
Comput. Methods Appl. Mech. Engrg. 198 (2009) 1691–1700
Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma
Parallel scalable adjoint-based adaptive solution of variable-viscosity
Stokes flow problems

Carsten Burstedde a, Omar Ghattas a,b,*, Georg Stadler a, Tiankai Tu a, Lucas C. Wilcox a

a Institute for Computational Engineering & Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
b Jackson School of Geosciences and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
a r t i c l e i n f o

Article history:
Received 19 June 2008
Received in revised form 6 October 2008
Accepted 31 December 2008
Available online 7 January 2009

Keywords:
Adaptive mesh refinement
Stokes equations
Parallel computing
Octree algorithms
Adjoint error estimation
Algebraic multigrid
0045-7825/$ - see front matter Published by Elsevier
doi:10.1016/j.cma.2008.12.015

* Corresponding author.
E-mail addresses: carsten@ices.utexas.edu (C. Burs

(O. Ghattas), georgst@ices.utexas.edu (G. Stadler),
lucasw@ices.utexas.edu (L.C. Wilcox).
a b s t r a c t

We present a framework for parallel adaptive solution of variable-viscosity Stokes flow problems. We
focus on data structures, algorithms, and solvers that can scale to thousands of processor cores. The prob-
lem is discretized by octree-based finite elements with explicit enforcement of continuity constraints at
hanging nodes. The parallel octree structure allows for fast neighbor-finding and facilitates local coarsen-
ing and refinement of the mesh. Mesh adaptivity is driven by a posteriori error indicators, including
adjoint-based goal-oriented techniques. Dynamic load-balancing is achieved by dynamically partitioning
a Morton-ordered space-filling curve. The Stokes system is solved iteratively using the minimum residual
method (MINRES), preconditioned by a Schur-complement-based approximate inverse that employs
algebraic multigrid V-cycle approximations of the inverses of the Poisson-like operators. We demonstrate
the effectiveness of this framework on several testbed problems with up to 6 orders of magnitude vari-
ation in viscosity and up to 1.7 billion unknowns, on up to 4096 cores. The results indicate that the over-
head due to all AMR components is less than 3% of the overall solve time, the solver exhibits very good
algorithmic and parallel implementation scalability, the solver is insensitive to the magnitude of viscosity
variation, and adjoint-based adaptivity results in over two orders of magnitude reduction in number of
unknowns and up to an order of magnitude improvement in runtime relative to a uniform mesh, for
the same level of error.

Published by Elsevier B.V.
1. Introduction

Variable-viscosity Stokes equations play an important role in
models of creeping flows arising in several geophysical areas,
including magma migration [21], mantle convection [22,32], and
ice sheet dynamics [18]. In many cases, the presence of local
fine-scale features requires adaptive mesh refinement/coarsening
(AMR) to make the Stokes flow models tractable. Furthermore,
even with the use of AMR, problem sizes are often so large that
solution on multi-thousand processor supercomputers is neces-
sary, which typically presents difficulty for AMR algorithms. More-
over, viscosities can vary by several orders of magnitude, posing
challenges for popular scalable solvers.

Here, we present a framework for parallel adaptive finite ele-
ment solution of variable-viscosity Stokes equations that scales
to thousands of processor cores. The framework combines ALPS,
our library for parallel octree-based AMR with a multigrid-precon-
B.V.

tedde), omar@ices.utexas.edu
ttu@ices.utexas.edu (T. Tu),
ditioned Krylov method for the solution of variable-viscosity
Stokes systems. At each cycle, the Stokes equations are solved on
the current mesh, and a posteriori error estimates are used to mark
elements for refinement. After refinement, the solution on the old
mesh is interpolated to the new mesh and used as initialization for
the next Stokes solve.

Our goal is to achieve scalability and performance for the entire
adaptive process. This requires efficient mathematical methods
and careful design and implementation of algorithms. First, effi-
cient and scalable algorithms for error estimation, local refine-
ment, and repartitioning of meshes are needed. Ideally, the time
needed for AMR components should remain small compared to
solver time, so that the gains accrued from having fewer degrees
of freedom are not offset by inefficiencies of the algorithms for
adaptivity. Second, the numerical components of the discretization
and solver must be constructed carefully so that we achieve opti-
mal (or nearly optimal) algorithmic scalability. This results when
the number of iterations of the solver remains nearly constant as
the mesh is refined or the viscosity variation increases. Third,
algorithms for the discretization, Stokes solver, and AMR
components must be implemented with careful attention to
parallel scalability.

mailto:carsten@ices.utexas.edu
mailto:omar@ices.utexas.edu
mailto:georgst@ices.utexas.edu
mailto:ttu@ices.utexas.edu
mailto:lucasw@ices.utexas.edu
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma

1692 C. Burstedde et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1691–1700
In this paper, we describe the design and construction of paral-
lel algorithms for discretization, iterative solution, and adaptivity
that are aimed at achieving high performance as well as algorith-
mic and parallel scalability. While here we discretize the Stokes
equations using pressure-stabilized trilinear finite elements, our
framework naturally accommodates higher-order finite elements.
Mesh adaptation is driven by a posteriori error indicators
[1,3,5,11,25], targeting either the global discretization error or cer-
tain quantities of interest. We use algebraic constraints on hanging
nodes to impose continuity of the solution field across coarse-to-
fine element transitions. This results in a conforming approxima-
tion, allowing the use of standard finite element ideas. The finite
element discretization, stabilization, and adjoint-based goal-ori-
ented error estimates we use are presented in Section 2. Our
AMR library ALPS uses parallel octree-based hexahedral finite ele-
ment meshes and dynamic load-balancing based on space-filling
curves, and is described in Section 3. We use the iterative Krylov
solver MINRES (minimum residual method) for the solution of
the discrete Stokes saddle point problem. Preconditioning is car-
ried out by approximate block factorization and algebraic multi-
grid V-cycle approximation (using BoomerAMG from the hypre
[10] package) of the inverse of viscous and pressure Schur comple-
ment operators. The solver and preconditioner are described in
Section 4. Finally, Section 5 presents the results of a number of
tests involving two geophysical problems, one from mantle con-
vection and another from magma migration. These tests are de-
signed to assess the performance and scalability of the AMR and
solver algorithms presented in this paper. These include tests of
the overhead imposed by the AMR components, the algorithmic
and parallel scalability of the solver, the sensitivity of the solver
to the magnitude of viscosity variation, and the overall efficiency
of the adaptive Stokes solver.

2. Stokes discretization and error estimates

We consider the stationary incompressible Stokes equations
with variable-viscosity lð�ÞP l0 > 0 in X � R3:

�r � lðruþru>Þ
� �

þrp ¼ f; ð1aÞ
r � u ¼ 0; ð1bÞ

where u ¼ ðu1; u2;u3Þ denotes the velocity vector, p the pres-
sure, and f a given vector body force. Moreover, we assume
Dirichlet (i.e. zero-slip) boundary conditions on ; – C � oX
and homogeneous Neumann (i.e., traction-free) conditions else-
where, i.e.,

u ¼ u0 on C; ð1cÞ
lðruþru>Þ � pI
� �

n ¼ 0 on oX n C: ð1dÞ

Note that the viscous term in (1a) is often replaced by the vector
Laplacian, having the computational advantage that the velocity
components are coupled only through the incompressibility condi-
tion (1b). While the two formulations are equivalent only for con-
stant viscosity, in Section 4 we will employ the vector Laplacian
as a preconditioner for the viscous term.

In this section, we describe a stabilized finite element discreti-
zation and derive a posteriori error estimates for (1). Then we de-
scribe how we use these estimates to iteratively adapt finite
element meshes.

2.1. Discretization and stabilization

We begin by stating (1) in a mixed variational form. For
u;v 2 V :¼ ðH1ðXÞÞ3 and p; q 2W :¼ L2ðXÞ we introduce the bilin-
ear forms Að�; �Þ : V � V! R and Bð�; �Þ : V �W ! R defined by
Aðu;vÞ :¼
Z

X

l
2
ðruþru>Þ : ðrv þrv>Þdx;

Bðu;pÞ :¼
Z

X
�ðr � uÞpdx:

Defining the bilinear form Q and the linear form F

Qð½u;p�; ½v; q�Þ ¼ Aðu;vÞ þ Bðv; pÞ þ Bðu; qÞ; FðvÞ :¼
Z

X
f � v dx;

the mixed variational formulation of the Stokes equation becomes:
Find u 2 Vu0 :¼ fu 2 V : u ¼ u0 on Cg and p 2W such that

Qð½u;p�; ½v; q�Þ ¼ FðvÞ for all ðv; qÞ 2 V0 �W; ð2Þ

where V0 :¼ fu 2 V : u ¼ 0 on Cg. It is well known that a solution
to (2) exists and that it is unique if C–oX, whereas it is unique only
up to a constant for p if C ¼ oX [15]. In the latter case uniqueness
can be enforced by restricting the pressure space to p; q 2W0 :¼
fu 2W :

R
X udx ¼ 0g.

We discretize the variational form (2) using the finite element
method with a hexahedral mesh and Q 1-Q1 elements, i.e., trilinear
elements for both velocity and pressure. To be precise, we partition
�X ¼

S
Xe2M

�Xe and define the finite element spaces

Vh :¼ fu 2 C0ðXÞ : ujXe 2 Q 1 for all Xeg; Vh ¼ ðVhÞ3;

where Q1 denotes the space of trilinear (i.e., linear in each variable)
element functions. The corresponding spaces that incorporate
Dirichlet boundary conditions are

Vh
u0

:¼ fu 2 Vh : u ¼ u0 on Cg and Vh
0 :¼ fu 2 Vh : u ¼ 0 on Cg:

It is well known that this equal-order discretization does not satisfy
the inf–sup (or Babuška–Brezzi) condition for stability of numerical
methods for saddle point problems [15]. As a remedy, we employ
the polynomial pressure stabilization from [14] (see also [6,15]).
Here, one adds L2 pressure projections on the element level to the
mixed variational equation. Define for p; q 2W the mesh-depen-
dent bilinear form

Cðp; qÞ :¼
Z

Xe

1
l
ðp�PpÞðq�PqÞdx; ð3Þ

where P : W ! P0 denotes the L2 projection from W onto the space
P0 of element-wise constant functions. This term is added to the left
hand side of (2), resulting in the modified bilinear form

Qhð½uh;ph�; ½vh; qh�Þ :¼ Qð½uh; ph�; ½vh; qh�Þ þ Cðph; qhÞ: ð4Þ

for uh;vh 2 Vh and ph; qh 2 Vh. Thus, the discrete stabilized Stokes
problem becomes: Find ðuh;phÞ 2 Vh

u0
� Vh such that

Qhð½uh;ph�; ½vh; qh�Þ ¼ FðvhÞ for all ðvh; qhÞ 2 Vh
0 � Vh: ð5Þ

The implementation of the stabilization (3) corresponds to a simple
modification of the element mass matrix. This modification guaran-
tees that constants are in the null space of C while penalizing the
spurious modes in p. The method achieves optimal accuracy with
respect to the solution regularity, i.e., linear convergence for the
velocity in the H1-norm and for the pressure in the L2-norm; for
proofs see [6,15]. Other appealing features of this stabilization are
that it does not require the specification of a stabilization parame-
ter, it leads to symmetric systems, and it is completely local to the
element. The latter property is especially attractive for parallel
implementations, since no communication is necessary (unlike
macroelement-based stabilization [15]). Section 3 provides more
details on our parallel implementation, in particular in the context
of adaptive mesh refinement.

C. Burstedde et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1691–1700 1693
2.2. A posteriori error estimation

A posteriori error estimates can be used to manage the numeri-
cal error in finite element approximation by adaptively refining
and coarsening finite element meshes. Often, one is not interested
in minimizing error in a global norm, since this might not provide
efficient control of the error in the quantities of interest. Adaptive
methods based on goal-oriented error estimation reduce the error
in these quantities of interest, often making them superior to adap-
tation based on global error indicators [1,5]. Generally, goal-ori-
ented error estimation requires the solution of adjoint PDEs.

Below we derive a goal-oriented error indicator for the pres-
sure-stabilized Stokes equation. At the end of the section we also
give two simpler error indicators, the residual error indicator,
which is based on the complete residual of the Stokes equation,
and the divergence error indicator, which is based on the residual
in the mass continuity equation only.

Note that the stabilization (3) leads to a non-standard Galerkin
method, since in the discrete problem a term is added to the con-
tinuous bilinear form Að�; �Þ. Thus, Galerkin orthogonality for the er-
rors ðeu; epÞ :¼ ðu� uh; p� phÞ no longer holds, i.e.,

Qð½eu; ep�; ½vh; qh�Þ ¼ Cðph; qhÞ for ðvh; qhÞ 2 Vh � Vh; ð6Þ

which in general is nonzero. This slightly complicates the usual pro-
cedure for goal-oriented a posteriori error estimates. Hence, we
briefly sketch the derivation of the error estimates below.

For simplicity, we assume the quantity of interest Jðu; pÞ is lin-
ear in velocity and pressure. To obtain weights for the residuals
that drive the refinement, the following adjoint problem is defined:
Find ðz; yÞ 2 V0 �W such that

Qð½v; q�; ½z; y�Þ ¼ Jðv; qÞ for all ðv; qÞ 2 V0 �W: ð7Þ

Denoting again ðeu; epÞ ¼ ðu� uh; p� phÞ, we wish to minimize the
error in the quantity of interest jJðu;pÞ � Jðuh;phÞj ¼ jJðeu; epÞj. Using
(6) and the adjoint problem (7), we obtain for arbitrary
ðzh; yhÞ 2 Vh � Vh

Jðeu; epÞ ¼ Qð½eu; ep�; ½z; y�Þ ð8aÞ
¼ Qð½eu; ep�; ½z� zh; y� yh�Þ þ Cðph; yhÞ: ð8bÞ

In what follows, ðzh; yhÞ are chosen as approximations of ðz; yÞ in the
finite element spaces Vh

0 and Vh. The error in the quantity of interest
is further split such that

Jðeu; epÞ ¼ Qð½u;p�; ½z� zh; y� yh�Þ � Qð½uh;ph�; ½z� zh; y� yh�Þ
þ Cðph; yhÞ

¼ Fð½z� zh; y� yh�Þ � Aðuh; z� zhÞs� Bðz� zh;phÞ
� Bðuh; y� yhÞ þ Cðph; yhÞ:

Element-wise integration by parts for the second and third term
yields

Jðeu; epÞ ¼
X

Xe2M

Z
Xe

f þr � l
2
ðruh þ ðruhÞ>Þ �rph

� �
ðz� zhÞdx

�
þ
Z

Xe
ðr � uhÞðy� yhÞdx

þ
Z

oXe

l
2
ðruh þ ðruhÞ>Þ � phI

� �
n � ðz� zhÞdx

þ
Z

Xe
ðph �PphÞðyh �PyhÞdx

�
¼
X

Xe2M

Z
Xe

R1ðuh; phÞðz� zhÞdxþ
Z

Xe
R2ðuhÞðy� yhÞdx

�
þ
Z

oXe
R3ðuh;phÞðz� zhÞdxþ

Z
Xe

R4ðphÞðyh �PyhÞdx
�

with

R1ðuh;phÞjXe ¼ f þr � l
2
ðruh þ ðruhÞ>Þ �rph;

R2ðuhÞjXe ¼ r � uh;

R3ðuhÞoXe ¼ 1
2

l
2
ðruþ ðruÞ>Þ � phI

� �
n

h ih i
;

R4ðphÞ ¼ 1
l

ph �Pph
� �

:

Here, s � t denotes the jump across faces of element boundaries.
Note that the residuals R1;R2;R4 can be calculated for each element
from its nodal values only, while R3 requires information from the
element’s face neighbors. The above expressions provide an esti-
mate of the error in the quantity of interest in terms of the element
error indicators ge,

jJðeu; epÞj 6
X

Xe2M
ge; with ge ¼

X4

i¼1

qe
i x

e
i ; ð9Þ

where

qe
1 ¼ kR1ðuh; phÞkXe ; xe

1 ¼ kz� zhkXe ;

qe
2 ¼ kR2ðuhÞkXe ; xe

2 ¼ ky� yhkXe ;

qe
3 ¼ kR3ðuh; phÞkoXe ; xe

3 ¼ kz� zhkoXe ;

qe
4 ¼ kR4ðphÞkXe ; xe

4 ¼ kyh �PyhkXe :

The additional term qe
4xe

4 stems from the absence of Galerkin
orthogonality for the discretization errors (see (6)). Note that in
computing the traction jump term R3ðuh;phÞ, the pressure ph can
be neglected since it is continuous across element faces.

Given a finite element solution ðuh; phÞ, the residuals qe
i can be

computed according to the expressions above. However, the
weights xe

i involve the continuous adjoint solution ðz; yÞ and thus
their evaluation requires sufficiently accurate approximate solu-
tion of the adjoint problem. Using the same discretization and
mesh as used in the primal problem fails, since this leads to zero
weighs xe

i . Hence, one needs to employ global or local higher-order
approximations: global approximations are based on solutions on a
finer mesh or higher-order finite elements; local higher-order
approximation can be obtained, for instance, by patch-wise high-
er-order interpolation. In our numerical tests, we simply solve
the adjoint problem on a mesh obtained by one global refinement
of the primal mesh.

Cheaper-to-compute error indicators attempt to decrease global
norms of the error and do not require the solution of an adjoint
equation, but are usually less effective for quantities of interest
than goal-oriented techniques. These indicators can be recovered
from (9) by choosing appropriate weights: If all xe

i (i ¼ 1; . . . ;4)
in (9) are chosen equal to 1, the residual error indicator is obtained.
Similarly, for the divergence error indicator one sets xe

1 ¼ xe
3 ¼

xe
4 ¼ 0 and xe

2 ¼ 1 for all elements Xe 2M.

2.3. Mesh adaptation based on a posteriori error indicators

Element-wise a posteriori error indicators can be used to succes-
sively adapt finite element meshes to more effectively resolve
physical phenomena of varying spatial scales. A typical nested-iter-
ation cycle for mesh adaptation, known as a Solve–Estimate–Mark–
Refine cycle, is given by:

1. Choose an initial mesh M0, a maximum element error gmax, a
maximum number of refinement cycles kmax and set k ¼ 0.

2. Solve: Compute the finite element solution ðuh
k ; p

h
kÞ of (5) on the

mesh Mk.

1694 C. Burstedde et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1691–1700
3. Estimate: Compute the error indicator ge for each element
Xe 2Mk and stop if for all elements ge

6 gmax.
4. Mark: Mark elements that have large indicators ge for

refinement.
5. Refine: Refine the marked elements to obtain a new mesh

Mkþ1.
6. If k < kmax let k :¼ kþ 1 and go to Step 2.

In Step 4 several marking strategies are possible. For example,
we may wish to refine all elements with an error indicator larger
than a given threshold gmax. Another strategy is to refine the a%

of elements with the largest error indicators, for a 2 ð0;100Þ. Note
that the latter strategy requires communication since the error
indicators are available locally only. In practice, gmax, a, and kmax

are chosen with a final mesh size and a target number of cores in
mind so that the refinement process does not exceed the available
memory.

3. Parallel octree-based mesh adaptation and load-balancing

In this section, we describe the essential components of ALPS. The
design of our library supports many mesh-based PDE discretization
schemes, such as low- and high-order variants of finite element, fi-
nite volume, spectral element, and discontinuous Galerkin meth-
ods, though only finite element methods on trilinear hexahedral
elements are currently implemented. We build on prior ap-
proaches to parallel octree mesh generation [30,31], and extend
them to accommodate solution-adaptive refinement (and coarsen-
ing). This requires separating the octree from the mesh data struc-
tures. Specifically, adaptation and partitioning of the mesh are
handled through the octree structure, and a distinct mesh is gener-
ated from the octree every time the mesh changes.

Nonconforming hexahedral meshes of a given rectangular do-
main are generated for use with a trilinear finite element discreti-
zation. Solution fields are made conforming via algebraic
continuity constraints on hanging nodes, that is, nodes on edges
and faces that are not vertices of all the elements sharing those
edges or faces. These algebraic constraints are eliminated at the
element level, so variables at the hanging nodes are no longer
degrees of freedom for the solver. We maintain a global 2-to-1 bal-
ance condition, i.e., the edge lengths of face- and edge-neighboring
elements may differ by at most a factor of 2. This ensures smooth
gradations in mesh size, and simplifies the incorporation of alge-
braic constraints. Octree-based refinement/coarsening of hexahe-
dral finite element meshes with hanging node constraints has
been employed in such parallel finite element libraries as deal.II
[4], libMesh [19], hp3d [11], and AFEAPI [20], and have been dem-
onstrated to scale to well to hundreds of processors. Here, our fo-
cus is on parallel algorithms and implementations that can scale
to Oð104Þ cores. These are discussed in the remainder of this
section.
Fig. 1. Left: illustration of the distinct octree and mesh data structures used in ALPS. The d
and elements. Right: a pre-order traversal of the leaves of the octree in the sequence of tr
the mesh elements, known as a Morton ordering. A load-balanced partition of the octree
The globally shared information required for this operation amounts to one long intege
3.1. Octrees and space-filling curves

All coarsening and refinement information is maintained within
an octree data structure, in which there is a one-to-one correspon-
dence between the leaves of the octree and the hexahedral ele-
ments of the mesh (see Fig. 1, left). The root of the octree
represents an octant of the size of the computational domain.
The leaves of the octree represent the elements that are present
in the current mesh. The parents of these leaves are used to deter-
mine the relationships between the leaves. When an element is re-
fined, it is split into eight equal-sized child elements. This is
represented in the octree by adding eight children to the leaf oc-
tant representing the element being divided. A coarsening opera-
tion amounts to removing all children with a common parent.
The operations defined on the octree and the mesh are detailed be-
low, see also [8].

Most of the AMR functions in ALPS operate on the octree from
which the mesh is generated. Since we target large parallel sys-
tems, we cannot store the full octree on each core. Thus, the tree
is partitioned across cores. As we will see below, cores must be
able to determine which core owns a given leaf octant. To this
end we rely on a space-filling curve [2,9,12], which provides a
globally unique linear ordering of all leaves. As a direct conse-
quence, each core stores only the range of leaves each other core
owns. This can be determined by an MPI_Allgather call on an ar-
ray of long integers with a length equal to the number of cores.
This is the only global information that is required to be stored.
We use the Morton ordering as the specific choice of space-filling
curve. It has the property that nearby leaves tend to correspond
to nearby elements given by the pre-order traversal of the octree,
as illustrated in the right of Fig. 1.

The basic operations needed for mesh generation and adapta-
tion require each core to find the leaf in the octree corresponding
to a given element. If the given element does not exist on the local
core, the remote core that owns the element must be determined.
This can be done efficiently given the linear order of the octree; see
[31] for details. The inverse of this operation, determining the ele-
ment corresponding to a given leaf, can be made efficient as well.

3.2. Mesh generation and adaptation

The generation of the mesh comprises several distinct steps.
There are two scenarios in which a mesh is generated: the first is
the initial generation of the mesh, and the second is the generation
of a mesh from an adapted octree. As we will see, the adaptation of
the mesh in conjunction with the transfer of data fields requires an
intermediate mesh to be generated.

When generating a mesh from an adapted octree, the interpola-
tion of element fields between old and new meshes necessitates
additional functions. The procedure for adapting the mesh pro-
ceeds as follows. First, a given octree is coarsened and refined
ata structures are linked logically by a 1-to-1 correspondence between octree leaves
iples ðz; y; xÞ creates a space-filling curve in z-order. This imposes a total ordering of
is determined by partitioning the space-filling curve into segments of equal length.

r per core. Note that in both figures a quadtree is show for display purposes.

Fig. 2. Functions for mesh adaptation. Red boxes correspond to functions that operate on the octree only; orange boxes denote functions that act between the octree and the
mesh; mesh and data field operations are enclosed in yellow boxes; green boxes are used for functions that act on the mesh and the application data fields only. Solid arrows
represent the flow of function calls; dashed arrows signify the input and output of mesh. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

C. Burstedde et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1691–1700 1695
based on an application-dependent criterion, such as an error indi-
cator. Next, the octree is ‘‘balanced” to enforce the 2-to-1 adja-
cency constraint. After these operations, a mesh is extracted so
that the relevant finite element fields can be transferred between
meshes. Following this, the adapted mesh is partitioned and the fi-
nite element fields are transferred to neighboring cores following
their associated leaf partition. Fig. 2 illustrates this process.

3.3. AMR functions

Below we highlight the key features of the functions used to
build and adapt the octree and mesh in an application code. In this
paper we use the functionality of the ALPS library to adaptively re-
fine the mesh for static Stokes equations. Due to its coarsening
capabilities, the library can also be used for dynamic AMR simula-
tions [8].

NewTree. This algorithm is used to construct a new octree in
parallel. Each core grows an octree to an initial coarse level, which
is divided evenly between cores. The cores finish by pruning
the parts of the tree they do not own, as determined by the
Morton order. This is an inexpensive operation that requires no
communication.

CoarsenTree/RefineTree. Both COARSENTREE and REFINETREE work di-
rectly on the octree and are completely local operations that re-
quire no communication. REFINETREE traverses the leaves of the
local partition of the octree on each core, querying the application
code whether or not a given leaf should be refined. If so, eight new
leaves are added to the level beneath the queried octant. COARSENTREE

follows a similar approach, examining the local partition of the oc-
tree for eight leaves from the same parent that the application code
has marked for coarsening. Note that we do not permit coarsening
of a set of leaf octants that are distributed across cores. This is a
minor restriction, since the number of such leaf sets is at most
one less than the number of cores. Both COARSENTREE and REFINETREE

work recursively; that is, multiple levels of leaves can be removed
or added in one invocation of the function.

BalanceTree. Enforcing the 2-to-1 size difference constraint
between adjacent elements, also known as balancing the tree, is
done with the parallel prioritized ripple propagation algorithm de-
scribed in [31]. The algorithm uses a buffer to collect the commu-
nication requests as it balances the octree one refinement level at a
time. This buffering aggregates all of the communication so that
the number of communication rounds scales linearly with the
number of refinement levels.

PartitionTree. Dynamic partitioning of the octree for load bal-
ance is a key operation that has to be performed frequently
throughout a simulation as the mesh is adapted. The goal of this
function is to assign an equal number of elements to each core
while keeping the number of shared mesh nodes between cores
as small as possible. The space-filling curve offers a natural way
to partition the octree, and hence mesh, among cores. The curve
is divided into one segment per core according to the total order-
ing. The result is a partition with good locality properties, i.e.,
neighboring elements in the mesh tend to be found on the same
core.

ExtractMesh. This function builds the mesh from a given octree
and sets up the communication pattern for the application code.
Unique global orderings of the elements and degrees of freedom
of the mesh are determined and the relationship between the ele-
ments and nodes is established. Hanging nodes do not have un-
knowns associated with them, and therefore are not part of the
global degrees of freedom. Their dependence on the global degrees
of freedom, which is required to enforce the continuity of the finite
element data fields, is also determined in this function. Ghost layer
information (one layer of elements adjacent to local elements)
from remote cores is also gathered.

InterpolateFields. This function is used to interpolate finite ele-
ment data fields from an existing mesh to a new mesh that has
been created by at most one level of coarsening and refinement.
For simple interpolation between two trilinear finite element
meshes, there is no global communication required to execute this
step, given the value of ghost degrees of freedom. Once finished,
the cores gather the information for their ghost degrees of freedom
by communicating with their neighboring cores.

TransferFields. The way this function works on the data fields
is similar to the way PARTITIONTREE works on the octree. Following
the Morton ordering among the degrees of freedom, the data asso-
ciated with element nodes are transferred between cores to com-
plete the partitioning stage. At the end of this process every core
has obtained the data for all elements it owns and discarded what
is no longer relevant due to the changed partition.

4. Numerical solution of the discrete stokes system

In this section, we present our solver for the solution of the dis-
crete form of the Stokes equation, i.e. (5). The resulting discrete
Stokes problem can be written as the following saddle point
problem:

Q
û
p̂

� 	
¼ f̂

0

 !
with Q ¼ A B>

B �C

 !
; ð10Þ

where û; p̂ and f̂ denote the coefficient vectors for the functions
uh;ph and fh and the matrices A; B and C correspond to the bilinear
forms Að�; �Þ, Bð�; �Þ and Cð�; �Þ, respectively. The blocks A and C are
symmetric and positive definite and, thus, (10) is an indefinite sym-
metric system.

4.1. Iterative solution by Krylov method

Since the coefficient matrix Q is symmetric and indefinite, we
employ the preconditioned minimum residual method (MINRES)
[28] for its solution. MINRES is a generalization of the conjugate
gradient method to indefinite systems. Each MINRES iteration
requires one application of the matrix Q to a vector, two inner

Table 1
Settings used in BoomerAMG from the hypre package. We use the parallel coarsening
method PMIS, extended interpolation, and a maximum of 5 matrix entries per row for
the interpolation matrices. The truncation factor and the threshold for strong matrix
connections influence the complexity of the grid hierarchy.

Coarsening Interpolation Truncation
factor

Strong
threshold

Max entries per
row for interp.

PMIS Extended 0.3 0.5 5

1696 C. Burstedde et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1691–1700
products, and storage of two vectors. Each inner product requires a
collective reduction operation.

4.2. Choice of preconditioner

To obtain a mesh-independent (or almost mesh-independent)
number of iterations, i.e., a constant number of iterations as the
problem size increases, one needs to employ a suitable precondi-
tioner for (10). Note that MINRES requires a symmetric and posi-
tive definite preconditioner. The block factorization

A B>

B �C

 !
¼

I 0
BA�1 I

� 	
A 0
0 �ðBA�1B> þ CÞ

� 	
I A�1B>

0 I

 !
ð11Þ

shows that Q is congruent to a block diagonal matrix. Neglecting the
off-diagonal terms A�1B on the right hand side of (11) motivates the
use of the symmetric and positive definite matrix

P ¼
A 0
0 S

� 	
; with S ¼ BA�1B> þ C ð12Þ

as preconditioner. However, since the Schur complement S involves
A�1, systems of the form Pẑ ¼ r̂ cannot be solved easily, which
makes P unsuitable as a preconditioner. Thus, we replace the Schur
complement S by a lumped mass matrix (e.g., [17]) weighted by the
inverse viscosity l�1. For instance in [15] it is shown that in the case
of constant viscosity the resulting diagonal matrix is spectrally
equivalent to S. For varying viscosity and interface Stokes problems,
similar results are obtained in [27,26]. Note that, when lumped, the
pressure stabilization matrix C drops out. This is due to the fact that
at the element level, constants are in the null space of C. The result-
ing diagonal matrix eM reflects the local element size as well as the
local viscosity. This is essential for favorable scalability of the MIN-
RES iterations as the problem grows, and is particularly important
for adaptively refined meshes.

To reduce the cost of the preconditioner in (12), we replace the
3� 3 block matrix A in (12) by the discrete vector Laplacian with
variable viscosity for the preconditioner. For constant viscosity
and Dirichlet boundary conditions, A is equivalent to the vector
Laplacian, which motivates this replacement. Thus, the precondi-
tioner reduces to

eP ¼ eA 0
0 eM

 !
; with eA ¼ L1 0 0

0 L2 0
0 0 L3

0B@
1CA: ð13Þ

Here, for i ¼ 1;2;3 the block matrix Li denotes the discretization of
the bilinear form Liðui;vÞ :¼

R
X lrui � rv dx, taking into account

possibly different boundary conditions for u1;u2;u3. Note that due
to the block diagonal structure of eP , u1;u2;u3, and p are decoupled
and thus each component of eP ẑ ¼ r̂ can be solved independently.

4.3. Implementation of the preconditioner by algebraic multigrid
(AMG)

While a solve with the lumped mass matrix eM is trivial, L1; L2

and L3 are discretizations of Poisson operators on highly heteroge-
neous meshes with large variations in the viscosity l. To approxi-
mately calculate L�1

i r̂i for given r̂i, we use one V-cycle of an
algebraic multigrid (AMG) method (e.g. [7]). Compared to geomet-
ric multigrid, AMG can have advantages due to its ability to ac-
count for variations in viscosity and adaptively refined meshes in
the grid hierarchy. AMG requires a setup phase, in which a coarse
grid hierarchy and corresponding restriction and interpolation
operators are constructed. Parallel implementations of AMG re-
quire communication for this setup step. Generally, there is a
trade-off between increased time/memory and the effectiveness
of the coarse grid hierarchy. For our tests we use the parallel
AMG implementation BoomerAMG from the hypre package
[10,13,16]. BoomerAMG allows the user to choose among various
coarsening strategies, and to set parameters that influence the
complexity of the coarse grid hierarchy and the interpolation and
restriction operators. The settings we used in our test are summa-
rized in the next section.

5. Numerical results

In this section, we study the parallel performance and scalabil-
ity of the parallel adaptive mesh refinement method and variable-
viscosity Stokes solver described in the previous sections. All of our
tests are performed on Ranger, the 504 teraflops, 62,976-core Sun/
AMD parallel supercomputer at the Texas Advanced Computing
Center (TACC). Each compute core of Ranger has a 2.0 GHz clock
rate and 2 GB of memory.

In our tests, we assess isogranular (or weak) scalability, i.e., we
simultaneously increase the problem size and the number of cores
while keeping the problem size per core constant. Since the prob-
lem size grows as the core count increases, isogranular scaling
stresses not only the parallel implementation but also the algorith-
mic scalability. For a Krylov solver, optimal algorithmic scalability
requires that the work per Krylov iteration, as well as the number
of iterations, remains constant as the problem size increases. This
property is of course predicated on effective and cheap-to-apply
preconditioners.

Two geophysical test problems are used in this section to study
isogranular and algorithmic scalability. The first is motivated by
simulation of convection within Earth’s mantle. We study the par-
allel performance and scaling of the adaptive Stokes solver and its
dependence on the viscosity variation. Moreover, we show that the
overhead due to parallel mesh refinement is negligible. The second
test problem is a benchmark Stokes flow problem relevant to mag-
ma dynamics. Here the Stokes flow field is driven by velocity
boundary conditions that represent diverging tectonic plates. The
solver is nested within the adaptive refinement loop described in
Section 2.3. Adaptive refinement is controlled by several different
a posteriori error indicators, including the adjoint estimators devel-
oped in Section 2.2. Since a semi-analytical spectral solution for
this benchmark is available, we are also able to study convergence
of finite element approximations of a quantity of interest func-
tional as a function of the number of degrees of freedom and the
overall run time of the code.

Before presenting the examples, we summarize the settings
used in our numerical tests. Unless otherwise specified, the MIN-
RES iteration is terminated when the residual drops by a factor
of 106 relative to the initial residual. Note that the residual occur-
ring naturally in the preconditioned MINRES algorithm is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂>eP�1r̂

p
rather than the equation residual kr̂k ¼

ffiffiffiffiffiffiffi
r̂>r̂
p

. Table 1 summarizes
the settings used in BoomerAMG. The complexity of the grid hierar-
chy is controlled by the choice of the basic coarsening algorithm
and the parameters for truncation and interpolation. For a detailed
description of how these settings influence the AMG setup phase

C. Burstedde et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1691–1700 1697
and the residual reduction rate of the AMG solver we refer to
[10,13].

5.1. Example 1: mantle convection

Mantle convection is the principal driving mechanism for the
thermal and geological evolution of the Earth’s surface. The
dynamics of mantle convection are governed by equations for the
balance of mass, linear momentum, and energy, e.g., [32]. A simpli-
fied model is given by a time-dependent advection–diffusion equa-
tion for temperature, coupled with a stationary Stokes equation
with temperature-dependent, and hence spatially-variable, viscos-
ity. Using an operator splitting approach, the Stokes problem is
solved at each time step, given the temperature field. This yields
an updated velocity field for the advection–diffusion equation.
Typically, the Stokes problems are characterized by viscosities that
vary by 103 to 107 orders of magnitude. Moreover, to resolve the
wide range of spatial scales frequently encountered, adaptively re-
fined meshes are often required.

In this section, we study the Stokes solver for a model problem
of rising thermal blob (see Fig. 3, left). The domain is X ¼ ½0;1�3 and
we use free-slip boundary conditions, i.e., zero normal velocity and
zero tangential traction. The right hand side f and the viscosity l
depend on the temperature field Tðx; y; zÞ :¼ expð�bððx� 0:5Þ2þ
ðy� 0:5Þ2 þ ðz� 0:2Þ2ÞÞ as

f ¼ ð0; 0;106 TÞ; l ¼ expð�aTÞ: ð14Þ

The constants a;b P 0 above are used to control the viscosity vari-
ation. With the exception of the cases reported in Table 4, we use
a ¼ 7:5 and b ¼ 200, which results in a viscosity contrast of approx-
imately 5� 103.

Table 2 shows the time needed for the Stokes solver and all AMR
components as the problem size and number of cores are scaled in
isogranular fashion. Each case is initialized on a uniform mesh with
32.7 K elements per core. We perform three mesh refinement
Fig. 3. Left: thermal blob and streamlines for Ex

Table 2
Timings (in seconds) for adaptive solution of Example 1 (mantle convection) problem for i
32.7 K elements per core. The mesh undergoes three refinements, beginning from a unifor
refined based on the global a posteriori error indicator. The table gives the total time taken
time taken for the complete AMR process, i.e. for error estimation, marking and refining elem
of the solution fields to the new mesh, and repartitioning of the octree. The last column sho
which is less than 3% in all cases.

Cores Solver time Error estimate Mark & refine Extract mesh

1 345.6 1.78 0.08 2.05
8 374.8 2.29 0.22 3.38
64 497.6 2.66 0.36 6.21
512 696.5 2.89 0.84 9.64
4096 1095.8 3.04 1.41 10.44
cycles, as follows. At each cycle, the Stokes problem is solved and
a global error estimator is used to refine the 7% of elements with
the largest error. After refining the mesh, the coarser mesh solution
is interpolated onto the refined mesh, and used as an initial guess
for the MINRES iterative solver on the refined mesh. After three
refinements, this results in a mesh with approximately 110 K ele-
ments per core. On this final mesh, which contains four sizes of ele-
ments, a final Stokes solve is performed. Table 2 shows that for a
range from 1 to 4096 cores, all AMR components (including error
estimation, marking/refinement, mesh extraction, 2:1 balance con-
dition enforcement, interpolation and solution transfer, and repar-
titioning of the mesh) consume less than 3% of the overall solve
time. The most costly AMR components are the mesh extraction
algorithm, in which the finite element mesh is constructed from
the octree, and the repartitioning of the mesh among the cores,
which is needed for load-balancing. Nevertheless, despite the large
communication volumes required by these components, they re-
quire negligible time relative to the solver. Of course, one could al-
ways make the AMR components look good by employing a poor
solver. The next two tables demonstrate that this is not the case:
the solver has nearly-ideal algorithmic scaling and insensitivity
to viscosity variation.

To analyze the isogranular scalability of the solver, Table 3 pro-
vides a breakdown of the timings for the Stokes solve on the final
(i.e., the three-times-refined) mesh. To make the results indepen-
dent of the solutions on the coarser meshes, for this test we initial-
ize the MINRES iteration with a zero solution. The table reports the
number of MINRES iterations as well as the time needed for the
AMG setup, MINRES solve excluding the preconditioner (which is
dominated by a matrix–vector product), and V-cycle precondition-
er. The number of MINRES iterations is seen to be almost insensi-
tive to a 4096-fold increase in number of degrees of freedom.
The AMG setup time is the time used by BoomerAMG to construct
the coarse grid hierarchy and the interpolation operators. Due to
the decoupling of the velocity components in the preconditioner,
ample 1. Right: velocity field for Example 2.

sogranular (weak) scaling. Problem size increases with number of cores, maintaining
m coarse mesh. At each refinement step, the Stokes system is solved and the mesh is

by the Stokes solver and by the different AMR components. Columns 3–8 report the
ents, extracting the new mesh, 2:1-balancing of the octree, interpolation and transfer

ws the percentage of overall time spent in AMR components relative to the solve time,

Balance tree Interp. & transfer Partition tree AMR time
solve time (%)

0.12 0.13 0.00 1.2
0.27 0.16 1.77 2.2
1.00 0.22 2.51 2.6
2.05 0.43 3.26 2.8
2.39 0.64 10.92 2.6

Table 3
Isogranular (weak) scaling of the solver for Example 1 with varying viscosity l on the triply-adapted mesh. The number of cores, number of degrees of freedom, number of
MINRES iterations, AMG setup time, MINRES iteration time excluding multigrid V-cycle, and V-cycle preconditioner time are shown in the table. Also shown are the algorithmic
parallel efficiency gA based on the number of MINRES iterations (gA ¼ 1:00 implies number of iterations remain constant with increasing problem size), the implementation
parallel efficiency gI of one MINRES iteration excluding the V-cycle (gI ¼ 1:00 means MINRES runtime is independent of problem size), the parallel efficiency of the V-cycle
preconditioner gV (1.00 means V-cycle runtime is independent of problem size), and the overall parallel efficiency g (gV ¼ 1:00 means the end-to-end execution time, including
the setup phase, is independent of the problem size).

Cores # Dofs MINRES # iterations AMG setup (s) MINRES matvec (s) AMG V-cycle (s) gA gI gV g

1 403K 63 8.2 174.8 49.9 1.00 1.00 1.00 1.00
8 3.3M 66 14.8 215.2 78.1 0.95 0.85 0.67 0.76
64 26.8M 75 20.6 240.2 143.9 0.84 0.87 0.41 0.58
512 216M 90 28.4 295.4 222.2 0.70 0.85 0.32 0.43
4096 1.7B 106 50.2 349.5 378.2 0.59 0.84 0.22 0.34

1698 C. Burstedde et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1691–1700
the AMG setup phase is carried out for three different scalar sys-
tems. Table 3 shows the parallel efficiencies for these different
components as well as the overall parallel efficiency. The AMG set-
up and V-cycle preconditioner times grow faster than the times for
the other parts of the solver, which scale almost optimally. This is
due to the extensive communication needed in the setup phase
and the coarse grid solve within the V-cycle preconditioner. For
more discussion of these well-known bottlenecks of parallel AMG
implementations, we refer to [16,13]. Ultimately, however, an
overall parallel efficiency of 34% in scaling from 1 to 4096 cores
should be regarded as excellent performance for implicit solution
of a highly variable coefficient saddle point problem.

Finally, we study the dependence of the solver on the magni-
tude of viscosity variation. As before, we consider the Stokes solve
on the final mesh, which has undergone three cycles of refinement.
Changing the parameters a and b in (14) leads to different con-
trasts in the viscosity. Table 4 shows the resulting minimum and
maximum values of the viscosity throughout the mesh and the
maximum viscosity gradient. The table reports the number of MIN-
RES iterations needed for solution of a problem with 216 M degrees
of freedom on 512 cores, the AMG setup time, and the average sol-
ver time per MINRES iteration. The number of MINRES iterations
Table 4
Performance of Stokes solver for varying viscosity given by (14) for a and b as given in the
examine only the final Stokes solve (which is initialized with a zero solution). The table
viscosity gradient norm krlkmax, the number of MINRES iterations, the AMG setup time, an
of freedom and is solved on 512 cores.

a b lmin lmax krlkmax # MIN

0 – 1.00e–0 1.00 0.00e+0 86
3 200 4.98e–2 1.00 2.05e+1 80
7.5 20 5.53e–4 1.00 8.33e+0 75
7.5 200 5.53e–4 1.00 2.63e+1 90
7.5 2000 5.53e–4 1.00 8.28e+1 91
12 200 6.14e–6 1.00 2.89e+1 95
15 200 3.06e–7 1.00 3.14e+1 93

a b

Fig. 4. (a) Geometry of plates driving the ridge-transform-ridge bench
remains essentially constant, independent of the range of viscosity
variation. Moreover, the AMG setup time, which takes into account
viscosity when building the coarse grid hierarchy, takes approxi-
mately the same amount of time in all cases.

5.2. Example 2: benchmark for melt migration

The second example is a benchmark problem from magma
dynamics. Magma dynamics can be modeled by a coupling of
Darcy’s law for porous flow of melt within a viscously deforming
solid date represented by Stokes flow [21]. The pressure gradient
from the Stokes equation affects the melt flow (see e.g. [24]), so
for this problem it is critical to compute an accurate approximation
of the pressure with the Stokes solver. We solve the benchmark
Stokes flow problem proposed in [23], which models flow of the
mantle driven by a mid-ocean ridge-transform-ridge spreading
center. Fig. 4a illustrates the geometry of the driving plates, while
the right image in Fig. 3 gives the velocity field. Large pressures are
expected at the ridge, which will drive adaptivity. A semi-analyti-
cal spectral solution of the benchmark problem [29] is used as a
reference solution to calculate the error in the finite element
approximations.
table. As in Table 3 we use a mesh that has undergone three cycles of refinement, and
reports the minimum and maximum viscosity values (lmin and lmax), the maximum

d the average time per MINRES iteration. Each case has approximately 216M degrees

RES iterations AMG setup time (s) Solve time per iteration (s)

25.29 5.82
28.02 5.80
25.26 5.62
28.44 5.75
26.97 5.35
28.42 5.70
31.35 6.46

mark problem. (b) The region X1 used in the quantity of interest.

Fig. 5. Adaptively refined meshes for Example 2 using divergence error indicator (left), global error indicator (middle), and adjoint error indicator (right). The divergence
indicator does not refine in the shearing zone, while the adjoint error indicator places elements mainly in or near the region of interest. The surface color indicates the
pressure field.

C. Burstedde et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1691–1700 1699
For the results given in this section, we assume a constant
viscosity l ¼ 1 and use the non-dimensionalized domain X ¼
½�6;6� � ½0;12� � ½0;6�, where the z-axis is directed downward as
seen in Fig. 4a. The boundary conditions on the top of the domain
(i.e., where z ¼ 0) are given by

u1ðx; y;0Þ ¼ erf
xþ 1:5

k0

� 	
þ erf

x� 1:5
k0

� 	
� 1

2
erf

xþ 1:5
k0

� 	
� erf

y� 6
k0
þ 1

� 	
;

u2ðx; y;0Þ ¼ 0;
u3ðx; y;0Þ ¼ 0;

ð15Þ

where k0 controls the smoothness of the velocity transformation at
the ridge. A smaller k0 gives rise to a steeper pressure gradient near
the ridge.

As quantity of interest we consider an integral of the pressure
over the rectangular region X1 ¼ ½0:75;2:25� � ½5:25;6:75��
½0;0:75�, which is placed around one of the central singularities
of the ridge; see Fig. 4b. We conduct a medium-scale and a
large-scale test, in which we compare uniform refinement with
several adaptive refinement strategies. In the adaptive cases, we
mark those elements for refinement whose error indicator is larger
than the mean error indicator plus 1/2 of its standard deviation.
Fig. 6. Comparisons between refinement strategies for Example 2 (melt migration
problem) with smoothing parameter k0 ¼ 0:04 in (15), i.e. the medium-scale
problem. The error in the quantity of interest is computed using the semi-analytical
solution. A uniform mesh solution is compared with adaptive refinement strategies
based on global, divergence, and goal-oriented a posteriori error indicators. The left
image plots the error in the quantity of interest against the degrees of freedom.
Note that since the quantity of interest J1 is the mean pressure in X1 and not a
global norm, one cannot expect monotonicity of the error. The right image plots the
error versus the total run time. For the uniform mesh cases, the run time is based on
solution of a single mesh problem, initializing the MINRES solver with the zero
solution guess. For the runs on adaptive meshes the run time includes error
estimation, mesh adaptation, and the solves on all coarser meshes. Moreover, for
the goal-oriented error indicator, the run time also includes the solves of adjoint
problems on (by a factor of 8) finer meshes. The problems are solved on different
numbers of cores (8 for all adaptive runs and 1, 4, 32, and 256 cores for the uniform
runs). To compensate for this difference, we report the total cpu time, i.e., the total
wall clock time multiplied by the number of cores.
For the medium-scale problem, which uses the ridge smoothing
parameter k0 ¼ 0:04, we are able to compute the semi-analytical
solution in reasonable time, and thus use velocity boundary condi-
tions on all faces with values given by this solution. This solution is
also used to compute the error in the quantity of interest. In Fig. 5,
we show adapted meshes after three cycles of refinement, using
different error indicators. The results are summarized in Fig. 6,
where we plot not only the error versus the degrees of freedom,
but also versus overall run time. The run time includes the solve
time on all coarser grids as well as the mesh adaptation time. To
account for the very different sizes of the problems, they are solved
on different numbers of cores. This is why we report a ‘‘total cpu
time” in the figure, which is the wall clock time multiplied by
the number of cores.

The results for the large-scale problem are reported in Fig. 7.
Here we choose k0 ¼ 10�5 in (15), which is why this problem re-
quires much higher resolution around the ridge. We can no longer
compute a semi-analytical solution in reasonable time, and there-
fore we use (15) as a boundary condition only on the top surface,
while employing zero traction conditions on all other boundaries.
Moreover, the exact value of the quantity of interest is estimated
by extrapolating the results obtained on uniform meshes.

The results in Figs. 6 and 7 show that adaptive solutions require
orders of magnitude fewer degrees of freedoms for the same accu-
racy than uniform mesh solutions. Even though the timings for the
adaptive mesh cases take into account all overheads including the
solves on all coarser meshes, we observe an improvement in the
total cpu time. Note also that the adaptive cases require less mem-
ory, which makes it possible to run them on fewer cores. The goal
oriented error indicator results in the fewest degrees of freedom.
However, this indicator requires solution of an adjoint problem
at each iteration, which adds to the overall run time, as can be seen
in the right plots in Figs. 6 and 7. The adjoint solve could be accel-
Fig. 7. Same as Fig. 6 but with k0 ¼ 10�5. Since the smoothing parameter k0 is too
small to compute an accurate semi-analytical solution in reasonable time, the exact
value for the quantity of interest is estimated by extrapolating the results of the
uniform mesh solutions. Since the problems are solved on different numbers of
cores (128 cores for all adaptive case, and 16, 128, 1024, and 8192 cores for the
uniform cases), we again report the total cpu time.

1700 C. Burstedde et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1691–1700
erated significantly by not solving the adjoint problem on a finer
mesh (requiring 8 times more elements), but on the same mesh
as the primal Stokes problem and then using solution reconstruc-
tion techniques.

Acknowledgements

This work was partially supported by NSF (Grants OCI-0749334,
DMS-0724746, CNS-0619838, CCF-0427985), DOE SC’s SciDAC pro-
gram (Grant DE-FC02-06ER25782), DOE NNSA’s PSAAP program
(cooperative agreement DE-FC52-08NA28615), and AFOSR’s Com-
putational Math program (Grant FA9550-07-1-0480). We acknowl-
edge many helpful discussions with the hypre developers and with
George Biros and Serge Prudhomme. We thank TACC for their out-
standing support, in particular Bill Barth, Karl Schulz, and Victor
Eijkhout. We also thank Marc Spiegelman for referring us to the
benchmark example used in Section 5.2. Finally, we dedicate this
paper to Professor J. Tinsley Oden, who provided inspiration and
encouragement of this work, on the occasion of his 70th birthday.

References

[1] M. Ainsworth, J.T. Oden, A Posteriori Error Estimation in Finite Element
Analysis, Pure and Applied Mathematics (New York), John Wiley & Sons, New
York, 2000.

[2] S. Aluru, F.E. Sevilgen, Parallel domain decomposition and load balancing using
space-filling curves, in: Proceedings of the Fourth IEEE Conference on High
Performance Computing, 1997, pp. 230–235.

[3] I. Babuška, W. Rheinboldt, A posteriori error estimates for the finite element
method, Int. J. Numer. Method Engrg. 12 (1978) 1597–1615.

[4] W. Bangerth, R. Hartmann, G. Kanschat, deal.II – a general-purpose object-
oriented finite element library, ACM Trans. Math. Software 33 (2007).

[5] R. Becker, R. Rannacher, An optimal control approach to a posteriori error
estimation in finite element methods, Acta Numer. 10 (2001) 1–102.

[6] P. Bochev, C. Dohrmann, M. Gunzburger, Stabilization of low-order mixed
finite elements for the Stokes equations, SIAM J. Numer. Anal. 44 (2006) 82–
101.

[7] W.L. Briggs, V.E. Henson, S. McCormick, A Multigrid Tutorial, second ed., SIAM,
2000.

[8] C. Burstedde, O. Ghattas, M. Gurnis, G. Stadler, E. Tan, T. Tu, L.C. Wilcox, S.
Zhong, Scalable adaptive mantle convection simulation on petascale
supercomputers, in: Proceedings of ACM/IEEE SC08, 2008.

[9] A. Caglar, M. Griebel, M.A. Schweitzer, G. Zumbusch, Dynamic load-balancing
of hierarchical tree algorithms on a cluster of multiprocessor PCs and on the
Cray T3E, in: H.W. Meuer (Ed.), Proceedings 14th Supercomputer Conference,
Mannheim, Mateo, 1999.

[10] Center for Applied Scientific Computing, LLNL, Hypre. High performance
preconditioners, User Manual, 2007. <https://computation.llnl.gov/casc/
linear_solvers/>.
[11] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz, A. Zdunek,
Computing with hp Finite Elements II. Frontiers: Three-Dimensional
Elliptic and Maxwell Problems with Applications, CRC Press, Taylor and
Francis, 2007.

[12] J.M. Dennis, Partitioning with space-filling curves on the cubed-sphere, in:
IPDPS’03: Proceedings of the 17th International Symposium on Parallel and
Distributed Processing, Washington, DC, USA, 2003, IEEE Computer Society, p.
269.1.

[13] H. De Sterck, U.M. Yang, J.J. Heys, Reducing complexity in parallel algebraic
multigrid preconditioners, SIAM J. Matrix Anal. Appl. 27 (2006) 1019–1039.

[14] C. Dohrmann, P. Bochev, A stabilized finite element method for the Stokes
problem based on polynomial pressure projections, Int. J. Numer. Methods
Fluids 46 (2004) 183–201.

[15] H.C. Elman, D.J. Silvester, A.J. Wathen, Finite Elements and Fast Iterative
Solvers with Applications in Incompressible Fluid Dynamics, Oxford University
Press, Oxford, 2005.

[16] R.D. Falgout, An introduction to algebraic multigrid, Comput. Sci. Engrg. 8
(2006) 24–33.

[17] T.J.R. Hughes, The Finite Element Method, Dover, New York, 2000.
[18] K. Hutter, Theoretical Glaciology, Mathematical Approaches to Geophysics, D.

Reidel Publishing Company, Dordrecht, Holland, 1983.
[19] B. Kirk, J.W. Peterson, R.H. Stogner, G.F. Carey, libMesh: A C++ library for

parallel adaptive mesh refinement/coarsening simulations, Engrg. Comput. 22
(2006) 237–254.

[20] A. Laszloffy, J. Long, A.K. Patra, Simple data management, scheduling and
solution strategies for managing the irregularities in parallel adaptive hp finite
element simulations, Parallel Comput. 26 (2000) 1765–1788.

[21] D. McKenzie, The generation and compaction of partially molten rock, J. Petrol.
25 (1984) 713–765.

[22] L.N. Moresi, S. Zhong, M. Gurnis, The accuracy of finite element solutions of
Stokes’ flow with strongly varying viscosity, Phys. Earth Planet. Interiors 97
(1996) 83–94.

[23] J.P. Morgan, D.W. Forsyth, Three-dimensional flow and temperature
perturbations due to a transform offset: effects on oceanic crustal and upper
mantle structure, J. Geophys. Res. 93 (1988) 2955–2966.

[24] J.P. Morgan, Melt migration beneath mid-ocean spreading centers, Geophys.
Res. Lett. 14 (1987) 1238–1241.

[25] J.T. Oden, S. Prudhomme, Goal-oriented error estimation and adaptively for the
finite element method, Comput. Method Appl. Mech. Engrg. 41 (2001) 735–
756.

[26] M.A. Olshanskii, J. Peters, A. Reusken, Uniform preconditioners for a parameter
dependent saddle point problem with application to generalized stokes
interface equations, Numer. Math. 105 (2006) 159–191.

[27] M.A. Olshanskii, A. Reusken, Analysis of a stokes interface problem, Numer.
Math. 103 (2006) 129–149.

[28] C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear
equations, SIAM J. Numer. Anal. 12 (1975) 617–629.

[29] M. Spiegelman, SpecRidge: a spectral ridge benchmark for pressure–velocity
Stokes solvers, 2007. <http://geodynamics.org/hg/magma/3D/SpecRidge>.

[30] H. Sundar, R.S. Sampath, G. Biros, Bottom-up construction and 2:1 balance
refinement of linear octrees in parallel, SIAM J. Sci. Comput. 30 (2008) 2675–
2708.

[31] T. Tu, D.R. O’Hallaron, O. Ghattas, Scalable parallel octree meshing for terascale
applications, in: Proceedings of ACM/IEEE SC05, 2005.

[32] S. Zhong, D.A. Yuen, L.N. Moresi, Numerical Methods in Mantle Convection,
Treatise on Geophysics, Elsevier, 2007. pp. 227–252, (Chapter 7).

http://https://computation.llnl.gov/casc/linear_solvers/
http://https://computation.llnl.gov/casc/linear_solvers/
http://geodynamics.org/hg/magma/3D/SpecRidge

	Parallel scalable adjoint-based adaptive solution of variable-viscosity Stokes flow problems
	Introduction
	Stokes discretization and error estimates
	Discretization and stabilization
	A posteriori error estimation
	Mesh adaptation based on a posteriori error indicators

	Parallel octree-based mesh adaptation and load-balancing
	Octrees and space-filling curves
	Mesh generation and adaptation
	AMR functions

	Numerical solution of the discrete stokes system
	Iterative solution by Krylov method
	Choice of preconditioner
	Implementation of the preconditioner by algebraic multigrid (AMG)

	Numerical results
	Example 1: mantle convection
	Example 2: benchmark for melt migration

	Acknowledgements
	References

