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We present a framework for parallel adaptive solution of variable-viscosity Stokes flow problems. We
focus on data structures, algorithms, and solvers that can scale to thousands of processor cores. The prob-
lem is discretized by octree-based finite elements with explicit enforcement of continuity constraints at
hanging nodes. The parallel octree structure allows for fast neighbor-finding and facilitates local coarsen-
ing and refinement of the mesh. Mesh adaptivity is driven by a posteriori error indicators, including
adjoint-based goal-oriented techniques. Dynamic load-balancing is achieved by dynamically partitioning
a Morton-ordered space-filling curve. The Stokes system is solved iteratively using the minimum residual
method (MINRES), preconditioned by a Schur-complement-based approximate inverse that employs
algebraic multigrid V-cycle approximations of the inverses of the Poisson-like operators. We demonstrate
the effectiveness of this framework on several testbed problems with up to 6 orders of magnitude vari-
ation in viscosity and up to 1.7 billion unknowns, on up to 4096 cores. The results indicate that the over-
head due to all AMR components is less than 3% of the overall solve time, the solver exhibits very good
algorithmic and parallel implementation scalability, the solver is insensitive to the magnitude of viscosity
variation, and adjoint-based adaptivity results in over two orders of magnitude reduction in number of
unknowns and up to an order of magnitude improvement in runtime relative to a uniform mesh, for

the same level of error.

Published by Elsevier B.V.

1. Introduction

Variable-viscosity Stokes equations play an important role in
models of creeping flows arising in several geophysical areas,
including magma migration [21], mantle convection [22,32], and
ice sheet dynamics [18]. In many cases, the presence of local
fine-scale features requires adaptive mesh refinement/coarsening
(AMR) to make the Stokes flow models tractable. Furthermore,
even with the use of AMR, problem sizes are often so large that
solution on multi-thousand processor supercomputers is neces-
sary, which typically presents difficulty for AMR algorithms. More-
over, viscosities can vary by several orders of magnitude, posing
challenges for popular scalable solvers.

Here, we present a framework for parallel adaptive finite ele-
ment solution of variable-viscosity Stokes equations that scales
to thousands of processor cores. The framework combines ALps,
our library for parallel octree-based AMR with a multigrid-precon-
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ditioned Krylov method for the solution of variable-viscosity
Stokes systems. At each cycle, the Stokes equations are solved on
the current mesh, and a posteriori error estimates are used to mark
elements for refinement. After refinement, the solution on the old
mesh is interpolated to the new mesh and used as initialization for
the next Stokes solve.

Our goal is to achieve scalability and performance for the entire
adaptive process. This requires efficient mathematical methods
and careful design and implementation of algorithms. First, effi-
cient and scalable algorithms for error estimation, local refine-
ment, and repartitioning of meshes are needed. Ideally, the time
needed for AMR components should remain small compared to
solver time, so that the gains accrued from having fewer degrees
of freedom are not offset by inefficiencies of the algorithms for
adaptivity. Second, the numerical components of the discretization
and solver must be constructed carefully so that we achieve opti-
mal (or nearly optimal) algorithmic scalability. This results when
the number of iterations of the solver remains nearly constant as
the mesh is refined or the viscosity variation increases. Third,
algorithms for the discretization, Stokes solver, and AMR
components must be implemented with careful attention to
parallel scalability.
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In this paper, we describe the design and construction of paral-
lel algorithms for discretization, iterative solution, and adaptivity
that are aimed at achieving high performance as well as algorith-
mic and parallel scalability. While here we discretize the Stokes
equations using pressure-stabilized trilinear finite elements, our
framework naturally accommodates higher-order finite elements.
Mesh adaptation is driven by a posteriori error indicators
[1,3,5,11,25], targeting either the global discretization error or cer-
tain quantities of interest. We use algebraic constraints on hanging
nodes to impose continuity of the solution field across coarse-to-
fine element transitions. This results in a conforming approxima-
tion, allowing the use of standard finite element ideas. The finite
element discretization, stabilization, and adjoint-based goal-ori-
ented error estimates we use are presented in Section 2. Our
AMR library atps uses parallel octree-based hexahedral finite ele-
ment meshes and dynamic load-balancing based on space-filling
curves, and is described in Section 3. We use the iterative Krylov
solver MINRES (minimum residual method) for the solution of
the discrete Stokes saddle point problem. Preconditioning is car-
ried out by approximate block factorization and algebraic multi-
grid V-cycle approximation (using BoomerAMG from the hypre
[10] package) of the inverse of viscous and pressure Schur comple-
ment operators. The solver and preconditioner are described in
Section 4. Finally, Section 5 presents the results of a number of
tests involving two geophysical problems, one from mantle con-
vection and another from magma migration. These tests are de-
signed to assess the performance and scalability of the AMR and
solver algorithms presented in this paper. These include tests of
the overhead imposed by the AMR components, the algorithmic
and parallel scalability of the solver, the sensitivity of the solver
to the magnitude of viscosity variation, and the overall efficiency
of the adaptive Stokes solver.

2. Stokes discretization and error estimates

We consider the stationary incompressible Stokes equations
with variable-viscosity u(-) > ¢, >0in Q c R*:

- V- (u(Vu+vu")) +Vp=f, (1a)
V-u=0, (1b)

where u = (u;,u,,us3) denotes the velocity vector, p the pres-
sure, and f a given vector body force. Moreover, we assume
Dirichlet (i.e. zero-slip) boundary conditions on (# I' C 0Q
and homogeneous Neumann (i.e., traction-free) conditions else-
where, i.e.,

u=up onl, (1c)
(W(Vu+VuT)—pln=0 ondQ\TI. (1d)

Note that the viscous term in (1a) is often replaced by the vector
Laplacian, having the computational advantage that the velocity
components are coupled only through the incompressibility condi-
tion (1b). While the two formulations are equivalent only for con-
stant viscosity, in Section 4 we will employ the vector Laplacian
as a preconditioner for the viscous term.

In this section, we describe a stabilized finite element discreti-
zation and derive a posteriori error estimates for (1). Then we de-
scribe how we use these estimates to iteratively adapt finite
element meshes.

2.1. Discretization and stabilization
We begin by stating (1) in a mixed variational form. For

u,veV:=(H'(Q) and p,q € W := [*(Q) we introduce the bilin-
ear forms A(-,-) : VxV — R and B(,-) : V. x W — R defined by

Au,v) = /Q L (Vu+ vuT): (Vv 4 9T ax,

B(u,p) := /{;(V -u)pdx.

Defining the bilinear form Q and the linear form F
Qw.pl.[v.q) = A®.¥) + BV.p) + Bluw), F(v) = [ f-vx

the mixed variational formulation of the Stokes equation becomes:
FindueV,, :={ueV:u=ugon I'} and p € W such that

Q([w,p],[v,q)) =F(v) forall (v,q) € Vo x W, (2)

where Vo := {ueV:u=0on I'}. It is well known that a solution
to (2) exists and that it is unique if I'#0Q, whereas it is unique only
up to a constant for p if I' = 0Q [15]. In the latter case uniqueness
can be enforced by restricting the pressure space to p,q € Wy :=
{uew: [,udx =0}

We discretize the variational form (2) using the finite element
method with a hexahedral mesh and Q;-Q; elements, i.e., trilinear
elements for both velocity and pressure. To be precise, we partition
Q = Jge. ,£° and define the finite element spaces

V= {ueCo(Q):ulg €Q, forall @}, V"= (V"7

where Q, denotes the space of trilinear (i.e., linear in each variable)
element functions. The corresponding spaces that incorporate
Dirichlet boundary conditions are

V, ={ueV':u=wonrl} and Vy:={ueV':u=0o0nT}

It is well known that this equal-order discretization does not satisfy
the inf-sup (or Babuska-Brezzi) condition for stability of numerical
methods for saddle point problems [15]. As a remedy, we employ
the polynomial pressure stabilization from [14] (see also [6,15]).
Here, one adds L? pressure projections on the element level to the
mixed variational equation. Define for p,q € W the mesh-depen-
dent bilinear form

1

C(p,q) :== / —

P.a):= |

where IT: W — P, denotes the [? projection from W onto the space

Py of element-wise constant functions. This term is added to the left
hand side of (2), resulting in the modified bilinear form

(p — p)(q — Iq) dx, (3)

Q" ([u", p"; [v". ") = Q([u", p"; [v". ¢"]) + C(p". g"). (4)

for u vh € V" and ph, q" € V". Thus, the discrete stabilized Stokes
problem becomes: Find (u",p") € Vi, x V" such that

Q"([u",p"),[v",q"]) = F(v") for all (v",q") € Vg x V", 5)

The implementation of the stabilization (3) corresponds to a simple
modification of the element mass matrix. This modification guaran-
tees that constants are in the null space of C while penalizing the
spurious modes in p. The method achieves optimal accuracy with
respect to the solution regularity, i.e., linear convergence for the
velocity in the H'-norm and for the pressure in the [*-norm; for
proofs see [6,15]. Other appealing features of this stabilization are
that it does not require the specification of a stabilization parame-
ter, it leads to symmetric systems, and it is completely local to the
element. The latter property is especially attractive for parallel
implementations, since no communication is necessary (unlike
macroelement-based stabilization [15]). Section 3 provides more
details on our parallel implementation, in particular in the context
of adaptive mesh refinement.
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2.2. A posteriori error estimation

A posteriori error estimates can be used to manage the numeri-
cal error in finite element approximation by adaptively refining
and coarsening finite element meshes. Often, one is not interested
in minimizing error in a global norm, since this might not provide
efficient control of the error in the quantities of interest. Adaptive
methods based on goal-oriented error estimation reduce the error
in these quantities of interest, often making them superior to adap-
tation based on global error indicators [1,5]. Generally, goal-ori-
ented error estimation requires the solution of adjoint PDEs.

Below we derive a goal-oriented error indicator for the pres-
sure-stabilized Stokes equation. At the end of the section we also
give two simpler error indicators, the residual error indicator,
which is based on the complete residual of the Stokes equation,
and the divergence error indicator, which is based on the residual
in the mass continuity equation only.

Note that the stabilization (3) leads to a non-standard Galerkin
method, since in the discrete problem a term is added to the con-
tinuous bilinear form A(-, -). Thus, Galerkin orthogonality for the er-
rors (ey,e,) := (u—u", p — p") no longer holds, i.e.,

Q([eu7€p], [vh7qh]) = C(phﬂqh) for (vh7qh) € Vh X th (6)

which in general is nonzero. This slightly complicates the usual pro-
cedure for goal-oriented a posteriori error estimates. Hence, we
briefly sketch the derivation of the error estimates below.

For simplicity, we assume the quantity of interest J(u,p) is lin-
ear in velocity and pressure. To obtain weights for the residuals
that drive the refinement, the following adjoint problem is defined:
Find (z,y) € Vo x W such that

Q([v,ql; [2,y]) =J(v,q) for all (v,q) € Vo x W. (7)

Denoting again (e,,e,) = (u —u" p — p"), we wish to minimize the
error in the quantity of interest |J(u, p) — J(u" p")| = [J(ey, ep)|. Using
(6) and the adjoint problem (7), we obtain for arbitrary
(Z"y") e V' x V"

J(ey,ey) = Q([eu &), [, Y]) (8a)
= Q(lew &), [z~ 2"y —y")) + C(p",y"). (8b)

In what follows, (z", y") are chosen as approximations of (z,y) in the
finite element spaces Vg and V". The error in the quantity of interest
is further split such that

J(eu,ep) = Q([u,pl. [z — 2"y — y")) — Q([u", p"), [z — 2",y — y"))
+C(p"y")
=F(z-12"y-y") —A@u" z—-2z"s-B@z-2z"p")

—B(u",y —y") + C(p",y").

Element-wise integration by parts for the second and third term
yields

Jewe) =" {/ (f+V- 'M(Vuh+(Vu”)T)7Vp")(z—zh)dx

Qe
+/ V-uh)(y-yhHdx
Q°

+/ Swvu' + (Vuh)') - phl>n~(z—zh)dx

+/Qe Hy)dx}
Z{/Rl ,pzzdx+/R2 (y —y"dx

Qe

+ [ Ratuhptiz-2ax [ Ry -y ax

JoQe

with

R (W', p") e =4 V- g(Vu“ +(vu)T) - vph,

Rz(uh)‘ge =V u",
Rs(w')egr =5 [[ (& (Vu + (Vo)) )],
Ra(p") = % (p" —p").

Here, [ -] denotes the jump across faces of element boundaries.
Note that the residuals Ry, R;, R4 can be calculated for each element
from its nodal values only, while R; requires information from the
element’s face neighbors. The above expressions provide an esti-
mate of the error in the quantity of interest in terms of the element
error indicators #¢,

4
Uew €p)l < > n', withn® =" pfos, 9
Qe i=1
where
p5 = [Ri(u",p )Hm = z— 2",
p5 = ||R2(uh)||qe =y —thsz%
= |1z = 2" oge

p5 = |Rs(u", p" )Haqﬂ
P5 = |Ra(p )HQE wg = [y" - Hyh“gze-

The additional term p4wg stems from the absence of Galerkin
orthogonality for the discretization errors (see (6)). Note that in
computing the traction jump term Rj3(u” p"), the pressure p" can
be neglected since it is continuous across element faces.

Given a finite element solution (u”, p"), the residuals p¢ can be
computed according to the expressions above. However, the
weights wf involve the continuous adjoint solution (z,y) and thus
their evaluation requires sufficiently accurate approximate solu-
tion of the adjoint problem. Using the same discretization and
mesh as used in the primal problem fails, since this leads to zero
weighs w¢. Hence, one needs to employ global or local higher-order
approximations: global approximations are based on solutions on a
finer mesh or higher-order finite elements; local higher-order
approximation can be obtained, for instance, by patch-wise high-
er-order interpolation. In our numerical tests, we simply solve
the adjoint problem on a mesh obtained by one global refinement
of the primal mesh.

Cheaper-to-compute error indicators attempt to decrease global
norms of the error and do not require the solution of an adjoint
equation, but are usually less effective for quantities of interest
than goal-oriented techniques. These indicators can be recovered
from (9) by choosing appropriate weights: If all wf (i=1,...,4)
in (9) are chosen equal to 1, the residual error indicator is obtained.
Similarly, for the divergence error indicator one sets w§ = w§ =
4 =0 and w§ =1 for all elements Q° € ..

2.3. Mesh adaptation based on a posteriori error indicators

Element-wise a posteriori error indicators can be used to succes-
sively adapt finite element meshes to more effectively resolve
physical phenomena of varying spatial scales. A typical nested-iter-
ation cycle for mesh adaptation, known as a Solve-Estimate-Mark-
Refine cycle, is given by:

1. Choose an initial mesh .#,, a maximum element error #,,,,, a
maximum number of refinement cycles kn,x and set k = 0.

2. Solve: Compute the finite element solution (uf, pf) of (5) on the
mesh ..
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3. Estimate: Compute the error indicator #¢ for each element
Q° € .4y and stop if for all elements #° < -

4. Mark: Mark elements that have large indicators #® for
refinement.

5. Refine: Refine the marked elements to obtain a new mesh
//kﬂ-

6. If k < kmax let k:= k + 1 and go to Step 2.

In Step 4 several marking strategies are possible. For example,
we may wish to refine all elements with an error indicator larger
than a given threshold 7,,,,. Another strategy is to refine the a%
of elements with the largest error indicators, for o € (0,100). Note
that the latter strategy requires communication since the error
indicators are available locally only. In practice, #,,.., &, and kmax
are chosen with a final mesh size and a target number of cores in
mind so that the refinement process does not exceed the available
memory.

3. Parallel octree-based mesh adaptation and load-balancing

In this section, we describe the essential components of ALes. The
design of our library supports many mesh-based PDE discretization
schemes, such as low- and high-order variants of finite element, fi-
nite volume, spectral element, and discontinuous Galerkin meth-
ods, though only finite element methods on trilinear hexahedral
elements are currently implemented. We build on prior ap-
proaches to parallel octree mesh generation [30,31], and extend
them to accommodate solution-adaptive refinement (and coarsen-
ing). This requires separating the octree from the mesh data struc-
tures. Specifically, adaptation and partitioning of the mesh are
handled through the octree structure, and a distinct mesh is gener-
ated from the octree every time the mesh changes.

Nonconforming hexahedral meshes of a given rectangular do-
main are generated for use with a trilinear finite element discreti-
zation. Solution fields are made conforming via algebraic
continuity constraints on hanging nodes, that is, nodes on edges
and faces that are not vertices of all the elements sharing those
edges or faces. These algebraic constraints are eliminated at the
element level, so variables at the hanging nodes are no longer
degrees of freedom for the solver. We maintain a global 2-to-1 bal-
ance condition, i.e., the edge lengths of face- and edge-neighboring
elements may differ by at most a factor of 2. This ensures smooth
gradations in mesh size, and simplifies the incorporation of alge-
braic constraints. Octree-based refinement/coarsening of hexahe-
dral finite element meshes with hanging node constraints has
been employed in such parallel finite element libraries as deal.ll
[4], libMesh [19], hp3d [11], and AFEAPI [20], and have been dem-
onstrated to scale to well to hundreds of processors. Here, our fo-
cus is on parallel algorithms and implementations that can scale
to ©(10%) cores. These are discussed in the remainder of this
section.

3.1. Octrees and space-filling curves

All coarsening and refinement information is maintained within
an octree data structure, in which there is a one-to-one correspon-
dence between the leaves of the octree and the hexahedral ele-
ments of the mesh (see Fig. 1, left). The root of the octree
represents an octant of the size of the computational domain.
The leaves of the octree represent the elements that are present
in the current mesh. The parents of these leaves are used to deter-
mine the relationships between the leaves. When an element is re-
fined, it is split into eight equal-sized child elements. This is
represented in the octree by adding eight children to the leaf oc-
tant representing the element being divided. A coarsening opera-
tion amounts to removing all children with a common parent.
The operations defined on the octree and the mesh are detailed be-
low, see also [8].

Most of the AMR functions in ALps operate on the octree from
which the mesh is generated. Since we target large parallel sys-
tems, we cannot store the full octree on each core. Thus, the tree
is partitioned across cores. As we will see below, cores must be
able to determine which core owns a given leaf octant. To this
end we rely on a space-filling curve [2,9,12], which provides a
globally unique linear ordering of all leaves. As a direct conse-
quence, each core stores only the range of leaves each other core
owns. This can be determined by an MPT_Al11gather call on an ar-
ray of long integers with a length equal to the number of cores.
This is the only global information that is required to be stored.
We use the Morton ordering as the specific choice of space-filling
curve. It has the property that nearby leaves tend to correspond
to nearby elements given by the pre-order traversal of the octree,
as illustrated in the right of Fig. 1.

The basic operations needed for mesh generation and adapta-
tion require each core to find the leaf in the octree corresponding
to a given element. If the given element does not exist on the local
core, the remote core that owns the element must be determined.
This can be done efficiently given the linear order of the octree; see
[31] for details. The inverse of this operation, determining the ele-
ment corresponding to a given leaf, can be made efficient as well.

3.2. Mesh generation and adaptation

The generation of the mesh comprises several distinct steps.
There are two scenarios in which a mesh is generated: the first is
the initial generation of the mesh, and the second is the generation
of a mesh from an adapted octree. As we will see, the adaptation of
the mesh in conjunction with the transfer of data fields requires an
intermediate mesh to be generated.

When generating a mesh from an adapted octree, the interpola-
tion of element fields between old and new meshes necessitates
additional functions. The procedure for adapting the mesh pro-
ceeds as follows. First, a given octree is coarsened and refined

Fig. 1. Left: illustration of the distinct octree and mesh data structures used in Acps. The data structures are linked logically by a 1-to-1 correspondence between octree leaves
and elements. Right: a pre-order traversal of the leaves of the octree in the sequence of triples (z,y,x) creates a space-filling curve in z-order. This imposes a total ordering of
the mesh elements, known as a Morton ordering. A load-balanced partition of the octree is determined by partitioning the space-filling curve into segments of equal length.
The globally shared information required for this operation amounts to one long integer per core. Note that in both figures a quadtree is show for display purposes.
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—— EXTRACTMESH - EXTRACTMESH
| |
| |
Y Y

|
old mesh and
solution are

error indicator

intermediate

. mesh is used
used to derive |~ INTERPOLATEFIELDS 7| for interpolation [~ TRANSFERFIELDS
a posteriori

of data fields

new mesh with
interpolated
data fields on
new partition

Fig. 2. Functions for mesh adaptation. Red boxes correspond to functions that operate on the octree only; orange boxes denote functions that act between the octree and the
mesh; mesh and data field operations are enclosed in yellow boxes; green boxes are used for functions that act on the mesh and the application data fields only. Solid arrows
represent the flow of function calls; dashed arrows signify the input and output of mesh. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

based on an application-dependent criterion, such as an error indi-
cator. Next, the octree is “balanced” to enforce the 2-to-1 adja-
cency constraint. After these operations, a mesh is extracted so
that the relevant finite element fields can be transferred between
meshes. Following this, the adapted mesh is partitioned and the fi-
nite element fields are transferred to neighboring cores following
their associated leaf partition. Fig. 2 illustrates this process.

3.3. AMR functions

Below we highlight the key features of the functions used to
build and adapt the octree and mesh in an application code. In this
paper we use the functionality of the arps library to adaptively re-
fine the mesh for static Stokes equations. Due to its coarsening
capabilities, the library can also be used for dynamic AMR simula-
tions [8].

NewTree. This algorithm is used to construct a new octree in
parallel. Each core grows an octree to an initial coarse level, which
is divided evenly between cores. The cores finish by pruning
the parts of the tree they do not own, as determined by the
Morton order. This is an inexpensive operation that requires no
communication.

CoarsenTree/RefineTree. Both coarsENTREE and REFINETREE work di-
rectly on the octree and are completely local operations that re-
quire no communication. REFINETREE traverses the leaves of the
local partition of the octree on each core, querying the application
code whether or not a given leaf should be refined. If so, eight new
leaves are added to the level beneath the queried octant. COARSENTREE
follows a similar approach, examining the local partition of the oc-
tree for eight leaves from the same parent that the application code
has marked for coarsening. Note that we do not permit coarsening
of a set of leaf octants that are distributed across cores. This is a
minor restriction, since the number of such leaf sets is at most
one less than the number of cores. Both COARSENTREE and REFINETREE
work recursively; that is, multiple levels of leaves can be removed
or added in one invocation of the function.

BalanceTree. Enforcing the 2-to-1 size difference constraint
between adjacent elements, also known as balancing the tree, is
done with the parallel prioritized ripple propagation algorithm de-
scribed in [31]. The algorithm uses a buffer to collect the commu-
nication requests as it balances the octree one refinement level at a
time. This buffering aggregates all of the communication so that
the number of communication rounds scales linearly with the
number of refinement levels.

PartitionTree. Dynamic partitioning of the octree for load bal-
ance is a key operation that has to be performed frequently
throughout a simulation as the mesh is adapted. The goal of this
function is to assign an equal number of elements to each core
while keeping the number of shared mesh nodes between cores
as small as possible. The space-filling curve offers a natural way
to partition the octree, and hence mesh, among cores. The curve
is divided into one segment per core according to the total order-
ing. The result is a partition with good locality properties, i.e.,

neighboring elements in the mesh tend to be found on the same
core.

ExtractMesh. This function builds the mesh from a given octree
and sets up the communication pattern for the application code.
Unique global orderings of the elements and degrees of freedom
of the mesh are determined and the relationship between the ele-
ments and nodes is established. Hanging nodes do not have un-
knowns associated with them, and therefore are not part of the
global degrees of freedom. Their dependence on the global degrees
of freedom, which is required to enforce the continuity of the finite
element data fields, is also determined in this function. Ghost layer
information (one layer of elements adjacent to local elements)
from remote cores is also gathered.

InterpolateFields. This function is used to interpolate finite ele-
ment data fields from an existing mesh to a new mesh that has
been created by at most one level of coarsening and refinement.
For simple interpolation between two trilinear finite element
meshes, there is no global communication required to execute this
step, given the value of ghost degrees of freedom. Once finished,
the cores gather the information for their ghost degrees of freedom
by communicating with their neighboring cores.

TransferFields. The way this function works on the data fields
is similar to the way parmiTionTREE Works on the octree. Following
the Morton ordering among the degrees of freedom, the data asso-
ciated with element nodes are transferred between cores to com-
plete the partitioning stage. At the end of this process every core
has obtained the data for all elements it owns and discarded what
is no longer relevant due to the changed partition.

4. Numerical solution of the discrete stokes system

In this section, we present our solver for the solution of the dis-
crete form of the Stokes equation, i.e. (5). The resulting discrete
Stokes problem can be written as the following saddle point
problem:

u\ (f o~ (A B
Q<p>(0) w1thQ<B —c>’ (10)

where o, p and f denote the coefficient vectors for the functions
u®, ph and f" and the matrices A, B and C correspond to the bilinear
forms A(-,-), B(-,-) and C(-,-), respectively. The blocks A and C are
symmetric and positive definite and, thus, (10) is an indefinite sym-
metric system.

4.1. Iterative solution by Krylov method

Since the coefficient matrix Q is symmetric and indefinite, we
employ the preconditioned minimum residual method (MINRES)
[28] for its solution. MINRES is a generalization of the conjugate
gradient method to indefinite systems. Each MINRES iteration
requires one application of the matrix Q to a vector, two inner
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products, and storage of two vectors. Each inner product requires a
collective reduction operation.

4.2. Choice of preconditioner

To obtain a mesh-independent (or almost mesh-independent)
number of iterations, i.e., a constant number of iterations as the
problem size increases, one needs to employ a suitable precondi-
tioner for (10). Note that MINRES requires a symmetric and posi-
tive definite preconditioner. The block factorization

(g i)(&i‘ ?)(g —(BA%T—&-C))((I) AIIBT)
(1)

shows that Q is congruent to a block diagonal matrix. Neglecting the
off-diagonal terms A~'B on the right hand side of (11) motivates the
use of the symmetric and positive definite matrix

A0
P:(O s)’ with S =BA'B" +C (12)

as preconditioner. However, since the Schur complement S involves
A7!, systems of the form Pz =# cannot be solved easily, which
makes P unsuitable as a preconditioner. Thus, we replace the Schur
complement S by a lumped mass matrix (e.g., [17]) weighted by the
inverse viscosity . For instance in [15] it is shown that in the case
of constant viscosity the resulting diagonal matrix is spectrally
equivalent to S. For varying viscosity and interface Stokes problems,
similar results are obtained in [27,26]. Note that, when lumped, the
pressure stabilization matrix C drops out. This is due to the fact that
at the element level, constants are in the null space of C. The result-
ing diagonal matrix M reflects the local element size as well as the
local viscosity. This is essential for favorable scalability of the MIN-
RES iterations as the problem grows, and is particularly important
for adaptively refined meshes.

To reduce the cost of the preconditioner in (12), we replace the
3 x 3 block matrix A in (12) by the discrete vector Laplacian with
variable viscosity for the preconditioner. For constant viscosity
and Dirichlet boundary conditions, A is equivalent to the vector
Laplacian, which motivates this replacement. Thus, the precondi-
tioner reduces to

R L 00
13_(/‘ 9>7 withA=|0 1, ol (13)
0 M 0 0 L

Here, for i = 1,2, 3 the block matrix L; denotes the discretization of
the bilinear form L;i(u;, v) := [, uVu; - Vovdx, taking into account
possibly different boundary conditions for uq,u,,us. Note that due
to the block diagonal structure of P, uy,u,,us, and p are decoupled
and thus each component of Pz = f can be solved independently.

4.3. Implementation of the preconditioner by algebraic multigrid
(AMG)

While a solve with the lumped mass matrix M is trivial, Li,L,
and L; are discretizations of Poisson operators on highly heteroge-
neous meshes with large variations in the viscosity p. To approxi-
mately calculate L;'t; for given f;, we use one V-cycle of an
algebraic multigrid (AMG) method (e.g. [7]). Compared to geomet-
ric multigrid, AMG can have advantages due to its ability to ac-
count for variations in viscosity and adaptively refined meshes in
the grid hierarchy. AMG requires a setup phase, in which a coarse
grid hierarchy and corresponding restriction and interpolation
operators are constructed. Parallel implementations of AMG re-
quire communication for this setup step. Generally, there is a

trade-off between increased time/memory and the effectiveness
of the coarse grid hierarchy. For our tests we use the parallel
AMG implementation BoomerAMG from the hypre package
[10,13,16]. BoomerAMG allows the user to choose among various
coarsening strategies, and to set parameters that influence the
complexity of the coarse grid hierarchy and the interpolation and
restriction operators. The settings we used in our test are summa-
rized in the next section.

5. Numerical results

In this section, we study the parallel performance and scalabil-
ity of the parallel adaptive mesh refinement method and variable-
viscosity Stokes solver described in the previous sections. All of our
tests are performed on Ranger, the 504 teraflops, 62,976-core Sun/
AMD parallel supercomputer at the Texas Advanced Computing
Center (TACC). Each compute core of Ranger has a 2.0 GHz clock
rate and 2 GB of memory.

In our tests, we assess isogranular (or weak) scalability, i.e., we
simultaneously increase the problem size and the number of cores
while keeping the problem size per core constant. Since the prob-
lem size grows as the core count increases, isogranular scaling
stresses not only the parallel implementation but also the algorith-
mic scalability. For a Krylov solver, optimal algorithmic scalability
requires that the work per Krylov iteration, as well as the number
of iterations, remains constant as the problem size increases. This
property is of course predicated on effective and cheap-to-apply
preconditioners.

Two geophysical test problems are used in this section to study
isogranular and algorithmic scalability. The first is motivated by
simulation of convection within Earth’s mantle. We study the par-
allel performance and scaling of the adaptive Stokes solver and its
dependence on the viscosity variation. Moreover, we show that the
overhead due to parallel mesh refinement is negligible. The second
test problem is a benchmark Stokes flow problem relevant to mag-
ma dynamics. Here the Stokes flow field is driven by velocity
boundary conditions that represent diverging tectonic plates. The
solver is nested within the adaptive refinement loop described in
Section 2.3. Adaptive refinement is controlled by several different
a posteriori error indicators, including the adjoint estimators devel-
oped in Section 2.2. Since a semi-analytical spectral solution for
this benchmark is available, we are also able to study convergence
of finite element approximations of a quantity of interest func-
tional as a function of the number of degrees of freedom and the
overall run time of the code.

Before presenting the examples, we summarize the settings
used in our numerical tests. Unless otherwise specified, the MIN-
RES iteration is terminated when the residual drops by a factor
of 10° relative to the initial residual. Note that the residual occur-
ring naturally in the preconditioned MINRES algorithm is V/&™P-1¢
rather than the equation residual ||#]| = vTt. Table 1 summarizes
the settings used in BoomerAMG. The complexity of the grid hierar-
chy is controlled by the choice of the basic coarsening algorithm
and the parameters for truncation and interpolation. For a detailed
description of how these settings influence the AMG setup phase

Table 1

Settings used in BoomerAMG from the hypre package. We use the parallel coarsening
method PMIS, extended interpolation, and a maximum of 5 matrix entries per row for
the interpolation matrices. The truncation factor and the threshold for strong matrix
connections influence the complexity of the grid hierarchy.

Coarsening Interpolation Truncation Strong Max entries per
factor threshold row for interp.
PMIS Extended 0.3 0.5 5]
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and the residual reduction rate of the AMG solver we refer to
[10,13].

5.1. Example 1: mantle convection

Mantle convection is the principal driving mechanism for the
thermal and geological evolution of the Earth’s surface. The
dynamics of mantle convection are governed by equations for the
balance of mass, linear momentum, and energy, e.g., [32]. A simpli-
fied model is given by a time-dependent advection-diffusion equa-
tion for temperature, coupled with a stationary Stokes equation
with temperature-dependent, and hence spatially-variable, viscos-
ity. Using an operator splitting approach, the Stokes problem is
solved at each time step, given the temperature field. This yields
an updated velocity field for the advection-diffusion equation.
Typically, the Stokes problems are characterized by viscosities that
vary by 10° to 107 orders of magnitude. Moreover, to resolve the
wide range of spatial scales frequently encountered, adaptively re-
fined meshes are often required.

In this section, we study the Stokes solver for a model problem
of rising thermal blob (see Fig. 3, left). The domain is Q = [0, 1]* and
we use free-slip boundary conditions, i.e., zero normal velocity and
zero tangential traction. The right hand side f and the viscosity u
depend on the temperature field T(x,y,z) := exp(—p((x — 0.5)*+
(y —0.5)* + (z—0.2)%) as

f=(0,0,10°T), p = exp(—aT). (14)

The constants «, 8 > 0 above are used to control the viscosity vari-
ation. With the exception of the cases reported in Table 4, we use
o = 7.5 and B = 200, which results in a viscosity contrast of approx-
imately 5 x 10°.

Table 2 shows the time needed for the Stokes solver and all AMR
components as the problem size and number of cores are scaled in
isogranular fashion. Each case is initialized on a uniform mesh with
32.7K elements per core. We perform three mesh refinement

cycles, as follows. At each cycle, the Stokes problem is solved and
a global error estimator is used to refine the 7% of elements with
the largest error. After refining the mesh, the coarser mesh solution
is interpolated onto the refined mesh, and used as an initial guess
for the MINRES iterative solver on the refined mesh. After three
refinements, this results in a mesh with approximately 110K ele-
ments per core. On this final mesh, which contains four sizes of ele-
ments, a final Stokes solve is performed. Table 2 shows that for a
range from 1 to 4096 cores, all AMR components (including error
estimation, marking/refinement, mesh extraction, 2:1 balance con-
dition enforcement, interpolation and solution transfer, and repar-
titioning of the mesh) consume less than 3% of the overall solve
time. The most costly AMR components are the mesh extraction
algorithm, in which the finite element mesh is constructed from
the octree, and the repartitioning of the mesh among the cores,
which is needed for load-balancing. Nevertheless, despite the large
communication volumes required by these components, they re-
quire negligible time relative to the solver. Of course, one could al-
ways make the AMR components look good by employing a poor
solver. The next two tables demonstrate that this is not the case:
the solver has nearly-ideal algorithmic scaling and insensitivity
to viscosity variation.

To analyze the isogranular scalability of the solver, Table 3 pro-
vides a breakdown of the timings for the Stokes solve on the final
(i.e., the three-times-refined) mesh. To make the results indepen-
dent of the solutions on the coarser meshes, for this test we initial-
ize the MINRES iteration with a zero solution. The table reports the
number of MINRES iterations as well as the time needed for the
AMG setup, MINRES solve excluding the preconditioner (which is
dominated by a matrix-vector product), and V-cycle precondition-
er. The number of MINRES iterations is seen to be almost insensi-
tive to a 4096-fold increase in number of degrees of freedom.
The AMG setup time is the time used by BoomerAMG to construct
the coarse grid hierarchy and the interpolation operators. Due to
the decoupling of the velocity components in the preconditioner,

Fig. 3. Left: thermal blob and streamlines for Example 1. Right: velocity field for Example 2.

Table 2

Timings (in seconds) for adaptive solution of Example 1 (mantle convection) problem for isogranular (weak) scaling. Problem size increases with number of cores, maintaining
32.7 K elements per core. The mesh undergoes three refinements, beginning from a uniform coarse mesh. At each refinement step, the Stokes system is solved and the mesh is
refined based on the global a posteriori error indicator. The table gives the total time taken by the Stokes solver and by the different AMR components. Columns 3-8 report the
time taken for the complete AMR process, i.e. for error estimation, marking and refining elements, extracting the new mesh, 2:1-balancing of the octree, interpolation and transfer
of the solution fields to the new mesh, and repartitioning of the octree. The last column shows the percentage of overall time spent in AMR components relative to the solve time,

which is less than 3% in all cases.

# Cores Solver time Error estimate Mark & refine Extract mesh Balance tree Interp. & transfer Partition tree AMR time (%)
1 345.6 1.78 0.08 2.05 0.12 0.13 0.00 1.2
8 374.8 2.29 0.22 3.38 0.27 0.16 1.77 2.2
64 497.6 2.66 0.36 6.21 1.00 0.22 2.51 2.6
512 696.5 2.89 0.84 9.64 2.05 0.43 3.26 2.8
4096 1095.8 3.04 1.41 10.44 2.39 0.64 10.92 2.6
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Table 3

[sogranular (weak) scaling of the solver for Example 1 with varying viscosity x on the triply-adapted mesh. The number of cores, number of degrees of freedom, number of
MINRES iterations, AMG setup time, MINRES iteration time excluding multigrid V-cycle, and V-cycle preconditioner time are shown in the table. Also shown are the algorithmic
parallel efficiency #, based on the number of MINRES iterations (#, = 1.00 implies number of iterations remain constant with increasing problem size), the implementation
parallel efficiency #, of one MINRES iteration excluding the V-cycle (1, = 1.00 means MINRES runtime is independent of problem size), the parallel efficiency of the V-cycle
preconditioner #,, (1.00 means V-cycle runtime is independent of problem size), and the overall parallel efficiency # (1, = 1.00 means the end-to-end execution time, including
the setup phase, is independent of the problem size).

# Cores # Dofs MINRES # iterations AMG setup (s) MINRES matvec (s) AMG V-cycle (s) Na n Ny n

1 403K 63 8.2 174.8 499 1.00 1.00 1.00 1.00
8 3.3M 66 14.8 215.2 78.1 0.95 0.85 0.67 0.76
64 26.8M 75 20.6 2402 143.9 0.84 0.87 0.41 0.58
512 216M 90 28.4 295.4 2222 0.70 0.85 0.32 0.43
4096 1.7B 106 50.2 349.5 378.2 0.59 0.84 0.22 0.34
the AMG setup phase is carried out for three different scalar sys- remains essentially constant, independent of the range of viscosity
tems. Table 3 shows the parallel efficiencies for these different variation. Moreover, the AMG setup time, which takes into account
components as well as the overall parallel efficiency. The AMG set- viscosity when building the coarse grid hierarchy, takes approxi-

up and V-cycle preconditioner times grow faster than the times for mately the same amount of time in all cases.

the other parts of the solver, which scale almost optimally. This is

due to the extensive communication needed in the setup phase 5.2. Example 2: benchmark for melt migration

and the coarse grid solve within the V-cycle preconditioner. For

more discussion of these well-known bottlenecks of parallel AMG The second example is a benchmark problem from magma
implementations, we refer to [16,13]. Ultimately, however, an dynamics. Magma dynamics can be modeled by a coupling of
overall parallel efficiency of 34% in scaling from 1 to 4096 cores Darcy’s law for porous flow of melt within a viscously deforming
should be regarded as excellent performance for implicit solution solid date represented by Stokes flow [21]. The pressure gradient

of a highly variable coefficient saddle point problem. from the Stokes equation affects the melt flow (see e.g. [24]), so

Finally, we study the dependence of the solver on the magni- for this problem it is critical to compute an accurate approximation
tude of viscosity variation. As before, we consider the Stokes solve of the pressure with the Stokes solver. We solve the benchmark
on the final mesh, which has undergone three cycles of refinement. Stokes flow problem proposed in [23], which models flow of the
Changing the parameters « and g in (14) leads to different con- mantle driven by a mid-ocean ridge-transform-ridge spreading
trasts in the viscosity. Table 4 shows the resulting minimum and center. Fig. 4a illustrates the geometry of the driving plates, while
maximum values of the viscosity throughout the mesh and the the right image in Fig. 3 gives the velocity field. Large pressures are
maximum viscosity gradient. The table reports the number of MIN- expected at the ridge, which will drive adaptivity. A semi-analyti-
RES iterations needed for solution of a problem with 216 M degrees cal spectral solution of the benchmark problem [29] is used as a
of freedom on 512 cores, the AMG setup time, and the average sol- reference solution to calculate the error in the finite element

ver time per MINRES iteration. The number of MINRES iterations approximations.

Table 4

Performance of Stokes solver for varying viscosity given by (14) for « and § as given in the table. As in Table 3 we use a mesh that has undergone three cycles of refinement, and
examine only the final Stokes solve (which is initialized with a zero solution). The table reports the minimum and maximum viscosity values (,,;, and y,,,.), the maximum
viscosity gradient norm ||V || .., the number of MINRES iterations, the AMG setup time, and the average time per MINRES iteration. Each case has approximately 216M degrees
of freedom and is solved on 512 cores.

o B Piim [Pver IV il max # MINRES iterations AMG setup time (s) Solve time per iteration (s)
0 - 1.00e-0 1.00 0.00e+0 86 25.29 5.82
3 200 4.98e-2 1.00 2.05e+1 80 28.02 5.80
7.5 20 5.53e-4 1.00 8.33e+0 75 25.26 5.62
7.5 200 5.53e-4 1.00 2.63e+1 90 28.44 5.75
25 2000 5.53e-4 1.00 8.28e+1 91 26.97 5.35
12 200 6.14e-6 1.00 2.89%e+1 95 28.42 5.70
15 200 3.06e-7 1.00 3.14e+1 93 31.35 6.46

Fig. 4. (a) Geometry of plates driving the ridge-transform-ridge benchmark problem. (b) The region ©; used in the quantity of interest.
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Fig. 5. Adaptively refined meshes for Example 2 using divergence error indicator (left), global error indicator (middle), and adjoint error indicator (right). The divergence
indicator does not refine in the shearing zone, while the adjoint error indicator places elements mainly in or near the region of interest. The surface color indicates the

pressure field.

For the results given in this section, we assume a constant
viscosity 4 =1 and use the non-dimensionalized domain Q =
[—6,6] x [0,12] x [0, 6], where the z-axis is directed downward as
seen in Fig. 4a. The boundary conditions on the top of the domain
(i.e., where z = 0) are given by

x+15 x—1.5 1 x+1.5
ul(x,y70)_erf< T )+erf( 7 )—ierf<T>

y—6
xerf( " +1>, (15)
u2(xaya0) = 07
UB(X,%O) = 07

where /, controls the smoothness of the velocity transformation at
the ridge. A smaller /q gives rise to a steeper pressure gradient near
the ridge.

As quantity of interest we consider an integral of the pressure
over the rectangular region Q; =][0.75,2.25]x [5.25,6.75]x
[0,0.75], which is placed around one of the central singularities
of the ridge; see Fig. 4b. We conduct a medium-scale and a
large-scale test, in which we compare uniform refinement with
several adaptive refinement strategies. In the adaptive cases, we
mark those elements for refinement whose error indicator is larger
than the mean error indicator plus 1/2 of its standard deviation.

10" : : T 10 e
uniform —&— o @ uniform —&—
10° b 1 107 F global —e— 7
S 101 L 2 10-1L goal —— |
\3 10 & 10 o
1077 1 T2k . 1
=103 1 B0t ]
< < ;
1074 ] 10074 F ]
10*5 L L " 10—5 I ! i i -
10 10> 10° 107 10® 10 10* 10° 10* 10° 10°

degrees of freedom total cpu time (s)

Fig. 6. Comparisons between refinement strategies for Example 2 (melt migration
problem) with smoothing parameter i, =0.04 in (15), i.e. the medium-scale
problem. The error in the quantity of interest is computed using the semi-analytical
solution. A uniform mesh solution is compared with adaptive refinement strategies
based on global, divergence, and goal-oriented a posteriori error indicators. The left
image plots the error in the quantity of interest against the degrees of freedom.
Note that since the quantity of interest J; is the mean pressure in €; and not a
global norm, one cannot expect monotonicity of the error. The right image plots the
error versus the total run time. For the uniform mesh cases, the run time is based on
solution of a single mesh problem, initializing the MINRES solver with the zero
solution guess. For the runs on adaptive meshes the run time includes error
estimation, mesh adaptation, and the solves on all coarser meshes. Moreover, for
the goal-oriented error indicator, the run time also includes the solves of adjoint
problems on (by a factor of 8) finer meshes. The problems are solved on different
numbers of cores (8 for all adaptive runs and 1, 4, 32, and 256 cores for the uniform
runs). To compensate for this difference, we report the total cpu time, i.e., the total
wall clock time multiplied by the number of cores.

For the medium-scale problem, which uses the ridge smoothing
parameter 2y = 0.04, we are able to compute the semi-analytical
solution in reasonable time, and thus use velocity boundary condi-
tions on all faces with values given by this solution. This solution is
also used to compute the error in the quantity of interest. In Fig. 5,
we show adapted meshes after three cycles of refinement, using
different error indicators. The results are summarized in Fig. 6,
where we plot not only the error versus the degrees of freedom,
but also versus overall run time. The run time includes the solve
time on all coarser grids as well as the mesh adaptation time. To
account for the very different sizes of the problems, they are solved
on different numbers of cores. This is why we report a “total cpu
time” in the figure, which is the wall clock time multiplied by
the number of cores.

The results for the large-scale problem are reported in Fig. 7.
Here we choose /o = 10 in (15), which is why this problem re-
quires much higher resolution around the ridge. We can no longer
compute a semi-analytical solution in reasonable time, and there-
fore we use (15) as a boundary condition only on the top surface,
while employing zero traction conditions on all other boundaries.
Moreover, the exact value of the quantity of interest is estimated
by extrapolating the results obtained on uniform meshes.

The results in Figs. 6 and 7 show that adaptive solutions require
orders of magnitude fewer degrees of freedoms for the same accu-
racy than uniform mesh solutions. Even though the timings for the
adaptive mesh cases take into account all overheads including the
solves on all coarser meshes, we observe an improvement in the
total cpu time. Note also that the adaptive cases require less mem-
ory, which makes it possible to run them on fewer cores. The goal
oriented error indicator results in the fewest degrees of freedom.
However, this indicator requires solution of an adjoint problem
at each iteration, which adds to the overall run time, as can be seen
in the right plots in Figs. 6 and 7. The adjoint solve could be accel-

1072 SR — 1072 e
uniform —=— uniform —&—
10-3 global —e— 1031 globa% —— ]
- goal —a— 7 = goal —e—
& iv &
S 107t E ] S 107t E ]
| @\JX |
S 100 | 1 "l 1

—6 | | | |
10 10* 10° 10° 107 10®
total cpu time (s)

10*6 . 1 1 \(
10° 107 10° 107 10%
degrees of freedom

Fig. 7. Same as Fig. 6 but with 2o = 10~. Since the smoothing parameter J, is too
small to compute an accurate semi-analytical solution in reasonable time, the exact
value for the quantity of interest is estimated by extrapolating the results of the
uniform mesh solutions. Since the problems are solved on different numbers of
cores (128 cores for all adaptive case, and 16, 128, 1024, and 8192 cores for the
uniform cases), we again report the total cpu time.
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erated significantly by not solving the adjoint problem on a finer
mesh (requiring 8 times more elements), but on the same mesh
as the primal Stokes problem and then using solution reconstruc-
tion techniques.
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