The Simulation Platform ParFlow

Carsten Burstedde!?, Jose A. Fonsecal"** Stefan Kollet*3
nstitut fiir Numerische Simulation and Hausdorff Center for Mathematics,
Rheinische Friedrich-Wilhelms-Universitdt Bonn, Germany
2SFB/TR 32 “Patterns in Soil-Vegetation- Atmosphere-Systems,” Universitit Bonn
3 Agrosphere (IGB-3), Forschungszentrum Jiilich GmbH, Germany

Description of the Code

ParFlow [1}-4] is an integrated hydrology model that simulates saturated and variably saturated
subsurface flow in heterogeneous porous media. ParFlow is written mainly in C, with the
exception of the land surface model CLM which is a FORTRAN 90/95 code. ParFlow is built
using distributed MPI parallelism and suitable to solve large scale, high resolution problems.
It provides a solver for the three dimensional Richards equation [5] based on a cell centered
finite difference (FD) scheme on regular Cartesian meshes. Time integration is performed
with an Euler implicit method. The resulting system of algebraic equations is solved by a
Newton-Krylov nonlinear solver that employs a multigrid preconditioned conjugate gradient
solver in the linear step. The non-linear solver and preconditioners are provided by the libraries
KINSOL [6] and hypre |7], respectively.

Visualization of output data sets is possible with VisIt |8]. To this end, the output should
be written using the SILO format, which is available as direct output option when compiling
the code against the external dependency SILO [9]. SILO is effectively a serial library, which
implies that a workaround has to be activated to write output in parallel. With ParFlow, it
is possible to divide the MPI processes into IV groups and write a separate SILO file for each
group. Within each group, the processes write to a single file, where one and only one process
performs write access to the group’s file at any given time. Hence, I/0O is serial within a group
and parallel across groups. This technique is called Poor Man’s Parallel I/O (PMPIO).

ParFlow also supports distributed output of data sets in a binary format, which can be
translated to vtk or SILO formats using post-processing tools. Since these tools work in serial,
the approach is not advised when the number of processes is large.

The ParFlow code has been proved to execute on machines up to 32k processes (MPI ranks),
and good parallel efficiency (without I/O) has been reported for uses up to 16k processes [10].
The version of ParFlow that we have been developing in the DFG SFB/TR32 project D8 can
be run to the full size of JUQUEEN at 458k cores with good parallel efficiency |11]. The
main change introduced in our modified version is the integration of the parallel adaptive mesh
refinement library pdest [12.|13] as its new mesh manager.

Results

Our main goal for the Extreme Scaling Workshop 2017 was to investigate scalability and
speed of the SILO output for a large scale and high resolution simulation. The numerical

*Corresponding author: fonseca®@ins.uni-bonn.de

37

38 JUQUEEN Extreme Scaling Workshop 2017

Ps=uclacokor
var, PemeabiityZ
1.2352404

2782

— 00005266

l 1411807
3178211

e 1.
Min: 3.178=-11

Figure 1: Output permeability field from ParFlow’s built-in parallel random field generator for
a domain of 6.4 x 6.4 x 5.0 cubic meters. Color code scale with values ranging from
3.17 - 107! (red) to 1.23 - 10* (blue).

experiment chosen solves an infiltration problem on a Cartesian domain. The initial water
table is implemented as constant head boundary at the bottom of the domain with a five
meter unsaturated zone on top of it. The heterogeneous permeability parameter is simulated
with a spatially correlated log-transformed Gaussian random field. Realizations of this field
are obtained with a parallel random field generator implemented in ParFlow. We show an
example result in Figure[l] We aimed at testing the performance of the aforementioned random
field generator and additionally to gain knowledge about how we would benefit from parallel
visualization of our data sets using the JURECA visualization nodes.

Specific goals

In summary, the points we were planning to investigate during the scaling workshop are:
1. Evaluate performance of the parallel random permeability field generator.
2. Measure parallel performance of the SILO output system.

3. Find optimal choices for N in the PMPIO setting for JUQUEEN.

4. If the schedule allows it, consider a simulation domain of 50m x 50m x 5m discretized
at 1cm. We estimate the output file of such a simulation to have a size of 100 GB. It is
unclear at this point how this can be visualized efficiently.

In all our runs we will consider 16 cores per node without multi-threading. Concerning item
4., we would set up a series of experiments with increasing domain size, until we hit a practical
limit or the target simulation domain is reached.

ParFlow 39

bg _size ‘ rpn ‘ MPI ranks | Random generator run time (s) ‘

1024 | 16 16384 122.33
2048 | 16 32768 167.28
4096 | 16 65536 151.25

Table 1: Strong scaling exercise for ParFlow’s parallel random generator routine. The first and
second columns show the number of JUQUEEN nodes and ranks per node requested,
respectively.

Outcome of our tests

We evaluate the performance of the parallel random field generator in order to decide if we
should keep it enabled for the tests of the SILO output. We executed a short strong scal-
ing exercise with a Cartesian domain of dimensions 6.4 x 6.4 x 5 cubic meters discretized at
2 centimeter scale using one, two and four JUQUEEN racks. The results are summarized in
Table [1 They show that the run time does not benefit from increasing the core count.

The results shown in Table [I| motivated us to set up a new configuration to evaluate the
performance of the SILO output in which the parallel random generator is disabled. For
the rest of the workshop we worked with a simplified test case in which two time steps from
ParFlow’s Richards solver are executed and the Gaussian random field is not required. Realistic
simulations require hundreds to thousands of time steps. The output is usually written at the
very end of the simulation or every IV time steps in order not to overload the file system.

During the workshop we noticed that the overall performance of ParFlow degraded when the
SILO output was enabled. To investigate this further, we instrumented the code with the 1/0O
characterization tool Darshan |14]. A first test of the PMPIO feature using 2048 processes and
N = 4 showed that the code was reading as much data as it was writing. This behavior was
unexpected, since the only data that ParFlow should read in this case is a small configuration
file at the beginning of the simulation.

The explanation that emerged after discussing with the workshop staff was that the serializa-
tion within the NV = 4 groups was responsible for this behavior. The additional overhead in the
overall run time seems to stem from the fact that within each group, the last process is allowed
to access the file in a time proportional to the number of processes in the group. Within each
group, once a process finishes writing data, immediately after the subsequent process executes
a read operation and then writes its own data. Figure 2] shows an extract from the Darshan
report that drove us to this conclusion. A heuristic suggested by the organizers was then to
increase the number of groups to match the number of requested nodes. With this idea in
mind, we performed a weak scaling exercise with process counts from 4096 up to 131072 (8
racks). The results are summarized in Table [2| showing that I/O consumes over 80% of the
overall run time. The I/O timing results are far from the expected weak scaling behavior and
grow with the number of procesess, this is particulary evident when running from 2 to 8 racks.
Increasing the number of groups seems to improve the performance compared to the initial test
with N = 4 in which the I/O execution took 98% of the total run time. The I/O subsystem has
previously been executed on at most 32k processes. Since it is only now possible to experiment
with larger processes counts, it will be important to work on its scalability. On the other hand,
the code has the potential to write more data than can possibly be analyzed, so the user is
generally prompted to use the I/O capabilities mindfully.

Regarding parallel visualization of our data sets, a JURECA account for visualization has
been activated and we had productive conversations with the staff at the supercomputing
center. We learned about the workflow of using the visualization nodes with Paraview. We

40 JUQUEEN Extreme Scaling Workshop 2017
Timespan from first to last read access on independent files
048
792
536
280
024
768
512
256
OC’DJ.OU‘UO 00;0‘1 00 UU.O‘Q.UU 00:0‘3‘00 00‘0‘4:00 00.0'5.00 00;0‘6:00 UU.O‘?.UU 00:0‘8‘00 00‘0‘9:00 00:1 I0.00 00;1‘1 00
hours:minutes:seconds
Tlmespan from first to last write access on \HUEDEHGEI’" files
1048 — = . —
792 J— - - — T -
536 _ — - - - .
280 . — — - B - -)
024 [a - — - R —
768 T — — - . —
512 [T - - B - -
256 B _ - - N . — B
UOUOUVL:IO- B 00:0‘1 00 00 0'2.00 OOZD‘E 00 00 0‘4:00 00 0'5.00 00:0‘6;8‘0’ - 00 0'7.00 ﬂ(]:ﬂ‘ﬂ 00 00 0‘9:00 00 YIO.DD 00:1‘1 00
hours:minutes:seconds
Data Transfer Per Filesystem
File System Write Read
v MiB | Ratio MiB | Ratio
/work]1082.34070 [1.00000 | 865.19118 | 1.00000
Figure 2: Snapshot from a Darshan report of the workload for a ParFlow test case with SILO

output enabled for two timesteps and using 4 PMPIO groups. The diagrams on top
show the timespan from last read (top, red colored lines) and write (bottom, blue
colored lines) access on independent files, for 2048 MPI processes arranged on the
vertical axes. The table on the bottom shows that the application wrote around 1 GB
and read 865 MB of data.

bg size ‘ rpn ‘ MPI ranks | Total Time (s) ‘ Solver Time (s) ‘ I/O Time (s) ‘

128 | 16 2048 26.8746 2.97640 22.89820
256 | 16 4096 26.5785 3.03480 22.58120
512 | 16 8192 30.6826 3.55589 26.19600
1024 | 16 16384 30.7140 3.50900 26.26570
2048 | 16 32768 30.8680 3.89190 26.03880
4096 | 16 65536 45.7541 4.29419 40.42300
8192 | 16 131072 87.5470 5.01709 81.38050

Table 2: Weak scaling exercise for ParFlow with SILO output enabled. The scaling behavior of
the solver is affected by I/0O initilization, which makes the scaling look less ideal than
the pure solver performance reported in [10,/11].

ParFlow 41

could not yet test the remote use of Vislt as required for the SILO file format written by
ParFlow.

Conclusions

This workshop allowed us to test the performance of components of the ParFlow code that had
not been evaluated previously for high process counts. With the information collected from
the Darshan profiler, we conclude that additional effort should be invested into improving the
I/0 performance of the code, since the options currently available produce excessive overhead
and limit the size of simulations that can be analyzed visually. Supposing we will be able to
write large data sets with acceptable overhead in the future, we believe that remote parallel
visualization of the data is a promising technology to analyze our results.

References

[1] Ashby, S. F., and R. D. Falgout (1996), A parallel multigrid preconditioned conjugate
gradient algorithm for groundwater flow simulations, Nuclear Science and Engineering,
124(1), 145-159.

[2] Jones, J. E., and C. S. Woodward (2001), Newton-Krylov-multigrid solvers for large-scale,
highly heterogeneous, variably saturated flow problems, Advances in Water Resources,
24(7), 763-774, |doi:10.1016 /S0309-1708(00)00075-0.

[3] Kollet, S. J., and R. M. Maxwell (2006), Integrated surface-groundwater flow modeling:
A free-surface overland flow boundary condition in a parallel groundwater flow model,
Advances in Water Resources, 29, 945-958.

[4] Maxwell, R. M. (2013), A terrain-following grid transform and preconditioner for parallel,
large-scale, integrated hydrologic modeling, Advances in Water Resources, 53, 109 — 117,
do1:10.1016/j.advwatres.2012.10.001.

[5] Richards, L. A. (1931), Capillary conduction of liquids through porous media, Physics, 1,
318-33.

[6] Hindmarsh, A. C., P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and
C. S. Woodward (2005), SUNDIALS: Suite of nonlinear and differential /algebraic equation
solvers, ACM Transactions on Mathematical Software (TOMS), 31(3), 363-396.

[7] The Hypre Team (2016), hypre — High Performance Preconditioners Users Manual, Cen-
ter for Applied Scientific Computing, Lawrence Livermore National Laboratory, software
version 2.11.1.

[8] http://wci.1llnl.gov/simulation/computer-codes/visit/
[9] http://wci.1llnl.gov/simulation/computer-codes/silo/

[10] Kollet, S. J., R. M. Maxwell, C. S. Woodward, S. Smith, J. Vanderborght, H. Vereecken,
and C. Simmer (2010), Proof of concept of regional scale hydrologic simulations at hydro-

logic resolution utilizing massively parallel computer resources, Water Resources Research,
46, W04,201, doi:10.1029/2009 WR008730.

[11] Burstedde, C., Fonseca, J. A., and Kollet, S. “Enhancing speed and scalability of the
ParFlow simulation code”. http://arxiv.org/abs/1702.06898, 2017.

http://dx.doi.org/10.1016/S0309-1708(00)00075-0
http://dx.doi.org/10.1016/j.advwatres.2012.10.001
http://wci.llnl.gov/simulation/computer-codes/visit/
http://wci.llnl.gov/simulation/computer-codes/silo/
http://dx.doi.org/10.1029/2009WR008730
http://arxiv.org/abs/1702.06898

42 JUQUEEN Extreme Scaling Workshop 2017

[12] Burstedde, C., L. C. Wilcox, and O. Ghattas (2011), pdest: Scalable algorithms for paral-
lel adaptive mesh refinement on forests of octrees, SIAM Journal on Scientific Computing,
33(3), 1103-1133, doi:10.1137/100791634.

[13] Isaac, T., C. Burstedde, L. C. Wilcox, and O. Ghattas (2015), Recursive algorithms for
distributed forests of octrees, SIAM Journal on Scientific Computing, 37(5), C497-C531,
doi:10.1137/140970963.

[14] Darshan: HPC I/O characterization tool, Argonne National Laboratory http://www.mcs.
anl.gov/research/projects/darshan/

http://dx.doi.org/10.1137/100791634
http://dx.doi.org/10.1137/140970963
http://www.mcs.anl.gov/research/projects/darshan/
http://www.mcs.anl.gov/research/projects/darshan/

