
Enhancing speed and scalability of the ParFlow simulation

code

Carsten Burstedde∗, Jose A. Fonseca∗†, Stefan Kollet‡

Abstract

Regional hydrology studies are often supported by high resolution simulations
of subsurface flow that require expensive and extensive computations. Efficient us-
age of the latest high performance parallel computing systems becomes a necessity.
The simulation software ParFlow has been demonstrated to meet this requirement
and shown to have excellent solver scalability for up to 16,384 processes.

In the present work we show that the code requires further enhancements in
order to fully take advantage of current petascale machines. We identify ParFlow’s
way of parallelization of the computational mesh as a central bottleneck. We
propose to reorganize this subsystem using fast mesh partition algorithms provided
by the parallel adaptive mesh refinement library p4est. We realize this in a
minimally invasive manner by modifying selected parts of the code to reinterpret
the existing mesh data structures. We evaluate the scaling performance of the
modified version of ParFlow, demonstrating good weak and strong scaling up to
458k cores of the Juqueen supercomputer, and test an example application at large
scale.

1 Introduction

The accurate simulation of variably saturated flow in porous media is a valuable compo-
nent to understanding physical processes occurring in many water resource problems.
Examples range from coupled hydrologic-atmospheric models to irrigation problems;
see for example [39, 6, 23]. Computer simulations of subsurface flow generally proceed
by computing a numerical solution of the three dimensional Richards’ equation [33].
Assuming a two-phase water-gas system, Richards’ equation can be derived from the
generalized Darcy laws [28] under the assumption that the pressure gradient in the gas
phase is small. One of the variants of Richards’ equation reads

∂(φs(p))

∂t
+∇ · ~u = f, (1a)

~u = −K∇(p− z), (1b)

where p denotes the pressure head, s(p) is the pressure-dependent saturation, φ the
porosity of the medium, ~u the flux, z is the depth below the surface, K = K(x; p) the
symmetric conductivity tensor and f the source term.

∗Institut für Numerische Simulation (INS) and Hausdorff Center for Mathematics (HCM), Rheini-
sche Friedrich-Wilhelms-Universität Bonn, Germany.
†Corresponding author: fonseca@ins.uni-bonn.de
‡Agrosphere (IGB-3), Forschungszentrum Jülich GmbH, and Centre for High-Performance Scientific

Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany.

1

ar
X

iv
:1

70
2.

06
89

8v
2

 [
cs

.M
S]

 2
 O

ct
 2

01
7

The numerical solution of (1) is challenging because of two main reasons. The first
is the nonlinearity and large variation in the equation’s coefficients [16], essentially
introduced by the pressure dependent conductivity tensor. The second is the require-
ment of discretizing very large temporal and spatial domains with a resolution sufficient
for detailed physics based hydrological models [22]. As a consequence, demands for
computational time and memory resources for computer simulations of subsurface flow
are enormous, and considerations of efficiency become prominent. As pointed out by
[26], a clear computational trend is that the computational power is provided by paral-
lel computing. Hence, effective employment of high performance (parallel) computing
strategies (HPC) plays a key role in solving water resource problems.

There has been a significant focus across the hydrology modeling community to
incorporate modern HPC paradigms into their simulators, see for example [11, 40, 10,
14, 30, 24]. We provide just a short and necessarily incomplete summary.

1. PARSWMS [11] is an MPI-parallelized code written in C++. The finite element
(FE) discretization relies on an unstructured mesh managed by the ParMETIS
library [19]. The solvers are provided by the PETSc library [2]. Strong scaling
studies have been performed for a problem with 492k degrees of freedom (dofs)
and process counts between 1 and 256.

2. TOUGH2-MP [40] is a Fortran/MPI code. It uses an integral finite difference
(FD) discretization on an unstructured mesh, METIS partitioning [18] and the
Aztec linear solver [38]. Strong scaling studies have been published for 1–256
cores.

3. PFLOTRAN [10] is an MPI code written in free format Fortran 2003. The
parallel solvers and the interface to METIS are provided by PETSc. Weak and
strong scaling studies are available up to 16,384 processes. The biggest problem
treated has 107 dofs. Scalability is good when the number of dofs per core is at
least 10k.

4. Hydrogeosphere HGS [14] is an OpenMP code. An unstructured mesh is the basis
for a fully implicit discretization via the control volume finite element method,
a combination of centered FD and FE. For parallel computation, the domain
is partitioned into subdomains, and a multiblock node reordering is executed.
Strong scaling studies over up to 16 threads for a problem with 107 unknowns
have been reported.

5. RichardsFOAM [30] and suGWFOAM [24] are codes based on OpenFOAM [29].
They inherit its MPI parallelism and use a finite volume (FV) discretization
on an unstructured mesh. The mesh is partitioned with METIS. Scaling studies
refer to 1–1024 processes for problems on the order between 2×106 and 133×106

cells.

6. ParFlow [1, 16, 20, 22] is a MPI-parallelized code mainly written in C. It uses a
FD discretization on a structured Cartesian mesh. Nonlinear solvers and precon-
ditioners are provided by the KINSOL [13] and hypre [36] packages, respectively.
Weak scaling studies are available up to 16,384 processes. The biggest problem
reported has 8× 109 dofs.

2

In line with the current state of the practice summarized above, we henceforth
consider a parallel computer that implements the MPI standard. It consists of mul-
tiple physical compute nodes connected by a network. Each node has access to the
memory physically located in that node, thus we speak of distributed memory and
distributed parallelization. A node has multiple central processing units (CPUs), con-
sisting of one or more CPU cores each, with each core running one or more processes
or threads. For the purpose of this discussion, we will use the terms process, CPU
core, and CPU interchangeably, really referring to one MPI process as the atomic unit
of parallelization.

The ideal hypothesis of parallel computing is that subdividing a task fairly among
several processes will result in a proportional reduction of the overall runtime. In order
to effectively produce such behavior, parallel codes should meet two basic requirements:
maintain a balanced work-load per process and minimize process-intercommunication,
both in terms of the number of messages and the message sizes. The first criterion
can be met fairly easily for uniform meshes (consider, for example, a checkerboard-
grid in 2D). The number of messages to be sent and received depends on the exact
assignment of the mesh elements to processes: Two different assignments for the same
global mesh topology can lead to significantly different communication volumes. One
guideline that helps bounding the communication is to make sure that each process
has only a constant number of other processes to communicate with, independent of
the size and shape of the mesh elements and the total number of processes that we
shall call P . Hence, the primary item to look for when auditing a parallel code for
scalability is the size of loops over process indices: If there are loops that iterate over
all P of them, such a construction may slow down the program in the limit of many
processes, quite possibly to the point of uselessness.

Once the communication pattern is established, that is, it has been determined
which process sends a message to which, the impact of sending and receiving the
messages can be reduced by performing the communication in a background process
and organizing the program such that useful computations are carried out while the
messages are in transit. The MPI standard supports this design by providing routines
for non-blocking communication, and most modern codes use them in one way or
another to good effect.

In the simulation platform ParFlow, distributed parallelism is exploited by subdi-
viding the computational mesh into non-overlapping Cartesian blocks called subgrids
and identifying each of them with a unique process in the parallel machine. Hence, a
subgrid constitutes the atomic unit of parallelization in ParFlow. They are logically
arranged in a lexicographic ordering, which allows for mathematically simple formulas
to identify the indices of processes that any given process communicates with. It should
be noted that communication between two processes requires symmetric information,
at least in the established version of MPI: The sender must know the receiver’s process
index and the receiver must know the sender’s, and both must know the size of the
message. When ParFlow precomputes such information, it analyses the computational
procedure defined by the choices on numerical discretization and solvers. It determines
which of the (up to 26) neighbor subgrids of any subgrid are relevant, which translates
into the corresponding process indices.

The current implementation of this so-called setup phase utilizes loops that iterate
over the full size of the parallel machine and perform significant work in each itera-
tion. As mentioned above, ParFlow’s way of subdividing the mesh enforces that the

3

number of subgrid used to split the mesh must match the process count of the parallel
machine. Our hypothesis is that we can enhance the parallel scalability of ParFlow by
reorganizing its mesh management in a way that drops the latter restriction and, even
more importantly, replaces the loops over P with constant size loops. The challenge is
to determine how exactly this can be achieved.

We propose to perform such reorganization using fast mesh refinement and partition
algorithms implemented in the parallel adaptive software library p4est [5, 15]. It is
known for its modularity and proven parallel performance [3, 34, 27], which derives
from a strict minimalism when it comes to identifying processes to communicate with.
We couple the ParFlow and p4est libraries such that p4est becomes ParFlow’s mesh
manager. Our approach is to identify each atomic mesh unit of p4est with a subgrid,
changing ParFlow’s concept of parallel ownership to the one defined by p4est. In
essence we abandon the lexicographic ordering of subgrids in favor of using a space
filling curve, which opens up the potential to generalize from one to several subgrids
per process on the one hand, and from uniform to adaptive refinement on the other.

In this work we describe the coupling between ParFlow and p4est in detail. We
refer to the product resulting from this coupling and further optimizations as the
modified version of ParFlow. We demonstrate its parallel performance by performing
weak and strong scaling studies on Juqueen [17], a Blue Gene/Q supercomputer [12]
that has over 458,000 CPU cores. In comparison with the upstream version of ParFlow,
in which the runtime of the mesh setup grows linearly with the number of processes,
we reduce this time by orders of magnitude (from between 10 and 40 minutes at 32K
processes to about three seconds). In addition, a corresponding reduction in memory
usage increases the value of P that can be used in practice to 458k. Our modifications
are released as open source and available to the public.

2 The ParFlow simulation platform

In this section we present the upstream version of ParFlow, which is in widespread use
and taken as the starting point for our modifications. As mentioned above, ParFlow is
a simulator software for three-dimensional variably saturated groundwater flow that is
built to exploit distributed parallelism and suited to solve large scale, high resolution
problems. ParFlow provides a solver for the three dimensional Richards equation based
on a cell centered finite difference (FD) scheme. It represents the update formula for
each time step as a system of algebraic equations that is solved by a Newton-Krylov
nonlinear solver [16]. To reduce the number of iterations, ParFlow employs a multigrid
preconditioned conjugate gradient solver [1]. The code development has been ongoing
for more that 15 years, during which time additional features and capabilities have been
added. For example, the code has been coupled with the Common Land Model [7] to
incorporate physical processes at the land surface [21], and a terrain following mesh
formulation has been implemented [25] that allows ParFlow to better handle problems
with fine space discretization near the ground surface. The solver and preconditioner
setup has been improved as well [31].

Our main focus is on the mesh management and its parallel aspects, and how its
upstream implementation enables but also limits overall scalability. Hence we begin
by pointing out some key observations about this subsystem.

4

2.1 Mesh management

ParFlow’s computational mesh is uniform in all three dimensions. The count and
the spacing of mesh points in each dimension is determined by the user via a tcl

configuration script. The script is loaded at runtime and contains all parameters
necessary to define a simulation.

ParFlow’s mesh is logically partitioned into non-overlapping Cartesian blocks called
subgrids. The routine that allocates a new grid essentially performs a loop over all
processes in the parallel machine and creates a single subgrid per iteration. The param-
eters defining a freshly allocated subgrid are determined by the following arithmetic.

Let Pt denote the number of process divisions in the t coordinate direction, for
t ∈ {x, y, z}. These three values are read from the script. The total number of
processes must match their product

P = PxPyPz. (2)

The number of mesh points in each direction is configured in the script as Nt and split
among Pt subgrid extents as

Nt = mt · Pt + lt, mt ∈ N, lt ∈ {0, . . . , Pt − 1}, (3)

where mt and lt are uniquely determined by Nt and Pt according to

mt := Nt/Pt, lt := Nt%Pt. (4)

Here a/b denotes integer division and a%b the integer residual from dividing a by b.
Both Nt and Pt are defined by the user in the tcl configuration script, required to
respect the constraint (2). Now, if pt is a process number in the range {0, ..., Pt − 1}
and the triple p = (px, py, pz) determines an index into the three dimensional process
grid, define

c(pt) := pt ·mt + min(pt, lt), (5)

q(pt) :=

{
mt + 1 if pt < lt,

mt otherwise.
(6)

With these definitions, the subgrid corresponding to p

1. has the grid point (c(px), c(py), c(pz)) in its lower left corner,

2. has q(pt) grid points in the t coordinate direction,

3. is owned by process Pown(p) = Pown(px, py, pz), where

Pown(px, py, pz) := (pz · Py + py) · Px + px ∈ {0, . . . , P − 1}. (7)

An example of such a distribution of subgrids is shown in Figure 1. It becomes clear
from this logic that ParFlow’s computational mesh is distributed in parallel by assign-
ing each of its subgrids to exactly one process via the rule (7). This order of subgrids
and processes is called lexicographic.

Following the parallel distribution of the mesh, vectors and matrices in ParFlow are
decomposed into subvectors and submatrices. There is a one-to-one correspondence
between the subvectors/submatrices and the subgrids composing the mesh. Conse-
quently, they are inherently distributed in parallel via the same rule (7).

5

y

x -

Figure 1: Example of a ParFlow mesh with Nx = 10 and Ny = 7. We take Nz = 1
to create a two dimensional mesh, thus the value Pz = 1 is implicit. The number
of processes is Px = 3, Py = 2, P = 6. Each shaded box is a subgrid, whose color
symbolizes its assignment to a specific process.

2.2 Parallel exchange of information

In each time step of a simulation, a subset of degrees of freedom (dof) close to the
boundary of a process’ subgrid couples to dofs lying on a foreign process (subgrid) to
compute an update to its values. In ParFlow, such a subset is denoted the “dependent
region.” The dependent region is derived from the stencil, a term which refers to the
computational pattern determined by the numerical ansatz chosen for discretization.

Given a stencil, ParFlow automatically determines the dependent region. For each
subgrid S, special routines loop over all subgrids in the mesh and check which of those
are direct neighbors of S with respect to the processes’ partition. With the data pro-
vided by the dependent region, ParFlow is able to determine the source and destination
(i.e., sender and receiver) processes and the dofs relevant to the MPI messages required
to perform vector and matrix updates. We will refer to this information as the MPI
envelope. ParFlow implements data exchange between two neighboring subgrids via
the use of a ghost layer, that is, an additional strip of artificial dof along the edges of
each subgrid. Hence, data transfered via MPI messages is read from a subgrid of the
sender and written into the ghost layer of the receiver. The extent of the ghost layer,
i.e., the size of the strip in units of dof, is also defined by the stencil.

The lexicographic ordering principle of the subgrids has a significant impact on how
the information in the MPI envelope is computed. Each subgrid S, as a data structure,
stores its triple (px, py, pz). As a consequence, the processes owning the neighbor
subgrids to S are located with simple arithmetic. For example, the top neighbor of S
is owned by the process Pown(px, py, pz + 1). The fact that there is exactly one subgrid
per process implies that the process number provides sufficient information to uniquely
identify the sender and receiver of MPI messages. One downside of this principle is
that the number of processes determines the size of the subgrids. Essentially, using
few processes requires to use a few large subgrids, while using many processes makes
the subgrids fairly small. Furthermore, imagining to allow for multiple subgrids per
process, the lexicographic ordering will place them in a row along the x-axis, leading

6

to an elongated and thin shape of a process’ domain that has a large surface-to-volume
ratio, and thus prompts a larger than optimal message size.

To organize the storage of subgrids, each process holds two arrays of type subgrid
that we will denote by allsubs and locsubs, respectively. The first one stores pointers
to the metadata (such as coordinates in the process grid, position and resolution) of all
subgrids in the grid, and the second one stores this information only for the subgrids
owned by the process (which is always one in the upstream version). Hence, the mesh
metadata is replicated in every process inside of allsubs, which leads to a memory
usage proportional to P on every process. In practice, this disallows runs with more
than 32k processes.

3 Enhancing scalability and speed of ParFlow

For large scale computations it is imperative that the mesh storage is strictly dis-
tributed. With the exception of a minimally thin ghost layer on every process’ parti-
tion boundary, any data related to the structure of the process-local mesh should be
stored on this process alone. As pointed out in the previous section, such mesh storage
is not implemented in ParFlow’s upstream version. This affects the runtime as well
as the total memory usage: We identified loops proportional to the total number of
processes P in the grid allocation phase and during the determination of the dependent
region that consume roughly 40 minutes on 32k processes (and would need 1h and 20
minutes on 64k processes, and so forth). Our proposed solution to enable scalability
to O(105) processes and more reads as follows.

1. Implement a strictly distributed storage of ParFlow’s computational mesh.

2. Replace loops proportional to the total number of processes with constant-size
loops.

3. Allow ParFlow to use multiple subgrids per process.

The first two items are essential to enhance the scalability of the code. We aim to
proceed in a minimally invasive way, reusing most of ParFlow’s mesh data structures.
This principle may be called reinterpret instead of rewrite. Of course, establishing an
optimized non-lexicographic and distributed mesh layout is a fairly heavy task, which is
why we delegate it to a special-purpose software library described below. This removes
much of the burden from the first item and lets us concentrate on the second, which
requires to audit and modify the code’s accesses to mesh data. The third item serves
to decouple the number of subgrids allocated from P , which adds to the flexibility in
the setup of simulations.

Let us now describe the tools and algorithmic changes employed to realize these
ideas.

3.1 The software library p4est

Tree based parallel adaptive mesh refinement (AMR) refers to methods in which the
information about the size and position of mesh elements is maintained within an
octree data structure whose storage is distributed across a parallel computer. An
octree is basically a 1:8 (3D; 1:4 in 2D) tree structure that can be associated with
a recursive refinement scheme where a cube (square) is subdivided into eight (four)

7

q0 q1

q2 q3

q4 q5

Figure 2: The space filling curve (SFC; zig-zag line) determines an ordering of the
16 quadrants qi obtained by a two-fold subdivision of a square. In this example we
use the SFC to partition the quadrants between three processes (color coded). We
use dashed lines when two elements that are adjacent in the SFC ordering are not
direct face neighbors in the domain. Since most diagonal lines connect quadrants that
are still indirectly face-adjacent, the process domains are localized, which makes their
surface-to-volume ratio less than that of the elongated strip domains produced by a
lexicographic ordering. In fact, it is known that with this SFC each process’ subdomain
has at most two disconnected pieces [4].

half-size child cubes (squares). The leaves of the tree either represent the elements of
the computational mesh directly, or can be used to hold other atomic data structures
(for example one subgrid each). We will refer to the leaves of an octree/quadtree as
quadrants.

The canonical domain associated with an octree is a cube (a square in 2D). When
the shape of the domain is more complex, or when it is a rectangle or brick with an
aspect ratio far from unity (as is the case for most regional subsurface simulations), it
may be advantageous to consider a union of octrees, conveniently called a forest.

The software library p4est [5, 15] provides efficient algorithms that implement a
self-consistent set of parallel AMR operations. This library creates and modifies a
forest-of-octrees refinement structure whose storage is distributed using MPI paral-
lelism. In p4est a space filling curve (SFC) determines an ordering of the quadrants
that permits fast dynamic re-adaptation and repartitioning; see Figure 2. A p4est

brick structure corresponds to the case in which a forest consists of multiple tree roots
that are arranged to represent a rectangular Cartesian mesh.

Even when using a uniform refinement and leaving the potential for adaptivity
unused, as we do in the present work, the space filling curve paradigm is beneficial
since it allows to drop the restriction (2): The total number of processes does not need
to match the number of patches used to split the computational mesh. Furthermore,
using an SFC as opposed to a lexicographic ordering makes each process’ domain more
local and approximately sphere-shaped, which reduces the communication volume on
average.

8

3.2 Rearranging the mesh layout

The space filling curve mentioned above provides a suitable encoding to implement a
strictly distributed mesh storage. Computation of parallel neighborhood relations be-
tween processes is part of the p4est algorithm bundle and encoded in the p4est ghost

structure. Mesh generation, distribution and computation of parallel neighborhood re-
lations are scalable operations in p4est, in the sense that they have demonstrated to
execute efficiently on parallel machines with up to 458k processes [15].

Delegating the mesh management from ParFlow to p4est by identifying each p4est

quadrant with a ParFlow subgrid allows us to inherit the scalability of p4est with
relatively few changes to the ParFlow code. In particular, the following features are
achievable.

1. ParFlow’s mesh storage can be trimmed down to reference only the process-local
subgrid(s) and their direct parallel neighbors. As a consequence, the memory
occupied by mesh storage no longer grows with P , and loops over subgrids take
far less time.

2. The rule of fixing one subgrid per process can be relaxed. This is due to the fact
that p4est has no constraints on the number of quadrants assigned to a process.

3. The computation of ParFlow’s dependent region is simplified by querying neigh-
bor data available through the p4est ghost structure.

The main challenges arising while implementing the identification of a subgrid with
a quadrant are the following.

1. Parallel neighborhood relations between processes are only known to p4est. Such
information must be correctly passed on to the numerical code in ParFlow.

2. The lexicographic ordering of the subgrids will be replaced by the ordering es-
tablished by p4est via the space filling curve. This means we must modify the
message passing code to compute correct neighbor process indices.

3. We should add support for configurations in which a process owns multiple sub-
grids. This will enlarge the range of parallel configurations available and enable
the option to execute the code on small size machines without necessarily re-
ducing the number of subgrids employed. Additionally, we prepare the code for
a subsequent implementation of dynamic mesh adaptation, which operates by
changing the number of subgrids owned by a process at runtime.

The remainder of this section is dedicated to describe how to generate the ParFlow
mesh using p4est. Essentially, we create a forest of octrees with a specifically computed
number of process-local quadrants and then attach a suitably sized subgrid to each of
them. Subsequently, we discuss how to obtain information on the parallel mesh layout
from the p4est ghost interface.

The concept of a fixed number of processes per coordinate direction is not present in
p4est. Only the total number of processes is required to compute the process partition
by exploiting the properties of the space filling curve. Hence, we do not make use of
the values of Pt, t ∈ {x, y, z}, specified by the user. Instead, we add three variables to
the tcl reference script that provide values for mt, the desired numbers of points in a

9

p0 p1

p2 p3

p4

p5

p5
p4
p3
p2
p1
p0

Process Subgrid Size

4× 4
3× 4
4× 3
3× 3
3× 4
3× 3

Figure 3: Left, example of a p4est brick distributed among 6 processes. Its dimensions
are obtained by (10) after using Nx = 10, Ny = 7, Nz = 1 and mx = my = 3, mz = 1 as
input values in formula (8). Right, the size of the subgrids attached to each quadrant
according to formula (6).

subgrid along the t coordinate directions. Then, we rearrange the arithmetic of (3) to
compute Pt and lt as derived variables satisfying

Nt = mt · Pt + lt, Pt ∈ N, lt ∈ {0, . . . ,mt − 1}. (8)

This construction only interprets Pt as the number of subgrids in the t direction (while
the upstream version of ParFlow configures it so).

We must create a p4est object with K := Px×Py ×Pz total quadrants. To do so,
we find the smallest box containing Pt quadrants in the t direction and then refine it
accordingly. Let k0 and g be defined as

k0 := max
k∈N

{
2k | gcd(Px, Py, Pz)

}
, g := 2k0 . (9)

Thus, g is the biggest power of two dividing the greatest common divisor of Px, Py

and Pz. Then, a p4est brick with dimensions

Px/g, Py/g, Pz/g, (10)

and refined k0 times will have exactly K quadrants. A brick mesh resulting from
applying these rules is shown in Figure 3.

3.3 Attaching subgrids of correct size

The subgrids must be a partition of the domain in the sense that their interiors are
pairwise disjoint and the union of all of them cover the grid defined by the user. These
conditions impose restrictions on the choice of the parameters Nt and mt. Specifically,
for each t ∈ {x, y, z} we must require

Pt−1∑
pt=0

q(pt) = Nt, (11)

in order to satisfy (8). Recall that q(pt) is defined in (6) as the length in grid points of
the pt’th subgrid along direction t. Condition (11) is checked prior the grid allocation
phase, and in case of failure quits the program with a suitable error message specifying
the pair of parameters that violated it.

We inspect the bottom left corner of each of the quadrants in the p4est brick, which
by construction are only those that are local to the process, to choose the proper size

10

-

(a)

-

(b)

-

(c)

Figure 4: (a) A p4est brick with six quadrants (identified with one subgrid each)
distributed among two processes (color coded). In (b) and (c) we show the view of the
brick from processes zero and one, respectively. The solid boxes represent process-local
quadrants, for which we allocate mesh metadata and dof storage. The dashed boxes
represent quadrants in the ghost layer. For the ghost quadrants we allocate mesh
metadata but no dof storage. Just as the local quadrants, the ghost quadrants are
traversed in the order of the space filling curve (gray).

of the subgrid that should be attached to it. In the native p4est format, each of these
corners is encoded by three 32 bit integers that we scale with the quadrant multiplier
g from (9). This translates it into integer coordinates that match the enumeration
pt ∈ {0, . . . Pt − 1} and are consistent with the rule (6). Thus, we can use these
numbers to determine the position and dimensions of the ParFlow subgrid metadata
structure that we allocate and attach to each quadrant.

3.4 Querying the ghost layer

We utilize the ghost interface of p4est to obtain the parallel neighborhood informa-
tion required. Specifically, the ghost data structure provides an array of off-process
quadrants that are direct face neighbors to the local partition; we call these ghost
quadrants (see Figure 4). We should then populate these quadrants with suitable
subgrid metadata that we use to track their identification on their respective owner
processes. The p4est ghost object provides the necessary information to do this,
including the lower left corner of each ghost quadrant. In fact, we can use the enu-
meration pt ∈ {0, . . . Pt − 1} that serves as input to equation (6) to compute the
dimensions of both the local and ghost subgrids. This is most easily done by extend-
ing the loop over the p4est brick quadrants described above such that it also visits
the ghost quadrants.

While we retain the interpretation of the subgrids array of the upstream version,
storing pointers to the process-local subgrids, we remove almost all storage in the array
allsubs: The modified version stores pointers to local and ghost subgrids in it, which
are roughly a 1/P fraction of the total number of subgrids, and avoids allocation of
even the metadata of all other, locally irrelevant subgrids that would be of order P .
The advantage of this method is that most of the ParFlow code does not need to be
changed: When it loops over the allsubs array, the loops will be radically shortened,
but the relevant logic stays the same. This is the one most significant change to
enable scalability to the full size of the Juqueen supercomputer (we describe these
demonstrations in Section 4 below).

11

3.5 Further enhancements

We have edited ParFlow’s code for reading configuration files. If p4est is compiled
in, we activate the according code at runtime depending on the value of a new config-
uration variable. Hence, even if compiled with p4est, a user has the flexibility to still
use the upstream version of ParFlow on a run-by-run basis.

Additionally, we have written an alternative routine to access and distribute the
information from the user-written configuration file. As before, the file is read from
disk by one process and sent to all other processes, We have updated the details of
this procedure, since we noticed that for high process counts (greater equal 65,536)
the routine distributed incorrect data due to an integer overflow, causing the program
to crash during the setup phase. The modified version delegates this task to the
MPI Bcast routine, which works reliably and fast on the usual data size of a few
kilobytes.

While running numerical tests, we also encountered some memory issues. Essen-
tially, memory allocation in ParFlow was increasing exponentially with the number of
processes. With the help of the profiling tool Scalasca [9], we located the source of
the problem in the preconditioner. Preconditioners in ParFlow are managed by the
external dependency hypre [36], which is generally known for its scalability. Since the
bug had already been resolved by the hypre community, an update to the latest version
was sufficient to cure the issue.

4 Performance evaluation

In this section we evaluate the parallel performance of the modified version of ParFlow.
We follow the concepts of strong and weak scaling studies. In a strong scaling analysis,
a fixed problem is solved on an increasing number of processing cores and the speedup
in runtime is reported. In a weak scaling study, we increase the problem size and the
number of cores simultaneously such that the work and problem size per core remain
the same. Ideally, the runtime should remain constant for such a study.

Weak and strong scaling studies in this work are assessed on the massively parallel
supercomputer Juqueen. Juqueen is an IBM Blue Gene/Q system with 28,672 compute
nodes, each with 16 GB of memory and 16 compute cores, for a total of 458,752 cores.
The machine supports four way simultaneous multi-threading, though we do not make
use of this capability in our studies and always run one process per core.

For each of the experiments, we collect timing information for the entire simula-
tion. Additionally, we report timings for different components of the simulation like
the solver setup, the solver itself and p4est wrap code executed. Concerning the wrap
code, we refer to additional code written to execute p4est interface functions and to
retrieve information from their results and propagate it to ParFlow variables. Partic-
ularly important for our purposes are the measurements related to the solver setup:
The parameters for grid allocation and the management data required for the parallel
exchange of information are computed during this phase.

In the past, parallel scalability of ParFlow has been evaluated mainly using weak
scaling studies; see e.g., [20, 22, 31, 8]. In order to produce unbiased comparisons
with these results, which are based on past upstream versions of ParFlow, we keep one
subgrid per process in most of our weak scaling studies, even though we have extended
the modified version to use one or optionally more. We made use of this new feature

12

4096 8192 16384 32768
64

128

256

512

1,024

#processes

R
u
n
ti
m
e
in

se
co
n
d
s

Total runtime
Solver

Solver setup

Figure 5: Weak scaling timing results for the upstream version of ParFlow. The
total runtime grows with the number processes. Breaking it down into solver setup
and solver execution shows that the former is responsible for the increase of the total
runtime. The solver setup time grows from 81 to 639 seconds, which is perfectly
proportional to the 8x increase in problem size.

in our strong scaling studies; see Figure 12.

4.1 Weak scaling studies

In this section we present results on the weak scalability of the modified version of
ParFlow. We set up a test case in which a global nonlinear problem with integrated
overland flow must be solved. The test case was published previously in [25] and
consists of a 3D regular topography problem in which lateral flow is driven by slopes
based on sine and cosine functions. The problem has a uniform subsurface with space
discretization ∆x = ∆y = 1.0 m, ∆z = 0.5 m. It is initialized with a hydrostatic pres-
sure distribution such that the top 10.0 m of the aquifer are initially unsaturated. By
doubling the number of grid points Nx and Ny, the horizontal extent of the computa-
tional grid is increased by a factor of four per scaling step. The number of grid points
in the vertical direction Nz remains constant per scaling step. The unit problem has
dimensions Nx = Ny = 50 and Nz = 40, meaning that the problem size per process is
fixed to 100,000 grid points. The problem was simulated until time t = 10.0 s using a
uniform time step ∆t = 1.0 s.

In order to offer a self-contained comparison with possible improvements in the
ParFlow model platform, we conduct the weak scaling study twice, once with the
upstream version of ParFlow and then with the modified version with p4est enabled.
In the first case, we see that the total runtime grows with the number of processes.
As can be seen in Figure 5, the solver setup routine is responsible for this behavior.
Its suboptimal scaling was already reported in [22], which is in line with us noticing
several loops over the all-subgrids array in this part of the code, which make the
runtime effectively proportional to the total number of processes.

In the experiments we were not able to run the upstream code for 65,536 processes
or more, which we attribute to a separate issue in the routine that reads user input
from the configuration reference script, as we detail in Section 3.5.

Repeating the exercise with the modified version of ParFlow dramatically improves

13

FLOP/s

Processes Upstream Modified

256 1.223× 108 1.226× 108

1024 1.192× 108 1.194× 108

4096 1.167× 108 1.169× 108

Table 1: Floating point operations per second (FLOP/s) for the solver component
of the upstream and modified version of ParFlow, respectively. The numbers are
identical up to two significant digits. Both versions of ParFlow use roughly 3.6% of
the theoretical peak performance that we expect to get from a single Juqueen process,
which amounts to 3.2× 109 FLOP/s.

the weak scaling behavior of the solver setup; see Figures 6 and 7. With p4est enabled,
we replace all loops over the total number of processes with loops of constant length.
This drops the setup time from over ten minutes at 32k processes to under two seconds
(by a factor of over 300). Additionally, our patch to the routine that reads the user’s
configuration allows us to use as many as 262,144 processes for this study with nearly
optimal, flat weak scaling. Our implementation of a strictly distributed storage of
ParFlow’s mesh also leads to a reduction in memory usage at large scale; see Figure 8.
This is significant for computers like Juqueen, which may only offer about two hundred
megabytes if the executable is large, especially in combination with multi-threading.

We also made use of this scaling study to evaluate the relative cost of using p4est

as new mesh backend by measuring the overall timing of p4est related functions
introduced in in ParFlow. Our results are displayed in Figure 9.

Additionally, we employed this test case to estimate the performance of the code
in terms of the floating point operations per second (FLOP/s) and compare them
to the theoretical peak of the Juqueen machine. Measurements were obtained by
instrumenting the code with the Scalasca profiler, which gives access to the hardware
counters from the Performance Application Interface (PAPI) [32]. In particular, the
number of floating point operations from a whole run have been collected and the
FLOP/s estimated as a derived metric using the CUBE browser [35]. We display our
results in Table 1.

4.2 Strong scaling studies

In this section, we report our results on the strong scalability of the modified version
of ParFlow. The test case is the same as in the previous section, with the exception
of fixing Nx and Ny while trying a range of process counts. We divide the results of
this study into two categories, depending on whether we allow for multiple subgrids
per process or not.

We start with one subgrid per process. In order to keep the problem size fixed when
adding more processes, we adjust the subgrid dimensions properly, i.e., by decreasing
the subgrid sizes in the same proportion as the number of processes increases. We run
three scaling studies, the smallest of which uses a configuration with roughly 671 million
grid points. In each subsequent study we increase the problem size by a factor of four.
Hence, the largest problem has around 10.7 billion grid points. In order to use the full

14

1024 4096 16384 65536 262144
0.5

2

8

32

128

#processes

R
u
n
ti
m
e
in

se
co
n
d
s

Total runtime
Solver

Solver setup

Figure 6: Weak scaling timing results of the modified version of ParFlow. The total
and solver runtimes are nearly identical. In comparison to Figure 5, the solver setup
executes in negligible time, ranging between 0.72 and 1.64 seconds.

1024 4096 16384 65536 262144

168.83

174.78

180.95

187.33

#processes

R
u
n
ti
m
e
in

se
co
n
d
s

Total runtime
Solver

(a)

1024 4096 16384 65536 262144

0.8

1

1.2

1.4

1.6

#processes

R
u
n
ti
m
e
in

se
co
n
d
s

Solver setup

(b)

Figure 7: Split of weak scaling timing results from Figure 6. In (a) we display the total
and solver runtimes that vary little in relative terms. In (b) we see that the solver
setup time of the modified version of ParFlow stays under two seconds wallclock time.

15

1024 4096 16384 65536 262144
90

95

100

105

110

#processes

M
em

o
ry

in
M

B

Upstream

Modified

Figure 8: Weak scaling memory usage for the upstream and modified versions of
ParFlow, respectively. We record the maximum heap allocation per process and plot
the maximum of this quantity over all processes.

1024 4096 16384 65536 262144

9.8 · 10−4

3.9 · 10−3

1.56 · 10−2

6.25 · 10−2

0.25

#processes

R
u
n
ti
m
e
in

se
co
n
d
s

core functions

(a)

1024 4096 16384 65536 262144

0.25

0.5

1

2

4

8

#processes

R
u
n
ti
m
e
in

se
co
n
d
s

setup wrap code
solver wrap code

(b)

Figure 9: Top: overall timing for p4est toplevel functions used in the code. The
absolute runtimes are well below one second. Bottom: We show timing results for
the wrap code executed when p4est is enabled. We measure solver and setup related
routines independently. Compared with the total solver time (see previous Figures),
the wrap code amounts to a fraction of about 7% at most.

16

Subgrid size number of processes Problem size
mx ×my ×mz P ×Q×R Pmx ·Qmy ·Rmz

128× 128× 40 32× 32× 1 671 088 640
64× 64× 40 64× 64× 1 671 088 640

Study 1 32× 32× 40 128× 128× 1 671 088 640
16× 16× 40 256× 256× 1 671 088 640
8× 8× 40 512× 512× 1 671 088 640

128× 128× 40 64× 64× 1 2 684 354 560
64× 64× 40 128× 128× 1 2 684 354 560

Study 2 32× 32× 40 256× 256× 1 2 684 354 560
16× 16× 40 512× 512× 1 2 684 354 560

128× 128× 40 128× 128× 1 10 737 418 240
Study 3 64× 64× 40 256× 256× 1 10 737 418 240

32× 32× 40 512× 512× 1 10 737 418 240

Full system 18× 32× 40 896× 512× 1 10 569 646 080
run

Table 2: Relevant parameters for the strong scaling study under the restriction of one
subgrid per process. The problem size remains constant per scaling study by setting
up the subgrid dimensions inversely proportional to the number of processes.

Juqueen system under our self-imposed restriction of keeping one subgrid per process,
while still obtaining runtimes comparable to the previous scaling studies, we tweak the
subgrid dimensions and number of processes requested in such a way that the resulting
problem size is as close as possible to 10.7 billion. Table 2 presents a summary of the
main parameters defining these scaling studies; Figures 10 and 11 contain our runtime
results.

We have designed the modified version of ParFlow such that it allows for config-
urations in which one process may hold multiple subgrids. In practice, this option
provides additional flexibility when a problem with a certain size must be run, but the
number of processes available depends on external factors. Using this feature, we are
able to conduct a strong scaling study without changing the subgrid size with each
scaling step. To illustrate this and additionally to test that the new code supporting
such configurations performs well, we take the medium size problem defined in Table
2 and execute a classical strong scaling analysis by changing only the number of pro-
cesses. We do this for three different but fixed subgrid sizes. We present our results
in Figure 12. We observe that increasing the number of subgrids per process incurs
slightly higher simulation times but still offers nearly optimal strong scaling behavior
and is thus a viable option compared to the single subgrid configuration.

17

1024 4096 16384 65536 262144

16

32

64

128

256

512

1,024

458752

#processes

R
u
n
ti
m
e
in

se
co
n
d
s

671 mill. grid points
2.68 bill. grid points
10.7 bill. grid points
10.5 bill. grid points
Ideal strong scaling

Figure 10: Strong scaling timing results of the modified version of ParFlow for dif-
ferent problem sizes. We plot the total runtime for each case. The solid green circle
corresponds to the full size of the Juqueen system at 458,752 processes.

2560 10240 40960 163840 655360

16

32

64

128

256

512

1,024

grid points / process

R
u
n
ti
m
e
in

se
co
n
d
s

671 mill. grid points
2.68 bill. grid points
10.7 bill. grid points
10.5 bill. grid points

Amdahl’s law

Figure 11: Strong scaling timing results of the modified version of ParFlow for different
problem sizes. We plot the total runtime for each case against the number of grid points
per process. The solid line shows a fit of Amdahl’s law t = c1 · x+ c2, where x denotes
the number of grid points per MPI rank. The fitted parameters are c1 = 0.0016 and
c2 = 14.7. This diagram offers another perspective on the optimality of weak scaling:
We observe that measurements for simulations with the same number of grid points
per process lie on top of each other in the vertical.

18

4096 8192 16384 32768 65536 131072 262144

16

64

256

1,024

4,096

#processes

R
u
n
ti

m
e

in
se

co
n
d
s

One subgrid per process, varying
subgrid size.

Multiple subgrids per process, sub-
grid size fixed to 64 × 64 × 40.

Multiple subgrids per process, sub-
grid size fixed to 32 × 32 × 40.

Multiple subgrids per process, sub-
grid size fixed to 16 × 16 × 40.

Ideal strong scaling

Figure 12: Strong scaling timing results of the modified version of ParFlow. We
compare runs with single and multiple subgrids per process. The red line corresponds
to the 2.68 billion dof single-subgrid problem (also colored red in Figure 10). Here
we choose three fixed subgrid sizes (blue, green, brown). Increasing the number of
processes eventually leads to a single subgrid per process, which is the case already
covered in Figure 10. This limit is indicated by the final dotted segment in each graph.
The largest number of subgrids per process (left end point of each graph) is four for
the run represented by the blue curve, 16 for the green and 32 for the brown.

19

5 Illustrative numerical experiment

In soil hydrology the challenge of scale is ubiquitous. Heterogeneity in soil hydraulic
properties exists from the sub-centimeter to the kilometer scale related to, e.g., micro-
and macro-porosity and spatially continuous soil horizons, respectively. This hetero-
geneity impacts the flow and transport processes in the shallow soil zone and inter-
actions with land surface processes. Examples are groundwater recharge and leaching
of nitrate and pesticides and the resulting impact on shallow aquifers. One major
structural soil feature is defined by small scale preferential flow paths, developed from
cracking and biota, that serve as high velocity conduits in the vertical direction. In
large scale simulations, accounting simultaneously for layered soil horizons and macro-
porosity at the plot scale on the order to 102 to 103 m has been essentially impossible,
because of the high spatial resolution required and the enormous size of the system
of equations resulting from the boundary and initial value problem defined by the 3D
Richards equation.

The improved parallel performance offered by the modified version of ParFlow mo-
tivates us to eventually target such complex simulations. In order to illustrate this, we
simulate a hypothetical example configuration focused on the presence of macroporos-
ity and layered soil horizons. The numerical experiment chosen solves an infiltration
problem on a Cartesian domain. The initial water table is implemented as a constant
head boundary at the bottom of the domain with a five meter unsaturated zone on
top of it. The heterogeneous permeability parameter is simulated with a spatially cor-
related log-transformed Gaussian random field. We employ two realizations of such a
field to model vertical and lateral preferential flow paths, respectively. Both random
field realizations are obtained with a parallel random field generator implemented in
ParFlow (the turning-bands algorithm [37]). We display an example of the outcome of
such realizations and the saturation field obtained from our experiment in Figure 13.

The total compute time required was roughly 280,000 core hours. While the mod-
ified version of ParFlow can be scaled easily to use large multiples of this number,
using such amounts of time must be carefully justified. At this point, it makes sense
to reserve extended scientific studies for a later publication that will focus exclusively
on the design and usefulness of such simulations.

6 Conclusions

The purpose of this work is to improve the parallel performance of the subsurface
simulator ParFlow such it can take full advantage of the computational resources of-
fered by the latest HPC systems. Our approach is to couple the ParFlow and p4est

libraries such that the latter acts as the parallel mesh manager of the former. We
achieve this with relatively small and local changes to ParFlow that constitute a rein-
terpretation rather than a redesign. This modified version of ParFlow offers a wider
range of runnable configurations and improved performace. We report good weak and
strong scaling up to 458,752 MPI ranks on the Juqueen supercomputer.

The improved performance of the modified version of ParFlow opens the possibility
of bigger and more realistic simulations. For example, the code can be used to perform
virtual soil column experiments to upscale hydraulic parameters related to hydraulic
conductivity and the soil water retention curve. One could envision a hierarchy of
experiments covering heterogeneities starting from the laboratory scale up to some

20

(a)

(b)

Figure 13: Picture a) shows a slice of the permeability field, generated by combining
two log-transformed Gaussian random fields with standard deviations ranging over 3
orders of magnitude. In b) we display the saturation field obtained after 32,928 time
steps, which correspond to 9.83 seconds simulated time. The wall clock compute time
required for this simulation was around 17 hours using 16,384 MPI ranks of Juqueen.

21

100 m. The upscaled parameters may then be used in coarser resolution models.
Considering our ehancenments, most parallel bottlenecks are gone and implementa-

tion scalability is in principle unlimited. Users should be aware that with the modified
version of ParFlow, one can easily spend millions of compute hours, which demands
care and sensibility in choosing the experimental setup. Nevertheless, a certain ratio
of losses will be unavoidable when designing simulations at highly resolved scales due
to the process of (informed) trial and error.

We also note that we did not address the algorithmic efficiency of the time stepper
or the preconditioner, since the mathematics of the solver remain unchanged. Future
developments in this regard will automatically inherit and benefit from the improve-
ments in scalability reported here.

We are providing all code changes to the community, hoping for the best possible
use and feedback, and will consider extending the current capabilities further when
needed.

Acknowledgments

The development of this work is made possible via the financial support by the collabo-
rative research initiative SFB/TR32 “Patterns in Soil-Vegetation-Atmosphere Systems:
Monitoring, Modeling, and Data Assimilation,” project D8, funded by the Deutsche
Forschungsgemeinschaft (DFG). Authors B. and F. gratefully acknowledge additional
travel support by the Bonn Hausdorff Centre for Mathematics (HCM) also funded by
the DFG.

We also would like to thank the Gauss Centre for Supercomputing (GCS) for pro-
viding computing time through the John Von Neumann Institute for Computing (NIC)
on the GCS share of the supercomputer Juqueen at the Jülich Supercomputing Centre
(JSC). GCS is the alliance of the three national supercomputing centers HLRS (Uni-
versität Stuttgart), JSC (Forschungszentrum Jülich), and LRZ (Bayerische Akademie
der Wissenschaften), funded by the German Federal Ministry of Education and Re-
search (BMBF) and the German State Ministries for Research of Baden-Württemberg
(MWK), Bayern (StMWFK), and Nordrhein-Westfalen (MIWF).

Our contributions to the ParFlow code and the scripts defining the test configura-
tions for the numerical experiments exposed in this work are available as open source
at https://github.com/parflow.

References

[1] S. F. Ashby and R. D. Falgout, A parallel multigrid preconditioned conju-
gate gradient algorithm for groundwater flow simulations, Nuclear Science and
Engineering, 124 (1996), pp. 145–159.

[2] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang,
PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.3, Argonne National
Laboratory, 2012.

[3] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. War-
burton, and L. C. Wilcox, Extreme-scale AMR, in SC10: Proceedings of the

22

https://github.com/parflow

International Conference for High Performance Computing, Networking, Storage
and Analysis, ACM/IEEE, 2010.

[4] C. Burstedde, J. Holke, and T. Isaac, Bounds on the number of disconti-
nuities of Morton-type space-filling curves. Submitted, 2017.

[5] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms
for parallel adaptive mesh refinement on forests of octrees, SIAM Journal on Sci-
entific Computing, 33 (2011), pp. 1103–1133.

[6] M. Camporese, C. Paniconi, M. Putti, and S. Orlandini, Surface-
subsurface flow modeling with path-based runoff routing, boundary condition-based
coupling, and assimilation of multisource observation data, Water Resources Re-
search, 46 (2010). W02512.

[7] Y. Dai, X. Zeng, R. E. Dickinson, I. Baker, et al., The common land
model, Bulletin of the American Meteorological Society, 84 (2003), p. 1013.

[8] F. Gasper, K. Goergen, P. Shrestha, M. Sulis, J. Rihani, M. Geimer,
and S. Kollet, Implementation and scaling of the fully coupled terrestrial sys-
tems modeling platform (TerrSysMP v1.0) in a massively parallel supercomputing
environment – a case study on JUQUEEN (IBM Blue Gene/Q), Geoscientific
Model Development, 7 (2014), pp. 2531–2543.

[9] M. Geimer, F. Wolf, B. Wylie, E. Ábrahám, D. Becker, and B. Mohr,
The scalasca performance toolset architecture, Concurrency and Computation:
Practice and Experience, 22 (2010), pp. 702–719.

[10] G. E. Hammond, P. C. Lichtner, and R. T. Mills, Evaluating the per-
formance of parallel subsurface simulators: An illustrative example with PFLO-
TRAN, Water Resources Research, 50 (2014), pp. 208–228.

[11] H. Hardelauf, M. Javaux, M. Herbst, S. Gottschalk, R. Kasteel,
J. Vanderborght, and H. Vereecken, PARSWMS: A parallelized model for
simulating three-dimensional water flow and solute transport in variably saturated
soils, Vadose Zone Journal, 6 (2007), pp. 255–259.

[12] R. A. Haring, M. Ohmacht, T. W. Fox, M. K. Gschwind, D. L. Satter-
field, K. Sugavanam, P. W. Coteus, P. Heidelberger, M. A. Blumrich,
R. W. Wisniewski, et al., The IBM Blue Gene/Q compute chip, Micro, IEEE,
32 (2012), pp. 48–60.

[13] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward, SUNDIALS: Suite of nonlinear and differ-
ential/algebraic equation solvers, ACM Transactions on Mathematical Software
(TOMS), 31 (2005), pp. 363–396.

[14] H.-T. Hwang, Y.-J. Park, E. Sudicky, and P. Forsyth, A parallel com-
putational framework to solve flow and transport in integrated surfacesubsurface
hydrologic systems, Environmental Modelling & Software, 61 (2014), pp. 39–58.

23

[15] T. Isaac, C. Burstedde, L. C. Wilcox, and O. Ghattas, Recursive algo-
rithms for distributed forests of octrees, SIAM Journal on Scientific Computing,
37 (2015), pp. C497–C531.

[16] J. E. Jones and C. S. Woodward, Newton-Krylov-multigrid solvers for large-
scale, highly heterogeneous, variably saturated flow problems, Advances in Water
Resources, 24 (2001), pp. 763–774.

[17] Jülich Supercomputing Centre, JUQUEEN: IBM Blue Gene/Q supercom-
puter system at the Jülich Supercomputing Centre, Journal of large-scale research
facilities, A1 (2015).

[18] G. Karypis and V. Kumar, METIS – Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 2.0, 1995.

[19] , A parallel algorithm for multilevel graph partitioning and sparse matrix
ordering, Journal of Parallel and Distributed Computing, 48 (1998), pp. 71–95.

[20] S. J. Kollet and R. M. Maxwell, Integrated surface-groundwater flow mod-
eling: A free-surface overland flow boundary condition in a parallel groundwater
flow model, Advances in Water Resources, 29 (2006), pp. 945–958.

[21] S. J. Kollet and R. M. Maxwell, Capturing the influence of groundwater dy-
namics on land surface processes using an integrated, distributed watershed model,
Water Resources Research, 44 (2008).

[22] S. J. Kollet, R. M. Maxwell, C. S. Woodward, S. Smith, J. Vander-
borght, H. Vereecken, and C. Simmer, Proof of concept of regional scale
hydrologic simulations at hydrologic resolution utilizing massively parallel com-
puter resources, Water Resources Research, 46 (2010), p. W04201.

[23] M. Kuznetsov, A. Yakirevich, Y. Pachepsky, S. Sorek, and N. Weis-
brod, Quasi 3d modeling of water flow in vadose zone and groundwater, Journal
of Hydrology, 450451 (2012), pp. 140–149.

[24] X. Liu, Parallel modeling of three-dimensional variably saturated ground water
flows with unstructured mesh using open source finite volume platform openfoam,
Engineering Applications of Computational Fluid Mechanics, 7 (2013), pp. 223–
238.

[25] R. M. Maxwell, A terrain-following grid transform and preconditioner for par-
allel, large-scale, integrated hydrologic modeling, Advances in Water Resources, 53
(2013), pp. 109–117.

[26] C. T. Miller, C. N. Dawson, M. W. Farthing, T. Y. Hou, J. Huang, C. E.
Kees, C. Kelley, and H. P. Langtangen, Numerical simulation of water
resources problems: Models, methods, and trends, Advances in Water Resources,
51 (2013), pp. 405–437. 35th Year Anniversary Issue.

[27] A. Müller, M. A. Kopera, S. Marras, L. C. Wilcox, T. Isaac, and
F. X. Giraldo, Strong scaling for numerical weather prediction at petascale with
the atmospheric model NUMA. http://arxiv.org/abs/1511.01561, 2015.

24

[28] M. Muskat, Physical principles of oil production, IHRDC, Boston, MA, Jan
1981.

[29] OpenCFD, OpenFOAM – The Open Source CFD Toolbox – User’s Guide,
OpenCFD Ltd., United Kingdom, 1.4 ed., 11 2007.

[30] L. Orgogozo, N. Renon, C. Soulaine, F. Hnon, S. Tomer, D. Labat,
O. Pokrovsky, M. Sekhar, R. Ababou, and M. Quintard, An open source
massively parallel solver for richards equation: Mechanistic modelling of water
fluxes at the watershed scale, Computer Physics Communications, 185 (2014),
pp. 3358–3371.

[31] D. Osei-Kuffuor, R. Maxwell, and C. Woodward, Improved numerical
solvers for implicit coupling of subsurface and overland flow, Advances in Water
Resources, 74 (2014), pp. 185–195.

[32] Performance applications programming interface (PAPI). Last accessed Septem-
ber 7, 2017.

[33] L. A. Richards, Capillary conduction of liquids through porous media, Physics,
1 (1931), pp. 318–33.

[34] J. Rudi, A. C. I. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. W. J.
Staar, Y. Ineichen, C. Bekas, A. Curioni, and O. Ghattas, An extreme-
scale implicit solver for complex pdes: highly heterogeneous flow in earth’s mantle,
in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ACM, 2015, p. 5.

[35] P. Saviankou, M. Knobloch, A. Visser, and B. Mohr, Cube v4: From
performance report explorer to performance analysis tool, Procedia Computer Sci-
ence, 51 (2015), pp. 1343–1352.

[36] The Hypre Team, hypre – High Performance Preconditioners Users Manual,
Center for Applied Scientific Computing, Lawrence Livermore National Labora-
tory, 2012. Software version 2.0.9b.

[37] A. F. B. Tompson, R. Ababou, and L. W. Gelhar, Implementation of
the three-dimensional turning bands random field generator, Water Resources Re-
search, 25 (1989), pp. 2227–2243.

[38] R. S. Tuminaro, M. Heroux, S. A. Hutchinson, and J. N. Shadid, Official
Aztec User’s Guide, Sandia National Laboratories, sand99-8801j ed., 1999.

[39] H. Yamamoto, K. Zhang, K. Karasaki, A. Marui, H. Uehara, and
N. Nishikawa, Numerical investigation concerning the impact of CO2 geologic
storage on regional groundwater flow, International Journal of Greenhouse Gas
Control, 3 (2009), pp. 586–599.

[40] K. Zhang, Y.-S. Wu, and K. Pruess, Users guide for TOUGH2-MP a mas-
sively parallel version of the TOUGH2 code, Lawrence Berkeley National Labora-
tory, 2008. Report LBNL-315E.

25

	1 Introduction
	2 The ParFlow simulation platform
	2.1 Mesh management
	2.2 Parallel exchange of information

	3 Enhancing scalability and speed of ParFlow
	3.1 The software library p4est
	3.2 Rearranging the mesh layout
	3.3 Attaching subgrids of correct size
	3.4 Querying the ghost layer
	3.5 Further enhancements

	4 Performance evaluation
	4.1 Weak scaling studies
	4.2 Strong scaling studies

	5 Illustrative numerical experiment
	6 Conclusions

