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Symbols and Abbreviations

Symbols

N Set of natural numbers
R Set of real numbers
m� d m is much smaller than d
‖ · ‖2 Euclidean norm
G = (V,E) A graph consisting of a set of vertices V and (weighted) edges

E
1 A vector with ones
diag(v) A diagonal matrix with v being the diagonal
ρ(A) The spectral radius of a matrix A
O(g) Big O notation
χI The indicator function of a set I
erfc The Gaussian complementary error function
E[X] The expectation of a random variable X
V ar[X] The variance of a random variable X
|X| The cardinality of a set X

X A given data set
M The manifold, the data is lying on
n The number of data points in X
d The dimension of a data point x ∈ X
m The dimension of the manifold M

Abbreviations

DBSCAN Density-based spatial clustering of applications with noise
DM Diffusion maps
DPT Diffusion pseudotime
ISOMAP Isometric feature mapping
LE Laplacian eigenmaps
LLE Locally linear embedding
MDS Multidimensional scaling
PCA Principal component analysis
PCR Polymerase chain reaction
tSNE t-distributed stochastic neighbour embedding
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1 Introduction

Single-cell data analysis is nowadays an indispensable part of biological research.
Biologists aim to extract valuable information out of data in order to gain new
insights about the development of single cells from one cell type to another, the
so-called cell differentiation. However, due to new and better data collection
techniques, the size of biological data sets has increased immensely in recent
years. When data is of high dimensionality, the direct receipt of information is
usually no longer possible. Analyzing data in high-dimensional spaces becomes
computationally too expensive. This phenomenon is well known in the literature as
the curse of dimensionality. In order to reveal hidden structure of high-dimensional
biological data, it is therefore essential to apply machine learning methods.
One useful approach is to tranform the data into a more compact form, which
is known as dimensionality reduction. Biologists use dimensionality reduction
methods to visualize the data in order to obtain an overall picture of the data set.
Afterwards, they can do further analysis, for example detecting different cell groups,
representing specific differentiation stages. However, classical dimensionality
reduction methods, such as principal component analysis (PCA), often fail to
reveal the special structure of differentiation data. For instance, PCA has the
restricted assumption that the data is lying on a linear subspace, which is not
suitable for the mostly nonlinear single-cell data.
In recent years, a more appropriate dimensionality reduction method was proposed:
Diffusion maps. Diffusion maps is a nonlinear dimensionality reduction method,
established by Coifman and Lafon in 2004-2006 [CL06]. In [HBT15], diffusion
maps were firstly introduced in combination with single-cell differentiation data
and revealed promising results.

Objective of this work

In this work, we carry out further investigations of diffusion maps as a dimensional-
ity reduction method for biological applications. In addition to data visualization,
the focus is on finding a learning method for partitioning the single-cell data into
meaningful cell groups using diffusion maps as preprocessing step. For this, we
compare the performance of spectral clustering [BK17] to the diffusion pseudotime
(DPT) analysis, especially developed for biological data in [HBW+16].
Moreover, we deal with so-called censored biological data. Censored data is a
special form of data with missing values, where a certain range of numbers is not
detected due to experimental reasons. So far, censored values are not specifically
treated in the data processing. In [HBT15], a procedure for considering censored
data is presented which estimates the kernel function used in diffusion maps. We
investigate this approach and compare it to the performance of an alternative
method, based on [EDVL13].
Great emphasis in this work is placed on the selection and influence of various
parameters.
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Own contributions

• Investigation of the influence of different parameters and Gaussian kernel
functions on the performance of diffusion maps for data visualization.

• Examination of the performance of spectral clustering in combination with
diffusion maps and several common clustering techniques for biological data.

• Extension of the diffusion pseudotime analysis for allowing directly to specify
any number of groups and proposal for a method to find the correct number
of groups.

• Proposal of using the procedure, based on [EDVL13], to consider censored
biological data.

Outline of this work

In chapter 2, we give an introduction into the biological single-cell data processing
and present the used data in this work. After giving an overview of dimensionality
reduction, chapter 3 describes the diffusion maps method in detail. The influence
of different parameters and kernel functions used in diffusion maps on the data
visualization is examined in the end of this chapter. In chapter 4, we introduce
the two group detection techniques, spectral clustering and diffusion pseudotime
analysis, including an extension of it, and investigate and compare the two methods.
Subsequently, chapter 5 deals with two approaches for considering censored data.
Finally, we summarize the results of this work in chapter 6 and give a brief outlook
for possible further research.
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2 Single-Cell Data

New and better technologies for measuring gene levels in single cells have ushered
in a new era in biological research. Biologists hope for gaining new detailed
insights into how single cells, in particular stem cells, differentiate.
During the differentiation process of a stem cell to a specific cell type, the cell
passes many different stages of development. Depending on the target state, each
stem cell develops individually. Two stem cells, differentiating to similar cell
types, e.g. to two different muscle cells, go through the same stages first, e.g.
to develop into a general muscle cell, before they individually differentiate into
their respective target cell types. To biologists, this point in time representing a
specific differentiation stage at which two or more of such development branches
are formed, is of particular interest.
In order to study the temporal evolution of single cells, cell measurements are
collected for different differentiation stages and are united into a single data set.
For each cell, gene expression analysis is done by measuring a certain number
of genes. In mathematical notation, for n being the number of cells and d the
number of genes, the data set is given by

X = {xti | i = 1, . . . , n; t ∈ I} ⊂ Rd

where I = {t1, . . . , tT } ⊂ R denote the T ∈ N differentiation stages or rather
time points when the cell was measured. In other words, the data set represents
a matrix with the rows being the cells and the columns being the genes. In
particular, the number of measured genes represents the dimension of the cell
data points we want to reduce using diffusion maps. The differentiation stages
are used for labeling the cells.
However, in order to ensure accurate and meaningful data analysis, the raw
data sets often require preprocessing techniques first, such as data cleaning,
normalization and handling missing or uncertain values. The data is normalized
in order to obtain more accurate results. A common strategy in biology is
the normalization via reference genes or so-called housekeeping genes, e.g. by
subtracting for each cell the mean expression of the control genes. Cells with
undetectable gene data are usually excluded from analysis.
As a special form of data with undetectable values, censored data often have to
be considered in biological applications:

Definition 1 (Censored data). For a data point x ∈ X , let Mx ⊂ {1, . . . , d} be
the set of missing components, i.e. undetectable gene entries of x. We call a data
set X censored, if the following two properties hold for all data points x ∈ X :

1. For all detected entries g /∈Mx, we have xg < L and

2. for all undetected entries g ∈Mx, we know that the real values fulfill xg ≥ L

for a L ∈ R. If X is censored, we call a undetectable value xg with g ∈ Mx for
x ∈ X a censored value.
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This means, in particular, that we do not have any knowledge about the distribu-
tion of the missing values. The so-called PCR (polymerase chain reaction) data
sets usually contain a high amount of censored values. In a PCR, in order to
measure the DNA or gene concentration of a cell, several cycles are conducted.
At each cycle, the amount of fluorescence is measured. Subsequently, the so-called
Ct value (abbreviation for threshold cycle value) is determined as a measure of
the gene concentration. A Ct-value is defined as the cycle number at which the
fluorescence significantly exceeds the background-fluorescence, i.e. at which a
clear fluorescence signal is first detected. Thus, a higher Ct value means a lower
DNA or gene concentration. However, there are cases, where no clear fluorescence
signal is measured for a gene in any cycle of the PCR. This means, theoretically,
we would need to conduct more cycles to measure the value. However, biologists
usually set all these censored values to a fixed value, called limit of detection
(LoD), which is defined as the maximum value that can be measured in the PCR
(i.e. L = LoD).
For the experiments in this thesis, we consider one toy data set and seven real
biological data sets, in total. The data vary in the amount of cells and meas-
ured genes per cell. We give for each biological data set a description about the
differentiation process, the data set should point out. This will give us a clue
about the accuracy of the diffusion maps analysis. Besides, we describe the used
preprocessing techniques for the biological data, in particular the treatment of the
censored values for the experiments in chapter 3 and 4. Notice that for handling
censored values in chapter 5, only the PCR data sets are relevant.

Toy data
As toy data, we use a set containing 5 branches (600 cells and 100 genes), artifi-
cially made by Moon et al. in [MvDW+17]. The algorithm for creating the data
is taken from the supplementary implementation package of [MvDW+17].

Guo data
The single-cell qRT-PCR1 data set from [GHT+10] contains Ct values for 48 genes
of 442 mouse embryonic stem cells at seven different developmental time points,
from zygote to blastocyst (1-cell stage to 64-cell stage). Starting at the 1-cell
stage, cells transition smoothly either towards the trophectoderm (TE) lineage or
the inner cell mass (ICM). Subsequently, cells transition from the inner cell mass
either towards the primitive endoderm (PE) or the epiblast (EPI) lineage. The
data is normalized by the mean of the reference genes Actb and Gapdh apart from
the censored values, i.e. gene expression values with baseline 28. They are set to
the ceiling value of the normalized data set. Gene expression values bigger than
the baseline 28 point out undetectable data, i.e. cells with such values are removed
(5 in total). Cells from the 1-cell stage embryos are excluded from analysis, as
well, since they were treated differently in the experimental procedure (9 in total).

Moignard data
The qRT-PCR data set from [MMS+13] contains Ct values for 24 genes of
620 mouse haemotopoietic stem and progenitor cells from five different cell

1real-time quantitative polymerase chain reaction
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types: Haematopoietic stem cell (HSC), lymphoid-primed multipotent progenitor
(LMPP), common lymphoid progenitor (CLP), granulocyte-monocyte progenitor
(GMP) and megakaryocyte-erythroid progenitor (PreMegE). HSC cells can dif-
ferentiate either towards PreMegE or LMPP cells. Subsequently, LMPP cells
transition either towards GMP or the CLP lineage. All gene expression values are
normalized by the mean of the two housekeeping genes Polr2a and Ubc. Cells,
where one of the housekeeping genes is not expressed, are excluded from the data
(23 in total). Censored values are assigned to a Ct-value of 15 after normalization.
Afterwards, the housekeeping genes and gene Kit are removed.

Goettgens data
The qRT-PCR data set from [MWH+15] contains Ct values for 46 genes of 3934
single cells at four distinct embryonic stages focusing on early blood development
of mouse embryos: Primitive streak (PS), neural plate (NP), head fold (HF) and
four somite (4SG and 4SFG-). The haematopoietic cells move either towards the
endothelial branch or the erythroid branch. For normalization, all gene expression
values are subtracted by the limit of detection 25 and normalized by the mean
of the four reference genes Eif2b1, Mrpl19, Polr2a and Ubc. Censored values are
assigned to a value of -14. Subsequently, the reference genes are removed from
the data.

Yan data
The RNA-seq2 data set from [YYG+13] contains 90 human early embryonic cells
from 7 different developmental time points, from oocyte to late blastocyst. 20214
genes were measured per cell.

Mass data
The MARS-seq3 data from [MBF+16] contains 408 cells with 8657 measured genes
per cell. It illustrates the differentiation of erythro-myeloid progenitors (EMP)
towards macrophage precursors (pMacs) and macrophages.

Klein data
The single-cell RNA-seq data from [KMA+15] contains 2717 mouse embryonic
stem cells with 2047 genes from four different timepoints, namely at 0, 2, 4 and 7
days after leukemia inhibitory factor (LIF) withdrawal.

Paul data
The MARS-seq data from [PAG+15] contains 2730 bone marrow stem cells with
3451 informative genes. The data is subdivided into 19 groups. For better
visualization, we regrouped the data into 10 cell types. The data set contains
the branch of granulocyte-macrophage progenitors (GMP) and the branch of
megakaryocyte-erythrocyte progenitors (MEP).

2Single-cell RNA sequencing (RNA-seq) is a method for measuring the concentration of RNA
in single cells.

3Massively parallel RNA single-cell sequencing (MARS-seq) is an extension of the RNA-seq
technology.
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3 Data Visualization

In this chapter, the aim is to create meaningful two-dimensional data visualizations
for single-cell data using diffusion maps. Initially, we introduce the topic of
dimensionality reduction and present the diffusion maps method. For this, let
X = {xti | i = 1, . . . , n; t ∈ I} ⊂ Rd be a given (single-cell) data set. In biological
applications, n is the number of cells and d the number of measured genes. Since
the measuring times t ∈ I are only for labeling the data points, we leave the
variable t out and write from now on X = {x1, . . . , xn}.

3.1 Dimensionality Reduction

The goal of dimensionality reduction is to embed high-dimensional data in a
lower-dimensional space. In most applications, it is justified to assume, that the
most dimensions are redunant, i.e. the important information of the data can be
described by a few dimensions. In mathematical notation, this means, that X is
lying on a m-dimensional manifold M of Rd with m� d. We call d the extrinsic
dimension and m the intrinsic dimension of the data set. For each data point
x ∈ X , dimensionality reduction tries to find a suitable representation x̂ ∈ Rm in
the embedding space. These lower-dimensional representations are denoted as the
latent variables of the data. If we reduce the dimensionality to 2 or 3 dimensions,
it is possible to visualize the embedded data.
The greatest challenge in dimensionality reduction is the fact, that, in general,
any knowledge of the manifold M (in particular the intrinsic dimension m) is
not given. Thus, many approaches for dimensionality reduction were introduced
in the last years, based on different assumptions about the structure of the
unknown manifold. In the following, we will present some of the most important
dimensionality reduction methods [HTF09,LV07]:

Principal component analysis (PCA) [Pea01,Hot33] is the oldest and most
popular dimensionality reduction method. It is based on the assumption, that
M is a linear subspace. Therefore it belongs to the linear dimensionality
reduction methods. It finds an embedding by preserving the variance in the
data as best as possible. This is done by computing the eigenvectors of the data
covariance matrix. The eigenvectors become then the principal components
of the data set, which are used for the embedding. Although most data sets
do not contain any linear structure, PCA is the most used dimensionality
reduction method due to its simplicity.

Multidimensional scaling (MDS) is a family of dimensionality reduction
methods. In contrast to PCA, the main idea is to preserve pairwise dis-
tances or similarities between points, i.e. close data points should stay close
in the embedding space. For this, a stress function is minimized, whose form
differ depending on the method.
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Isometric feature mapping (ISOMAP) [TdSL00] belongs to the field of non-
linear dimensionality reduction or manifold learning, i.e. it is not based on a
linear model. It uses the same criterion as MDS, namely distance preservation.
Rather than the Euclidean distance, ISOMAP tries to approximate the geodesic
distance on M, measuring the length of the shortest curve between two points
in M. This is realized by constructing a graph with the data points being its
nodes and then approximating the geodesic distance by the so-called graph
distance, measuring the shortest path between points in the graph.

Locally linear embedding (LLE) [RS00] proposes another approach to embed
the data. It preserves the local structure of the data set by approximating
each data point by a linear combination of its neighbouring points. Thus, LLE
takes sparse and dense regions of the data set into consideration.

Laplacian eigenmaps (LE) [BN01] preserves the local structure just as LLE,
but in a different way. It constructs a graph and uses a similarity measure
for the weights of the graph edges. Usually, a kernel is applied for defining
the weights. The embedding is obtained by computing the eigenvectors of the
graph Laplacian.

t-distributed stochastic neighbour embedding (tSNE) [vdMH08] defines the
similarity between two points by conditional probabilities. The same is done
for the lower-dimensional space using the Student-t-distribution. Subsequently,
the Kullback-Leibler divergence of the distribution of the lower-dimensional
points from the one of the higher-dimensional points is minimized to get the
embedding.

Another nonlinear dimensionality reduction method was proposed by Coifman and
Lafon in 2006 [CL06]: Diffusion maps. Diffusion maps combine local structure
and distance preservation by defining a new distance notion, the so-called diffusion
distance. In the next section, we will consider the concept of diffusion maps in
more detail.

3.2 Diffusion Maps

To reveal the geometry of a given data set X on a manifold M, we first define
a notion of affinity or similarity between points in X using a kernel function
K : X × X → R, that for all x, y ∈ X satisfies:

• K is symmetric: K(x, y) = K(y, x)

• K is positivity-preserving: K(x, y) ≥ 0.

One can think of the data points as being the nodes of an (undirected) weighted
graph (X ,K) whose edge weighting function is specified by K. A common choice
for K is the Gaussian kernel

Definition 2 (Gaussian kernel).

Kσ(x, y) := exp
(
−‖x− y‖

2
2

2σ2

)
,
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based on Euclidean distances and a bandwidth σ > 0. The main idea of diffusion
maps is to construct a random walk Markov chain on X , where walking to a
nearby data point is more likely than walking to another that is far away. For
x, y ∈ X we set

D(x) :=
∑
z∈X

K(x, z) (3.1)

and define the transition matrix

P (x, y) := K(x, y)
D(x) ,

specifying the Markov chain. The new matrix P inherits the positivity-preserving
property of K, but it is no longer symmetric. However, we have gained∑

z∈X
P (x, z) = 1 (3.2)

for all x ∈ X . This means that the matrix entry P (x, y) can be viewed as the
one-step transition probability from x to y. For a time parameter t ∈ N, the
power P t gives the t-step transition matrix, i.e. the entry P t(x, y) represents
the transition probability from x to y in t time steps. Thus, running the chain
forward in time describes the diffusion process of the data X at various scales.
The Markov chain now allows us to define a time-dependent distance measure on
X , the so-called diffusion distance.

Definition 3 (Diffusion distance). For t ∈ N, the diffusion distance Dt : X×X →
R is defined by

D2
t (x, y) :=

∑
z∈X

(P t(x, z)− P t(y, z))2 1
π(z)

for all x, y ∈ X , where π(z) denotes the stationary distribution1 of the Markov
chain.

The diffusion distance Dt(x, y) sums over all paths of length 2t connecting x to y.
Thus, a small value for Dt(x, y) corresponds with a high transition probability
between x and y.
It is useful to rewrite the diffusion distance Dt by means of an eigendecomposition
of P t. A spectral analysis of the Markov chain is indeed possible under mild
assumptions on K [Sch13]: There exists a symmetric matrix Psym, given by

Psym(x, y) := P (x, y)
√
D(x)
D(y) = K(x, y)√

D(x)D(y)
(3.3)

sharing the same eigenvalues with P . Since Psym is symmetric, Psym has n real
eigenvalues {λl} with corresponding orthonormal eigenvectors {φl}2. Moreover,

1The stationary distribution is the limiting distribution of the Markov chain, i.e.
limt→∞ P

t(x, y) = π(y). For existence, we can assume K(x, y) > 0 for all x, y ∈ X . Then, π can
be explicitly given by the left eigenvector of P corresponding to the eigenvalue 1, i.e. πP = π,
normed with respect to the 1-norm. If the graph (X ,K) is connected, the stationary distribution
is unique.

2{φl} form an orthornormal basis with respect to the Euclidean inner product 〈v, w〉`2(X ) =∑
z∈X v(z)w(z).
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if the graph (X ,K) is connected3, applying the Perron-Frobenius Theorem, we
have for sorted eigenvalues:

1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn.

Note, that the connectivity of the graph depends on the kernel function K. For
the Gaussian kernel, the graph is theoretically connected for all σ > 0. However,
in practice, the bandwidth σ has to be chosen big enough.
The corresponding right and left eigenvectors {ψl} and {χl} of P can be expressed
in terms of the eigenvectors {φl} of Psym:

ψl(x) = φl(x)√
π(x)

, χl(x) = φl(x)
√
π(x).

Subsequently, the eigendecomposition of P t is given by

P t(x, y) =
n∑
l=1

λtlψl(x)χTl (y). (3.4)

Using this representation of P t, the diffusion distance can be rewritten4 as

D2
t (x, y) =

n∑
l=2

λ2t
l (ψl(x)− ψl(y))2.

Due to the fact, that the entries of the eigenvector ψ1 corresponding to the
eigenvalue λ1 = 1 are all identical5, the term for l = 1 is omitted in the sum.
As seen above, the eigenvalues {λl} become smaller and smaller (they tend to
zero with bigger n). Thus, the diffusion distance can be approximated by the first
terms of the sum. For s ≤ n, we therefore introduce the approximated diffusion
distance

Definition 4.
D2
t,s(x, y) :=

s∑
l=2

λ2t
l (ψl(x)− ψl(y))2

and the family of diffusion maps {Ψt}t∈N:

Definition 5 (Diffusion maps). For s ≤ n, we define the family of diffusion maps
{Ψt : X → Rs−1}t∈N:

Ψt(x) :=


λt2ψ2(x)
λt3ψ3(x)

...
λtsψs(x)

 .
Each component λtlψl is called diffusion coordinate.

3A graph is called connected, if there exists a path between any two vertices of the graph,
this means that for all x, y ∈ X it holds P t(x, y) > 0 for some t.

4Here we use, that {χl} form an orthonormal basis with respect to the inner product
〈v, w〉`2(X , 1

π
) =
∑

z∈X v(z)w(z) 1
π(z) .

5This follows by equation 3.2.
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We now can connect the diffusion distance with the diffusion map.

Theorem 1. For s ≤ n, t ∈ N and x, y ∈ X we have

Dt,s(x, y) = ‖Ψt(x)−Ψt(y)‖2.

Theorem 1 implies, that the diffusion distance Dt is equal to the Euclidean distance
in the diffusion map space, up to a relative accuracy depending on s. Thus, the
diffusion map Ψt is an embedding into the Euclidean space Rs−1.

Anisotropic Diffusion

So far, we used so-called isotropic kernels such as the Gaussian kernel in definition
2. These can be good enough if the data points are drawn from a uniform data
distribution. In this case, the eigenvectors of the transition matrix P discretely
approximate the eigenvectors of the Laplace-Beltrami operator ∆ and are therefore
well suited to recover the manifold structure of the data. However, in most
applications, the data is affected by distribution heterogeneities, such as dense or
sparse regions. When using an isotropic kernel for non-uniform distributed data,
the eigenvectors of P yield an approximation of the operator

∆− ∆q
q
,

where q is the underlying probability density of the data. As a consequence, the
data distribution in the non-uniform case, has a great influence on the embedding.
To recover the manifold structure regardless of the data distribution, it is useful
to consider anistropic kernels. To this end, let K be a given kernel, e.g. from
definition 2. Using K, we define a new, generalized kernel

K(α)(x, y) := K(x, y)
Dα(x)Dα(y) ,

for some α ∈ [0, 1], where D is defined by (3.1). Note, that for α = 0 the new
kernel corresponds with the old one. Now, we can proceed as above by setting

D(α)(x) :=
∑
z∈X

K(α)(x, z)

and defining the transition matrix

P (α)(x, y) := K(α)(x, y)
D(α)(x)

.

Coifman and Lafon showed in [CL06], that, using α = 1, the eigenvectors of the
transition matrix P (1) discretely approximate the eigenvectors of the Laplace-
Beltrami operator, like in the case of isotropic kernels for uniform distributed data.
This means, that setting α = 1 removes all the influence of the data distribution
and recovers the geometry of the data set, regardless of the distribution.
Finally, we give the complete diffusion maps algorithm:
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Algorithm 1 Diffusion maps algorithm
Input: data X , α ∈ [0, 1], s ≤ n
Output: embedding Ψ
K ← [K(xi, xj)]ni,j=1 with kernel function K : X × X → R
D ← diag(K1) with 1 = (1, . . . , 1)
K(α) ← D−αKD−α

D(α) ← diag(K(α)
1)

P (α) ← (D(α))−1K(α)

Compute the first s eigenvalues {λl}sl=1 and the corresponding eigenvectors
{ψl}sl=1 of P (α).
Ψ← {λlψl}sl=2

Note that the k-th coordinate of the l-th diffusion coordinate λlψl is the l-th
coordinate of the k-th data point in the embedding space. From now on, we will
set α to 1. For simplicity, we therefore write P = P (1). In the end, we give some
final remarks on the diffusion maps algorithm:

• If the data is lying on a m-dimensional manifold, we need to set s = m+ 1.
For visualization, we need to assume m to be 2 or 3.

• Instead of using the eigenvectors of P , we could use the eigenvectors of the
symmetric matrix Psym for embedding, as well6. This has the advantage, that
one can achieve a faster and more robust computation of the eigendecompositon
of the transition matrix. Furthermore, a symmetric transition matrix can make
sense in practical applications, where it is useful to have symmetric transition
probabilities, i.e. P (x, y) = P (y, x) [HBW+16].

• In [HBT15], it is proposed to set the diagonal of K(α) to 0. In fact, for
recovering the structure of the data set, based on relations between data points,
it could be disturbing to have nonzero entries on the diagonal of the transition
matrix. In this way, the relations between data points are better weighted in
the embedding.

3.2.1 Bandwidth Selection

Using the Gaussian kernel Kσ(x, y) = exp(−‖x− y‖22/(2σ2)) for diffusion maps,
leads to the question of how selecting the bandwidth σ. In fact, parameter selection
is commonly a challenging task in machine learning algorithms. We already stated,
that for a robustly computable eigendecomposition, the bandwidth σ has to be
chosen ”big enough”, in order to have the graph (X ,K) connected. Indeed, if
the bandwidth is too small, the most entries of the transition matrix P tend to
zero, which can lead to slow or even absent convergence in the computation of the
eigendecomposition. Moreover, if the transition probabilities are too small and in
particular almost identical for all data points, the data points tend to accumulate
in one place in the embedding space and the structure of the data can not be
revealed.

6Note, that in the symmetric case, the rescaling parameter π−1 can be dropped in the
definition of the diffusion distance.
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Figure 3.1: Gaussian kernel functions Kσ(x, y) = exp(−(x− y)2/(2σ2)) for band-
widths σ = 1, 3 and 10. With smaller σ, the kernel functions tend faster to zero
outside their centering points, i.e. neighbouring points become less similar. The
bandwidth σ has to be chosen in such a way, that the non-zero regions of the
kernel functions K(x, ·) for x ∈ X overlap in a reasonable fashion.

Surely, the term of a ”big enough” bandwidth is too vague for our purpose.
Choosing simply a very big bandwidth does not lead to an appropriate embedding,
as well. More precise, if the bandwidth is too big, the transition probabilities
become too sensitive to distances and the embedding is blurred.
Thus, a bandwidth, that is not too big and not too small, is aspired. One idea is
to set ε := 2σ2 to the smallest value, such that the underlying graph is connected
(enough). The figure 3.1 illustrates what connectivity means: The non-zero
regions of the kernel functions K(x, ·) for x ∈ X should overlap in a reasonable
fashion. Data sets with bigger distances between points require consequently
larger bandwidths. Lafon suggested in [Laf04] to take the average of all (1-)nearest
neighbour distances in the data set:

εLaf := 1
n

n∑
i=1

min
j∈{1,...,n}\{i}

{‖xi − xj‖22}. (3.5)

Such a rule has the advantage, that it is fast and easy to compute and give good
intuitions about the size of the optimal parameter. However, in the case of missing
values for instance (as we will see in chapter 5), we need other methods, which
are independent of measuring distances. To this end, we present an approach
suggested by [HBT15]:
We consider

Dσ(x) :=
∑
z∈X

Kσ(x, z)

for x ∈ X . Dσ(x) is a quantity for measuring the amount of data points accessible
from point x. The average of the logarithmic values

D̄(σ) := 1
n

∑
x∈X

logDσ(x)

is then proportional to the average size of the neighbourhood of a data point
in X with respect to σ. Considering the behaviour of D̄(σ) against log σ, the
bandwidth can be chosen as the parameter σ with the highest slope of D̄(σ) (see
figure 3.2). This point can be interpreted as the first point, where the connectivity
of all data points in X is reached.
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Figure 3.2: Illustration of the bandwidth selection technique, proposed in [HBT15].
The bandwidth is selected as the parameter with the highest slope of D̄(σ) ( ).
The highest slope can be determined by means of the first derivative of D̄(σ)
( ), namely by determining the maximum of the derivative.

In order to take density heterogeneities into consideration, Haghverdi et al. propose
in [HBT15] a normalized version of D̄(σ):

D̄norm(σ) :=
1
n

∑
x∈X

logDσ(x)
Dσ(x)∑

x∈X
1

Dσ(x)
.

In order to compute the optimal parameter σ̂, D̄norm(σ) is evaluated for a discrete
set of parameters {σk}Kk=1 (sorted in ascending order) for K ∈ N (e.g. K = 10).
The slope of D̄norm(σk) can be computed by difference quotients. Hence, the
optimal parameter is approximated by

σ̂ ≈ arg max
σk:1≤k≤K−1

D̄norm(σk+1)− D̄norm(σk)
σk+1 − σk

.

3.2.2 Gaussian Kernel Selection

So far, we fixed a global bandwidth for all data points. This choice can be
appropriate for some data sets. However, when data sets contain sparse data
regions or high density dissimilarities, a global bandwidth could be not enough
anymore to reveal the data structure. Instead of a global bandwidth for all data
points, one can use local kernel widths σx for each cell x ∈ X [HBW+16]. To
this end, we interpret the Gaussian kernel Kσ(x, y) = exp(−‖x− y‖22/(2σ2)) from
definition 2 as an interference of two Gaussian wave functions

Kσ(x, y) =
∫ ∞
−∞

Yx(z)Yy(z)dz (3.6)

with

Yx(z) :=
( 2
πσ2

)1/4
exp

(
−‖z − x‖

2
2

σ2

)
(3.7)

fulfilling the normalization
∫∞
−∞ Y

2
x (z)dz = 1. Replacing the global bandwidth σ

by a local bandwidth σx for x ∈ X in 3.7 yields a new locally-scaled Gaussian
kernel:
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Definition 6 (Local Gaussian kernel). Let k ∈ N. The local Gaussian kernel
Kk : X × X → R is defined by

Kk(x, y) :=
(

2σxσy
σ2
x + σ2

y

)1/2

exp
(
−‖x− y‖

2
2

σ2
x + σ2

y

)
,

where for each x ∈ X , the squared local bandwidth σ2
x is chosen to be the half of

the k-th nearest neighbour squared distance of data point x.
A further useful kernel is

Kk,a(x, y) := 1
2 exp

(
−
(‖x− y‖2√

2σx

)a)
+ 1

2 exp
(
−
(
‖x− y‖2√

2σy

)a)
(3.8)

where the additional parameter a controls the rate of decay of the kernel [MvDW+17].

3.3 Experiments

The aim and challenge of data visualization is the depiction of relevant information.
For single-cell data, relevant information primarily includes cell lineages; this
means we strive to visualize the cell differentiation development, described by the
data. In figure 3.3, you can see two examples for cell differentiation structures
we strive to depict using diffusion maps embedding, one of the Guo data and
one of the Moignard data. The circles represent cell stages in the course of the
differentiation progress, which can be seen as branches of a tree, similar to a
genealogical tree.
Theoretically, a visualization of such trees is possible in 2 dimensions. Therefore,
we focus on a 2-dimensional representation of the data in our experiments. In
order to embed the data into a 2-dimensional space, the first embedding vector
is mapped against the second one. In the case of diffusion maps, the embedding
vectors are the diffusion coordinates λ2ψ2 and λ3ψ3. Note, that the multiplication
with the eigenvalues λ2 and λ3 is only a scaling factor and does not influence the
visualization.

(a) Guo data (b) Moignard data

Figure 3.3: Cell differentiation development of the Guo and the Moignard data.
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Comparison to other Dimensionality Reduction Methods

In comparison to other dimensionality reduction methods, diffusion maps prove to
be an appropriate dimensionality reduction method revealing relevant information
of biological data. We compare the diffusion maps embedding in 2 dimensions to
five other dimensionality reduction methods, namely PCA, ISOMAP, LE, LLE
and tSNE. For diffusion maps, we use the Gaussian kernel with a global bandwidth
σ, chosen by the rule of Lafon in 3.5. Considering the Guo data in figure 3.4
as an example, diffusion maps succesfully reveal the four lineages, including the
two subbranches PE and EPI, and the relations of the lineages to each other. In
the PCA and LE embedding, the subbranches PE and EPI coincide in a region
and LLE completely fails to reveal any structure. Comparing, in particular,
diffusion maps with the PCA embedding, one can observe the denoising effect of
the diffusion maps method. This can be observed for other data sets, as well (cf.
appendix A.2.1). Considering the ISOMAP and tSNE embedding, it is difficult to
recognize the relations of the lineages7. Especially, tSNE displays the lineages as
clear separable clusters without temporal order8. In contrast to that, diffusion
maps point out the temporal development of the cells from the 2-cell to the 16-cell
stage and the ensuing separation into the three different differentiation states.

Figure 3.4: Embedding in 2 dimensions of the (normalized) Guo data set by
means of six different dimensionality reduction methods.

7Notice, that ISOMAP would show a more understandable picture, if we do a 3-dimensional
visualization of the data.

8However, for clustering the lineages, tSNE appears here to be the better choice.
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Bandwidth Selection

With the Guo data, we saw a data set, where diffusion maps revealed all relevant
information using the Gaussian kernel with a bandwidth chosen by the rule of
Lafon. However, in general, it is difficult to concentrate all important information
of the data in only two diffusion components. In figure 3.5, several 2-dimensional
plots and a 3-dimensional plot for the Moignard data is presented, using the first
three diffusion components. Comparing the pictures with figure 3.3, showing the
desired cell differentiation development of the Moignard data, one can observe,
that the CLP lineage can only be revealed using the third diffusion component,
this means, that a 2-dimensional visualization using only the first two diffusion
components is not enough for revealing all desired information.
In order to achieve an appropriate visualization in 2 dimensions, the bandwidth σ
in the Gaussian kernel needs to be appropriately selected. It plays an important
role in the resulting embedding. The figure 3.6 demonstrates the influence of the
bandwidth σ on the resulting visualization using the example of the Guo data set.
If the bandwidth is too small, the data points accumulate in a few places, such
that we cannot see any structure. If the bandwidth is too big, the data points
are rather blurred and noisy, such that lineages like the PE and EPI lineage are
harder to recognize, as well. Hence, a bandwidth in the middle range is preferable,
as already considered in theory.
A useful criterion for assessing how much information is hidden in a diffusion

Figure 3.5: Diffusion maps embedding of the (normalized) Moignard data set
using the Gaussian kernel with global bandwidth σ chosen by the rule of Lafon.
At the top, a 2- and 3-dimensional visualization of the data is presented, where
the first 2 or 3 diffusion components are mapped against each other. At the
bottom, 2-dimensional plots can be seen, where the first and the second diffusion
component are each mapped against the third.
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Figure 3.6: Comparison of different bandwidths (σ = 5, 10 and 20) for diffusion
maps embedding of the Guo data in 2 dimensions.

Figure 3.7: The first 20 eigenvalues of the transition matrix of the diffusion maps
algorithm for the Guo data, using different bandwidths.

component is the size of the corresponding eigenvalue. The larger the eigenvalue,
the more information the corresponding diffusion component contains. Hence,
for a 2-dimensional visualization, we aim to have the first two non-trivial eigen-
values of the transition matrix to be large and the other eigenvalues as small as
possible. Thus, the diffusion components with corresponding large eigenvalues
contain all important information of the data and the diffusion components with
corresponding small eigenvalues represent data noise, i.e. they do not include
valueable information. In figure 3.7, the first 20 eigenvalues of the transition
matrix of the Guo data are plotted, using three different bandwidths as in figure
3.6. For a small bandwidth, here for σ = 5, all eigenvalues are rather large,
this means that the information is spread over many diffusion components so
that a useful visualization of the data is not possible (cf. figure 3.6). If the
bandwidth is too large, namely σ = 20 for the Guo data, the eigenvalues tend
fast to zero; especially those of the first two non-trivial diffusion components are
comparatively small. This means that we lost relevant information in the course
of the embedding process. A bandwidth of σ = 10 gives the most appropriate
visualization. Considering the course of the corresponding first 20 eigenvalues in
figure 3.7, one can observe several jumps, particularly after the third eigenvalue.
These jumps indicate that the corresponding next diffusion components carry
significantly less information than those with the bigger eigenvalues. Thus, the
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Figure 3.8: Diffusion maps embedding in 2 dimensions for the Moignard data,
using Lafon’s rule (left) and the selection technique by [HBT15] (right) for the
bandwidth σ.

most important information is bundled in the first two diffusion components9.
For bandwidth selection, we introduced two different techniques: The rule by
Lafon in 3.5, denoted by σLAF , and the selection technique by [HBT15], which we
indicate with σ̂. The rule by Lafon has the great advantage that the bandwidth
can be easy and directly determined, supposing we can compute distances between
data points. However, in the case of censoring values, distances between censored
data need to be defined first before calculating the rule by Lafon (cf. chapter
5). In particular, the rule by Lafon is only applicable to the Gaussian kernel in
definition 2.
The selection technique by [HBT15] can be theoretically applied to general kernel
functions depending on a global parameter. Particularly, we do not need to
define a distance measure on the data set, which is useful for handling censored
values. However, this selection technique finds the best parameter among a set
of bandwidth candidates, which need to be chosen by the user. This means, the
user need to have an idea about the approximate size of the best bandwidth. In
fact, for some data sets, we had to re-select the candidates several times to find
an appropriate parameter. In contrast to that, Lafon’s rule suggested adequate
bandwidths for almost all data sets.
For the Moignard data, the bandwidth chosen by the selection technique by
[HBT15] results in a more suitable 2-dimensional data visualization than by
Lafon’s rule. We used 19 different bandwidths to compute the optimal parameter
σ̂. Comparing the two visualizations in figure 3.8, one can observe, that with the
selection technique by [HBT15], the CLP lineage becomes visible, in contrast to
the visualization with Lafon’s rule. However, for the most other data sets, both
selection techniques result in similar visualizations (cf. appendix A.2.2).

9Note, that the third to sixth diffusion components contain further subordinate information,
which will be useful for spectral clustering.
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Runtime Analysis

The computation time of diffusion maps depends on two components, the number
of cells, denoted by n, and the number of genes which is d. The genes are only used
for the calculation of the pairwise cell distances. For these, we have to perform
a total of n2d computations. Having the distances, the remaining construction
of the transition matrix can be done in O(n2). The algorithm is dominated by
the final computation of the first eigenvalues and eigenvectors with a worst-case
complexity of O(n3). However, in practice, the worst-case scenario is usually not
achieved.

σLAF σ̂

Guo (428 cells × 48 genes) 0,03 0,91
Moignard (597 cells × 21 genes) 0,07 1,06
Goettgens (3934 cells × 42 genes) 2,62 15,72
Yan (90 cells × 20214 genes) 0,43 1,19
Mass (408 cells × 8657 genes) 2,25 3,11
Klein (2717 cells × 2047 genes) 23,42 30,77
Paul (2730 cells × 3451 genes) 39,17 46,33

Figure 3.9: Runtime analysis of the diffusion maps algorithm using two different
bandwidth selection techniques (in seconds).

In figure 3.9, the computation times for the diffusion maps embedding in three
dimensions using the two different bandwidth selection techniques for all biological
data sets are listed. For each embedding, we took the smallest time of several
runs. For the selection of σ̂, we used a total of 20 different bandwidths. As
expected, the selection technique by [HBT15] needs more computation time than
the rule of Lafon. However, in order to choose σ̂, the distances have to be
calculated only once for all bandwidth candidates. Therefore, the runtime of
data sets with a large number of genes, but a small number of cells, such as Yan
or Mass, is comparatively small. Moreover, the calculation times increase with
growing number of cells and genes. In fact, the amount of cells seems to have a
stronger impact on the runtime as one can see in comparing Guo and Moignard
or Goettgens and Mass. However, no computation exceeds one minute.

Local Gaussian Kernels

So far, we used the classical Gaussian kernel with a global bandwidth. However,
for some data sets, a global bandwidth is not enough to reveal the structure of
the data. Particularly, in the case of the Klein data set, the Gaussian kernel with
global bandwidth, using any selection technique, seems not to be appropriate, as
can be seen in figure 3.10.
Instead of a global bandwidth, Gaussian kernels with local bandwidths, which
can be computed by means of the k-th nearest neighbour distances of the data
points with k ∈ N, can be useful in these cases. We introduced a generalized
local Gaussian kernel (definition 6), denoted by Kk depending on k ∈ N and
a kernel Kk,a in 3.8, depending additionaly on a parameter a. In [HBW+16]
and [MvDW+17], it is proposed to set k = 5 and a = 10. In fact, it is useful
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Figure 3.10: Diffusion maps embedding in 2 dimensions for the Klein data, using
Lafon’s rule (left) and the selection technique by [HBT15] (right) for the bandwidth
σ.

to choose k not too high and not too low, similar to the bandwidth selection.
Furthermore, choosing the parameter a high enough, guarantees to account for
sparse or dense data regions. However, a rule for selecting these two parameters
is difficult to find. In figure 3.11, a 2- and 3-dimensional visualization of the
Klein data, using the local Gaussian kernel Kk with k = 5 is presented. In
comparison with the results using global bandwidths in figure 3.10, the second
branch, dominated by cells at 0 and 2 days after LIF withdrawal, can be seen more
clearly in the 2-dimensional visualization using the first two diffusion components.
Nevertheless, the third diffusion component carries the most information for this
branch, as one can observe in the lower left picture of figure 3.11. Taking the
kernel Kk,a with k = 5 and a = 10 instead, both branches can be visualized in 2
dimensions using only the first two diffusion components. Considering figure 3.12,
we can observe that the information for the second branch is carried by the second
diffusion component whereas the third diffusion component does not represent
important information anymore.
Furthermore, we detected an improvement of the visualization using local Gaussian
kernels in the case of the Paul data, as well (cf. appendix A.2.3).

Conclusion

In summary, we see a strong dependance of the choice of the kernel function on
the resulting visualization. However, we found, that taking a Gaussian kernel
with global bandwidth selected by Lafon’s rule achieves an appropriate overall
picture of the data set in most cases. In some cases, it is useful to select other
parameters or kernels with local bandwidths, to transport relevant information
from the third (and more) diffusion components to the first two components for a
2-dimensional visualization. Naturally, a 3-dimensional visualization of biological
data is possible and useful, as well. The size of the eigenvalues as a criterion for
the information content of the diffusion components will be particularly relevant
in the following chapter.
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Figure 3.11: Diffusion maps embedding for the Klein data, using the local Gaussian
kernel Kk with k = 5.

Figure 3.12: Diffusion maps embedding for the Klein data, using the kernel Kk,a

with k = 5 and a = 10.

24



4 Group Detection

Apart from data visualization, biologists aim to detect cell groups in the data.
In single-cell differentiation data, these cell groups are developmental cell stages
during the differentiation process, which can be imagined as branches in a gene-
alogical tree. In the following, we will present two different approaches for cell
group detection using diffusion maps as preprocessing step.

4.1 Spectral Clustering

The goal of clustering is to partition a data set X into groups, the so-called clusters,
based on a notion of similarity (or dissimilarity) measure on the points [HTF09].
Data points within one cluster should be more similar to each other than to
data points within another cluster. The most popular clustering algorithm is
k-means [HTF09]. Choosing k cluster centers at the beginning, the sum of squared
Euclidean distances of all data points to their closest cluster center is minimized.
Iteratively, k-means determines for each data point the closest cluster center and
updates each center by taking the average of all data points closest to the old one.
The iteration is repeated until the centers no longer change (up to an accuracy).
Another clustering technique is the so-called hierarchical clustering [HTF09]: The
clusters are gradually built up by defining at first each data point as its own cluster
and then merging similar clusters to new bigger clusters or reversely, defining the
whole data set as one cluster at the beginning and split it afterwards iteratively
into smaller clusters.
Finally, another approach, the density-based clustering, finds clusters as areas of
high data density. The best known method for this is DBSCAN (density-based
spatial clustering of applications with noise) [EKSX96]. In contrast to k-means, it
does not need the number of clusters as input.
Let now G = (X ,W ) be an undirected similarity graph of the data set X whose
data points being the vertices of G. The matrix W = (Wij)i,j=1,...,n is the weighted
adjacency matrix of the graph, i.e. each edge (xi, xj) is weighted by a non-negative
weight Wij ≥ 0 1 representing the similarity of the vertices xi and xj . Since G
is undirected, the matrix W is symmetric. Clustering the data set X can now
be viewed as partitioning the graph G such that edges within a group have high
weight and edges between groups have low weight. Setting

Dij :=


n∑
l=1

Wil if i = j,

0 otherwise,

for all i, j ∈ {1, . . . , n}, we define the unnormalized graph Laplacian as L := D−W .
We can now use the graph Laplacian for clustering the data. This leads to the
so-called spectral clustering algorithm [vL07]:

1Wij = 0 means that the vertices xi and xj are not connected by an edge.
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Algorithm 2 Classical spectral clustering algorithm
Input: the graph Laplacian L, number k of clusters
Output: clusters C1, . . . , Ck
Compute k eigenvectors {ul}kl=1 corresponding to the k smallest eigenvalues of
L.
U ← [u1, . . . , uk]
for l = 1, . . . , n do

yl ← l-th row of U
end for
Extract clusters C1, . . . , Ck from {yl}nl=1 in Rk (e.g. with the k-means al-
gorithm).

Instead of the unnormalized graph Laplacian L, it is possible to use the symmetric
normalized graph Laplacian

Lsym := I −D−
1
2WD−

1
2 = D−

1
2LD−

1
2

or the random walk normalized graph Laplacian

Lrw := I −D−1W = D−1L

in the spectral clustering algorithm, as well. The transition matrix P in diffusion
maps is highly related to the random walk normalized graph Laplacian Lrw: Using
a kernel function K for the weights Wij , we get

P = D−1W = 1− Lrw.

Consequently, u is an eigenvector of Lrw corresponding to the eigenvalue λ if and
only if u is an eigenvector of P corresponding to the eigenvalue 1− λ. Thus, the
spectral clustering algorithm using diffusion maps is given as follows:

Algorithm 3 Spectral clustering algorithm with diffusion maps
Input: transition matrix P computed in algorithm 1, number k of clusters
Output: clusters C1, . . . , Ck
Compute k eigenvectors {ul}kl=1 corresponding to the k largest eigenvalues of
P .
U ← [u2, . . . , uk]
for l = 1, . . . , n do

yl ← l-th row of U
end for
Extract clusters C1, . . . , Ck from {yl}nl=1 in Rk−1 (e.g. with the k-means al-
gorithm).

In order to choose an appropriate number k of clusters, one can use the following
approach [BK17]: For some not too large M, we compute the M largest eigenvalues
{λl}Ml=1 of P . Then, we set k to the index, where λk − λk+1 is large. This is
known as the spectral gap indicating how many eigenvectors we need to represent
the main information of the data. Note that, as in the diffusion maps algorithm,
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the first trivial eigenvector is not considered in the cluster analysis. This means,
that for k clusters we consider k − 1 eigenvectors. Another possibility is to use
clustering algorithms (e.g. DBSCAN), which do not need the number of clusters
as input, but which find k during the clustering procedure.

4.2 Diffusion Pseudotime Analysis

In the following, we will present and extend another approach for group detection
using the so-called diffusion pseudotime [HBW+16]. Let P be the transition
matrix from the diffusion maps algorithm. For a time parameter t ∈ N, the power
P t describes a random walk of length t on the data set. Summing over all powers

∞∑
t=1

P t (4.1)

hence contains information about the time development of the diffusion process.
The following theorem shows when this series converges:

Theorem 2. For a matrix A, the geometric series
∑∞
t=0A

t converges if and only
if ρ(A) < 1, i.e. |λ| < 1 for all eigenvalues λ of A. If ρ(A) < 1, the series
converges to (I −A)−1.

Since P is a stochastic matrix, the largest eigenvalue is 1, this means ρ(P ) = 1.
Thus, theorem 2 implies that the series 4.1 does not converge. To make the series
converge, we need to remove the part which causes the non-convergence, namely
the eigenspace of the eigenvalue 1. Considering the eigendecomposition of P in
3.4, it is clear, that we need to remove the first term of the sum, namely ψ1χ

T
1 .

Thus, we define the new matrix

M :=
∞∑
t=1

(P − ψ1χ
T
1 )t = (I − (P − ψ1χ

T
1 ))−1 − I. (4.2)

Analogously to the diffusion distance, we now define the diffusion pseudotime
(DPT) distance measure:

Definition 7 (Diffusion pseudotime distance). For a transition matrix P describ-
ing a Markov chain, let M be given as in 4.2. Then, the diffusion pseudotime
distance dpt : X × X → R is defined by

dpt2(x, y) :=
∑
z∈X

(M(x, z)−M(y, z))2 1
π(z)

for all x, y ∈ X , where π(x) denotes the stationary distribution of the Markov
chain.

As in the diffusion maps theory, we can rewrite2 the diffusion pseudotime distance
as

dpt2(x, y) =
n∑
l=2

(
λl

1− λl

)2
(ψl(x)− ψl(y))2. (4.3)

2Using the eigendecomposition of P , one can show, that the eigendecomposition of M is given
by M(x, y) =

∑n

l=2
λl

1−λl
ψl(x)χTl (y).

27



In contrast to the diffusion distance Dt summing over random walks of a specific
length depending on t, the DPT distance considers random walks of arbitrary
length. Therefore, the DPT measure better captures the temporal distance
between two points in the random walk setup. Since the eigenvalues {λl} tend to
zero, the factors {λl/(1− λl)} tend to zero, as well. Thus, in order to compute
the diffusion pseudotime distance, it can be approximated, similar to the diffusion
distance Dt in diffusion maps, by the first terms of the sum.
Using this, the idea of diffusion pseudotime analysis is to identify branches in the
(biological) data set. A branch is a set of points, lying on one straight line (or
submanifold) on the manifold. In contrast to clear saparable clusters, branches
are usually linked to each other. This makes it harder for clustering algorithms to
separate the branches from each other. DPT analysis uses the idea, that a branch
describes a straight temporal development with a start and ending state.
We assume at the beginning, that we have only three branches to identify. First
of all, we aim to determine the endpoints or tips of the branches, which indicate
the start or the end of a differentiation process in biological applications. Defining
a specific data point r ∈ X as a root point, the diffusion pseudotime dpt(r, x)
indicates how long it takes, starting in root r, to reach the point x ∈ X in the
random walk. Maximizing dpt(r, x) with respect to x ∈ X gives the data point,
which is the most distant from r. This point, denoted by r1, can be identified as
the tip of a branch. In order to get the tip r2 of a second branch, we can now
maximizing the DPT distance dpt(r1, x) of the first tip with respect to x. Having
the first two tips r1 and r2, it is possible to determine a third tip by means of the
triangle inequality

dpt(r1, r2) ≤ dpt(r1, x) + dpt(x, r2). (4.4)

Maximizing the length of the path from r1 to r2 via point x leads to the endpoint
of a third branch:

r3 = arg max
x∈X\{r1,r2}

dpt(r1, x) + dpt(x, r2) = arg max
x∈X\{r1,r2}

2∑
j=1

dpt(rj , x)3.

Having the endpoint of a branch, we aim to determine the other end of the branch,
as well. We call this end a starting point4 or a branching point. It is usually at
a fork of several branches. All the data points, which are on the path between
endpoint and branching point, can then be assigned to this branch.
For this, we first order the data set X for each i ∈ {1, 2, 3} according to the DPT
distance with respect to tip ri. In mathematical notation, we define the ordering

X (i) := [x(i)
1 , . . . , x(i)

n ] (4.5)

with x
(i)
j ∈ X such that

dpt(ri, x(i)
j ) ≤ dpt(ri, x(i)

l )
3For the last equation, we used the symmetry of the DPT distance.
4The name of a starting point or endpoint of a branch is confusing here. In fact, we do not

know where the differentiation process starts and where it ends by considering solely the data. A
temporal sorting of the cells in the correct direction is not possible via a data visualization or
a DPT analysis. However, we usually have preliminary information about the developmental
stages of the cells, so that we can correctly date the two ends of the branches, afterwards.
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for all j ≤ l, j, l ∈ {1, . . . , n}5. Then, for each j ∈ {1, 2, 3}\{i}, we define a vector
of DPT distances with respect to rj , sorted according to the ordering X (i):

Oi,j := [dpt(rj , x(i)
1 ), . . . , dpt(rj , x(i)

n )].

In order to identify a starting point of a branch i, we make use of the correlations
between the pseudotime orderings Oi,j of the other two branches j 6= i: The
orderings of the two branches will only correlate on the third branch i. As
correlation measure we use Kendall’s tau:

Definition 8 (Kendall’s tau6). Let (x, y) = {(xi, yi)}ni=1 a set of pairs with
x1 ≤ x2 ≤ · · · ≤ xn be given. Let

• C be the number of concordant pairs, i.e. xi < xj and yi < yj,

• D be the number of discordant pairs, i.e. xi < xj and yi > yj,

• TY be the number of ties in y, i.e. xi < xj and yi = yj and

• TX be the number of ties in x, i.e. xi = xj and yi 6= yj

for j ∈ {i + 1, . . . , n}, i ∈ {1, . . . , n − 1}7. Then, Kendall’s tau τ ∈ [−1, 1] is
defined by

τ(x, y) := C −D√
(C +D + TX)(C +D + TY )

.

For j1, j2 ∈ {1, 2, 3} \ {i}, j1 6= j2 and x ∈ X we define

C
(i)
j1,j2

(x) := τ
(
Oi,j1 [1 : ind(i)(x)], Oi,j2 [1 : ind(i)(x)]

)
−τ

(
Oi,j1 [ind(i)(x) + 1 : n], Oi,j2 [ind(i)(x) + 1 : n]

)
,

(4.6)

where ind(i)(x) denotes the index of x in the vector X (i)8. The starting point ci
of branch i can then be determined by

ci = arg max
x∈X

C
(i)
j1,j2

(x)9.

Finally, having branching and ending point of the branch i, the branch can be
given by the points

Bi = {x ∈ X |dpt(ri, x) ≤ dpt(ri, ci)}
= X (i)[1 : ind(i)(ci)].

Having determined all three branches, there are surely data points, which remain
unassigned. These data points are denoted in [HBW+16] as undecided, which, in
biological applications, are cells nearing a decision for a differentiation path.

5Note that, by definition of X (i), it holds for the first entry x(i)
1 = ri.

6This is the tau-b-version of Kendall’s tau which accounts for ties.
7The last case, where a tie occurs in x and in y, i.e. xi = xj and yi = yj , is not accounted in

τ .
8The notation Oi,j [k1 : k2] means, that we take the k1-th entry up to the k2-th entry of the

vector Oi,j .
9Note that for branch i, j1 and j2 are uniquely specified in the case of three branches, apart

from transposition.
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4.2.1 Direct Extension

In order to separate more than three branches, Haghverdi et al. in [HBW+16]
propose to determine iteratively subbranches of already found branches. However,
this approach has one decisive disadvantage: The user has to choose manually
which branches to separate further. This means, that the user needs information
on the number and the location of meaningful subbranches. We strive to alter
the DPT analysis in such a way, that we can directly determine k ≥ 3 branches.
To this end, we need first to extend the approach for finding endpoints of more
than three branches, i.e. we search for tips r1, . . . , rk for k ≥ 3. Let the first tips
r1 and r2 computed as above. To determine tip ri for i ≥ 3, we consider the DPT
distances between the already found tips and use the triangle ineqaulity for a
point x ∈ X :

i−1∑
j=1

i−1∑
l=j+1

dpt(rj , rl) ≤
i−1∑
j=1

i−1∑
l=j+1

dpt(rj , x) + dpt(x, rl)

=
i−1∑
j=1

i−1∑
l=j+1

dpt(rj , x) + dpt(rl, x)

=(i− 2)
i−1∑
j=1

dpt(rj , x).

Note, that this is a generalization of equation 4.4. Analogously, we determine tip
ri as

ri = arg max
x∈X\{r1,...,ri−1}

i−1∑
j=1

dpt(rj , x).

The complete algorithm for endpoint identification is given below.

Algorithm 4 Endpoint identification
Input: DPT distance dpt : X × X → R, number k of endpoints, root point
r ∈ X
Output: endpoints r1, . . . , rk
r1 ← arg max

x∈X
dpt(r, x)

r2 ← arg max
x∈X\{r1}

dpt(r1, x)

for i = 3, . . . , k do
ri ← arg max

x∈X\{r1,...,ri−1}

∑i−1
j=1 dpt(rj , x)

end for

In order to receive the starting point of a branch i for i ∈ {1, . . . , k}, we define
possible candidates

ci,j1,j2 := arg max
x∈X

C
(i)
j1,j2

(x)

for j1, j2 ∈ {1, . . . , k} \ {i}, j1 6= j2, where C(i)
j1,j2

(x) is defined as in 4.6. Sub-
sequently, we choose the candidate with the smallest index according to the
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ordering X (i):
ci = arg min

ci,j1,j2

ind(i) (ci,j1,j2) .

Finally, we give the complete extended DPT analysis algorithm:

Algorithm 5 DPT analysis algorithm
Input: data set X , number k of branches, root point r ∈ X , s ≤ n
Output: branches B1, . . . , Bk
Compute the first s eigenvalues {λl}sl=1 and eigenvectors {ψl}sl=1 of transition
matrix P computed in algorithm 1.
dpt2(x, y)←

∑s
l=2

(
λl

1−λl

)2
(ψl(x)− ψl(y))2 for x, y ∈ X

Compute the endpoints r1, . . . , rk with algorithm 4,
for i = 1, . . . , k do

Compute the ordering X (i) according 4.5.
for all j1, j2 ∈ {1, . . . , k} \ {i}, j1 6= j2 do

Compute C(i)
j1,j2

(x) for all x ∈ X according to 4.6.
ci,j1,j2 ← arg max

x∈X
C

(i)
j1,j2

(x)

end for
ci ← arg min

ci,j1,j2

ind(i) (ci,j1,j2)

Bi ← X (i)[1 : ind(i)(ci)]
end for

4.3 Experiments

Spectral Clustering

Since diffusion maps is a spectral embedding method, spectral clustering seems
to be a natural choice for finding clusters in the data. In the classical version of
spectral clustering, one uses k eigenvectors in order to find k clusters. This means,
that the method expects for each eigenvector to represent a cluster. However, in
practical applications, this does not have to be the case. Particularly, in diffusion
maps, the first trivial eigenvector does not contain any information and can be
neglected in the clustering method. Theoretically, a more meaningful modification
of the spectral clustering algorithm would be to choose the number of clusters
and the number of eigenvectors, separately. However, it is useful to keep the
number of eigenvectors still small, since the most eigenvectors rather represent
noise. Thus, nevertheless, taking k − 1 eigenvectors for k clusters as in algorithm
3 results in practice to appropriate cell clustering.
As an example, we consider the Guo data. For the diffusion maps embedding, we
use the classical Gaussian kernel with global bandwidth σ = 10. To apply the
spectral clustering algorithm with k-means, we first need to determine the number
of clusters. For this, we use the presented method from [BK17], considering the
largest eigenvalues of the transition matrix and determining the spectral gap. In
figure 4.1, the 20 largest eigenvalues of the transition matrix are shown for the Guo
data set. The largest gap is between the 7-th and 8-th eigenvalue, therefore we
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Figure 4.1: The first 20 eigenvalues of the transition matrix for the Guo data,
using the Gaussian kernel with σ = 10.

Figure 4.2: Result of the spectral clustering algorithm 3 using k-means for the
Guo data.

choose k = 7 clusters to find. Considering the result in figure 4.2 and comparing
the clustering to the differentiation development of the Guo data in figure 3.3, we
can recognize the correctly found lineages TE (the blue cluster), ICM (the violet
cluster), EPI and PE (the orange and brown cluster)10. The green cluster can
be interpreted as a decision-making stage for the TE and ICM branch. However,
the segregation of data points into a red and a pink cluster is biologically less
meaningful. Here, the cells represent a repeated cell division from the 2-cell to the
16-cell stage. One could summarize this process under one cluster. Consequently,
determining 6 clusters instead of 7, seems biologically to be the best choice. In
fact, the trivial eigenvector corresponding to the largest eigenvalue, that is always
1, does not contain any information about the clusters. Therefore, it would be
more meaningful not to count the first eigenvalue, which would lead to 6 clusters
instead of 7. Besides, as an alternative, one could consider the second gap in
figure 4.1, which leads to 5 clusters using the original count.
The result of spectral clustering for 5 and 6 clusters can be found in figure 4.3.
On the left plot in figure 4.3, one can see, that the splitting of the ICM, PE and
EPI lineage is not succesfully revealed (considering the orange and violet cluster).
Thus, 6 is the minimal number of clusters to reveal the division of the ICM cell
group into the two subbranches. The result, using 6 clusters, is therefore the most

10Which of the two clusters does represent the PE or the EPI lineage cannot be determined
considering only the plot.
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Figure 4.3: Spectral clustering with 5 and 6 clusters for the Guo data.

Figure 4.4: The first 20 eigenvalues of the transition matrix for the Moignard
data, using the Gaussian kernel with σ = 10.

appropriate.
We noticed, that choosing the correct number of clusters is a difficult task. In
the case of the Moignard data, determining the largest gap does not lead to a
reasonable result, at all. The largest gap is between the second and the third
eigenvalue, as one can see in figure 4.4. Further gaps are between the first and
second eigenvalue, between the 4-th and 5-th eigenvalue and finally between the
6-th and 7-th eigenvalue. Classifying the data set into 2 groups, according to the
largest gap, is too vague for our purpose.
In figure 4.5, we performed spectral clustering using different numbers of clusters
for the Moignard data set. For the evaluation of the plots for the Moignard data,
we take the expected cell development and the desired cell grouping in 3.3 and in
the last picture of figure 4.5 into account. In the first plot, where three clusters
are determined, we can interpret the three clusters as the HSC (the green cluster),
PreMegE (the orange cluster) and a third branch (the blue cluster), summarizing
the LMPP, CLP and GMP lineages. In the second plot, where four clusters
are determined, the CLP cluster (the green cluster) is additionally identified.
Subsequently, choosing five clusters to determine, leads to the separation of the
LMPP and CLP lineage. The red cluster represents the CLP subbranch. Finally,
the additional sixth cluster (the red cluster) in the fourth plot can be interpreted
as a decision-making stage between the PreMegE (the orange cluster) and LMPP
lineage (the brown cluster). Thus, taking 5 or 6 clusters is, from a biological point
of view, the most appropriate choice. This corresponds to the small gap between
the 6-th and 7-th eigenvalue. Consequently, taking the last clear gap proves to be
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Figure 4.5: Spectral clustering using k-means with 3, 4, 5 and 6 clusters for the
Moignard data. The last picture is a visualization of the Moignard data, labeled
according to the original cell types .
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Figure 4.6: Spectral clustering with DBSCAN for the Guo data, using 10 non-
trivial eigenvectors and ε = 0, 03 for clustering.

more appropriate for our purposes.
In order to overcome the difficulty of choosing the correct number of clusters,
it is useful to consider clustering methods, which find the number of clusters,
automatically. A common algorithm for this is DBSCAN, which is a data density-
based approach. In order to use algorithm 3 with DBSCAN, we only need to
choose the number of eigenvectors for clustering. Since the most eigenvectors
contain disturbances, it is useful to take a small number of eigenvectors, e.g. 10.
Figure 4.6 demonstrates the performance of spectral clustering for the Guo data,
using DBSCAN as clustering method. In order to obtain this result, we had to
carefully choose the parameter ε, defining the maximum distance between two
data points for them to be considered as in the same neighbourhood. Using
ε = 0, 03, DBSCAN determines seven clusters and identifies all desired lineages of
the Guo data. Moreover, DBSCAN points out noisy data points that are marked
in grey here (and form the zeroth cluster).
In the Guo data set, the different cell groups are spatially separated, such as the
TE lineage, and form areas of high data density. Thus, in the case of the Guo
data, DBSCAN leads to a reasonable result. However, naturally, cell stages in
differentiation data move smoothly towards other cell groups, i.e. without spatial
separation. Consequently, we did not find a choice of parameters to obtain a
reasonable result for the Moignard data, when using DBSCAN. For the entire
data set, the density of the points is similar, and there are no areas of low density
between the cell groups. Thus, DBSCAN cannot separate the correct clusters.
In fact, clusters in differentiation data are not characterized by their data density,
but by their direction in space. In particular, the cell groups have rather the
shape of branches than of round point clouds. Most clustering methods, such as
k-means, determine clusters as areas where the distance of each pair of samples is
small. However, the distance between two data points in a branch-shaped group
can be very large.
We illustrate the problem using the Goettgens data set. It describes the differenti-
ation of cells towards two different development branches. For the diffusion maps
embedding, we use the local Gaussian kernel Kk with k = 5. As clustering method,
we choose k-means. The spectral gap in the plot of the eigenvalues in figure 4.7 is
obviously between the third and the fourth eigenvalue. Thus, depending on the
count of the eigenvalues, we need to determine 2 or 3 clusters.
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Figure 4.7: Spectral clustering with k-means for the Goettgens data, using the
local Gaussian kernel Kk with k = 5. The upper left plot is a visualization of
the Goettgens data, labeled according to the original cell types. The upper right
picture shows the first 20 eigenvalues of the transition matrix. The lower plots
demonstrates the clustering result with 2 and 3 clusters.

From a biological point of view, each cluster must represent a differentiation
branch. However, this is not the case, considering the resulting plots in figure 4.7.
Instead of identifying a branch as a cell group, the separation of two clusters is
done in the middle of the branches. Thus, distance-based as well as density-based
clustering methods are not appropriate enough for determining branches in cell
differentiation data. In comparison, we now consider another method for group
detection, using diffusion maps as preprocessing step, that has been developed
especially for branch identification, called diffusion pseudotime analysis.

Diffusion Pseudotime Analysis

First of all, we consider the classical DPT analysis from [HBW+16], determining
three data branches. For this, the diffusion pseudotime distance dpt(x, y) has to
be approximately computed for all cells x, y ∈ X . For this, we need to choose an
appropriate number of summands for approximating the sum in 4.3. Similar to
the spectral clustering methods, it is useful to take a small number of terms in
order to avoid disturbances, e.g. the first 10 summands.
The figure 4.8 shows the result of the DPT method, determining three branches,
for the Goettgens data. In the left picture, one can see the correctly determined
endpoints of the three branches. In contrast to the result of spectral clustering
in figure 4.7, DPT identified the branches as cell groups correctly. The green
branch represents the less differentiated cells moving either towards the blue or
the orange cell branch. Moreover, DPT determined unassigned cells (the grey
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Figure 4.8: DPT analysis for the Goettgens data. We determined three branches
including undecided cells, using the same settings as in figure 4.7 for the initial
diffusion maps embedding. The left plot demonstrates the calculated tips as red
points.

cells in the right plot), which is meaningful from a biological point of view. They
represent cells in a decision-making stage.

Runtime Analysis

The two most time-consuming steps in the DPT analysis algorithm is the com-
putation of the DPT distances and the correlations. Our implementation is
based on [HBW+16], where an efficient recursive calculation of the correlations is
presented. For data sets with more than 1000 cells, the computation of the DPT
distance is reduced by using principal component analysis (PCA): Instead of using
the complete matrix M ∈ Rn×n for calculating the DPT distances, we reduce the
number of columns to 50 using PCA and obtain an approximation M̃ ∈ Rn×50.

DM DPT DPT with PCA
Guo (428 cells × 48 genes) 0,04 0,31 -
Moignard (597 cells × 21 genes) 0,10 0,57 -
Goettgens (3934 cells × 42 genes) 3,24 53,50 10,99
Yan (90 cells × 20214 genes) 0,43 0,46 -
Mass (408 cells × 8657 genes) 2,28 2,52 -
Klein (2717 cells × 2047 genes) 23,76 41,32 27,81
Paul (2730 cells × 3451 genes) 39,32 57,06 43,38

Figure 4.9: Runtime analysis of the DPT analysis algorithm for determining three
branches using 10 components for calculating the DPT distances (in seconds).

In order to compare the computation times, we determined three branches for
all data sets using the classical Gaussian kernel with σLAF as bandwidth and 10
components for calculating the diffusion pseudotime distance. In figure 4.9, the
total computations times for the DPT analysis without or with the use of PCA
(only for data sets with more than 1000 cells) is listed. Moreover, in the first
column, the runtime of diffusion maps embedding in 10 dimensions is given, which
is included in the total runtime of the DPT analysis in the other columns. Since
the genes are only used for the Euclidean distance computations in diffusion maps,
the remaining runtime of the DPT analysis strongly depends on the number of
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cells. For instance, the Goettgens data set with a high amount of cells, but a low
amount of genes, takes about 20 seconds less for the diffusion maps embedding
than the Klein data. However, the Klein data needs less computation time for the
complete DPT analysis than the Goettgens data, due to the lower amount of cells.
Considering the Yan, Mass, Klein and Paul data, the computation time of the
DPT analysis is dominated by the calculation of the diffusion maps embedding,
taking more than the half of the total runtime of the DPT analysis. Using the
PCA preprocessing step for matrix M has a significant impact on the runtime
of the DPT analysis. In particular, the calculation time of the Goettgens data is
significantly improved. The improvement for the Klein and Paul data is lower
than for the Goettgens data, since the runtime of diffusion maps dominates the
total computation time, due to the high amount of genes.

Extended DPT Analysis

For data sets with more than three branches, we proposed an extension of the
diffusion pseudotime method, summarized in algorithm 5, for directly determining
the branches. However, for using the algorithm 5, we need to pass the number
of branches as input. In order to choose the correct number of branches, we
use the same idea as for spectral clustering: Instead of determining the spectral
gap in the sequence of eigenvalues {λl}nl=1 of the transition matrix P , used in
spectral clustering, we consider the eigenvalues of the matrix M from 4.2, used
for defining the diffusion pseudotime distance. The eigenvalues of the matrix M
can be explicitly given by {λl/(1− λl)}nl=2

11.
To test the extended method, we perform a DPT analysis for the Guo data
set. Initially, we consider the first 20 eigenvalues of the matrix M in figure 4.10.
Notice that the minimal number of branches to determine with algorithm 5 is
3. Thus, we search the largest gap from the third eigenvalue. For the Guo data,
it is between the 4-th and 5-th eigenvalue, i.e. we choose 4 branches. In fact,
choosing 4 branches to compute, is the correct number of branches for the Guo
data, as can be seen in figure 4.11: All calculated endpoints are actually at the
top of a branch. This means, the extended algorithm 4 for endpoint identification
succesfully determined the fourth tip.
The identified branches of the Guo data by algorithm 5 is given in figure 4.12.
The blue, red and green branch can be identified as the TE, PE and EPI lineages.
The grey undecided cells near the red and green branch can be understood as the
ICM cell group. In fact, the ICM stage can be interpreted as a decision-making
stage for the EPI and PE branch. The remaining orange branch represents the
initial cell division of the mouse embryonic stem cells from the 2-cell stage to the
16-cell stage. In contrast to spectral clustering using k-means and DBSCAN, in
figure 4.2 and 4.6, DPT summarizes this cell development as one differentiation
branch instead of several clusters. Thus, from a biological point of view, the DPT
analysis is the most meaningful method for group detection in the case of the
Guo data.
As another example, we consider the Moignard data set. For the diffusion maps
embedding, we use, as before, the Gaussian kernel with global bandwidth σ = 10.

11Note that the first eigenvalue is λ2(1− λ2) due to the construction of the matrix M .
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Figure 4.10: The first 20 eigenvalues of the matrix M from 4.2 for the Guo data.

Figure 4.11: The 4 endpoints, calculated with algorithm 4 for the Guo data.

Figure 4.12: The result of the DPT analysis algorithm for the Guo data.
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Figure 4.13: The first 20 eigenvalues of the matrix M from 4.2 for the Moignard
data.

Figure 4.14: DPT analysis for the Moignard data. The left plot shows the resulted
branch identification by DPT. The right plot is a visualization of the Moignard
data, labeled according to the original cell types, for comparison.

We expect DPT to determine four groups (cf. figure 3.3): the PreMegE, CLP and
GMP branch as well as the HSC cell group. The LMPP group is a decision-making
stage and is expected to be represented by undecided cells. However, figure 4.13,
showing the first 20 eigenvalues of the matrix M , proposes to determine only
three branches: The largest gap from the third eigenvalue is between the third
and the fourth eigenvalue while the gap between the 4-th and 5-th eigenvalue is
rather small. One reason for that could be the greater distribution of the data
(cf. the right picture of figure 4.14 showing a visualization of the Moignard data).
The HSC cell group represents a data cloud rather than a clear branch. Thus,
a clear branch identification of the Moignard data is more difficult than for the
Guo data set.
In order to obtain a reasonable result for the Moignard data, we used the symmetric
transition matrix Psym in 3.3 instead of P and only 5 terms for constructing the
diffusion pseudotime distance. The figure 4.14 shows the result of the DPT analysis
for 4 branches. The red cluster can be identified as the HSC group, the green
and blue branch represent GMP and CLP, and the orange branch is PreMegE
(cf. figure 3.3). Noteworthy is the majority of unassigned cells. Compared to the
right data visualization, labeled according to the original cell types, the amount
of data points assigned to the red and orange branch, i.e. the HSC and PreMegE
cell group, is too small. The reason lies in the determination of the branching
points by the DPT algorithm: Branching points are determined as data points,
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where the orderings of two branches switch from an anticorrelated to correlated
behaviour. When dealing with more distributed data or data affected by noise,
the switching point can occur much earlier in the data ordering according to the
branch. Thus, DPT is unfortunately affected by disturbances in the case of the
Moignard data.
DPT analysis for further data sets including a toy data set with 5 branches can
be found in the appendix A.3.

Conclusion

All in all, we found that, for group detection in cell differentiation data, DPT
analysis is more useful than spectral clustering. Distance-based as well as density-
based clustering techniques are in general not suitable to determine differentiation
branches. In order to directly identify more than 3 branches, we introduced a
modification of the DPT analysis with appropriate results. Moreover, we proposed
an approach to choose the number of branches, similar to the approach from [BK17]
for spectral clustering. However, the DPT method seems to perform well only for
clearly delineated branches.
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5 Consideration of Censored Data

In biological data, we need to account for so-called censored values. In censored
data, a certain range of numbers is missing in the data set due to experimental
reasons. In PCR data sets, values above a certain limit of detection (LoD) cannot
be measured, i.e. the values, which would be above the LoD, remain undetected.
Censored values have to be distinguished from real missing values, where the
experiment fails to detect the value during the procedure. So far, biologists usually
remove cells with real missing values from analysis and set all censored values to
the fixed value LoD. However, the high amount of censored values in a PCR data
set, all fixed to one number, can disturb the analysis.
Thus, we will present two approaches to account for censored values in the diffusion
maps method. The first approach, proposed in [HBT15], directly estimates
the classical Gaussian kernel for censored data. The second approach, based
on [EDVL13], estimates Euclidean distances instead and can be applied to general
distance-based kernel functions.
Notice, that the approaches can be applied to real missing values, as well. However,
they do not use information from the detected data values, which, in the case of
real missing values, would be relevant.

5.1 Gaussian Kernel Estimation

Here, we present an approach from [HBT15] for directly estimating the kernel
function Kσ(x, y) = exp(−‖x−y‖22/(2σ2)) for a global parameter σ for a censored
data set. To this end, we use the intepretation of the kernel as the interference of
two Gaussian wave functions, as we presented in 3.6. For x ∈ X , let xg ∈ R be
the entry of gene g ∈ G and G be the set of all measured genes in the data set X .
We can write the Gaussian kernel Kσ as the product of Gaussian kernels of the
gene entries:

Kσ(x, y) = exp
(
−‖x− y‖

2
2

2σ2

)

=
∏
g∈G

exp
(
−(xg − yg)2

2σ2

)

=
∏
g∈G

∫ ∞
−∞

Yxg(z)Yyg(z)dz1

When xg (or yg, respectively) is a censored value, the idea is to approximate
the Gaussian wave function Yxg(z) by an indicator function. To this end, we
assume the value xg to be between the limit of detection M1 and a maximal value
M2 > M1. Consequently, we approximate the wave function by

Yxg(z) ≈
1√

M2 −M1 + 2σ
χ[M1−σ,M2+σ] =: Ỹxg(z)

1Notice that, according to the dimension of xg and yg, Yxg and Yyg are here defined on R.

43



where the factor in front is for normalization. Subsequently, we have to consider
three different cases:

1. When the entries xg and yg are definite, then the interference can be given as
the original one:

∫ ∞
−∞

Yxg(z)Yyg(z)dz = exp
(
−(xg − yg)2

2σ2

)
.

2. When both entries xg and yg are not detected, then, due to the normalization,
the interference of the two approximate wave functions is 12:∫ ∞

−∞
Ỹxg(z)Ỹyg(z)dz = 1.

3. When one entry, e.g. xg, is known and the other entry yg is not detected, then
we get ∫ ∞

−∞
Yxg(z)Ỹyg(z)dz =∫ M2+σ

M1−σ

1√
M2 −M1 + 2σ

( 2
πσ2

)1/4
exp

(
−(z − xg)2

σ2

)
dz

= 1√
M2 −M1 + 2σ

(
πσ2

8

)1/4 (
erfc

(
M1 − σ − xg

σ

)
− erfc

(
M2 + σ − xg

σ

))
.

We denote the resulted (approximated) interference for any two entries xg and yg
as Ixg ,yg . The complete Gaussian kernel estimation algorithm is given as follows:

Algorithm 6 Gaussian kernel estimation algorithm
Input: Censored data set X , M1, M2, bandwidth σ > 0
Output: Estimation K̃ for the Gaussian kernel Kσ(x, y)
for all x ∈ X do

for all y ∈ X do
K̃(x, y)← 1
for all g ∈ G do

Compute Ixg ,yg according to one of the three cases as above.
K̃(x, y)← K̃(x, y)Ixg ,yg

end for
end for

end for

Notice, that the algorithm 6 can be used in combination with the bandwidth
selection technique by [HBT15].

2Notice, that, for definite entries, the interference is 1, if and only if both entries are identical.
This means, that here we indirectly assume the censored entries to be (approximately) identical.
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5.2 Euclidean Distance Estimation

The previously presented approach directly estimates the Gaussian kernel for cen-
sored data. In particular, the method does not need to define Euclidean distances
on censored data. However, for computing Lafon’s rule or local bandwidths, a
notion of Euclidean distances on censored data is needed. Thus, we present an
approach for estimating Euclidean distances between data points with censored
(or missing) values, based on [EDVL13].
For any x, y ∈ X , we aim to compute the Euclidean distance ‖x − y‖2. Let
Mx ⊂ {1, . . . , d} be the set of indices of missing components (i.e. the set of miss-
ing gene entries) for x ∈ X . Then, we can split the squared Euclidean distance in
the following way:

‖x− y‖22 =
∑

g 6∈Mx∪My

(xg − yg)2 +
∑

g∈Mx\My

(xg − yg)2

+
∑

g∈My\Mx

(xg − yg)2 +
∑

g∈Mx∪My

(xg − yg)2.

The idea is now to model the missing components of a cell data point x ∈ X as
random variables Xg for g ∈Mx. Then, the expectation of the squared distance
can be given by3

E[‖x− y‖22] =
∑

g 6∈Mx∪My

(xg − yg)2 +
∑

g∈Mx\My

(E[Xg]− yg)2 + V ar[Xg]

+
∑

g∈My\Mx

(xg − E[Yg])2 + V ar[Yg]

+
∑

g∈Mx∪My

(E[Xg]− E[Yg])2 + V ar[Xg] + V ar[Yg].

If we now define the variables

x′g :=
{

E[Xg] if g ∈Mx

xg otherwise (5.1)

for all g ∈ G and
sx :=

∑
g∈Mx

V ar[Xg]

for all x ∈ X , we can rewrite the expectation as

E[‖x− y‖22] = ‖x′ − y′‖22 + sx + sy.

Consequently, it suffices to estimate the expectation E[Xg] and the variance
V ar[Xg] of the censored values. Unfortunately, we do not have any knowledge
about the distribution of the missing components. If we assume Xg to be uniformly
distributed between M1 and M2, the expectation and variance can be explicitly
given by

E[Xg] = 1
2(M1 +M2), V ar[Xg] = 1

12(M2 −M1)2.

3Here we use the linearity of the expectation and the definition of the variance. For details,
we refer to [EDVL13].
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Since the variance is the same for all censored values, we can rewrite the sum in sx
as the variance V := V ar[Xg] multiplied with the number of missing components
in x:

sx = V |Mx|.

Finally, the algorithm, assuming uniformly distributed censored values, is given
as follows:

Algorithm 7 Euclidean distance estimation algorithm
Input: Censored data set X , M1, M2
Output: Estimation d(x, y) for the Euclidean distances ‖x−y‖2 for all x, y ∈ X

E← 1
2(M1 +M2)

V ← 1
12(M2 −M1)2

for all x ∈ X do
sx ← V |Mx|
Define x′ ∈ R|G| according to 5.1.

end for
for all x ∈ X do

for all y ∈ X do
d2(x, y)← ‖x′ − y′‖22 + sx + sy

end for
end for

5.3 Experiments

For the analysis of the two methods, we consider three PCR data sets, the Guo
data, the Moignard data and the Goettgens data set. All three data sets have a
high amount of censored values. After data cleaning, as described in chapter 2,
the Guo data set has 5.087 censored values out of 20.544 (24,8 %), the Moignard
data 3.269 censored values out of 12.537 (26,1 %) and the Goettgens data 73.460
censored values out of 165.228 (44,5 %). In figure 5.1, the positions of censored
values in the data sets are illustrated. Notice that almost each cell contains

Figure 5.1: Illustration of the positions of the censored values for the Guo data
(left), the Moignard data (middle) and the Goettgens data (right). The vertical
axis represents the cells, and the horizontal axis the genes. The white boxes are
detected values and the black ones censored values.
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undetermined gene values. In particular, there are genes, where very few cells
have detected a value.

Gaussian Kernel Estimation

In order to account for censored values, we consider the Gaussian kernel estimation
approach, first. For this, we renounced the data normalization in each case and
applied the kernel estimation method on the unnormalized data. We chose
the limit of detection for M1 (M1 = 28 for Guo and Moignard and M1 = 25
for Goettgens) and set M2 = 40 for all data sets, which is a meaningful upper
limit, from a biological point of view. Now, we compare three cases: First, we
performed a diffusion maps embedding without accounting for censored values,
i.e. the censored values were fixed to one value and the data was normalized,
as described in chapter 2. There, we selected the bandwidth σ by the approach
from [HBT15] for the classical Gaussian kernel. Note that for all three PCR data
sets, the bandwidth σ = 10 was selected. Afterwards, we used the Gaussian kernel
estimation approach on the unnormalized data using the fixed bandwidth σ = 10.
Finally, we applied the approach from [HBT15] for selecting the bandwidth σ in
combination with kernel estimation.
The resulted data visualizations can be seen in figure 5.2 and 5.3. In the case
of the Moignard and Goettgens data, σ = 10 was suggested by the approach
from [HBT15], using kernel estimation. Therefore, we left out one plot for each
data set. The plots show that the kernel estimation approach generally results
in appropriate data visualizations for all three data sets. Some structures are
slightly more stressed when considering the censored data, for instance the two
subbranches PE and EPI of the Guo data. In particular, when using a selected
bandwidth, in the right plot, the two subbranches are clearly separated in space.
In the case of the Moignard data, the CLP and GMP branch are more highlighted
in contrast to the HSC cell group, when using kernel estimation. However, the
Goettgens data set has the same structure with or without kernel estimation.
Despite appropriate results in data visualization, the Gaussian kernel estimation
has several disadvantages. One problem is the high runtime of the approach in
contrast to the remaining diffusion maps embedding. For estimating the kernel for
a fixed bandwidth in the case of the Goettgens data, for instance, we need about
two and a half minutes. However, just approximately 2 seconds are needed for
the remaining computation. Using additionally the bandwidth selection technique
from [HBT15], where for each candidate a kernel estimation has to be performed,
a diffusion maps embedding with kernel estimation for the Goettgens data takes
about one hour (cf. table 5.5). The main reason is that we need to consider
several cases for each data pair, which costs a lot of time. Another problem is the
low flexibility of the approach. It is developed only for estimating the classical
Gaussian kernel using a global bandwidth. Applying Lafon’s rule or translating
the kernel estimation approach to Gaussian kernels with local bandwidths is not
(directly) possible. For defining local bandwidths using k-th nearest neighbour
distances, a notion of Euclidean distances on censored data is needed. Therefore,
we proposed an Euclidean distance estimation method, based on [BK17], that we
will investigate in the following.
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Figure 5.2: Comparison of the data visualization using the Gaussian kernel
estimation approach to the visualization without accounting for censored values
for the Guo data. On the one hand, the censored values are fixed to one value
and diffusion maps embedding is performed on the normalized data, using the
bandwidth σ = 10 for the classical Gaussian kernel (left plot). On the other hand,
kernel estimation is performed on the unnormalized data with a fixed bandwidth
σ = 10 (middle plot) and with σ selected by the approach from [HBT15] (right
plot).

Figure 5.3: Comparison of the data visualization using the Gaussian kernel
estimation approach to the visualization without accounting for censored values
for the Moignard data (above) and the Goettgens data (below). The left plots
show the result without considering censored values, the right plots demonstrate
the result using the kernel estimation approach. The approach from [HBT15]
suggested the bandwidth σ = 10 for all plots.
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Euclidean Distance Estimation

We compare the performance of the distance estimation approach to the kernel
estimation method with respect to data visualization. For the Euclidean distance
estimation algorithm we use the same values for M1 and M2 as for the kernel
estimation approach. After estimating the Euclidean distances, we calculate
the classical Gaussian kernel, using a bandwidth, selected by the approach from
[HBT15]. In figure 5.4, the results are presented. The data visualizations in the

Figure 5.4: Comparison between kernel estimation (left) and distance estimation
approach (right) for the (unnormalized) Guo data (above), Moignard data (middle)
and Goettgens data (below). For all plots, we have used a global bandwidth,
selected by the approach from [HBT15] for the classical Gaussian kernel.

left plots, where kernel estimation is used, and in the right plots, where distance
estimation is applied, look rather similar. In the case of the Guo and Goettgens
data set, the data points are more affected by small disturbances using the
distance estimate. Nevertheless, the results of the distance estimation approach
are comparable to the kernel estimation approach.

Comparison of the Computation Times

In figure 5.5, the computation times for a diffusion maps embedding in three
dimensions using the kernel estimation approach and the distance estimation
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KE σ fix KE σ̂ DE σ fix DE σ̂

Guo 2,56 sec. 54,48 sec. 0,10 sec. 1,12 sec.
Moignard 2,23 sec. 47,13 sec. 0,19 sec. 1,47 sec.
Goettgens 2,78 min. 64,08 min. 8,12 sec. 34,55 sec.

Figure 5.5: Runtime analysis of the kernel estimation (KE) and distance estimation
(DE) algorithm for diffusion maps embedding in three dimensions using a fixed
bandwidth σ and a bandwidth σ̂ selected by the approach from [HBT15].

method are listed for the three data sets. On the one hand, we measured the time
using a fixed bandwidth (σ = 10). On the other hand, we performed the bandwidth
selection technique by [HBT15] to choose an appropriate parameter (σ̂). In fact,
the distance estimation procedure takes much less computation time than the
kernel estimation method. For the Goettgens data, we needed approximately half
a minute for the embedding with bandwidth selection using distance estimation in
contrast to an hour with kernel estimation. Notice, that the distance estimation
algorithm has to be performed only once for selected bandwidth, whereas the
kernel estimation has to be computed for each bandwidth candidate, separately.
Nevertheless, for fixed bandwidth, diffusion maps embedding using distance
estimation is faster than using kernel estimation, as well.

Conclusion

In summary, we proposed a distance estimation approach for considering censored
data as an alternative method to the introduced kernel estimation technique
by [HBT15], which is faster and more flexible than the old one. With the
estimated Euclidean distances, it is now possible to calculate Lafon’s rule for
selecting the bandwidth or apply Gaussian kernels with local bandwidths for
embedding. A DPT analysis using a distance estimate in order to account for
censored values can be done, as well (cf. appendix A.4).
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6 Conclusion and Outlook

Conclusion

In this work, we investigated, how diffusion maps as a nonlinear dimensionality
reduction method can be used for the analysis of biological data. We were able
to confirm that diffusion maps is well suited to depict the particular structure
of biological data. In order to detect and separate cell groups in the data, we
considered two group detection techniques, based on diffusion maps. Since diffusion
maps is a spectral embedding method, we first investigated spectral clustering as
the most natural method which directly uses the embedding vectors to find clusters
in the data. However, spectral clustering in combination with common clustering
techniques was not able to determine the branch structure of biological data,
correctly. Therefore, we considered the diffusion pseudotime analysis which first
uses the diffusion maps embedding to define a distance measure and afterwards
applies a correlation-based approach in order to identify branches in biological
data. This gave more meaningful results.
As our own contribution, we extended the method of DPT to make it possible to
set the number of branches as input to the algorithm. With this extension, the
DPT analysis algorithm now directly determines a specific number of branches
without manual control by the user. Additionally, we proposed an approach to
find the correct number of branches in the data that can be used as input to the
algorithm.
Finally, we dealt with censored biological data. We proposed a method for
estimating Euclidean distances for censored data which can be inserted in the
kernel function of diffusion maps. This approach proved to be more flexible than
the proposed kernel estimation approach by Haghverdi et al.. Moreover, the
calculation time of the distance estimation method proved to be much lower than
the kernel estimation approach with comparable results in the data visualization.

Outlook

Since the performance of diffusion maps strongly depends on the used kernel
function, it is useful to investigate the influence of other kernel functions on data
visualization and group detection. Parameter-free kernels are of particular interest
as the difficult selection of optimal parameters can be omitted.
So far, we set up the transition matrix of diffusion maps as a completely filled
matrix for all pairs of cells. However, the n2d computational cost can be too high
for biological data with a high number of cells. Computing only the transition
probabilities to the k-th nearest neighbours and set up a sparse transition matrix
can solve this problem. Since the most transition probabilities are anyway very
small, we do not expect a significant deterioration of the results (for a k big
enough) when setting these to zero.
Furthermore, diffusion maps can be combined with multidimensional scaling
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(MDS) by using the diffusion distance for the definition of a stress function to
minimize. A possible realization, called PHATE and investigated for biological
data, can be found in [MvDW+17].
Finally, for further improvement of cell group detection in biological data, single-
cell topological data analysis (scTDA) could be relevant [RCK+17]. Based on
dimensionality reduction, scTDA attempts to reconstruct the tree structure of
differentiation data by building a topological representation of the data.
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A Appendix

A.1 Implementation

The implementation of all algorithms was realized using the python programming
language, version 3.4.4, including numerous python packages, e.g. numpy, scipy,
matplotlib and sklearn. For all dimensionality reduction methods except diffusion
maps and for the clustering techniques k-means and DBSCAN, we used the
algorithms from the machine learning package sklearn. The realization of our
DPT analysis algorithm is based on the implementation by [HBW+16]. For the
kernel estimation approach, we applied the cython language to speed up the
computation.

A.2 Appendix to Chapter 3

In this section, all further plots to chapter 3 can be found.

A.2.1 Comparison to other Dimensionality Reduction Methods

Figure A.1: Embedding of the Moignard data. Diffusion maps and LE are the only
methods, which reveal a clear structure of the data set. However, the diffusion
maps embedding points out the correct differentiation process of the cells in
contrast to the LE embedding, namely the transition of HSC cells into either
PreMegE or LMPP. The subbranch CLP is not revealed by means of any method
(cf. figure 3.8).
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Figure A.2: Embedding of the Goettgens data.

Figure A.3: Embedding of the Yan data. The remarkable observation here is that
diffusion maps is the only method showing two outlier cells from the morulae cell
group, which could indicate a differentiation lineage. However, we need to remark,
that, with only 90 cells and a high amount of genes, the Yan data is the most
susceptible to perturbation.
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Figure A.4: Embedding of the Mass data. The diffusion maps visualization is the
only one with a clear structure due to the denoising effect.

Figure A.5: Embedding of the Klein data.
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Figure A.6: Embedding of the Paul data. The diffusion maps embedding clearly
shows the separation of two branches. However, the DC cell group is additionally
highlighted in several plots, e.g. in ISOMAP, LLE and tSNE (cf. figure A.12).
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A.2.2 Data Visualizations for σLAF and σ̂

Figure A.7: Embedding of the Guo data, using Lafon’s rule (left) and the selection
technique by [HBT15] for the bandwidth σ.

Figure A.8: Embedding of the Goettgens data, using Lafon’s rule (left) and the
selection technique by [HBT15] for the bandwidth σ.
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Figure A.9: Embedding of the Yan data, using Lafon’s rule (left) and the selection
technique by [HBT15] for the bandwidth σ.

Figure A.10: Embedding of the Mass data, using Lafon’s rule (left) and the
selection technique by [HBT15] for the bandwidth σ.

Figure A.11: Embedding of the Paul data, using Lafon’s rule (left) and the
selection technique by [HBT15] for the bandwidth σ.
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A.2.3 Local Gaussian Kernels

Figure A.12: Embedding of the Paul data, using the kernel Kk,a with k = 5 and
a = 10. In contrast to figure A.11, the local Gaussian kernel reveals the DC
branch. This branch can be seen in the ISOMAP, LLE and tSNE embedding in
figure A.6, as well.

A.3 Appendix to Chapter 4

In this section, the results of DPT analysis for further data sets for chapter 4 are
shown.

Figure A.13: DPT analysis for a toy data set with 5 branches. We used 10
components for computing the diffusion pseudotime distance. From the sixth
value, the eigenvalues can be neglected. Here it is useful to choose the number of
branches as the number of the last large enough eigenvalue.
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Figure A.14: DPT analysis for the Yan data. We used 10 components for
computing the diffusion pseudotime distance with the classical Gaussian kernel,
using σ̂ = 15848.9. We determined three branches. Unfortunately, there is no
clear gap considering the eigenvalues.

Figure A.15: DPT analysis for the Klein data. We used 10 components for
computing the diffusion pseudotime distance, the symmetric matrix Psym and
kernel Kk,a with k = 5 and a = 10. There is a gap between the third and the
fourth eigenvalue. Thus, we chose three branches to determine.

Figure A.16: DPT analysis for the Paul data. We used 10 components for
computing the diffusion pseudotime distance and the kernel Kk,a with k = 5 and
a = 10. We determined three branches. There is no clear gap considering the
eigenvalues, but we can neglect them from the fourth eigenvalue.
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A.4 Appendix to Chapter 5

In this section, the results of DPT analysis for the three PCR data sets using the
distance estimation algorithm 7 are demonstrated.

Figure A.17: DPT analysis for the Guo data using distance estimation in order to
account for censored values. Unfortunately, there is no clear gap in the sequence
of eigenvalues.

Figure A.18: DPT analysis for the Moignard data using distance estimation.
We use the Gaussian kernel with bandwidth σLAF , Psym and 5 components for
computing the DPT distance. Although, there is a gap between the 5-th and 6-th
eigenvalue, determining 5 branches instead of 4 does not lead to an appropriate
result.
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Figure A.19: DPT analysis for the Goettgens data using distance estimation in
order to account for censored values.
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