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Abstract
Grains are material regions with different lattice orientation at atomic scale. They can be resolved on material sur-
faces with recent image acquisition technology. Simultaneously, new microscopic simulation tools allow to study
mechanical models of grain structures. The robust and reliable identification and visualization of grain boundaries
- in images both from simulation and from experiments - is of central importance in the field of material surface
analysis. In this work, we compare a variety of variational approaches for grain boundary estimation from mi-
croscopy and simulation images. In particular, we show that grain boundary estimation can be solved by means of
recently introduced convex relaxation techniques. These techniques allow to compute global solutions or solutions
within a known bound of the optimum. Moreover, experimental results both on simulated and on transmission
electron microscopy images confirm that the convex relaxation techniques provide significant improvements of the
estimated grain boundaries over previously employed multiphase level set formulations.

Categories and Subject Descriptors (according to ACM CCS): G.1.6 [Optimization]: Convex Relaxation, I.4.6 [Com-
puter Vision]: Mumford-Shah Segmentation, I.6.6 [Simulation and Modelling]: Simulation Output Analysis

1. Introduction

In materials science, many important material properties can
be deduced from mesoscopic quantities but the available im-
age data lives on the atomic microscale. Thus, it is an im-
portant task in this context to extract mesoscopic quantities
from microscale data. The mesoscopic quantity we focus on
here are so-called grains, i. e. homogenous material regions
with different atomic lattice orientation which are typically
not in equilibrium. On the atomic microscale they are re-
flected in the actual positioning of neighboring atoms. To
this end, image data resolved on atomic scale can be ac-
quired by both numerical simulation models, e. g. the phase
field crystal (PFC) model [EG04], and experimental tools
like transmission electron microscopy (TEM) [KCF∗98].

In this paper, we show that the extraction of grains from
images at atomic scale can be solved by recently developed
convex relaxation techniques. In particular to process im-
ages with more than two grains, the convex relaxation offers
significant advantages compared to the previously employed
multiphase level set method:

1. independency of initialization
2. correct encoding of the Euclidean boundary length

3. solutions within a known bound of the optimum

Furthermore, the resulting numerical algorithms are very
suitable for a GPU implementation and thus allow to pro-
cess a large number of images in reasonable time. For in-
stance, this will be important in the analysis of the temporal
evolution of grains boundaries in experiments and in PFC
simulations.

2. Variational Estimation of Grain Boundaries

In [BRRV08], the identification of grain boundaries is
modeled by a variational formulation in the spirit of the
piecewise constant Mumford–Shah model [MS89]. The
unknowns are a partition of Ω consisting of n regions
Ω1, . . . ,Ωn and associated lattice orientations α1, . . . ,αn.
The corresponding energy functional is

E
[
(α j,Ω j)

n
j=1
]
=

n

∑
j=1

(ˆ
Ω j

ρ(x,α j)dx+
λ

2
Per(Ω j)

)
,

(1)
where Per(A) denotes the perimeter (length of the bound-
ary) of the set A in Ω and the so-called indicator function
ρ(x,α) measures whether an angle α is an appropriate esti-
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mate of the local lattice orientation at a position x ∈ Ω (cf.
Section 2.1).

The well-known but nowadays dated approach to numer-
ically solve this kind of segmentation problems used in
[BRRV08] is the Chan–Vese model [CV01] for two phases
or its multiphase extension [VC02]. In the case of two
phases, the regions are described by a single level set func-
tion Φ : Ω→R leading to the following reformulation of (1)

E[α1,α2,Φ] =

ˆ
Ω

(1−H(Φ(x)))ρ(x,α1)

+H(Φ(x))ρ(x,α2)dx+λ |D(H ◦Φ)|(Ω).

(2)

Here, H is the Heaviside function, i. e. H(s) = 1 for s > 0
and H(s) = 0 else, and |Du|(Ω) denotes the total variation
of u ∈ BV (Ω). [BRRV08] uses a regularized, step size con-
trolled gradient descent algorithm with a multi-linear FE dis-
cretization to minimize a regularized variant of (2) alternat-
ingly minimizing with respect to the lattice orientations and
the level set function. To handle more than two regions, the
usage of multiple level set functions was proposed in a gen-
eral context in [VC02] and adapted to grain segmentation
in [BRRV08].

2.1. Construction of the Lattice Orientation Indicator ρ

In typical applications, the atom lattice underlying the in-
put data is uniquely characterized by the neighborhood of
a single atom in the lattice, i. e. the lattice is a so-called
Bravais lattice. Therefore, the number n and the positions
q1, . . . ,qn ∈R2 of the neighboring atoms relative to the cen-

Figure 1: Tow different local lattice orientations in a mate-
rial with hexagonal packing.

ter atom in a material reference configuration is known and
fixed. Then, for a local lattice orientation α ∈ [0,2π) at a
particular atomic position x ∈ Ω, the neighbors of this atom
are at xi = x + M(α(x))qi, i = 1, . . . ,n. Here, M(α) is a
rotation by α, i. e.

M(α) =

(
cos(α) −sin(α)
sin(α) cos(α)

)
. (3)

Figure 1 illustrates the scenario on a specific Bravais lattice.
With this formalized lattice description we can finally define
the indicator as

ρ(x,α) :=
1

n
∑

i=1
1xi∈Ω

n

∑
i=1

1xi∈Ωd(u(x),u(x+M(α)qi)), (4)

where d(·, ·) denotes a distance function. Note that this defi-
nition slightly differs from the indicator used in [BRRV08].
The normalization factor 1

n is adjusted to account for missing
neighboring atoms in the vicinity of the domain boundary.
Furthermore, the formulation replaces the original threshold-
ing based distance function by a general distance function
d. In particular, this allows to consider smoother distance
functions. In our experiments, it turned out that d(a,b) =√
|a−b| is most suitable for the convex reformulation.

Here, we explicitly discuss the case of hexagonal pack-
ing, but want to point out that the approach is valid for any
Bravais lattice. Henceforth, we have n = 6 and

qi := e
(
cos
(
i π

3
)
, sin

(
i π

3
))

, i = 1, . . . ,6, (5)

where e > 0 denotes the lattice spacing. In this case, it is
sufficient to consider angles α ∈ [0, π

3 ).

2.2. Drawbacks of the Chan–Vese Approach

The Chan–Vese approach employed in [BRRV08] for the
minimization of (1) has several known disadvantages mo-
tivating further improvements.

• A local gradient flow is used for the minimization and so
the result is strongly dependent on the initialization. In
particular, no optimality guarantee can be deduced.

• The regions are extracted as the intersection of the used
level set functions. Thus, the number of the regions to be
segmented has to be known in advance.

• When using more than two phases there are edges which
are counted several times, so the Euclidean boundary
length is not represented correctly (which is an inherent
problem of the multi–phase Chan–Vese approach).

• Due to a gradient descent type minimization the level set
approach is very costly.

Besides these drawbacks it is questionable whether the
piecewise constant model is appropriate for all practical sit-
uations since there is no possibility for diffusive transitions
in the lattice orientation with accompanying smoothed out
edges. On the one hand, the TEM images like in Figure 3
for instance show grains surrounded by clear boundaries. On
the other hand, in some of the PFC time steps (cf. Figure 4)
lots of dislocations in the atom-lattice appear, boundaries get
washed-out and there are smooth transitions of the lattice
orientation. In the latter case, the user might not want to be
restricted to piecewise constant orientations.

In the following, we give a solution for both scenarios by
employing recent convex relaxation techniques.
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3. Multilabel Optimization via Convex Relaxation

In a series of papers [PSG∗08], [PCBC09a], [PCCB09],
Pock et al. showed that optimal or near optimal solutions of
multilabel optimization problems can be computed by means
of Cartesian currents [GMS98] and convex relaxation tech-
niques in the space of functions of bounded variation. We re-
fer [AFP00] for a comprehensive introduction to BV . Here,
we briefly review the results relevant in our context.

Let u ∈ SBV (Ω) be a function of special bounded varia-
tion, whose derivative does not contain a ”spurious” contri-
bution on sets of fractional dimension and let Ω⊂R2 be the
computational domain. Then the decomposition

Du =∇udx+(u+−u−)nudH1
Su . (6)

holds. Here, Du denotes the measure distributional derivative
of u, Su the jump-set of u, nu the jump-normal and (u+−u−)
the jump-height. This motivates the definition of our general
objective functional

F(u) =
ˆ

Ω

g(x,u(x),∇u(x))dx

+

ˆ
Su

ψ(x,u+,u−,nu)dH1,

(7)

where g : Ω×R×R2→ [0,∞] and ψ : Ω×R×R×S1→
[0,∞]. Note that in this work we will explicitly treat func-
tions g that are not convex in u. The splitting introduced in
(6) and used in (7) allows for a different handling of the con-
tinuous and the jump-parts of u. The existence of minimiz-
ers requires assumptions on g and ψ. For a detailed exis-
tence theory, assuming the lower-semicontinuity of g and ψ,
ψ only depending on u+−u− and the convexity of g in ∇u
and ψ in u+−u− respectively, we refer to [Amb90].

The main idea for the convex relaxation is to express F in
dependence of the graph of the characteristic function

1u(x, t) : Ω×R→{0,1},(x, t) 7→

{
1 u(x)> t
0 else

(8)

instead of u. Let Γu = ∂{1u = 1} be the extended graph of
1u: If u is continuous, Γu is the classical graph of the func-
tion, otherwise one has to account in addition for the vertical
jump-parts. Note that for v = 1u ∈ SBV (Ω×R) the first part
of the decomposition (6) vanishes and apparently Sv = Γu
and (v+− v−) = 1 hold. In [ABDM03], Bouchitte, Alberti
and Dal Maso investigated the flux of a dual vector field, a
so-called calibration, through the graph Γu. The following
theorem summarizes their main result.

Theorem 3.1 For u ∈ SBV (Ω) it holds that

F(u) = sup
φ∈K

ˆ
Ω×R

φ ·D1u (9)

(6)
= sup

φ∈K

ˆ
Γu

φ ·nΓu dH2 =: F(1u)

Here, the convex set K is defined as

K =
{

φ = (φx,φt) ∈ C0(Ω×R;Rd×R) :

φ
t(x, t)≥ g∗(x, t,φx(x, t)) ∀x, t ∈Ω×R,∣∣∣´ t2

t1
φ

x(x,s)ds
∣∣∣≤ ψ(x, t1, t2,n)

∀x,∀t1 < t2,∀n ∈ Sd−1
}
,

(10)

and g∗ is the Legendre-Fenchel conjugate of g. For a
comprehensive introduction to convex analysis we refer to
[ET99] and [Roc96]. The last condition on K limits the flux
through the vertical jump-parts of u, so for u ∈ W 1,1 this
constraint is dispensable.

Although F is convex in 1u, the set {1u : u ∈ SBV (Ω)} is
not. That motivates the extension of F to the convex set

C =
{

v ∈ BV (Ω×R, [0,1]) :

lim
t→−∞

v(x, t) = 1, lim
t→+∞

v(x, t) = 0
}
.

(11)

The two limit-conditions ensure the compatibility to the
original indicator functions, but C is not the convex hull
of {1u : u ∈ SBV (Ω)} since it lacks the monotonicity in
t-direction. Finally, this leads to the convex minimization
problem

min
v∈C

sup
φ∈K

ˆ
Ω×R

φ ·Dv. (12)

To make use of this convexification in practice, one still
needs a connection between the relaxed and the original
problem. In case the integrand in (7) is convex in Du, a gen-
eralized co-area formula

F(v) =
ˆ ∞
−∞
F(χv>s)ds (13)

is valid and allows to show that F(v) =∞ if v is nonde-
creasing in t (cf. [PCBC09b]). Here, χv>s denotes the char-
acteristic function of the super level set {v > s}. Moreover
a thresholding theorem in the spirit of Chan et al. [CEN]
holds:

Theorem 3.2 Let the integrand in (7) be convex in Du, v∗ ∈
C be a solution of (12) and s ∈ [0,1). Then χv∗>s is a global
minimizer of F and the characteristic of a subgraph of a
global minimizer of our original objective functional F .

In other words, we can obtain a solution for our original
problem by solving (12) and simple thresholding. In case
the original integrand is not convex in Du, such a threshold-
ing theorem does not necessarily hold. Nevertheless, in any
case, there is a bound on the optimality (adapted from the
discrete label case shown in [PCCB09]):

Proposition 3.1 Let v∗ ∈ C be the global minimizer of F
over C and w∗ ∈ SBV (Ω) a minimizer of F over SBV (Ω).
Then for any s ∈ [0,1) one obtains

|F(v∗)−F(w∗)| ≤ |F(v∗)−F(χP(v∗)>s)| (14)
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holds, where P denotes the orthogonal projection on

C̄ = {v ∈C : v decreasing in t-direction}.

Note, instead of P, any other projection C→ C̄ can be used.

Proof Because of the minimizing property of w∗ and Theo-
rem 3.1, F(1w∗) is minimal over all 1w with w ∈ SBV (Ω).
Furthermore, by defining w(x) = inf{t : χP(v∗)>s(x, t) = 0},
we get 1w = χP(v∗)>s. Note that due to the projection P the
mapping χP(v∗)>s→ w becomes one-to-one.
Hence, F(v∗)≤F(1w∗)≤F(1w) = F(χP(v∗)>s).

Thus, we can explicitly calculate an optimality bound for
every solution. In particular, if the solution v∗ is binary and
decreasing in t-direction, we get a global minimizer of the
original problem.

In the next section, we use the general theory to tackle
the grain segmentation problem both with sharp and smooth
boundaries.

4. Two Possible Energy Functionals for our Application

Let us first introduce a model that allows for smooth grain
boundaries, i. e. the case not covered by the model from
[BRRV08]. Picking up the indicator ρ, we define the energy

E1(α) :=
ˆ

Ω

ρ(x,α)dx+λ|D(α)|(Ω), (15)

where λ > 0 is a regularization parameter. In contrast to (1),
we are no longer searching for an optimal partition in a fi-
nite number of grains, but for a labeling α : Ω→ R of our
domain. The total variation is used as a regularizer for the
labeling in E1 since it is well-known for allowing jumps as
well as smooth transitions. Recalling (6) and defining

g1(x,α,∇α) := ρ(x,α)+λ‖∇α‖

ψ1(x,α
+,α−,n) := λ|α+−α

−|,

E1 apparently is of type (7). In particular, it is convex in
Dα and we can apply the convex relaxation theory presented
in Section 3 to obtain global minimizers by solving a con-
vex optimization problem. Note that a side effect of the to-
tal variation regularization (apparent from the definition of
ψ1) is that the cost of a jump depends on the jump-height
(α+−α

−), cf. Figure 2. In the second half of this section,
we introduce a model where the cost is independent of the
jump-height.

As preparation we need to explicitly characterize the
convex set K1 arising when applying Theorem 3.1 to E1.
For this we calculate the Legendre-Fenchel conjugate of
g1(x,α,∇α) with respect to∇α:

g∗1 (x, t,φ
x) =−ρ(x, t)+ sup

ξ

ξ ·φx−λ‖ξ‖

=−ρ(x, t)+ I{|φx|≤λ}.

Here, IA is such that I(z) = 0 for z ∈ A and I(z) = +∞ else.

Therefore, the first condition of K1 implies ‖φx‖ ≤ λ and

thus the second condition ofK1,
∣∣∣´ t2

t1
φ

x(x,s)ds
∣∣∣≤ λ|t1− t2|,

is automatically fulfilled. Hence, we get

K1 =
{

φ = (φx,φt) : φ
t +ρ≥ 0,‖φx‖ ≤ λ

}
. (16)

With this explicit description of K1 and using Theorems 3.1
and 3.2, we can find global minimizers of E1 by minimizing
the convex function

F1(v) := sup
φ∈K1

ˆ
Ω×R

φ ·Dv (17)

over the convex set C and thresholding the solution at 0.5.

ψ1(x) = |x| ψ2(x) =

{
1 x 6= 0
0 else

Figure 2: Two popular interaction potentials: While the TV
regularizer (left) penalizes the size of the jump linearly, the
Potts model (right) imposes a constant penalty for all dis-
continuities.

To model sharp grain boundaries, we want to use the
piecewise constant Mumford–Shah model, similarly to
[BRRV08]. Unfortunately, g is independent of ∇α for this
model, thus g∗ ≡∞ and the approach from Section 3 can-
not be applied directly. To bypass this limitation, we apply
the convexification to the full Mumford–Shah functional us-
ing the indicator ρ, i. e.

Ẽ2(α) :=
ˆ

Ω

ρ(x,α)dx

+ν

ˆ
Ω\Sα

‖∇α‖2 dx+λH1(Sα).
(18)

This convexification of this special type of functionals was
considered in [PCBC09a]. With

g2(x,α,∇α) := ρ(x,α)+ν‖∇α‖2

ψ2(x,α
+,α−,n) :=

{
λ α

+ 6= α
−

0 else
,

Ẽ2 is of type (7), but not convex in Dα. The discrete, non-
convex interaction potential corresponding to H1(Sα) is the
Potts model, see Figure 2 for a comparison of this potential
with the TV potential. In particular, let us point out that the
cost of a jump in this model does not depend on the jump-
height.
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The Legendre-Fenchel conjugate is

g∗2 (x, t,φ
x) =−ρ(x, t)+ sup

ξ

ξ ·φx−ν‖ξ‖2

=−ρ(x, t)+ ‖φ
x‖2

4ν
.

and the convex set necessary for Theorem 3.1 is

K̃2 =
{

φ = (φx,φt) : φ
t ≥−ρ+

‖φx‖2

4ν
,∣∣∣´ t2

t1
φ

xds
∣∣∣≤ λ,∀t1 < t2

}
.

(19)

Note that the second constraint of this set is not redundant for
Ẽ2. Heuristically applying the limit ν→∞ in K̃2 and in the
functional corresponding to Ẽ2 from Theorem 3.1 and tight-
ening the resulting first constraint of K̃2 to |φt | ≤ ρ, leads to

K2 =
{

φ = (φx,φt) : |φt | ≤ ρ,
∣∣∣´ t2

t1
φ

xds
∣∣∣≤ λ,∀t1 < t2

}
(20)

and

F2(v) := sup
φ∈K2

ˆ
Ω×R

φ ·Dv. (21)

Based on similar arguments as in the proof of Theorem 3.1,
one shows F2(1α) = E2(α) for all α ∈ SBV , where

E2(α) =

{´
Ω

ρ(x,α)dx+λH1(Sα) α pcw. const.
∞ else.

Therefore, if α is piecewise constant, F2(1α) is the same
as (1), the piecewise constant Mumford–Shah functional for
grain segmentation.

The tightening of the first bound is inspired by [CCP08]:
Due to the lack of convexity of g in Dα, solutions of the
“untightened” problem are not necessarily decreasing in t-
direction. The central idea of [CCP08] is a slight modifica-
tion of the objective function, which in our case results in the
aforementioned tightening. Based on this, [CCP08] shows
that minimizers of the discrete counterpart of F2 always ful-
fill the monotonicity, cf. [CCP08, Proposition 4.3].

As discussed earlier, due to the non-convexity of E2 in Dα

we cannot guarantee that minimizing F2 over C and thresh-
olding leads to a global minimizer of E2. But because of
F2(1α) = E2(α), the error bound from Proposition 3.1 still
holds.

5. Numerical Implementation

The two convex functions corresponding to grain segmenta-
tion with smooth (17) and sharp (21) boundaries, lead to two
almost identical optimization problems, i. e.

inf
v∈C

sup
φ∈Ki

ˆ
Ω

φ ·Dv, i = 1,2.

Both are saddlepoint problems only differing in the con-
vex set used for the supremum. To solve such problems, we

use a simple primal-dual projected gradient ascent/descent
scheme related to [Pop80] and [ZC08]. A convergence re-
sult was recently established in [PCBC09a]. The main idea
is to alternate simple unconstrained gradient steps in v and
φ where each gradient step is followed by a projection onto
the corresponding convex set (C or Ki). The step sizes are
chosen corresponding to [PCBC09a, Theorem 2] and the
so-called primal-dual-gap is used as stopping criterion. The
spatial discretization uses a simple uniform rectangular grid.
The gradient descent steps on such a grid are highly paral-
lelizable, so we could create an efficient GPU implementa-
tion of the algorithm.

Although the implementation for both problems is almost
the same, the runtime differs considerably. The bottleneck
in both variants is the projection on Ki. While the projec-
tion on K1 can be computed pointwise and thus efficiently,
because the constraints therein are local, the projection on
K2 is much more involved due to the non-local constraint
|
´ t2

t1
φ

xds| ≤ λ. In particular, this constraint complicates an
efficient parallel implementation. Here, we employed the
method of Dykstra [BD86] to handle the projection. Over-
all, almost 90% of the computing time is consumed by the
projection on K2.

6. Experimental Results

In the following, we present experimental results of the pro-
posed models. We first consider F1 and F2 separately and
conclude this section with a comparison of both models to
the Chan–Vese formulation of (1). To compare the smooth
boundary model to the Chan–Vese model, we also investi-
gate to which extend accurate sharp boundaries can be ob-
tained by clustering results in the model which also allows
for smooth transitions in the orientation.

6.1. Results with Total Variation Regularity

To get started, we use F1 to label a simple TEM image only
showing two clearly separated grains, see Figure 3. The re-

Figure 3: TEM input image (left) and labeling α
∗ obtained

with F1 (right)

gions of uniform lattice orientation in the upper left and
lower right part of the TEM image are clearly recognized
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with some fuzziness in the boundary region. This fuzziness
has a clear physical correspondence: In the vicinity of the
boundary are several impurities caused by dislocations in
the atomic lattice. Furthermore, note that one can only as-
sign a valid lattice orientation to positions at least one atom
distance away from the grain boundary.

Since PFC simulations usually show more and smaller
grains than TEM images, we focus on PFC data in the re-
mainder of the section. Figure 4 shows a first result using

Figure 4: PFC input image (left) and colored visualiza-
tion of the labeling obtained with F1 (right), in the latter
one smooth and one sharp lattice orientation transitions is
marked with black lines.

F2 on a PFC image. To facilitate the visualization of the ob-
tained global optimal labeling α

∗ its values were mapped to
a periodic HSV-colorspace and alpha-blended to the input
data. Note that the periodicity of the colorspace is neces-
sary to color similarly oriented lattices regions with similar
hues. The obtained labeling accurately captures the lattice
geometry. The algorithm even manages to extract informa-
tion, that is not easily visible to an untrained human eye.
To outline that the total variation regularization used in E1
allows for smooth transitions and sharp edges, one smooth
and one sharp orientation transitions is marked in the image
showing the labeling.

6.2. Results with Potts Regularity

Results of using our sharp interface energyF2 using two dif-
ferent values of λ are shown in Figure 5. In order to compare
the results of the smooth and the sharp mode, we use the
same PFC input image as in Figure 4. The bigger lambda,
the more small regions are merged to bigger ones since the
λ-weighted boundary length cost exceeds the gain by better
data fitting. Thus, λ allows to choose a preferred scale and to
select the smallest grain size we want to visualize. This can
also be interpreted as a way to chose the number of regions
in (1) dynamically.

Furthermore, as the equivalent of Proposition 3.1 for F2
holds (cf. Section 4), we are able to calculate an optimality
bound. Because the overall energy of the solution depends
on the scale parameter, the discretization and the size of the

Figure 5: Results on the PFC image from Figure 4 obtained
with F2 using two different values of the regularization pa-
rameter λ. When increasing the regularization (left to right),
small grains are merged to bigger ones.

image, we normalize the gap (14) and fix 0.5 as threshold
parameter s:

εopt :=
F2(χ{P(v∗)>0.5})−F2(v

∗)

F2(v∗)
. (22)

So εopt is a quality measure for the obtained solution. For all
our experiments we found εopt to be less than 1%.

Finally, let us emphasize that both results nicely com-
ply with the following theoretical property of the Mumford–
Shah model [MS89].

Proposition 6.1 Edges of minimizers of the piecewise-
constant Mumford–Shah functional are perpendicular to ∂Ω

and meet in the interior exclusively at triple points with pair-
wise angle of 120◦.

6.3. Comparison with the Chan–Vese Level Set Method

To conclude the numerical results, we compare the results of
our two models and the classical approach on a large PFC
image with a large number of different grains, cf. Figure 6
(left). The need for a good visualization to capture all rele-
vant information and to evaluate the state of the crystal sim-
ulation from this kind of image is apparent. Small changes
in the lattice orientation are almost not visible and the clas-
sification with grains having the same or similar orientations
is very difficult for the human eye. The middle image of Fig-
ure 6 shows the segmentation in eight (23) grains using three
level set functions obtained with the classical multiphase
Chan–Vese approach, cf. [Ber10, Figure 3.14]. Due to the
locality of the optimization method and the wrong encoding
of the Euclidean boundary length in the multiphase model
the result is neither a global minimizer of (1) nor can an
optimality bound like in Proposition 3.1 be assumed to hold.
Furthermore, unlike our result obtained withF2 (right image
in Figure 6), it does not satisfy the properties from Proposi-
tion 6.1. Nevertheless, qualitatively both methods find simi-
lar grains, especially the larger ones. However, clearly wrong
in the Chan–Vese based result is the appearance of small
grains with a width of about one atom: The data term cannot
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Figure 6: PFC input image (left), segmentation in eight grains obtained via the classical Chan–Vese approach (middle, result
from [Ber10, Figure 3.14]) and our result by using F2, the proposed convex relaxation for sharp boundaries (right).

assign a valid orientation here, thus the penalization of the
boundary length in the Mumford–Shah model should have
eliminated these regions.

Figure 7 (left) shows the lattice orientation labeling ob-
tained using our smooth boundary model on the PFC image
from Figure 6. This model correctly identifies the smooth
orientation transitions present in the PFC image whereas the
sharp model (Figure 6, right) by design has to put grain
boundaries even where no jump in the orientation is present
(cf. the boundary between green and yellow in the middle
of the image). The already mentioned global optimality of
the smooth model aside, another advantage of F1 is that the
resulting smooth labeling can be converted to a segmenta-
tion with sharp boundaries using simple k-means clustering
as postprocessing. Figure 7 (middle and right) depicts results
of such a clustering in 5 and 8 segments. Even this produces
segmentations that are quite comparable to the results of the
multiphase Chan–Vese approach and has the additional ad-
vantage that the k-means clustering can be done very quickly
for different numbers of cluster.

Because of the different architectures used and the high
dependence on discretization, step size, termination crite-
rion, etc., the runtime of our proposed algorithms and the
multiphase Chan–Vese approach cannot be directly com-
pared. Our GPU-implementation with a fast, highly parallel,
primal-dual algorithm needed 105 seconds (5122 pixles) for
the TV regularization in Figure 7 and about 8 minutes for
the Potts regularization in Figure 6, the runtime k-means-
clustering can be neglected. The runtime for the Chan–Vese
optimization was more than one hour using a single CPU
implementation.

7. Conclusion

In this paper, we propose the application of convex relax-
ation techniques to the extraction and visualization of grain

boundaries from TEM and PFC images. Two variational for-
mulations dependent on the purpose of postprocessing are
introduced and compared to the multiphase Chan–Vese ap-
proach. In contrast to the latter, in case of TV regulariza-
tion (smooth boundary model) the global optimal solution is
found and in case of Potts regularity (sharp boundary model)
a tight bound for optimality is obtained. Moreover, the re-
sults in the experimental section indicate that the new meth-
ods significantly outperform the previous ones also for prac-
tical purposes.

For future work we mainly see two directions. One direc-
tion is to extend the approach from images to videos, inter-
preting successive time steps of a PFC simulation as video.
In order to visualize the formation and disintegration of grain
boundaries it could be useful to enforce a temporal regularity
on the lattice labeling. The other direction is to develop even
more efficient algorithms and to push the runtime of the TV
regularizer towards “almost” realtime.
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