
ForestClaw: Hybrid forest-of-octrees
AMR for hyperbolic conservation laws

Carsten BURSTEDDE a,1, Donna CALHOUN b, Kyle MANDLI c and
Andy R. TERREL c

a Institut für Numerische Simulation, Universität Bonn, Germany
b Boise State University, Idaho, USA

c Institute for Computational Engineering and Sciences,
The University of Texas at Austin, USA

Abstract. We present a new hybrid paradigm for parallel adaptive mesh refinement
(AMR) that combines the scalability and lightweight architecture of tree-based
AMR with the computational efficiency of patch-based solvers for hyperbolic con-
servation laws. The key idea is to interpret each leaf of the AMR hierarchy as one
uniform compute patch in Rd with md degrees of freedom, where m is customarily
between 8 and 32. Thus, computation on each patch can be optimized for speed,
while we inherit the flexibility of adaptive meshes. In our work we choose to in-
tegrate with the p4est AMR library since it allows us to compose the mesh from
multiple mapped octrees and enables the cubed sphere and other nontrivial multi-
block geometries. We describe aspects of the parallel implementation and close
with scalings for both MPI-only and OpenMP/MPI hybrid runs, where the largest
MPI run executes on 16,384 CPU cores.
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1. Introduction

With the advent of many-core chips such as GPUs and the MIC architecture comes the
opportunity to sustain unprecedented rates of floating point operations at comparably
high integration density and low cost. These architectures, however, require careful struc-
turing of the data layout and memory access patterns to exhaust their multithreading and
vectorization capabilities.

Consequently, it is not clear a priori how to accelerate PDE solvers that use adap-
tive mesh refinement. Of course, it was realized early that it helps to aggregate degrees
of freedom (DOF) at the element level, as has been done with high-order spectral ele-
ment [1], low order continuous Galerkin methods that accumulate many elements simul-
taneously [2], or discontinuous Galerkin [3] methods. GPU implementations of the lat-
ter have been proposed recently [4, 5]. The finite volume method has typically been im-
plemented using a single degree of freedom per cell on structured [6, 7] or unstructured
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meshes [8]; higher order methods have also been constructed by widening the stencil, for
instance in WENO methods [9].

To facilitate hardware acceleration for parallel dynamic AMR, we build upon the
forest-of-octrees paradigm because of its low overhead and proven scalability [10].
This approach identifies each octree leaf with a mesh element. The present work does
not construct a traditional high-order element but defines each element to be a dense
computational patch with md DOFs. In fact, this approach resembles block-structured
AMR [11–14] except that the patches are not overlapping, which enables us to capital-
ize on our previous experience with scalable FE solvers for PDEs [15]. The CLAWPACK

software [16] provides a popular implementation of such a patch. It has been designed
to solve hyperbolic conservation laws and successfully used in the context of block-
structured AMR [17–19].

In this paper we describe our design for the coupling of forest-of-octrees AMR with
CLAWPACK at the leaf level. We comment on challenges that arise in enabling multiblock
geometries and efficient parallelism and conclude with a range of numerical examples
that demonstrate the conceptual advantages.

2. Design principles

The starting point of our work is defined by the p4est algorithms for forest-of-octrees
AMR on the one hand, and the CLAWPACK algorithms for the numerical solution of
hyperbolic conservation laws on the other. Both are specialized codes with the following
characteristics:

p4est CLAWPACK

subject hexahedral nonconforming mesh hyperbolic PDE on [0,1]d

toplevel unit forest of octrees patch of md FV cells
atomic unit octree leaf one DOF in each cell
parallelization MPI threads (Manyclaw variant)
memory access distributed shared on each MPI rank
data type integers floating point values
language C Fortran 77

Each leaf as the atomic unit of p4est houses a toplevel unit of CLAWPACK. The term
cell is used to identify a single DOF within a CLAWPACK patch. The proposed 1:1 cor-
respondence between a leaf and a patch thus combines two previously disjoint models in
a modular way:

1. We permit the reuse of existing, verified, and performant codes.
2. We preserve the separation between the mesh on one hand and the discretization

and solvers on the other.
3. The AMR metadata (p4est: under 1k bytes per octree, 8 bytes per MPI rank, 24

bytes per leaf. ForestClaw: 84+ 28d bytes per patch) is insignificant compared
to the numerical data (md floating point values per patch).

4. The resulting parallel programming model is a hybrid (often referred to as
MPI+X). Only rank-local leaves/patches are stored and computed on.



A particular feature of ForestClaw is that the generic handling of multiblock geome-
tries is inherited from p4est, identifying each octree as a block. Each block is under-
stood as a reference unit cube with its own geometric mapping. The connectivity of the
blocks can be created by external hexahedral mesh generators, eliminating the need to
encode it by hand.

A main challenge is presented by the fact that the patch neighborhood is only known
to p4est. This patch connectivity information needs to be propagated to the numerical
code in ForestClaw that implements the interaction with neighbor patches via the use
of a layer of (typically two) ghost cells surrounding each patch. To this end, we have
designed an interface that provides access to the sequence of blocks, the list of patches
per-block, and a constant-time lookup of neighbor patches (and their relative and, in
general, nontrivial orientation between blocks). Suitably informed by p4est, ForestClaw
stores only the patches local to each MPI rank.

Mesh modification directives, such as adaptive refinement and coarsening, are called
from ForestClaw and executed as black-box operations inside p4est. The only informa-
tion that flows into p4est is a set of per-patch refinement and coarsening flags, which are
computed from the numerical state in ForestClaw. Our current algorithm requires neigh-
bor patches to have a size difference of at most a factor of two (the 2:1 balance condi-
tion). This condition can have nonlocal effects on the refinement pattern and is enforced
by special-purpose parallel algorithms in p4est [20].

3. Patch-based numerics at the leaf level

For hyperbolic problems, we integrate the solution on a single uniform patch, containing
md cells, using the wave propagation algorithm described by R. J. LeVeque [21] and
implemented in CLAWPACK [7, 22]. We assume a single degree of freedom per cell and
reconstruct a piecewise constant solution to obtain left and right states at cell edges. At
each edge, we solve Riemann problems to obtain left and right going waves propagating
at speeds determined from the solution to the Riemann problem. For scalar advection,
the speed of each wave is simply the local advection speed at the cell interface. For
non-linear problems and systems, an approximate Riemann solver, such as a Roe solver
[23], is typically used. Since much of the physics of an application can be contained
in the Riemann solver, ForestClaw adopts CLAWPACK’s interface to Riemann solvers
effectively allowing problems solved with CLAWPACK to be solvable in ForestClaw.
Wave limiters are used to supress spurious oscillations resulting from truncation error in
a typical second order method.

Data exchanges between neighboring patches are done via layers of ghost cells ex-
tending the dimensions along the edges of each patch. The interior edge values of a
given patch overlap the ghost cell region of a neighboring patch. For the second order
wave propagation algorithm, two layers of ghost cells are sufficient. This implies that
one layer of ghost patches is sufficient for m ≥ 4. Neighboring patches at the same level
of refinement simply copy their interior edge values into a neighbors’ ghost cells. Neigh-
boring fine grid patches average their interior edge data to a coarser neighbor’s ghost
cell values. And neighboring coarse grid patches interpolate data from their interior edge
cells to their fine grid neighbor’s ghost cell values. To avoid loss of conservation and
the creation of spurious extrema, we use a standard conservative, limited interpolation
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Figure 1. Left: Forest of two quadtrees, partitioned among three MPI processes. Each quadtree has its own
coordinate orientation. The situation in 3D (octrees) is analogous. Right: The leaves in a forest of six quadtrees
that serves as the computational domain for the cubed sphere. An adhoc refinement pattern has been 2:1 bal-
anced in terms of neighbor sizes and partitioned between five MPI processes (the three middle ones out of
0 . . .4 are shown with a color scale from black to white).

scheme to interpolate values from the coarse grid to fine grid coarse cells [18,24]. When
sub-cycling, time accurate data between coarse grids is used to fill in ghost cells for fine
grids. As we detail in the following section, this procedure can be extended transparently
to distributed parallelism by defining an abstract exchange routine for ghost patch data.

Mesh refinement and coarsening requires interpolation from coarse grids to newly
created fine grids, and the averaging of fine grid data to a newly created underlying coarse
grid. This operation is rank-local, analogous to the general dynamic AMR procedures
used in p4est-based FE codes [25, Fig. 4].

4. Parallelization

The MPI layer is addressed from within p4est and not exposed to the ForestClaw code.
The leaf ordering is maintained in p4est according to a space filling curve. Each MPI
rank has a local view on its own partition, augmented where necessary with information
about one layer of ghost leaves (see Figure 1).

ForestClaw uses iterators over all rank-local leaves to execute numerical tasks one
patch at a time, optionally restricted to a given refinement level. Random access to
patches is possible and used when dereferencing the results from neighbor lookups.
Looping over the patches in the order prescribed by the forest and accessing neighbors
only relative to the current patch leads to a high percentage of cache reuse [26].

When ForestClaw accesses neighbor patches, they can be on the same or a different
block. In the latter case, coordinate transformations are carried out. The structure of
ForestClaw is oblivious to the fact that it only has a local view of the distributed mesh
and data which relieves the developer from programming to the MPI interface.

With MPI parallelism, neighbor patches can be either local or assigned to a differ-
ent process (ghost patches). Since this must make no difference numerically, we need
to ensure that the values of parallel neighbor patches are current whenever they are ac-
cessed. To this end, we allocate storage for a layer of ghost patches in ForestClaw, which



we can pass to a general-purpose p4est routine that communicates local leaf data to
all processes that view a particular leaf as a ghost. If we call this routine before we go
through the local neighbor interactions, we can handle ghost values implicitly by neigh-
bor lookups without querying if they are local or remote.

In the context of finite-element or finite-difference methods, there should be one
such parallel data exchange per time step for a global value of the time step length dt,
or one exchange per discretization level per time step if dt is chosen per-patch depend-
ing on its size (this is sometimes called sub-cycling). In the tradition of block-structured
AMR codes, interaction between neighbor patches is done in a hierarchy from coarse to
fine levels, and then correction factors are propagated back from fine to coarse levels,
requiring an exchange at each level. With sub-cycling, this entails a recursion with an
operation count that is exponential in the difference between the largest and the smallest
refinement level, with the benefit that dt matches the CFL condition at each level. While
a large number of exchanges per time step can present a scaling bottleneck due to the
inherent synchronization and latency losses, the expectation is still that the time to solu-
tion improves when switching from uniform to adaptive meshes, since we are computing
with fewer patches, and improves again when enabling sub-cycling, since we take larger
time steps on the coarser levels.

The space-filling curve paradigm allows for lightweight repartitioning algorithms.
Even uniform meshes benefit from this approach since the number of processors does
not need to be commensurable with the number of patches in each space dimension. For
adaptive meshes, we repartiton after every refinement operation and transfer the numeri-
cal data accordingly; see [25, Fig. 4] for the overall procedure. When using sub-cycling,
we have the option to assign a weight to each patch based on its level, determined by the
expected number of sub-cycles per coarse-level time step, and partition to equidistribute
the cumulative weight between the processors. Currently, we are not enforcing a load
balance that is attained separately for each level, as it is done for example in Chombo [13]
or recent geometric adaptive multigrid schemes [27].

The threaded parallelism over the degrees of freedom of a patch can be handled by
ForestClaw alone without the need to involve p4est. For instance, a many-core imple-
mentation, such as Manyclaw [28], can be used for the integration of the hyperbolic sys-
tem on a leaf-patch thereby allowing for hybrid parallelism. The design of leaf-patches
then can enable efficient management of data local to many-core architectures (for ex-
ample the Xeon Phi coprocessor) and the host.

5. Numerical results

We provide two examples that demonstrate the ForestClaw code. The numerical results to
date have been designed to verify that interface layer between p4est and ForestClaw is
sufficiently flexible and robust. Of particular importance was ensuring that all ghost cell
transfers (including averaging and interpolation) are implemented correctly. The basic
CLAWPACK algorithm and corresponding code are thoroughly tested and need no further
verification in our context.

In both sets of numerical results, we solve a scalar advection equation,

qt +(u ·∇)q = 0, (1)



Figure 2. Numerical results for solving the advection equation. Left: Unit square (single quadtree) with a
twisting velocity field. Right: Spherical ball with a rotational velocity field constructed from two mapped
quadtrees. In both cases the concentration is color-coded with a sharp gradient shown in red. The adaptive
mesh refinement follows the location of the gradient (the patches are not shown where they become too fine
for display). Here we use m = 8 cells per CLAWPACK patch.

where the velocity field u = (u(ξ ,η , t),v(ξ ,η , t) is a prescribed function of computa-
tional coordinates. The relevant numerical parameters that are set in each case include
the size of the patch on each leaf (m = 8, 16, or 32), and the minimum and maximum
refinement levels, which in turn fix minimum and maximum effective mesh resolutions.

In both examples, a patch is tagged for refinement if the difference between its max-
imum and minimum values exceeds a prescribed threshold. A family of 2d patches is
coarsened to a parent patch if this patch would not meet the criteria for refinement.

Example 1: An initial concentration field q is set to 0 in the left half of a computational
square and to 1 in the right half. A time dependent flow field is prescribed that
distorts the interface between the 0 and 1 concentration values. Figure 2 shows the
results at an intermediate time step, where the minimum and maximum levels of
refinement are set to 3 and 6, respectively. This results in a minimum resolution of
64×64 and a maximum resolution of 512×512.

Example 2: We demonstrate the multiblock functionality of ForestClaw by considering
flow on a sphere. The sphere mapping we use consists of two quadtrees, each de-
fined in the computational space [−1,1]×[−1,1] [29,30]. Each quadtree is mapped
to cover one hemisphere. The initial condition is q = 0 in one half of the sphere,
and q = 1 in the other half, where the halves are not necessarily aligned with the
equator of the mapping. The flow field u simulates rigid body rotation. We show
the results at an intermediate time in Figure 2.

We begin our analysis of Example 1 with uniformly-refined mesh experiments run
on TACC’s Stampede supercomputer at different levels of resolution. We use 1 to 16
MPI processes on one 16-core compute node, obtaining a strong scaling efficiency for
the time integration between 97%–103% depending on the resolution (from levels 1 and
8). Then, we examine processor counts from 16 to 256 using 16 cores per node. The
scaling behavior remains linear for the time integration itself, and mostly linear for the
local and parallel neighbor exchanges which require about 10% of the time integration
run time; see Figure 3.
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Figure 3. Strong scaling of MPI parallelism for advection on a uniformly refined mesh. Top: run time of time
integration. Bottom: time spent in local and parallel neighbor exchanges. The number of patches is 22` at level
`. The flat lines for the smaller runs are caused by having fewer patches than MPI processes, leaving some of
the processors idle. For each data point we use the time required by the slowest processor to verify that the load
is balanced equally.

In Figure 4, we show multi-node calculations using 16 OpenMP threads per node
executed by the Manyclaw set of patch-based PDE solvers.

We have examined weak scalability as well by using four times as many MPI pro-
cesses for each level increase, from level 6 at 64 cores to level 11 at 16,384. Up to 4,096
cores, the exchange times stay consistently below 16% of the time integration and the
time in seconds per time integration step varies between .0578 and .0602, which yields a
parallel efficiency of 96%. For the data point at 16,384 cores, the efficiency is still 82%.

Next, we examine how we can reduce the overall wall clock time of a simulation by
switching from uniformly refined meshes to adaptive refinement with the same maximum
level, effectively coarsening where high resolution is not needed. For an example with
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Figure 4. Strong scaling of MPI/OpenMP parallelism for advection on a uniformly refined mesh with 16
threads per node.

strategy wall clock time
mesh remesh partition time step P = 16 P = 256

uniform none by count global 3961. 256.

AMR every step by count global 252. 54.6
AMR every 4 by count global 178. 39.7

AMR every step by count subcycle 99.9 17.3
AMR every 4 by count subcycle 87.2 14.0

AMR every step by weight subcycle 95.7 18.2
AMR every 4 by weight subcycle 84.4 14.2

Table 1. Comparison of different meshing strategies for the advection example with a fixed maximum level 8,
run on 16 and 256 cores, respectively. The wall clock time includes the whole run of the program beginning to
end (file I/O disabled). The adaptive runs converge to a minimum level of 3.

a sharp front as depicted in Figure 2 we expect considerable savings by AMR, which
we confirm in Table 1. The wall clock times can be reduced by up to a factor of 50
by combining AMR with subcycling. The adaptive runs are still load balanced overall,
which we infer from the linear scaling of the time integration alone (not shown) and from
the fact that the weighted partition does not influence the run times. There is the tradeoff
however, at least in the current implementation, that the adaptive runs exhibit reduced
scalability associated with the ghost patch exchanges described earlier. Presently, ghost
patch exchanges are made across all levels, even if only two levels are involved in the
exchange. One enhancement of the code that is currently being developed is to rewrite
the time stepping loop with the objective of minimizing the parallel neighbor exchanges.

To showcase a multiblock connectivity, we include results for the spherical Example
2 in Figure 5, together with a strong scaling table from 16 to 256 MPI ranks.



P time int./step
16 1.115
32 0.557
64 0.297

256 0.092

Figure 5. Left: Partition of the spherical Example 2 between five MPI processes, indicated by the color scale,
at simulated time T = 1. The refinement is invariant under the parallel partition and follows the front, which is
not aligned with the equator. Right: Strong scaling for a uniform run at level 8.

6. Conclusion

We have presented the integration of an MPI-based forest-of-octrees adaptive mesh-
ing code, p4est, with a numerical solver for hyperbolic conservation laws, CLAW-
PACK/Manyclaw, that implements threaded parallelism for a single compute patch. We
abstract an interface to the parallel meshing code in order to derive the schedule of neigh-
bor exchanges, averaging/interpolation, and time integration on the local patches. This
approach naturally lends itself to MPI/thread hybridization. Apart from its parallel scal-
ability, we favor the presented strategy for its modularity, encapsulation, and versality.
Future work will continue to optimize the parallel neighbor exchange patterns and inves-
tigate a generic handling of arbitrary multi-block geometries.
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