
ALPS: A framework for parallel adaptive PDE

solution

Carsten Burstedde? Martin Burtscher? Omar Ghattas?,†

Georg Stadler? Tiankai Tu? Lucas C. Wilcox?
?Institute for Computational Engineering and Sciences (ICES), The University of Texas at
Austin, 1 University Station C0200, Austin TX 78712, USA
†Jackson School of Geosciences and Department of Mechanical Engineering, The University of
Texas at Austin, 1 University Station C0200, Austin TX 78712, USA

E-mail: {carsten,burtscher,omar,georgst,ttu,lucasw}@ices.utexas.edu

Abstract. Adaptive mesh refinement and coarsening (AMR) is essential for the numerical
solution of partial differential equations (PDEs) that exhibit behavior over a wide range of length
and time scales. Because of the complex dynamic data structures and communication patterns
and frequent data exchange and redistribution, scaling dynamic AMR to tens of thousands of
processors has long been considered a challenge. We are developing ALPS, a library for dynamic
mesh adaptation of PDEs that is designed to scale to hundreds of thousands of compute cores.
Our approach uses parallel forest-of-octree-based hexahedral finite element meshes and dynamic
load balancing based on space-filling curves. ALPS supports arbitrary-order accurate continuous
and discontinuous finite element/spectral element discretizations on general geometries. We
present scalability and performance results for two applications from geophysics: seismic wave
propagation and mantle convection.

1. Introduction
The advent of the age of petascale computing brings unprecedented opportunities for
breakthroughs in scientific understanding and engineering innovation. However, the raw
performance made available by petascale systems is by itself not sufficient to solve many
challenging modeling and simulation problems. For example, the complexity of solving
evolutionary partial differential equations often scales as n

4
3 , where n is the number of

unknowns.1 Thus, the three-orders-of-magnitude improvement in peak speed of supercomputers
over the past dozen years has meant just a factor of 5.6 improvement in spatio-temporal
resolution—not even three successive refinements of mesh size. For many problems of scientific
and engineering interest, there is a desire to increase the resolution of current simulations by
several orders of magnitude. Thus, although supercomputing performance has outpaced Moore’s
Law over the past several decades due to increased concurrency [1], the curse of dimensionality
imposes much slower scientific returns.

The work requirements of scientific simulations typically scale as nα. The power α can be
reduced through the use of optimal solvers such as multigrid for PDEs and fast multipole for
integral equations and N-body problems. Once α has been reduced as much as possible, further

1 Optimal solvers require O(n) work per time step, and time accurate integration often implies O(n
1
3 ) time steps.

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012009 doi:10.1088/1742-6596/180/1/012009

c© 2009 IOP Publishing Ltd 1



reductions in work can be achieved only by reducing n itself. This can be accomplished in
two ways: through the use of adaptive mesh refinement/coarsening (AMR) techniques, and the
use of higher order accurate discretizations (in space and time). AMR places mesh points only
where needed to resolve features of the solution, whereas high-order approximations reduce the
number of mesh points necessary to achieve a given accuracy.

Fortunately, many problems have local multiscale character, i.e., resolution is needed only in
localized (possibly dynamically evolving) regions, such as near fronts, discontinuities, material
interfaces, reentrant corners, boundary and interior layers, and so on. In this case, AMR
methods can deliver orders-of-magnitude reductions in the number of mesh points. However,
AMR methods can also impose significant overhead, in particular on highly parallel computing
systems, due to their need for frequent re-adaptation and load-balancing of the mesh over the
course of the simulation. Because of the complex data structures and communication patterns
and frequent data exchange and redistribution, scaling dynamic AMR to tens of thousands of
processors has long been considered a challenge. Space constraints preclude a proper review of
existing methods and software for parallel AMR, but see the discussion and references in [2, 3].

We have developed the ALPS (Adaptive Large-scale Parallel Simulations) framework for
parallel adaptive solution of PDEs [3]. ALPS includes the octor [4] and p4est libraries for
parallel dynamic mesh adaptivity on single-octree-based and forest-of-octree-based geometries,
respectively, and the mangll library for arbitrary-order hexahedral continuous and discontinuous
finite/spectral element discretizations on general multi-octree geometries. ALPS has been
shown to scale well weakly and strongly to over 60,000 processor cores [3]. In this paper, we
describe several applications of the ALPS framework to two continuum mechanics problems—
the propagation of elastic waves (with application to global seismology) and the buoyancy-driven
creeping (Stokes) flow of a non-Newtonian incompressible fluid (with application to global mantle
convection)—and provide sample performance results on Ranger, the 579 teraflops, 62,976-core
Sun system at the Texas Advanced Computing Center (TACC).

2. Elastic wave propagation: Global seismology
The elastic wave equation models the propagation of longitudinal and shear waves in a linearly
elastic medium. For isotropic media, the material stiffness tensor involves only the Lamé
parameters λ and µ. In mixed velocity–stress form, the elastic wave equation reduces to

ρ
∂v

∂t
= ∇ · S + f , (1a)

∂S

∂t
= µ

(
∇v +∇v>

)
+ λ (∇ · v) I, (1b)

where v and S are the unknown velocity vector and Cauchy stress tensor of the medium, and
ρ, t, f , and I are the mass density, time, body force, and identity tensor, respectively.

We have built an elastic wave propagation code based on the mangll and p4est libraries
from ALPS. Velocity and stress fields are discretized using the discontinuous Galerkin (dG)
method with a Godunov flux [5] in space and a five-stage fourth-order explicit Runge-Kutta (RK)
method in time. The elements are the same as those used in the spectral element method [6],
having nodes at the tensor product Legendre-Gauss-Lobatto (LGL) points. The dG method
duplicates degrees of freedom between adjacent element faces. On nonconforming interfaces
between elements (arising due to 2:1 subdivision between adjacent hexahedra), the numerical
flux is computed by introducing a face integration mesh that incorporates the contributions from
each smaller face individually using the two-dimensional tensor LGL quadrature based on the
nodes of the smaller face. The LGL quadrature reduces the block diagonal dG mass matrix to
a diagonal matrix, permitting faster application of its inverse.

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012009 doi:10.1088/1742-6596/180/1/012009

2



100

1000

10000

0.1

512

0.2

2 K

0.3 0.4

8 K

0.5

16 K

0.6

to
ta

l
co

re
-h

o
u
rs

frequency (Hz)

cores

adaptive
frequency4

frequency3

Figure 1. Top: cut of wavefront-adapted spherical mesh for a double-couple source. Bottom:
scaling of run time with the number of cores for dynamic-adaptive wave propagation solver.

Figure 1 presents results from the solution of an elastic wave propagation problem in a
spherical geometry. The material parameters approximate those of the Earth and the source
is a simple double-couple. The top image depicts a snapshot of a mesh that has been adapted
to propagating wavefronts. The significant reduction of mesh points can be seen in the image.
The bottom plot presents scaling results to 16K cores, showing the growth in total processor-
hours as a function of maximum source frequency. A perfectly scalable static mesh explicit
wave propagation solver would have a total solution time that scales as the fourth power of
frequency. The scaling is shown as the top black line (with 512 cores as the base case). Dynamic
adaptivity has the potential to reduce the complexity to be closer to the third power of frequency
(shown as the bottom black line), since adapting to moving wavefronts effectively eliminates one
dimension from the mesh. The cubic scaling cannot be achieved for problems on finite domains
or with interfaces, due to reflections and generation of new waves (the number of wavefronts

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012009 doi:10.1088/1742-6596/180/1/012009

3



0.8

0.9

1

1.1

1.2

1.3

1.4

1 2 4 8 16 32 64 128 256

cy
cl

es
p
er

in
st

ru
ct

io
n

number of cores

min
avg
max

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128 256

L
1

d
at

a-
ca

ch
e

m
is
s

ra
ti
o

(%
)

number of cores

min
avg
max

Figure 2. CPU performance for wave propagation code with 10K total elements of polynomial
degree 6. Top: cycles per instruction. Bottom: L1 data-cache miss ratio in percent.

that must be tracked does not remain constant). The actual observed scaling is plotted as the
red line, showing that, even in a layered Earth model, the “optimal” fourth power scaling can
be improved using adaptivity.

We also studied the efficiency of the implementation using performance counter measurements
from the PAPI library [7]; the results are summarized in Figure 2. Up to eight cores, more than
one instruction is executed per cycle on average, indicating that there is significant instruction-
level parallelism. As the compute nodes become saturated when using all 16 cores per node,
we observe a jump in the cycles per instruction (CPI). Yet, even above 16 cores, the CPI is
low because we carefully tuned important sections of the source code so that the compiler can
vectorize them [8]. Beyond 16 cores, the CPI grows due to an increase in cache misses, which is
caused by an increase in data that need to be exchanged between compute nodes, which results
in less regular memory access. Nevertheless, the L1 data-cache miss ratio is surprisingly low for

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012009 doi:10.1088/1742-6596/180/1/012009

4



Figure 3. Snapshots of three time steps from a mantle convection simulation using Rhea,
showing dynamically-adapted refinement near rising thermal plumes and thermal boundary
layers.

code that processes about 1.75, 1.12 and 0.96 million degrees of freedom per second per core on
1, 32 and 256 cores, respectively. This low ratio is due to data being accessed in mostly regular
patterns, which allows data to be prefetched effectively.

3. Non-Newtonian Stokes flow: Mantle convection
Our second example is flow of a viscous incompressible creeping non-Newtonian fluid, which is
governed by equations for mass, momentum, and energy balance,

∇ · v = 0, (2a)

−∇ ·
[
η
(
∇v +∇v>

)
− Ip

]
= ρg, (2b)

ρcp

(
∂T

∂t
+ v · ∇T

)
−∇ · (k∇T ) = ρH, (2c)

where v, p, and T are the unknown velocity, pressure, and temperature; and η = η(T,v), ρ, g, cp,
k and H are the viscosity, density, gravitational acceleration, specific heat, thermal conductivity,
and internal heat generation rate. We are interested in convection in Earth’s mantle, where the
flow is driven by buoyancy. Thus we invoke the Boussinesq approximation, which replaces the
density in the gravitational force term in (2b) by ρ = ρ0 [1− α(T − T0)], where ρ0 and T0

denote reference temperature and density and α is the coefficient of thermal expansion. Various
constitutive laws are used for the mantle, but in general the viscosity depends nonlinearly on
both temperature and second invariant of the deviatoric strain rate tensor.

We have built a parallel AMR mantle convection code, Rhea, that solves (2a)–(2b) with
appropriate boundary conditions and temperature- and strain-rate-dependent viscosity [3] using
ALPS components. The images in Figure 3 illustrate dynamic mesh adaptivity in resolving
thermal upwellings and boundary layers. The first version of Rhea discretizes the velocity,
pressure, temperature fields with mapped trilinear hexahedral finite elements. Mantle flows are
strongly advection-dominated, and therefore we employ the streamline-upwind Petrov-Galerkin
(SUPG) scheme to stabilize the energy equation (2c). The equal-order discretization of the
Stokes equations (2a), (2b) is stabilized with pressure projection [9]. Explicit integration of the
energy equation decouples the temperature update from the nonlinear Stokes solve; the latter
is carried out at each time step using the updated temperature via a lagged-viscosity (Picard)
iteration. Each Picard iteration requires a variable-viscosity Stokes solve, which is discussed
below.

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012009 doi:10.1088/1742-6596/180/1/012009

5



1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

S
p
ee

d
u
p

Number of cores

Ideal speedup
1.99M elements
32.7M elements
531M elements
2.24B elements

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 62464

P
er

ce
n
ta

g
e

o
f
to

ta
l
ru

n
ti
m

e

Number of cores

NewTree

CoarsenTree

RefineTree

BalanceTree

PartitionTree

ExtractMesh

InterpolateF’s

TransferFields

MarkElements

TimeIntegration

Figure 4. Top: fixed-size (strong) scalability for adaptive solution of energy equation for four
problem sizes on cubic domain. Mesh is adapted every 32 time steps. Bottom: weak scalability
for adaptive solution of energy equation. Total run time is broken down into numerical PDE
solution (blue) and AMR functions (all other colors). Problem size increases isogranularly at
131,000 elements per core; largest problem has approximately 7.9 billion elements.

First, we study the scalability of AMR for solution of the energy equation (2c). This low-
order-discretized, explicitly-solved, scalar, linear equation is a severe test of AMR, since there
is very little numerical work over which to amortize AMR. As can be seen from the top plot in
Figure 4, the fixed-size scaling speedups are nearly optimal over a wide range of core counts.
For instance, solving the problem with 531 million elements (blue line) exhibits a speedup of 101
on 32,768 cores over the same problem running on 256 cores (128 would be optimal). Moreover,
scaling weakly from 1 to 62,464 cores (bottom of Figure 4), we see that all mesh adaptation
functions—including coarsening, refinement, interpolation, rebalancing and repartitioning of the
mesh—together impose little overhead on the PDE solver. Only for 62K cores does the total

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012009 doi:10.1088/1742-6596/180/1/012009

6



0

10

20

30

40

50

60

70

80

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

O
ve

ra
ll

ru
n

ti
m

e
p
er

ti
m

e
st

ep

Number of cores

NewTree,CoarsenTree,RefineTree

BalanceTree,PartitionTree,ExtractMesh

InterpolateFields,TransferFields

MarkElements

TimeIntegration

MINRES

AMGSetup

AMGSolve

Figure 5. Breakdown of mantle convection run time per time step into AMG setup (gray),
AMG V-cycle (yellow), MINRES iteration (blue), and time integration of the energy equation
(red) using BoomerAMG preconditioning. AMR operations (all other colors) have negligible
cost. Mesh is adapted every 16 time steps, and problem size increases isogranularly at 50K
elements per core (largest problem has 815 million elements).

cost of AMR exceed 10% of the end-to-end run time, and even then just barely.
Next, we study the algorithmic and parallel scalability of the variable-viscosity Stokes solver,

which is invoked at each Picard iteration within each time step. We use MINRES to solve
the symmetric indefinite Stokes system; the preconditioner is a block-diagonal matrix, which
invokes one V-cycle of an algebraic multigrid (AMG) method for the viscous (1,1) block, and
an inverse-viscosity-scaled mass matrix for the pressure Schur-complement (2,2) block (see [10]
for details). For Cartesian geometry, the viscous vector operator can be approximated by a
scalar, variable-coefficient Poisson operator associated with each of the three velocity components
(provided viscosity gradients are not too large). The Poisson operators are approximately
inverted by one V-cycle of BoomerAMG from the hypre library [11]. The bar chart in Figure 5
shows the breakdown of different components of an adaptive variable-viscosity Stokes solve
using BoomerAMG as we scale weakly from 1 to 16K cores. Spherical geometry, on the other
hand, induces additional coupling among the velocity components that cannot be effectively
approximated by the decomposition into scalar Poisson solves. Thus we employ one V-cycle
of the adaptive smoothed aggregation AMG solver ML from Trilinos [12] on the entire viscous
vector block. Table 1 presents weak scalings of a single variable-viscosity Stokes solve on the
spherical domain using ML. We draw several conclusions from Figure 5 and Table 1. First, for the
full AMR mantle convection simulations with Rhea (i.e. including energy and nonlinear Stokes),
the cost of parallel AMR is in the noise. Second, using a V-cycle of either BoomerAMG or ML as
a preconditioner for the viscous block, in conjunction with a scaled mass matrix approximation
of the Schur complement, results in excellent algorithmic scalability, as evidenced by the near-
insensitivity of MINRES iterations to a 16,000-fold increase in problem size and number of
cores. Third, while both AMG implementations exhibit excellent algorithmic scalability, there
is an opportunity for improvement of the parallel scalability of the AMG setup and V-cycle
components at O(104) cores, based on our tests on a cluster system and viscous operators with
several-orders-of-magnitude variation in coefficients. Finally, the examples demonstrate that

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012009 doi:10.1088/1742-6596/180/1/012009

7



#cores #dofs MINRES
#iterations

AMG
setup (s)

AMG
V-cycle (s)

MINRES
matvec (s) ζA ζI ζV ζ

8 1.89M 77 7.12 41.3 130.8 1.00 1.00 1.00 1.00
64 12.8M 76 8.47 38.9 114.9 1.01 1.12 1.05 1.10
512 99.7M 78 10.2 48.1 129.9 0.99 1.02 0.87 0.95
4096 672M 109 36.5 189.8 208.7 0.70 0.89 0.31 0.41
16384 2.43B 109 66.0 211.3 216.5 0.70 0.86 0.28 0.36

Table 1. Weak scaling of Stokes solve on spherical shell domain using ML, with 103 viscosity
contrast, on a 3 times locally refined mesh. The numbers of cores, degrees of freedom, and
MINRES iterations are tabulated, along with the time for AMG setup, AMG V-cycle, and
MINRES matvecs. Also shown are algorithmic efficiency ζA (based on MINRES iterations),
implementation efficiency ζI (based on MINRES timing, excluding V-cycle), V-cycle efficiency
ζV (based on ML timing), and overall efficiency ζ (based on overall wall clock).

our framework for parallel forest-of-octrees AMR with high-order-accurate discretization and
general geometries scales very well to at least O(104) processor cores.

Acknowledgement
This work was partially supported by NSF (OCI-0749334, CCF-0427985, CNS-0540372, CNS-
0619838, DMS-0724746) and DOE (06ER25782, 08ER25860). Computing resources at TACC
were provided under TeraGrid award MCA04N026. We acknowledge many helpful discussions
with Rob Falgout, Ulrike Yang, Rahul Sampath, George Biros, and Tim Warburton. We thank
TACC for their outstanding support, in particular Bill Barth, Jay Boisseau, Tommy Minyard,
Romy Schneider, and Karl Schulz.

References
[1] Colella P, Dunning T H, Gropp W D and Keyes D E 2004 A Science-Based Case for Large-Scale Simulation,

Volume 2 Office of Science, U.S. Department of Energy URL http://www.pnl.gov/scales/

[2] Diachin L F, Hornung R, Plassmann P and Wissink A 2006 Parallel Adaptive Mesh Refinement (SIAM)
chap 8 (Software, Environments, and Tools no 20)

[3] Burstedde C, Ghattas O, Gurnis M, Tan E, Tu T, Stadler G, Wilcox L C and Zhong S 2008 Scalable adaptive
mantle convection simulation on petascale supercomputers Proceedings of SC08 (IEEE/ACM)

[4] Tu T, O’Hallaron D R and Ghattas O 2005 Scalable parallel octree meshing for terascale applications
Proceedings of SC2005

[5] Hesthaven J S and Warburton T 2008 Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and
Applications (Texts in Applied Mathematics vol 54) (Springer)

[6] Deville M, Fischer P and Mund E 2002 High-Order Methods for Incompressible Fluid Flow (Cambridge
Monographs on Applied and Computational Mathematics vol 9) (Cambridge University Press)

[7] Performance applications programming interface (PAPI) URL http://icl.cs.utk.edu/papi/

[8] Diamond J, Kim D, Burtscher M, Keckler S, Pingali K and Browne J 2009 Multicore optimization for Ranger
Proceedings of Teragrid ’09

[9] Dohrmann C and Bochev P 2004 International Journal for Numerical Methods in Fluids 46 183–201
[10] Burstedde C, Ghattas O, Stadler G, Tu T and Wilcox L C 2009 Computer Methods in Applied Mechanics

and Engineering 198 1691–1700
[11] Center for Applied Scientific Computing, Lawrence Livermore National Laboratory 2007 hypre. High

Performance Preconditioners, User Manual https://computation.llnl.gov/casc/linear_solvers/
[12] Gee M, Siefert C, Hu J, Tuminaro R and Sala M 2006 ML 5.0 smoothed aggregation user’s guide Tech. Rep.

SAND2006-2649 Sandia National Laboratories

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012009 doi:10.1088/1742-6596/180/1/012009

8




