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Abstract—Quantifying uncertainties in large-scale simulations
has emerged as the central challenge facing CS&E. When the
simulations require supercomputers, and uncertain parameter
dimensions are large, conventional UQ methods fail. Here we
address uncertainty quantification for large-scale inverse prob-
lems in a Bayesian inference framework: given data and model
uncertainties, find the pdf describing parameter uncertainties. To
overcome the curse of dimensionality of conventional methods,
we exploit the fact that the data are typically informative about
low-dimensional manifolds of parameter space to construct low
rank approximations of the covariance matrix of the posterior
pdf via a matrix-free randomized method. We obtain a method
that scales independently of the forward problem dimension,
the uncertain parameter dimension, the data dimension, and the
number of cores. We apply the method to the Bayesian solution
of an inverse problem in 3D global seismic wave propagation with
over one million uncertain earth model parameters, 630 million
wave propagation unknowns, on up to 262K cores, for which we
obtain a factor of over 2000 reduction in problem dimension.
This makes UQ tractable for the inverse problem.

I. INTRODUCTION

Perhaps the central challenge facing the field of computa-
tional science and engineering today is: how do we quantify
uncertainties in the predictions of our large-scale simula-
tions, given limitations in observational data, computational
resources, and our understanding of physical processes [1].
For many societal grand challenges, the “single point” de-
terministic predictions delivered by most contemporary large-
scale simulations of complex systems are just a first step: to
be of value for decision-making (design, control, allocation
of resources, policy-making, etc.), they must be accompanied
by the degree of confidence we have in the predictions.
Examples of problems for which large-scale simulations are
playing an increasingly important role for decision-making
include: mitigation of global climate change, natural hazard
forecasts; siting of nuclear waste repositories, monitoring
of subsurface contaminants, control of carbon sequestration
processes, management of the nuclear fuel cycle, design of
new nano-structured materials and energy storage systems, and
patient-specific planning of surgical procedures, to name a few.

Unfortunately, when the simulations (here assumed without
loss of generality to comprise PDEs) are expensive, and the
uncertain parameter dimension is large (or even just mod-

erate), conventional uncertainty quantification methods fail
dramatically. Here we address uncertainty quantification (UQ)
in large-scale inverse problems governed by PDEs. This is
the crucial step in UQ: before we can propagate parameter
uncertainties forward through a model, we must first infer
them from observational data and from the (PDE) model
that maps parameters to observables; i.e., we must solve the
inverse problem. We adopt the Bayesian inference framework
[2], [3]: given observational data and their uncertainty, the
governing forward PDEs and their uncertainty, and a prior
probability distribution describing prior uncertainty in the
parameters, find the posterior probability distribution over
the parameters, which is seen as the solution of the inverse
problem. The grand challenge in solving statistical inverse
problems is in computing statistics of the posterior probability
density function (pdf), which is a surface in high dimensions.
This is notoriously challenging for statistical inverse problems
governed by expensive forward models (as in our target case
of global seismic wave propagation) and high-dimensional
parameter spaces (as in our case of inferring a heteroge-
neous parameter field). The difficulty stems from the fact
that evaluation of the probability of each point in parameter
space requires solution of the forward problem (which may
tax contemporary supercomputers), and many such evaluations
(millions or more) are required to adequately sample the
posterior density in high dimensions by conventional Markov-
chain Monte Carlo (MCMC) methods. Thus, UQ for the large-
scale inverse problems becomes intractable.

The approach we take is based on a linearization of the
parameter-to-observable map, which yields a local Gaussian
approximation of the posterior. The mean and covariance of
this Gaussian can be found from an appropriately weighted
regularized nonlinear least squares optimization problem,
which is known as the maximum a posteriori (MAP) point.
The solution of this optimization problem provides the mean,
and the inverse of the Hessian matrix of the least squares
function (evaluated at the MAP point) gives the covariance
matrix. Unfortunately, the most efficient algorithms available
for direct computation of the (nominally dense) Hessian are
prohibitive, requiring as many forward PDE-like solves as
there are uncertain parameters, which can number in the
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millions or more when the parameter represents a field (e.g,
initial condition, heterogeneous material coefficient, source
term).

The key insight to overcoming this barrier is that the data
are typically informative about a low dimensional manifold of
the parameter space [4]—that is, the Hessian of the data-misfit
term in the least squares function is sparse with respect to
some basis. We exploit this fact to construct a low rank approx-
imation of the data-misfit Hessian and the resulting posterior
covariance matrix using a parallel, matrix-free randomized
algorithm, which requires a dimension-independent number of
forward PDE solves and associated adjoint PDE solves (the
latter resemble the forward PDEs in reverse time). UQ thus
reduces to solving a fixed (and often small, relative to the
parameter dimension) number of PDEs. When scalable solvers
are available for the forward PDEs, the entire process of
quantifying uncertainties in the solution of the inverse problem
is scalable with respect to PDE state variable dimension,
uncertain parameter dimension, observational data dimension,
and number of processor cores. We apply this method to
the Bayesian solution of an inverse problem in 3D global
seismic wave propagation with 1.067 million parameters and
630 million wave propagation spatial unknowns over 2400
time steps, on up to 262,144 Jaguar cores. The example
demonstrates independence of parameter dimension and a
factor of over 2000 reduction in problem dimension. This UQ
computation is orders of magnitude larger than any attempted
before on a large-scale forward problem.

We recently presented a finite-dimensional version of our
method (in which Lanczos iterations are used to build the
low rank approximation of the Hessian) and applied it to a
1D inverse problem in moderate dimensions [5]. We have
also recently described the extension to infinite-dimensional
inverse problems (so-called because the inversion parameters
represent a field) in the framework of [6], in which we discuss
mathematically subtle yet critical issues related to the proper
choice of prior and to discretizations that assure convergence
to the correct infinite-dimensional quantities [7]. In this, our
Bell Prize submission in the Scalable Algorithms category, we
extend the method to extreme-scale Bayesian inverse prob-
lems, employing a randomized parallel matrix-free low rank
approximation method, instead of Lanczos. The randomized
method yields a low rank approximation with controllably
high probability, and is asynchronous, more robust, more
fault tolerant, and provides better cache performance. In the
following sections, we provide an overview of the Bayesian
formulation of inverse problems (§II), describe how the mean
and covariance of the posterior pdf can be approximated
from the solution of a regularized weighted nonlinear least-
squares problem (§III and §IV), present our algorithm for
parallel low rank-based covariance approximation (§V), assert
the scalability of the overall UQ method (§VI), apply our
method to the Bayesian solution of a very large scale inverse
problem in 3D global seismic wave propagation (§VII), and
draw conclusions (§VIII).

II. BAYESIAN FORMULATION OF INVERSE PROBLEMS

In the Bayesian approach, we state the inverse problem as
a problem of statistical inference over the space of uncertain
parameters, which are to be inferred from the data and a PDE
model. The resulting solution to the statistical inverse problem
is a posterior distribution that assigns to any candidate set of
parameter fields our belief (expressed as a probability) that a
member of this candidate set is the “true” parameter field that
gave rise to the observed data. When discretized, this problem
of infinite dimensional inference gives rise naturally to a large
scale problem of inference over the discrete parameter space
x ∈ Rn, corresponding to degrees of freedom in the parameter
field mesh. While the presentation in this paper is limited to the
finite dimensional approximation to the infinite dimensional
measure, the discretization process is performed rigorously
following [6], [7], and the numerical evidence indicates that
we converge to the correct infinite dimensional distribution.

The posterior probability distribution combines the prior
pdf πprior(x) over the parameter space, which encodes any
knowledge or assumptions about the parameter space that we
may wish to impose before the data are considered, with a
likelihood pdf πlike(yobs|x), which explicitly represents the
probability that a given set of parameters x might give rise to
the observed data yobs ∈ Rm. Bayes’ Theorem then explicitly
computes the posterior pdf as

πpost(x|yobs) ∝ πprior(x)πlike(yobs|x).

We choose the prior distribution to be Gaussian, with a
covariance operator defined by the square of the inverse of
an elliptic PDE operator. This choice yields several benefits.
First, it enables implicit representation of the prior covariance
operator as (the inverse of) a sparse operator, as opposed
to traditional approaches that either store a dense covariance
matrix or its approximation by principle vectors. Second, since
the covariance operator is never needed explicitly—only its
action on a vector is required— we are able to capitalize
on fast O(n) parallel elliptic solvers (in this paper, algebraic
multigrid) to form this action via two elliptic solves. Third,
the action of the symmetric square root factorization of the
prior covariance is available explicitly (via one elliptic solve
instead of two). Finally, this choice of covariance is useful for
technical reasons, as it guarantees that samples from the prior
distribution will be continuous.

The difference between the observables predicted by the
model and the actual observations yobs is due to both mea-
surement and model errors, and is represented by the i.i.d.
Gaussian random variable “noise” vector e,

e = yobs − f(x),

where f(x) ∈ Rm is the (generally nonlinear) operator
mapping model parameters to output observables. Then the
pdf’s for the prior and noise can be written in the form

πprior(x) ∝ exp

(
−1

2
(x− x̄prior)

TΓ−1
prior(x− x̄prior)

)
,



and

πnoise(e) ∝ exp

(
−1

2
(e− ē)TΓ−1

noise(e− ē)

)
,

respectively, where x̄prior is the mean of the prior distribution,
ē is the mean of the Gaussian noise, Γprior ∈ Rn×n is the
covariance matrix for the prior, and Γnoise ∈ Rm×m is the
covariance matrix for the noise. Restating Bayes’ theorem with
these Gaussian pdf’s, we find that the statistical solution of the
inverse problem, πpost(x), is given by

πpost(x) ∝ exp
(
− 1

2
‖x− x̄prior‖2Γ−1

prior

− 1

2
‖yobs − f(x)− ē‖2

Γ−1
noise

)
, (1)

Note that the seemingly simple expression f(x) belies the
complexity of the underlying computations, which involve:
(1) construction of the PDE model for given parameters x;
(2) solution of the governing PDE model to yield the output
state variables; and (3) extraction of the observables from
the states at the observation locations in space and time. In
§VII, we provide expressions for the underlying mathematical
operators for our target inverse seismic wave propagation
problem, in which the parameters are wave speeds in the earth,
the governing PDEs describe acoustic wave propagation, and
the observations are of velocity waveforms at seismometer
locations on earth’s surface. In general, f(x) is nonlinear, even
when the forward PDEs are linear in the state variables (as is
the case for the seismic inverse problem), since the model
parameters couple with the states nonlinearly in the forward
PDEs.

As is clear from the expression (1), despite the choice
of Gaussian prior and noise probability distributions, the
posterior probability distribution need not be Gaussian, due
to the nonlinearity of f(x). The non-Gaussianity of the
posterior poses challenges for computing statistics of interest
for typical large-scale inverse problems, since as mentioned
in §I, πpost is often a surface in high dimensions (millions,
in our target problem in §VII), and evaluating each point
on this surface requires the solution of the forward PDEs
(wave propagation equations with O(109) unknowns, in the
target problem). Numerical quadrature to compute the mean
and covariance matrix, for example, is completely out of
the question. The method of choice for computing statistics
is Markov chain Monte Carlo (MCMC), which judiciously
samples the posterior distribution, so that sample statistics can
be computed. But the use of MCMC for large-scale inverse
problems is still prohibitive for expensive forward problems
and high dimensional parameter spaces, since even for modest
numbers of parameters, the number of samples required can be
in the millions. An alternative approach based on linearizing
the parameter-to-observable map is discussed next.

III. POSTERIOR MEAN APPROXIMATION

The mean of the posterior distribution x̄post can be approx-
imated by finding the point that maximizes the posterior pdf,

i.e., the MAP point,

x̄post ≈ xMAP := arg max
x

πpost(x).

This approximation is exact when the map from parameters
to observables, f(x), is linear. Finding the MAP point is
equivalent to minimizing the negative log of the posterior pdf,
i.e.,

x̄post ≈ arg min
x
V (x), (2)

where

V (x) =
1

2
‖yobs− f(x)− ē‖2

Γ−1
noise

+
1

2
‖x− x̄prior‖2Γ−1

prior
. (3)

Approximating the mean of the posterior distribution by find-
ing the MAP point is thus equivalent to solving a regularized
deterministic inverse problem, where Γ−1

prior plays the role of
the regularization operator, and Γ−1

noise is a weighting for the
data misfit term.

Here, we solve the nonlinear least squares optimization
problem (2) with a parallel inexact Newton–conjugate gradient
method. The method requires the computation of gradients
and Hessian-vector products of V (x) (for which expressions
are provided in §VII in the context of the seismic inverse
problem we target). Rather than provide a detailed description
of the method here, we refer to our earlier work presented
at SC2002 [8] and SC2003 [9] on parallel scalability of the
method, as well as the recent work [10] that includes additional
refinements. The main ingredients of the method are:

• inexact Hessian matrix-free Gauss-Newton-conjugate
gradient (CG) minimization;

• preconditioning by Γ−1
prior, carried out by multigrid V-

cycles on the underlying elliptic operators;
• Armijo-type backtracking line search globalization;
• computation of gradients of V (x) and products of Hes-

sians of V (x) with vectors at each CG iteration expressed
as solutions of forward and (backward-in-time) adjoint
PDEs and their linearizations, all of which inherit the
parallel scalability properties of the forward PDE solver;

• algorithmic checkpointing to implement the composition
of forward-in-time forward PDE solutions and backward-
in-time adjoint PDE solutions to form gradients without
having to store the entire state variable time history; and

• parallel implementation of all components of the method,
which are dominated by solution of forward and adjoint-
PDEs and evaluation of inner product-like quantities to
compose gradient and Hessian-vector quantities.

What can be said about parallel and algorithmic scalability
of this method? Because the dominant components of the
method can be expressed as solutions or evaluations of PDE-
like systems, parallel scalability—that is, maintaining high
parallel efficiency as the number of cores increases—is assured
whenever a scalable solver for the underlying PDEs is avail-
able (which is the case for our target seismic wave propagation
problem [11]). The remaining ingredient to obtain overall
scalability is that the method exhibit algorithmic scalability,



that is with increasing problem size. This is indeed the case:
for a wide class of nonlinear inverse problems, the outer
Newton iterations and the inner CG iterations are independent
of the mesh size (as is the case for our target inverse wave
propagation problem, [10]). This is a consequence of the use
of a Newton solver, of the compactness of the Hessian of the
data misfit term (i.e., the first term on the right hand side
of (3), as proven for the inverse wave propagation setting
in [4]), and the choice of prior preconditioning so that the
resulting preconditioned Hessian is a compact perturbation of
the identity, for which CG exhibits mesh-independent itera-
tions. Thus, solving the least squares optimization problem
(2) to approximate the mean of the posterior distribution
by the method outlined above exhibits both parallel and
algorithmic—and thus overall—scalability.

As stated above, the focus of this paper is not on the com-
putation of the posterior mean x̄post, but on the significantly
more challenging task of characterizing the uncertainty in
the mean via computation of the posterior covariance matrix,
Γpost ∈ Rn×n. Linearizing the parameter-to-observable map at
the MAP point gives

f(x) ≈ A(x− xMAP) + f(xMAP),

where A ∈ Rm×n is the Jacobian matrix of f(x) evaluated
at xMAP. Manipulation of (1) shows that Γpost is given by the
inverse of the Hessian matrix of the function V (x) in (3), i.e.,

Γpost =
(
ATΓ−1

noiseA + Γ−1
prior

)−1

. (4)

In summary, under the assumptions of this section (additive
Gaussian noise, Gaussian prior, and linearized parameter-to-
observable map), solution of the Bayesian inverse problem
is reduced to the characterization of the (Gaussian) posterior
distribution N (x̄MAP,Γpost), where Γpost is the inverse of the
Hessian of V (x) at xMAP.

The primary difficulty here is that the large parameter
dimension n prevents any representation of the posterior
covariance Γpost as a dense operator. In particular, the Jacobian
of the parameter-to-observable map, A, is formally a dense
matrix, and requires n forward PDE solves to construct. This
is intractable when n is large and the PDEs are expensive,
as in our case. However, a key feature of the operator A is
that its action on a (parameter field-like) vector can be formed
by solving a (linearized) forward PDE problem; similarly, the
action of its transpose AT on a (observation-like) vector can
be formed by solving a (linearized) adjoint PDE. Explicit
expressions for these operations will be given for our specific
target inverse problem in §VII. In the next two sections, we
present algorithms that exploit this property, as well as the
spectral decay of the data misfit Hessian, to approximate the
posterior covariance matrix with controlled accuracy at a cost
that is independent of the parameter dimension.

IV. POSTERIOR COVARIANCE APPROXIMATION

For many ill-posed inverse problems, the Hessian matrix of
the data misfit term in (3), defined as

Hmisfit
def
= ATΓ−1

noiseA, (5)

is a discretization of a compact operator, i.e., its eigenvalues
collapse to zero. This can be understood intuitively, since only
the modes of the parameter field that strongly influence the
observations (through the linearized parameter-to-observable
map A) will be present in the dominant spectrum of (5).
In many ill-posed inverse problems, observations are sparse
compared to the parameter dimensions, and numerous modes
of the parameter field (for example, highly oscillatory ones)
will have negligible effect on the observables. The range space
thus is effectively finite-dimensional even before discretization
(and therefore independent of any mesh), and the eigenvalues
decay, often rapidly, to zero. In this section, we exploit
this low-rank structure to construct scalable algorithms to
approximate the posterior covariance operator.

Rearranging the expression for Γpost in (4) to factor out
Γ

1/2
prior gives

Γpost = Γ
1/2
prior

(
Γ

1/2
priorA

TΓ−1
noiseAΓ

1/2
prior + I

)−1

Γ
1/2
prior. (6)

This factorization exposes the prior-preconditioned Hessian of
the data misfit,

H̃misfit
def
= Γ

1/2
priorA

TΓ−1
noiseAΓ

1/2
prior. (7)

In the next section we present a randomized algorithm to
construct a low rank approximation of this matrix at a cost (in
PDE solves) that is independent of the parameter dimension
(compared to n PDE solves to construct the full matrix). In this
section, we assume only that such a low rank construction is
possible. Let λi and vi be the eigenvalues and eigenvectors of
H̃misfit. Let Λ = diag(λi) ∈ Rn×n be the diagonal matrix
of its eigenvalues, and define as V ∈ Rn×n the matrix
whose columns are the eigenvectors vi of H̃misfit. Then replace
H̃misfit by its spectral decomposition:(

Γ
1/2
priorA

TΓ−1
noiseAΓ

1/2
prior + I

)−1

= (V ΛV T + I)−1. (8)

When the eigenvalues of H̃misfit decay rapidly, we can extract
a low-rank approximation of H̃misfit by retaining only the r
largest eigenvalues and corresponding eigenvectors,

Γ
1/2
priorA

TΓ−1
noiseAΓ

1/2
prior ≈ V rΛrV

T
r .

Here V r ∈ Rn×r contains only the r eigenvectors of H̃misfit
that correspond to the r largest eigenvalues, which are as-
sembled in the diagonal matrix Λr = diag(λi) ∈ Rr×r.
To obtain the posterior covariance matrix, we employ the
Sherman-Morrison-Woodbury formula to perform the inverse



in (6),(
Γ

1/2
priorA

TΓ−1
noiseAΓ

1/2
prior + I

)−1

=

I − V rDrV
T
r +O

(
n∑

i=r+1

λi
λi + 1

)
,

where Dr
def
= diag(λi/(λi + 1)) ∈ Rr×r. The last term in

the expression above shows the error due to truncation in
terms of the discarded eigenvalues; this provides a criterion
for truncating the spectrum, namely r is chosen such that λr is
small relative to 1. With this low-rank approximation, the final
expression for the approximate posterior covariance follows
from (6),

Γpost ≈ Γprior − Γ
1/2
priorV rDrV

T
r Γ

1/2
prior. (9)

Note that (9) expresses the posterior uncertainty (in the form
of a covariance matrix) as the prior uncertainty, less any
information gained from the data, filtered through the prior.

V. A RANDOMIZED ALGORITHM FOR LOW-RANK HESSIAN
APPROXIMATION

We now address the construction of the low rank approx-
imation of H̃misfit that was invoked in the previous section.
As argued above, the data inform only a limited number
of modes of the parameter field, resulting in a data misfit
Hessian matrix that admits a low rank representation. This
is observed numerically (see Figure 1) and has recently been
proven theoretically in several settings [4], [12]. Moreover,
preconditioning with the prior operator as in (7) further filters
out modes of the parameter space that are already well-
determined from prior knowledge (i.e., a smoothing prior such
as the one we employ here assigns low probability to highly
oscillatory modes.)

We exploit this structure to construct a low rank approxima-
tion of H̃misfit using randomized algorithms for approximate
matrix decomposition [13], [14]. Their performance is compa-
rable to Krylov methods (such as Lanczos) we employed pre-
viously [5], [15]. However, they have a significant edge over
these deterministic methods for large-scale problems, since
the required Hessian matrix-vector products are independent
of each other, providing asynchronousity and fault tolerance.
Before discussing these advantages, let us summarize the
algorithm.

To approximate the spectral decomposition of H̃misfit ∈
Rn×n, we generate a random matrix R ∈ Rn×r (r is
of the order of the numerical rank of H̃misfit, so in our
case r � n) with i.i.d. Gaussian entries, and compute the
product Y = H̃misfitR. Since each column vector in R is an
independent random vector, the computation of Y decouples
into r separate matrix-vector product with H̃misfit. As can be
seen from (7), each matrix-vector product requires a pair of
forward/adjoint PDE solves (to form actions of A and AT on
vectors), as well as a pair of elliptic operator solves (to form
actions of Γ

1/2
prior on vectors). The latter are much cheaper than
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Fig. 1. Log-linear plot of the spectrum of prior-preconditioned
data misfit Hessian (H̃misfit) for three successively finer parameter
meshes of an inverse wave propagation problem [7]. The spectra lie
on top of each other, indicating mesh independence (and therefore
parameter-dimension independence) of the low rank approximation.
The eigenvalues are truncated when they are small relative to 1, which
in this case results in retaining between 0.2 and 2% of the spectrum.

the former, in the typical case when the PDE model governing
the inverse problem is large scale.

Let Q be an orthonormal basis for Y , which approximates
the range space of H̃misfit. Following the “single-pass” ap-
proach of [13], we compute the approximation to H̃misfit in
the basis Q:

B
def
= (QTY )(QTR)−1 ≈ QT H̃misfitQ. (10)

Here B, QTY , and (QTR)−1 are all matrices of dimension
r, which is much smaller than n, and thus we are able
to decompose the symmetric matrix B as ZΛZT using
dense linear algebra. The dominant vectors of H̃misfit are then
returned as V = QZ, with eigenvalues on the diagonal of Λ.
Thus, we find the desired decomposition

H̃misfit ≈ V ΛV T . (11)

Finally, randomized methods also provide an estimate of the
spectral norm of I−QQT H̃misfit, which bounds the error that
we make in our low rank approximation. To be precise, the
bound derived in [13] is∥∥∥(I −QQT )H̃misfit

∥∥∥ ≤ α√ 2

π
max

i=1,...,r

∥∥∥(I −QQT )Aω(i)
∥∥∥ ,

(12)
attained with probability of at least 1 − α−r, where ω(i) are
vectors with i.i.d. standard normal entries.

To summarize, the construction of a low-rank approximation
of H̃misfit is dominated by its application to random vectors,
which entails a pair of forward/adjoint PDE solves. The inde-
pendence of these matrix-vector products from each other is
of particular importance for problems in which the parameter-
to-observable map f(x) has to be computed on large parallel
supercomputers for the following reasons:



• Cache and memory efficiency: For parameter-to-
observable maps that involve the solution of a PDE, the
application of the Hessian to multiple vectors requires
the solution of (linearized) forward/adjoint PDEs for
multiple right-hand sides. Amortizing data movement
over the multiple right-hand sides results in significantly
greater memory and cache efficiency than can be obtained
with sequential right-hand sides, as required by classical
Krylov methods.

• Fault-tolerance: the construction of the low-rank matrix
approximation is done as a post-processing step when a
sufficient number of matrix-vector products is available.
The asynchronous nature of the matrix-vector products
provides greater fault tolerance (for example, the low rank
approximation in §VII was computed using 10 different
jobs with different run times and core counts ranging
from 32K to 108K.

VI. SCALABILITY OF THE UQ METHOD

We now discuss the overall scalability of our UQ method
to high-dimensional parameter spaces. First, we summarize
the scalability of the construction of the low-rank-based
approximate posterior covariance matrix in (9). As stated
before, the linearized parameter-to-observable map A cannot
be constructed explicitly, since it requires n linearized forward
PDE solves. However, its action on a vector can be computed
by solving a single linearized forward PDE, regardless of the
number of parameters n and observations m. Similarly, the
action of AT on a vector can be computed by solving a
linearized adjoint PDE. Moreover, the prior is usually much
cheaper to apply than the forward or adjoint PDE solution (in
our context, it is a single elliptic solve). Therefore, the cost of
applying H̃misfit to a vector—and thus the per iteration cost of
the randomized algorithm of §V—is dominated by the solution
of a pair of linearized forward and adjoint PDEs (explicit
expressions for this matrix-vector product will be given for
the target problem of inverse wave propagation in §VII).

The remaining component to establish scalability of the low-
rank approximation of H̃misfit is independence of the rank
r—and therefore the number of matrix-vector products, and
hence PDE solves—from the parameter dimension n. This
is the case when Hmisfit in (5) is a (discretization of a)
compact operator, and when preconditioning by Γprior does
not destroy the spectral decay. This situation is typical for
many ill-posed inverse problems, in which the prior is either
neutral or of smoothing type (here, we employ a prior that is
the inverse of an elliptic operator). Compactness of the data
misfit Hessian Hmisfit for inverse wave propagation problems
has long been observed (e.g., [16]). Recently, we have proven
compactness for the inverse wave propagation problem for
both continuous and pointwise observation operators for both
shape and medium scattering [4], [12]. Specifically, we have
shown that the data misfit Hessian is a compact operator. We
also quantify the decay of data misfit Hessian eigenvalues in
terms of the smoothness of the medium, i.e., the smoother
it is, the faster the decay rate. Under some conditions, the

rate can be shown to be exponential. That is, the data misfit
Hessian can be approximated well with a handful of its
dominant eigenvectors and eigenvalues. In conclusion, a low-
rank approximation of H̃misfit can be made that does not
depend on the parameter dimension, and depends only on the
information content of the data, filtered through the prior.

Once the r eigenpairs defining the low rank approximation
have been computed, estimates of uncertainty can be computed
by interrogating Γpost in (9) at a cost of just r inner products
(which are negligible) plus elliptic solves representing the
action of the square root of the prior Γ

1/2
prior on a vector (here

carried out with algebraic multigrid and therefore scalable).
For example, samples can be drawn from the Gaussian de-
fined with a covariance Γpost, a row/column of Γpost can be
computed, and the action of Γpost in a given direction can be
formed, all at cost that is O(rn) for the inner products in
addition to the O(n) cost of the multigrid solve. Moreover,
the posterior variance field, i.e., the diagonal of Γpost, can be
found with O(rn) linear algebra plus O(r) multigrid solves.

In summary, we have a method for estimating the posterior
covariance—and thus the uncertainty in the solution of the
linearized inverse problem—that requires a constant number
of PDE solves, dependent only on the information content of
the data filtered through the prior (i.e., r), but independent
of the number of parameters (n), the number of observations
(m), and the number of state variables. Moreover, since the
dominant cost of the posterior covariance construction is that
of solving forward and adjoint-like PDEs, parallel scalability
of the overall uncertainty quantification method follows when
the forward PDE solver is scalable (this will be demonstrated
for the case of our seismic wave propagation solver in the next
section).

VII. APPLICATION TO GLOBAL SEISMIC INVERSION

In recent years, the methodology for scalable parallel so-
lution of forward seismic wave propagation problems on
supercomputers by spectral element [17], [18], finite differ-
ence [19], finite element [9], and discontinuous Galerkin [20]
methods has matured. This motivates our present interest in the
seismic inverse problem of determining an earth model from
surface observations of seismic waveforms; indeed, we are
interested not just in the solution of this inverse problem, but
in quantifying the uncertainties in its solution using the method
proposed in this paper. In previous sections, our method and
underlying algorithms were presented for generic prior and
likelihood functions. §VII-A provides explicit expressions for
these functions (in infinite dimensions) for the specific seismic
inverse problem we address, along with explicit expressions
for gradient and Hessian-vector products, which are needed
for computing the mean and covariance estimates. The latter
expressions involve solutions of forward and adjoint wave
propagation PDEs and their linearizations. §VII-B gives an
overview of the forward wave equation solver and provides
near-full system strong scalability results on the Jaguar super-
computer at ORNL. §VII-C describes the setup of the seismic
inverse problem: the configuration of sources and receivers, the



generation of synthetic seismogram observations, the choice
of prior and noise covariances, the parametrization of wave
speed, and the mesh generation. §VII-C presents results on
quantifying uncertainties in the solution of a linearized global
seismic inverse problem characterized by one million uncertain
parameters. This is the largest—in fact the first—solution of
which we are aware of a statistical inverse problem whose
forward solver has required a supercomputer, made possible
because of the parameter-dimension-independent scaling of
our method.

A. Posterior and its derivatives

In this section we give explicit expressions for V (x), the
negative log of the posterior pdf for the seismic inverse
problem we target, along with expressions for its gradient and
Hessian-vector product. The expressions are written in strong,
infinite-dimensional form, for clarity. The inversion parameter
is taken as c = c(x), the local acoustic wave speed of the
medium. We can write the negative log posterior as

V(c) :=
1

2

∥∥Bv(c)− vobs
∥∥2

Γ−1
noise

+
1

2
‖c− c̄‖2Γ−1

prior
,

where the data misfit (the first term) is a finite dimensional
norm due to the pointwise observations in time and space,
and the prior term (the second term) is an infinite dimensional
norm, with the elliptic prior operator Γ−1

prior taken as an
anisotropic biharmonic. The wave propagation variables—the
velocity vector v and the trace of the strain tensor e (i.e., the
dilation) depend on c through the solution of the forward wave
propagation equations (written in first-order form):

ρvt −∇(ρc2e) = g in Ω× (0, T ),

et −∇ · v = 0 in Ω× (0, T ),

ρv = 0, e = 0 in Ω× {t = 0},
e = 0 on ∂Ω× (0, T ).

Here, ρ and g are known density and seismic source, vobs are
observations at receivers, B is an observation operator, and
Γprior and Γnoise are the prior and noise covariance operators.

The adjoint approach allows us to write the gradient at a
given point c in parameter space as

G(c) := 2ρc

∫ T

0

e(∇ ·w) dt+ Γ−1
prior(c− c̄),

where the adjoint velocity w and adjoint strain dilation d
satisfy the adjoint wave propagation equations

−ρwt +∇(c2ρd) = −B∗Γ−1
noise(Bv − vobs) in Ω× (0, T ),

−dt +∇ ·w = 0 in Ω× (0, T ),

ρw = 0, d = 0 in Ω× {t = T} ,
d = 0 on Γ× (0, T ).

The adjoint wave equations are reversed in time and have the
data misfit as source term, but otherwise resemble the forward
wave equations.

Similarly, the action of the Hessian operator in the direction
c̃ at a point c is given by

H(c)c̃ := 2ρ

∫ T

0

ce(∇ · w̃)+cẽ(∇ ·w)+c̃e(∇ ·w) dt+ Γ−1
priorc̃,

where ṽ and ẽ satisfy the incremental forward wave propaga-
tion equations

ρvt −∇(ρc2ẽ) = ∇(2ρcc̃e) in Ω× (0, T ),

et −∇ · ṽ = 0 in Ω× (0, T ),

ρṽ = 0, ẽ = 0 in Ω× {t = 0} ,
ẽ = 0 on Γ× (0, T ).

On the other hand, w̃ and d̃ satisfy the incremental adjoint
wave propagation equations

−ρwt +∇(c2ρd̃) = −∇(2c̃cρd)− B∗Γ−1
noiseBṽ in Ω× (0, T ),

−dt +∇ · w̃ = 0 in Ω× (0, T ),

ρw̃ = 0, d̃ = 0 in Ω× {t = T} ,
d̃ = 0 on Γ× (0, T ).

The incremental forward and incremental adjoint wave equa-
tions are seen to be linearized versions of their forward and
adjoint counterparts, and thus differ only in the source terms.1

Thus, we see that computation of gradients (as needed in the
posterior mean approximation) and Hessian actions on vectors
(as needed in the posterior covariance approximation) amount
to solution of a pair of forward/adjoint wave equations each.

B. Wave propagation solver and its strong scalability

The forward wave equation, and its three variants (adjoint,
incremental forward, incremental adjoint) described in the
previous section, are solved using a high-order discontinuous
Galerkin (dG) method. Details on the forward solver are
provided in [11]; here we summarize the salient features:

• discretization that supports h-nonconforming hexahedral
elements on a 2:1 balanced forest-of-octrees mesh;

• an element basis that is a tensor product of Lagrange
polynomials of arbitrarily high degree based on the
Legendre-Gauss-Lobatto (LGL) nodes;

• LGL numerical quadrature, which produces a diagonal
mass matrix;

• solution of the Riemann problem at material interfaces
(elastic-elastic, elastic-acoustic, acoustic-acoustic);

• mortar-based implementation of flux on 2:1 nonconform-
ing faces;

• time integration by classical four-stage fourth-order
Runge Kutta;

• guaranteed consistency, semi-discrete stability, and opti-
mal order convergence for non-conforming meshes [21].

1The infinite dimensional expressions for the gradient and Hessian action
given above are actually not consistent with the discrete gradient and Hessian-
vector product obtained by first discretizing the negative log posterior and
wave equation and then differentiating with respect to parameters. Additional
jump terms at element interfaces due to the dG discretization appear; in our
implementation, we include these terms to insure consistency with discrete
counterparts.



To model global seismic wave propagation, we model the
earth as a sphere with a radius of 6,371 km, where the speed
of acoustic (pressure) waves varies throughout the domain.
To generate the finite element mesh, we decompose the earth
into 13 warped cubes. The inner core comprises one central
cube, surrounded by two layers of six additional cubes. Each
cube is the root of an adaptive octree, which can be arbitrarily
refined, thus creating a mesh of curved hexahedral elements.
The mesh is aligned to the interface between the outer core and
the mantle, and several weaker discontinuities between layers,
and refined locally to resolve varying seismic wavelengths up
to a target frequency. The wave speed c(x) is approximated
with piecewise trilinear finite elements, and the wave equation
variables (velocity and strain) are discretized using high-order
(spectral) discontinuous Galerkin finite elements on the same
hexahedral mesh. For the distributed storage and adaptation of
both the parameter and wave propagation meshes, we use our
p4est library of fast forest-of-octree algorithms for scalable
adaptive mesh refinement, which have been shown to scale to
over 220,000 CPU cores and impose minimal computational
overhead [20], [22]. The time spent in meshing is insignificant
relative to that of numerical solution of the wave equation.

The central difficulty of UQ is its need for repeated solution
of the governing PDE model, in our case the wave propagation
equations. Conventional sampling methods will take millions
of wave propagation solutions (realistically, much more) to
explore the posterior distribution for the million-parameter
problem we solve in this section. For the frequencies we
target, a single wave propagation solve takes a minute on
64K Jaguar cores; conventional sampling methods are thus
out of the question. The low-rank Hessian-based method we
have presented here, which captures and exploits the local
structure of the posterior in the directions informed by the
data by computing curvature information based on additional
wave equations (adjoint and incremental forward and adjoint),
reduces the number of wave propagation solutions by orders
of magnitude. Still, thousands of wave equation solves are
needed, and we must use all available computing resources. As
a result, we insist on excellent strong scalability of our wave
equation solver to achieve acceptable time-to-solution. Taken
together, the high-order discretization, discontinuous elements,
explicit RK scheme, and space filling curve partitioning un-
derlying our forest-of-octree mesh data structure should yield
excellent scalability; indeed, we have shown near ideal parallel
efficiency in weak scaling on up to 220,000 cores of the Jaguar
system at ORNL [11]. Here, we investigate the extreme limits
of strong scaling to determine how fine a granularity one can
employ in the repeated wave solutions. Table I shows that our
wave equation solver exhibits excellent strong scaling over
a wide range of core counts. These results are significant,
since we are using just third-order elements (higher order
creates more work per element, relative to data movement).
For the large problem, for example we maintain 71% parallel
efficiency in strong scaling from 1024 to 262,144 cores. The
largest core count problem has just 62 elements per core.

TABLE I
STRONG SCALING OF THE FORWARD SOLVER

#cores time [ms] elem/core efficiency [%]
256 1630.80 4712 100.0
512 832.46 2356 98.0

1024 411.54 1178 99.1
8192 61.69 148 82.6

65536 11.79 19 54.0
131072 7.09 10 44.9
262144 4.07 5 39.2

1024 5423.86 15817 100.0
4096 1407.81 3955 96.3
8192 712.91 1978 95.1

16384 350.43 989 96.7
32768 211.86 495 80.0
65536 115.37 248 73.5

131072 57.27 124 74.0
262144 29.69 62 71.4

Strong scaling results on ORNL’s Jaguar XK6 system for global seismic wave
propagation solutions for two problem sizes. We report the time per time step
in milliseconds on meshes with 1,206,050 (upper table) and 16,195,864 (lower
table) 3rd order discontinuous Galerkin finite elements, corresponding to 694
million and 9.3 billion spatial degrees of freedom, respectively. The elem/core
column reports the maximum number of elements owned by any core. For
strong scaling from 256 to 262,144 cores, the parallel efficiency is still as
high as 39% for the small problem. For the larger problem and a 256-fold
increase in problem size, we find a parallel efficiency of 71%. At 262,144
cores, each core owns just 4 or 5 elements for the small problem, and 61 or
62 elements for the larger problem. The larger run sustains a double precision
floating point rate of 111 teraflops per second (based on performance counters
from the PAPI library [23].

Fig. 2. (Coarser version of) mesh used for the wave propagation simulation
and “true” pressure wave speed c in km/s. Left: section through earth model.
Right: surface at depth of 222 km showing lateral variations of up to 7%.
Wave propagation mesh is tailored to the local seismic wave lengths.

C. Inverse problem solution and its uncertainty

This section presents solution of the statistical inverse
problem. First we define the inverse problem setup. Both
the prior mean and the initial guess for the iterative so-
lution of the nonlinear least squares optimization problem
(2) (to find the MAP point) are derived from the radially
symmetric preliminary reference earth model (PREM) [24],
which dates to 1981. We take the “true” earth to be given
by the more recent S20RTS velocity model (converted from
shear to acoustic wave speed anomaly) [25], which superposes
lateral wave speed variations on PREM, as seen in Figure 2.
Synthetic observations are generated from solution of the wave
equation for an S20RTS earth model, with seismic sources
at the North pole and at 90◦ intervals along the equator,



Fig. 3. Location of five simultaneous seismic sources (black spheres; two
in back not visible) and 100 receivers (white spheres).

all of them at a depth of 10 km. All five point sources are
taken to occur simultaneously. A total of 100 receivers in the
Northern and Eastern hemispheres are distributed along zonal
lines at 10◦ spacing. The source and receiver configuration
is illustrated in Figure 3. The observations consist of the first
61 Fourier coefficients of the Fourier-transformed seismogram
(time history of ground motion) at each receiver location. The
noise distribution for these data is taken as i.i.d. Gaussian with
mean zero and a standard deviation of 9.34× 10−3.

We use a 3rd-order discontinuous finite elements mesh to
resolve seismic wavelengths corresponding to a source with
maximum frequency of 0.07 Hz. This requires a mesh with
1,093,784 elements, which leads to 630 million wave propa-
gation spatial unknowns (velocity and strain) for the forward
problem, and 1,067,050 unknown wave speed parameters for
the statistical inverse problem. The observation time window
for the inverse problem is 1,000 seconds, which leads to 2400
discrete time steps. This simulation time is sufficient for the
waves to travel about two-thirds of the earth’s diameter. A
single wave solve takes about one minute on 64K Jaguar
cores. As discussed in §VII-A, two wave solves are needed
in each gradient or Hessian-vector computation. However,
since these expressions combine wave equation solutions in
opposite time direction, the work-optimal choice of solving
two wave equations requires storage of the entire time history,
which is prohibitive. Instead, we use algorithmic checkpoint-
ing methods, which cut the necessary storage but increases
the number of wave propagation solutions to five per Hessian-
vector product (two forward, two incremental forward, and
one adjoint solve) [10]. Thus, a single Hessian-vector product
takes about 5 minutes on 65K Jaguar cores.

The posterior mean is approximated by solving the nonlin-
ear least squares optimization problem (2) to find the MAP
point, using the inexact Gauss Newton-CG method described
in §II, initialized with the prior mean (the PREM model),
and terminated after 3 orders of magnitude reduction in the
gradient, which was achieved after a total of 320 CG iterations
(summed across Newton iterations). A comparison of the
approximate mean with the “true” earth model (S20RTS) is
displayed in Figure 4. The MAP solution is seen to resemble
the “true” parameter field well in the Northern hemisphere,
which has good receiver coverage.

Fig. 4. Comparison of MAP of posterior pdf (left) with the “true” earth
model (right) at a depth of 67 km. Source locations are indicated with black
spheres and seismic receiver stations are indicated by white spheres.
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Fig. 5. Logarithmic plot of the spectrum of prior-preconditioned data misfit
Hessian.

We approximate the covariance matrix at the MAP point
via a low-rank representation employing 488 products of the
Hessian matrix with random vectors. The effective problem
dimension is thus reduced from 1.07 million to 488, a factor of
over 2000 reduction. Figure 5 depicts the first 488 eigenvalues
of the million-dimensional parameter field, indicating the rapid
decay in information content of the data, a fact that we exploit
to make the UQ problem tractable.

The reduction in the variance between prior and posterior
due to the information (about the earth model) content of
the data—i.e., the diagonal of the second term in (9), the
expression for the posterior covariance—is shown in Figure
7. We observe that in the region where sensors are placed (the
visible portion of the Northern hemisphere), we get a large
reduction in variance due to the data. In regions where there
are no sensors, the reduction in variance is substantially less.
Additionally, Figure 8 displays the variance reduction on a
slice through the equator of the earth, and we again see that
the largest variance reduction (depicted in red) is achieved
near the surface where the sensors are located, although some
reduction is also achieved well into the earth’s mantle. Finally,
Figure 6 shows samples from the prior and the posterior
pdf; the difference between the two sets of samples reflects
the information gained from the data in solving the inverse
problem. Note the regions of large variability in the posterior
samples, which reflect the absence of receivers.



Fig. 6. Samples from the prior (top row) and posterior (bottom row) distributions. The difference between the prior and posterior samples reflects the
information (about the earth model) learned from the data. The large scale features of the posterior samples consistently resemble the posterior mean (right).
The fine scale features however are not expected to be influenced by the data, and qualitatively resemble the fine scale features of the prior samples. Note the
small variability across samples in the Northern hemisphere—reflecting the receiver coverage there—while the Southern hemisphere exhibits large variability
in the inferred model, reflecting that uncertainty due to the lack of receivers.
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Fig. 7. The left image depicts the pointwise posterior variance field, which is
represented as the difference between the original prior variance field (middle),
and the reduction in variance due to data (right; see also Figure 8). All variance
fields are displayed at a depth of 67km.

Fig. 8. Data-induced reduction in variance inside the earth. The reduction
is shown on a slice through the equator, as well as on isosurfaces in the
left hemisphere (compare with Figure 7, which shows reduction on earth’s
surface). As can be seen, the reduction in variance is greatest on the surface.

VIII. CONCLUSIONS

We have addressed UQ for large-scale inverse problems. We
adopt the Bayesian inference framework: given observational
data and their uncertainty, the governing forward problem and
its uncertainty, and a prior probability distribution describing
uncertainty in the parameters, find the posterior probability
distribution over the parameters. The posterior pdf is a surface
in high dimensions, and the standard approach is to sample
it via a Markov-chain Monte Carlo (MCMC) method and
then compute statistics of the samples. However, the use of
conventional MCMC methods becomes intractable for high
dimensional parameter spaces and expensive-to-solve forward

PDEs, as in our target problem of global seismic inversion.
We have introduced a method that exploits the local struc-

ture of the posterior pdf—namely the Hessian matrix of the
negative log posterior, which represents the local covariance—
to overcome the curse of dimensionality associated with sam-
pling high-dimensional distributions. Unfortunately, straight-
forward computation of the dense Hessian is prohibitive,
requiring as many forward-like solves as there are uncertain
parameters. However, the data are typically informative about
a low dimensional subspace of the parameter space—that is,
the Hessian is sparse with respect to some basis. We have
exploited this fact to construct a low rank approximation of the
Hessian and its inverse using a matrix-free parallel randomized
subspace-detecting algorithm. Overall, our method requires
a dimension-independent number of forward PDE solves to
approximate the local covariance. Uncertainty quantification
for the inverse problem thus reduces to solving a fixed number
of forward and adjoint PDEs (which resemble the original
forward problem), independent of the problem dimension. The
entire process is thus scalable with respect to the forward
problem dimension, uncertain parameter dimension, observa-
tional data dimension, and number of processor cores. We
applied this method to the Bayesian solution of an inverse
problem in 3D global seismic wave propagation with one
million inversion parameters, for which we observe 3 orders
of magnitude dimension reduction, which makes UQ tractable.
This is by far the largest UQ problem that has been solved with
such a complex governing PDE model.
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