
p4est: Scalable Algorithms for

Parallel Adaptive Mesh Refinement

Carsten Burstedde and Johannes Holke
INS, University of Bonn

Description of the Code

We examine the scalability of the p4est code for parallel adaptive mesh refinement (AMR) [1].
This code implements several algorithms to create a dynamic distributed mesh data structure,
to refine, coarsen, and 2:1 balance it (see also [2]), and to repartition it between the paral-
lel processes. Additional algorithms may be called to obtain topological information about
the mesh, such as to search or iterate through it [3], or to identify a so-called ghost layer of
off-process neighbor elements and transfer data between them. Initial tests of the latter func-
tionality, called ghost exchange, is discussed in this report, together with results of refinement
and partitioning.

The basic meshing concept we follow is to divide the domain conformingly into one or more
logically hexahedral blocks. One block is suitable for meshing a cube or a torus, and moderate
numbers usually suffice to mesh shapes like the spherical shell with good aspect ratio [4].
Complex domains as shown in Figure 2 may be subdivided using mesh generators. This feature
is strictly optional, but powerful when needed. (If a mesh generator creates tetrahedra, such
as Tetgen [5], we divide each one into four cubes in a preprocessing step.) Each of the coarse
blocks becomes an octree by subdividing it arbitrarily into octants. This data structure is
fully distributed and dynamic, such that meshes can be modified during runtime.

The parallel arrangement of data is guided by a space filling curve; see Figure 1. This
approach allows for fast dynamic repartitioning; see Figure 3 for recent results obtained on
the JUQUEEN supercomputer.

The design of Partition contains one MPI Allgather call on one integer per rank (or two
calls if we use the extra feature to align the elements to allow for coarsening [6]) , O(N/P )
memory traversal and movement, and O(1) point-to-point messages per rank of total length
O(N/P ) with known sender/receiver arrangements. Here, N/P is the number of elements per

k0 k1

p0 p1 p1 p2

k0

k1

x0

y0

x1

y1

Figure 1: An example 2D mesh of two trees k1 and k2. It is partitioned between three processes
p0 through p2 (color coded). The concept in 3D is analogous.

49



50 JUQUEEN Extreme Scaling Workshop 2016

Figure 2: Left: The box mesh used in the 3D tests. Here we show a uniform refinement of level
2 (blue) with adaptive refinement to level 3 (red). Right: The Stanford bunny mesh
from the Stanford University Computer Graphics Laboratory [10]. This version of
the mesh consists of 495,511 tetrahedra.

102 103 104 105 106

10−3

10−2

10−1

100

N/P

T
im

e
fo
r
p
ar
ti
ti
on

in
se
co
n
d
s

P
16
128
1024
8192

65536
458752

Figure 3: Time of Partition plotted against the number of elements N divided by MPI ranks
P , on a mesh derived from six trees. Each line corresponds to varying N for a fixed
P . All results are in between ideal strong scaling (diagonal line on the bottom right)
and an absolute run time of under one second (top horizontal line). The largest run
manages over 5 · 1011 elements on the full size of JUQUEEN.
Strong scalability would be identified by keeping N constant and varying P. In the
diagram, that means starting on the left, then moving one point to the right and one
line down in each step. Towards the lower right, we approach the plotted diagonal
since the lines for different P are on top of each other, indicating near-optimal scaling
above 104 elements/rank and up to 1024 ranks. Weak scaling can be judged by
looking vertically—keeping N/P constant should result in identical runtimes, which
is satisfied by the lines with smaller P.
The results indicate that the timings become communication bound, which can be
explained by the fact that the Partition algorithm has parts whose absolute run
time depends on P , not N .



p4est 51

process. Thus, in contrast to say an explicit time step in a PDE solve, it is hard to determine
which mechanism is dominant and what the ideal scaling would look like. The main statement
that we would like to make is that our partition function is extremely fast in terms of absolute
run time: below one second for 0.5 · 1012 elements on the full size of JUQUEEN.
p4est is a portable code written in C using standard MPI. The basic functionality requires

MPI version 1.1, with optional MPI file I/O. We link against zlib for compressing VTK output.
Saving a mesh using p4est save uses MPI I/O, while we use one file per rank when writing
VTK pvtu/xml graphics.
p4est is free software and used in many applications, among them finite volume methods [7],

higher order finite element [8] and spectral methods [9]. The latter two have been scaled to 1.57
and 3.14 million MPI ranks on Sequoia and Mira, respectively. p4est has been the meshing
code demonstrated in ACM Gordon Bell Prize finalists in 2008, 2010 and 2012, and the prize
winner for 2015 [8].

Results

In managing the mesh metadata, the p4est code handles an essential part of the numerical
pipeline. The main requirement is that the parallel meshing algorithms do not slow down a
simulation, thus we aim for small run times in absolute terms. Even on the biggest meshes, our
algorithms require on the order of seconds to run, down to well below one second for realistic
examples. Our main focus is thus to establish scalability to the largest possible problem sizes
and to verify that the p4est algorithms contribute only a negligible fraction to a simulation’s
run time.

The test configurations

We describe briefly the tests that we planned to run during the Extreme Scaling workshop.

1. Construct a 3D coarse mesh of 4,580 trees from a tetrahedral mesh of a cube-shaped
domain consisting of 1,145 tetrahedra. Create a load-balanced uniform refinement of
this mesh at a given initial level (New) and then perform one adaptive refinement step
(Refine). In this refinement step we refine those mesh cells that lie in a cone with tip
in the middle of one side of the domain and base on the other, see Figure 2. As a last
step we load-balance the refined mesh (Partition).

2. With the same configuration use the full JUQUEEN system to construct a big mesh of
over 9.4 · 1011 elements. This would be the largest mesh created with p4est so far.

3. Do a similar cone refinement pattern with a coarse mesh of ∼ 2 · 106 trees generated
from the Stanford bunny mesh (see Figure 2). This mesh has an impractically large tree
connectivity that currently has no relevance.

4. In 2D uniformly refine a coarse mesh of 5 trees modelling a Moebius band geometry to a
given level, partition the mesh and run the ghost exchange algorithm to exchange data
between ghost elements. We used a data size of 4096 bytes per ghost element.

The first three configurations are designed to read the Tetgen [5] file format to preprocess
the coarse mesh of octrees. This format is by design non-parallel, thus we opted for reading it
on one processor and broadcast it to avoid loading the file system with redundant I/O. Given
that the largest coarse mesh we used has under 500k trees, the total run time of reading and
broadcasting the mesh was always below 0.1 seconds.



52 JUQUEEN Extreme Scaling Workshop 2016

Realization of the tests

The first day of the workshop was used to set up the example applications and a short strong
scaling test for test configuration 1. To fine tune the application and input parameters we did
several test runs on one JUQUEEN rack using 128 to 32,768 MPI ranks (32 ranks per node).

After this initialization phase we scaled the test configuration 1 to 16 racks (524,288 MPI
ranks) during the day and set up scaling runs on up to 24 racks over night (the full system was
not available at this point). Results are shown in Table 1. We could run this configuration on
the full JUQUEEN system later in the workshop.

On the second day we set up test configurations 2, 3, and 4. The mesh with 9.4 · 1011

elements could be created successfully on 28 JUQUEEN racks with 32 MPI ranks per node.
Results are shown in Table 2. When using smaller numbers of racks the application ran out
of memory due to the size of the mesh.

Similar memory limitations were found when testing configuration 3 with the Stanford
bunny. The coarse mesh seemed too big to fit into the 16 GiB memory of JUQUEEN nodes.

At the end of the second day and during the third day of the Extreme Scaling workshop
we set up configuration 4 for testing our new ghost exchange function. After first tests with
smaller data sizes we set up strong and weak scaling runs using 4 kbytes of data per ghost
element. During the workshop we ran on up to 16 racks using 32 ranks per node and in the
week after the workshop we set up runs on the whole 28 racks.

The results in Table 3 show that the absolute run time of ghost exchange is always below
62ms, even on meshes with 2.1 ·1010 elements. These times are so small that a standard scaling
plot would be dominated by measurement and execution noise.

Our tests with ghost exchange in 3D ran into MPI errors that we will investigate more
closely. This is somewhat puzzling since the code is mostly dimension independent.

Further Notes

During the workshop we faced several issues. In the second night several jobs crashed imme-
diately after start, which was observed by other groups as well and seemed to be a transient
issue as resubmitted jobs ran as expected.

Reading the Stanford bunny mesh with 2 · 106 trees did not work, since the application ran
out of memory due to the size of the coarse mesh. Given more time we would have been able
to generate a smaller mesh of the same input data to run our tests.

As described above before running jobs on 16 and more racks we tested our configurations
with smaller refinement levels on 1 rack using between 128 and 32k ranks with and without
debugging mode enabled (assertions and extra verification).

As a secondary project we would have liked to test to what extent the MPI-3 shared memory
features can save memory when running more than one MPI process per node. We set up a
small test program to create a shared memory array and measure memory usage. However,
since the shared memory required by this particular test is on the order of 102 bytes and
its measurement (using Kernel GetMemorySize) displays the used memory on a scale of 104

bytes we could not obtain useful results. Due to a tight schedule we did not run more tests
with other memory sizes, but we plan to further investigate the shared memory features in the
future.



p4est 53

Table 1: Strong scaling run time results for the 4,580-tree box mesh from Figure 2 (left). We
generate a distributed uniform level 8 mesh (New), refine once more according to
the given cone shape (Refine) and load-balance (Partition). The mesh sizes are
7.68 · 1010 elements before the final refinement and 1.18 · 1011 afterwards.

Racks MPI ranks New Refine Partition

8 262,144 0.486s 2.25s 3.18s
14 458,752 0.722s 1.35s 3.28s
16 524,288 0.802s 1.12s 2.69s
20 655,360 0.980s 1.01s 3.11s
24 786,432 1.158s 0.89s 2.91s
28 917,504 1.366s 0.82s 2.82s

Table 2: We manage a mesh of over 9.4 · 1011 elements. This mesh is created from 4,580 trees,
first refined uniformly to level 9 and then refined once adaptively.

Racks MPI ranks # mesh Elements New Refine Partition

28 917,504 940,642,225,005 1.64s 5.60s 14.2s

Table 3: Run time results for ghost exchange. ‘lvl’ refers to the uniform refinement level of
the mesh used. The total number of mesh elements is 5×4lvl, ranging between 3.4·108

(level 13) to 2.1 · 1010 (level 16).

racks MPI ranks Exchange lvl

4 131,072 9.4ms 13
8 262,144 23.6ms 13

16 524,288 20.4ms 13

4 131,072 15.0ms 14
8 262,144 16.0ms 14

16 524,288 38.2ms 14
28 917,504 34.9ms 14

4 131,072 30.2ms 15
8 262,144 29.2ms 15

16 524,288 42.4ms 15
28 917,504 53.9ms 15

28 917,504 61.4ms 16

Conclusions

This workshop provided us with the opportunity to generate and publish latest results on
scalability. While effective development of new features within the code was not possible given
the fixed schedule of submitting jobs, we were able to obtain new information on routines and
configurations that are not usually covered by the production usage of the code.

We have executed the functions New, Refine, Partition, and ghost exchange implemented
by the p4est AMR code. We have worked with coarse meshes on the order of 5k trees
and created, refined, and partitioned meshes to sizes between 100 and 940 billion elements.
Absolute run times of all meshing operations are between a few milliseconds and several seconds
depending on the configuration.



54 JUQUEEN Extreme Scaling Workshop 2016

References

[1] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. p4est: Scalable algorithms
for parallel adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific
Computing, 33(3):1103–1133, 2011.

[2] Tobin Isaac, Carsten Burstedde, and Omar Ghattas. Low-cost parallel algorithms for
2:1 octree balance. In Proceedings of the 26th IEEE International Parallel & Distributed
Processing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/IPDPS.2012.47.

[3] Tobin Isaac, Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. Recursive algorithms
for distributed forests of octrees. SIAM Journal on Scientific Computing, 37(5):C497–C531,
2015.

[4] Carsten Burstedde, Georg Stadler, Laura Alisic, Lucas C. Wilcox, Eh Tan, Michael Gur-
nis, and Omar Ghattas. Large-scale adaptive mantle convection simulation. Geophysical
Journal International, 192(3):889–906, 2013.

[5] Hang Si. TetGen—A Quality Tetrahedral Mesh Generator and Three-Dimensional De-
launay Triangulator. Weierstrass Institute for Applied Analysis and Stochastics, Berlin,
2006.

[6] Hari Sundar, George Biros, Carsten Burstedde, Johann Rudi, Omar Ghattas, and Georg
Stadler. Parallel geometric-algebraic multigrid on unstructured forests of octrees. In SC12:
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, Salt Lake City, UT, 2012. ACM/IEEE.

[7] Carsten Burstedde, Donna Calhoun, Kyle T. Mandli, and Andy R. Terrel. Forestclaw:
Hybrid forest-of-octrees AMR for hyperbolic conservation laws. In Michael Bader, Arndt
Bode, Hans-Joachim Bungartz, Michael Gerndt, Gerhard R. Joubert, and Frans Peters,
editors, Parallel Computing: Accelerating Computational Science and Engineering (CSE),
volume 25 of Advances in Parallel Computing, pages 253 – 262. IOS Press, March 2014.

[8] Johann Rudi, A. Cristiano I. Malossi, Tobin Isaac, Georg Stadler, Michael Gurnis, Pe-
ter W.J. Staar, Yves Ineichen, Costas Bekas, Alessandro Curioni, and Omar Ghattas. An
extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth’s man-
tle. In Proceedings of the SC15 International Conference for High Performance Computing,
Networking, Storage and Analysis, article 5. ACM, 2015.

[9] Andreas Müller, Michal A. Kopera, Simone Marras, Lucas C. Wilcox, Tobin Isaac, and
Francis X. Giraldo. Strong scaling for numerical weather prediction at petascale with the
atmospheric model NUMA. http://arxiv.org/abs/1511.01561, 2015.

[10] The Stanford University Computer Graphics Laboratory. Stanford bunny dataset, 1994.
http://graphics.stanford.edu/data/3Dscanrep/, last accessed Feb 16, 2016.

[11] James R. Stewart and H. Carter Edwards. A framework approach for developing parallel
adaptive multiphysics applications. Finite Elements in Analysis and Design, 40(12):1599–
1617, 2004.

http://dx.doi.org/10.1109/IPDPS.2012.47
http://graphics.stanford.edu/data/3Dscanrep/

