements
on the regular grid for the spatial discretization of the level set function φ. Regard-
ing numerical methods for levelset propagation by finite elements we refer to [17].
Furthermore, the same type of multi scale minimization strategy is applied for the
relaxation of the level set function. For a coarse filter width σ first coarse scale ad-
justments of φ are enforced. Then on successively finer scales more and more of the
detailed structure of the grain boundaries can be recovered by the level set function.
As pointed out earlier, this regularized descent does not affect the energy landscape,
but the descent path towards minima. Even though the level set function φ describes
grain boundaries on a mesoscopic scale, and the lattice identifier functions is given
on the microscale of the actual atomic dot pattern, the corresponding regularization
parameters ε and δ can both be chosen of the order of the grid size. Indeed, we resolve
the mesoscopic grain boundaries on the atomic microscale. The achieved accuracy in
the spatial position of the grain boundary is of the order of the lattice parameter d.
In case of a smooth grain boundary, we expect a sub-lattice accuracy, due to the sym-
metric treatment of the lattice indicator function and the overlapping measurement
of pattern consistency encoded in this function.

In the applications below, the image resolution ranges from 129 × 129 to 257 ×
257 resulting in a corresponding grid size from h = 0.0078125 to h = 0.003906255.
Furthermore, we have chosen the following parameters: d = 0.072552 (test data),
r = d, θ ≈ 0.5, ε = δ = 0.01, η = 0.05. As before, for the experimental images the
parameter d depends on the concrete lattice pattern in the image and is extracted
based on a small image sample.

Figure 4.1 shows the energy decay for a specific application of the level set algo-
rithm. The crosses mark time steps, where the scale parameter σ is refined.

At first, we applied the algorithm on test data, generated from homogeneous dots
on a lattice with precisely the same lattice spacing as encoded in our algorithm. A
simple blending between two such lattices with different orientation is used to generate
grain boundary type interfaces. Fig. 4.2 shows the identification of grain boundaries
of different amplitude. Furthermore, we applied our method to transmission electron
microscopy (TEM) images. The results, shown in Fig. 4.3, in particular demonstrate
the robustness of the approach with respect to noise in the experimental data and
natural fluctuations in the shape of the atom dots and the lattice spacing. In partic-
ular, let us emphasize that the variational method is capable to detect effects on an
intermediate scale like the oscillating pattern of the interface in the second picture
pair. Finally, in Fig. 4.4 the detection of grain boundaries in a simulation result from
a phase field crystal model is demonstrated [4]. Even though we confine to a single
levelset function in this paper, our latest implementation also supports segmentation
with multiple levelset functions.
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Fig. 4.1. Plot of the energy decay in the level set method for grain boundary extraction applied
to the data in the third/forth row of figure 4.3. The crosses mark refinements of the scale parameter
σ, which gives rise to a slightly increasing energy in the corresponding step. Redistancing of φ is
done every five iterations.

Fig. 4.2. Grain boundary detection on test data: input images u (first and third picture) with
initial zero level set of φ and computed grain boundaries (second and fourth picture). Interfaces
with different amplitude are considered in the first and second image pair.

4.3. Simultaneously detecting a liquid–solid interface. Let us now incor-
porate the distinction between solid and liquid phase into our variational model. In
particular in the simulation results, the solid state is characterized by prominent atom
dots with large values of u. Indeed, taking into account threshold values θ1 and θ2, we
suppose that u(x) > θ2 indicates an atom dot at position x and vice versa inter–atom
regions are characterized by low values of u, i.e. u(x) < θ1. In the liquid regime
there are neither very high nor low values of u, i.e. u(x) ∈ [θ1, θ2]. Unfortunately, the
converse is not true. In transition regions between atom and hole in a solid region u
will attain values between θ1 and θ2. But in these transition regions, the gradient of
u exceeds a certain threshold ε > 0. Thus, we assume x to be in the liquid phase ΩL
if u ∈ [θ1, θ2] and |∇u| ≤ ε. A variational description of the domain splitting into a
liquid phase ΩL and a solid phase Ω \ ΩL is encoded in the energy

Ephase[ΩL] =
∫

ΩL

q(x) dx+
∫

Ω\ΩL

(1− q(x)) dx+ νPer(ΩL),

based on the indicator function

q(x) : = 1−χ[u>θ1]
(x)χ[u<θ2]

(x)χ[|∇u|<ε](x)

=

{
0 ; for u ∈ [θ1, θ2] ∧ |∇u| < ε

1 ; else .
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Fig. 4.3. Two results of grain boundary detection on TEM-images: input images u (first and
third picture) with initial position of the zero level set of φ, finally detected grain boundaries (second
and fourth picture). The TEM-image in the first picture pair is courtesy of Geoffrey H. Campbell,
Lawrence Livermore National Laboratory (compare Fig. 1.1), the image used in the second picture
pair is courtesy of David M. Tricker (Department of Materials Science and Metallurgy, University
of Cambridge) showing a grain boundary in GaN.

Fig. 4.4. Multiphase grain boundary detection on PFC simulation data: crystal phase field
function u (left) with the initial zero level sets, finally computed grain boundaries (right).

Since q = 1 in the solid region the first term favors to remove solid phase points from
ΩL. On the other hand q = 0, in the liquid region. Hence, it is preferable to remove
liquid parts from Ω\ΩL. In the usual spirit of the Mumford–Shah approach, the third
term regularizes the boundary of ΩL.

Now, we merge the two approaches above and simultaneously want to detect the
liquid phase ΩL and the solid phase Ω \ΩL which itself is decomposed into grains Ωj ,
such that

⋃
j Ω̄j = Ω \ ΩL. We end up with the following energy

Ephase,MS[ΩL, (αj ,Ωj)j=1,··· ,m]:=µ
∫

ΩL

q(x) dx+ µ

∫
Ω\ΩL

(1− q(x)) dx+ νPer(ΩL)

+
∑

j=1,··· ,n

(∫
Ωj

f(x, αj) dx+ ηPer(Ωj)

)
. (4.5)

The primal decomposition is the one into a liquid and a solid domain. To reflect this
in the variational formulation above we consider a relatively large constant µ. Indeed,
here we choose µ = 10 and ν = η = 0.05. Furthermore, we take into account the
following values for the other parameters involved: θ = 0.5, θ1 = 0.3, θ2 = 0.5, ε = 1
for test data and ε = 20 for phase field crystal simulation data, respectively. For
further details on the level set approximation and the concrete numerical relaxation
in this special case we refer to [5]. Fig. 4.5 depicts the identification of a liquid–solid
interface and a grain boundary on a test data set and for simulation results from a
phase field crystal model.
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Fig. 4.5. The combined extraction of a liquid–solid interface and a grain boundary is demon-
strated. On the left we depict a test input image u (first picture) with the initial grain boundary level
set in red and the initial liquid–solid interface in blue, and the finally computed shape of the grain
boundary and the liquid–solid interface location (second picture). On the right the same method
is applied to PFC simulation data, showing the crystal phase field function u (third picture) with
the initial positions of the two level sets and the finally extracted liquid–solid and grain boundary
interface (fourth picture).

5. Joint deformation and grain geometry extraction. Now, we consider a
general model, which incorporates grains Ωj of different orientation αj and a global
elastic deformation ψ effecting the lattice spacing in the grains. To set up a variational
formulation we pick up the energy for the local identification of lattice parameters
EΩj [αj , ψ] (cf. (3.2)) separately for each grain Ωj and each orientation αj and sum
them up. Furthermore, we incorporate the perimeter Per(Ωj) (cf. (4.1)) for all grains
and the elastic energy Eelast[ψ] (cf. (3.3)) for deformations ψ constraint to vanishing
angular momentum. Finally we obtain the following Mumford–Shah type functional
for a joint deformation and grain geometry extraction model:

Ejoint,MS[(αj ,Ωj)j=1,··· ,n, ψ]:=
∑

j=1,··· ,n

(
EΩj [αj , ψ] + ηPer(Ωj)

)
+ µEelast[ψ]

For the sake of completeness let us list the variations of this energy with respect to
the deformation ψ in a direction ζ, the lattice orientation αj on the grain Ωj , and the
shape of the grains in the direction of a normal variation vj . We achieve

∂ψEjoint,MS[(αj ,Ωj)j=1,··· ,n, ψ](ζ) =
d2

mr2

∑
j=1,··· ,n

(
∫

Ωj∩[u◦ψ=θ]

∇u(ψ(x)) · ζ(x)
∑

i=1,··· ,m
(1−H(u(ψ(x+M(α)qi))− θ))dH1

−
∑

i=1,··· ,m

∫
(Ωj+M(αj)qi)
∩[u◦ψ=θ]

H(u(ψ(x−M(α)qi))− θ)∇u(ψ(x)) · ζ(x) dH1
)

+2µ
∫
D

(
Dψ(x) +Dψ(x)T − 2 11

)
: Dζ(x) ,

∂αjEjoint,MS[(αj ,Ωj)j=1,··· ,n, ψ] =

− d2

mr2

m∑
i=1

∫
(Ωj+M(αj)qi)
∩[u◦ψ=θ]

H(u ◦ ψ(x−M(αj)qi)− θ)∇u(ψ(x)) ·Dψ(x)M ′(αj)qi dH1 ,

∂ΩjEjoint,MS[(αk,Ωk)k=1,··· ,n, ψ](vj) =
∫
∂Ωj

[f [·]] vj + ηκvj dH1 .
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Fig. 5.1. Simultaneous segmentation based on α and calculation of the deformation ψ: result
on a test image (top) and on a HREM image (bottom) both a posteriori deformed. Initial levelset
function (red) on the input image u (left), computed boundary on the deformed image u ◦ ψ−1

(middle) and deformation ψ found.

With respect to the numerical implementation we again consider a joint Chan–Vese
type model for two grains, where the interface between the grains is described by a
level set function φ as above. Hence, we take into account the energy functional

Eδ,εjoint,CV[α1, α2, φ, ψ]:=
∫

Ω

Hδ(φ)fε[α2, ψ] + (1−Hδ(φ))fε[α1, ψ] + 2ν|∇Hδ(φ)|

+µ
1
2

∫
D

∣∣Dψ(x) +Dψ(x)T − 2 11
∣∣2 dx .

which is to be minimized subject to constraint
∫
Ω
Dψ(x) − (Dψ)T (x) dx = 0 on the

skew symmetric part of the deformation. The algorithm is a straightforward general-
ization of the algorithms presented in Section 3.3 and Section 4.2. We implemented an
operator splitting, where each iteration consists of a descent step in the deformation ψ
with respect to the metric (3.7), a descent step in the level set function φ with respect
to the metric (4.4), and two descent steps for the two orientation parameters α1 and
α2. As before ψ and φ are discretized using finite elements. Figure 5.1 shows result
of the joint approach for a test data set and an a posteriori deformed experimental
image.

6. Conclusions. We have presented a robust method for the reliable extrac-
tion of macroscopic parameters from microscopic images from materials science. The
method deals with grains identified by a constant lattice orientation on the correspond-
ing domain and a global elastic deformation acting on these grains and modifying the
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local lattice spacing. The local lattice is encoded by an indicator functions for atomic
dots describing their spatial relation to adjacent atomic dots. It depends on the local
orientation and the deformation. A variational approach is based on an integral over
this indicator function and an elastic energy for the deformation acting as a prior.
We are able to compute the macroscopic deformation and the lattice orientation on
each grain. A Mumford–Shah type variational formulation for the case of multiple
grains involves a further prior on the shape of the grains by measuring the perimeter
of the grain domains. The numerical implementation is inspired by the segmentation
approach by Chan and Vese. The algorithm works equally well on phase field crystal
(PFC) simulations and on experimental transmission electron microscopy (TEM) im-
ages. It has been extended to detect liquid–solid interfaces. At first, we confine here
to the case of two different grain orientations. The straightforward extension to 2n

orientations is currently still work in progress. On still images, the demarcation of
such interfaces might be done by hand as well, but will become already very tedious
for a large number of grains. For the validation of physical models with experimental
data, it is the evolution of the grain boundaries which actually matters. Here, an ac-
curate and robust extraction of interface velocities requires a reliable automatic tool.
Thus, an extension of our model to temporal data is envisaged. So far, the lattice
orientation is considered as the only local degree of freedom. The type of crystal
structure and the atom spacing are preset. In a future generalization one might in-
corporate further lattice parameters in the variational approach or combine the lattice
type classification directly with the variational parameter estimation.
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[14] Matthias Heiler and Christoph Schnörr. Natural image statistics for natural image segmenta-
tion. IJCV, 63(1):5–19, 2005.

[15] Wayne E. King, Geoffrey H. Campbell, Stephen M. Foiles, Dov Cohen, and Kenneth M. Hanson.
Quantitative HREM observation of the Σ11(113)/[1̄00] grain-boundary structure in alu-
minium and comparison with atomistic simulation. Journal of Microscopy, 190(1-2):131–
143, 1998.

[16] P. Kosmol. Optimierung und Approximation. de Gruyter Lehrbuch, 1991.
[17] Omar Lakkis and Ricardo H. Nochetto. A posteriori error analysis for the mean curvature flow

of graphs. SIAM J. Numer. Anal., 42(5):1875–1898, 2004.
[18] Sridhar Lakshmanan and Haluk Derin. Simultaneous parameter estimation and segmentation

of gibbs random fields using simulated annealing. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 11(8):799–813, 1989.

[19] B. S. Manjunath and Rama Chellappa. Unsupervised texture segmentation using markov
random field models. IEEE Trans. Pattern Anal. Mach. Intell., 13(5):478–482, 1991.

[20] Yves Meyer. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The
Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. American Mathematical Society,
Boston, MA, USA, 2001.

[21] D. Mumford and J. Shah. Optimal approximation by piecewise smooth functions and associated
variational problems. Communications on Pure Applied Mathematics, 42:577–685, 1989.

[22] S. J. Osher and R. P. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer-
Verlag, 2002.

[23] Nikos Paragios and Rachid Deriche. Geodesic active regions and level set methods for motion
estimation and tracking. Comput. Vis. Image Underst., 97(3):259–282, 2005.

[24] Berta Sandberg, Tony Chan, and Luminita Vese. A level-set and gabor-based active contour
algorithm for segmenting textured images. Technical Report 02-39, UCLA CAM Reports,
2002.

[25] D. Schryvers et al. Measuring strain fields and concentration gradients around Ni4Ti3 precipi-
tates. Materials science and engineering A: structural materials properties microstructure
and processing. Special Issue, 438:485–488, 2006.

[26] J.A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press,
1999.

[27] J. Sikolowski and J.-P. Zolésio. Shape sensitivity analysis, chapter Introduction to shape opti-
mization. Springer, 1992.

[28] Y. Singh. Density-functional theory of freezing and properties of the ordered phase. Physics
Reports, 207(6):351–444, 1991.

[29] Michael Unser. Texture classification and segmentation using wavelet frames. IEEE Transac-
tions on Image Processing, 4(11):1549–1560, November 1995.

[30] Luminita Vese and Tony F. Chan. A multiphase level set framework for image segmentation
using the mumford and shah model. International Journal of Computer Vision, 50(3):271–
293, December 2002.

[31] Luminita Vese and Stanley Osher. Modeling textures with total variation minimization and
oscillating patterns in image processing. Journal of Scientific Computing, 19(1-3):553–572,
December 2003.


