
SIAM J. SCI. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 33, No. 3, pp. 1103–1133

p4est: SCALABLE ALGORITHMS FOR PARALLEL ADAPTIVE
MESH REFINEMENT ON FORESTS OF OCTREES∗

CARSTEN BURSTEDDE† , LUCAS C. WILCOX‡ , AND OMAR GHATTAS§

Abstract. We present scalable algorithms for parallel adaptive mesh refinement and coarsening
(AMR), partitioning, and 2:1 balancing on computational domains composed of multiple connected
two-dimensional quadtrees or three-dimensional octrees, referred to as a forest of octrees. By dis-
tributing the union of octants from all octrees in parallel, we combine the high scalability proven
previously for adaptive single-octree algorithms with the geometric flexibility that can be achieved
by arbitrarily connected hexahedral macromeshes, in which each macroelement is the root of an
adapted octree. A key concept of our approach is an encoding scheme of the interoctree connectivity
that permits arbitrary relative orientations between octrees. Based on this encoding we develop
interoctree transformations of octants. These form the basis for high-level parallel octree algorithms,
which are designed to interact with an application code such as a numerical solver for partial differ-
ential equations. We have implemented and tested these algorithms in the p4est software library.
We demonstrate the parallel scalability of p4est on its own and in combination with two geophysics
codes. Using p4est we generate and adapt multioctree meshes with up to 5.13 × 1011 octants on
as many as 220,320 CPU cores and execute the 2:1 balance algorithm in less than 10 seconds per
million octants per process.

Key words. forest of octrees, parallel adaptive mesh refinement, Morton code, scalable algo-
rithms, large-scale scientific computing

AMS subject classifications. 65M50, 65Y05, 68W10, 65D18

DOI. 10.1137/100791634

1. Introduction. Physical phenomena are often characterized by multiple scales
in both space and time. While in some examples the multiscale nature is prevalent
throughout the system (such as in turbulence [16]), others give rise to highly localized
small-scale processes within a large-scale system (such as convection in earth’s mantle
[32]). We are concerned with numerical methods for solution of the partial differential
equations (PDEs) describing the latter class of phenomena. Resolving the multiscale
features with a uniformly fine computational mesh is impractical in many cases even
on petascale supercomputers, while coarser uniform meshes under-resolve the fine-
scale features, leading to erroneous results. These considerations motivate the use
of adaptive mesh refinement and coarsening (AMR) methods, which allow for locally
varying mesh size and thus can potentially save many orders of magnitude in the
number of unknowns required for a given accuracy.

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section April 9,
2010; accepted for publication (in revised form) February 2, 2011; published electronically May
17, 2011. This work was partially supported by NSF grants OCI-0749334, CCF-0427985, CNS-
0540372, CNS-0619838, DMS-0724746, and OPP-0941678 and DOE grants 06ER25782, 08ER25860,
and SC0002710.

http://www.siam.org/journals/sisc/33-3/79163.html
†Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin,

TX 78712 (carsten@ices.utexas.edu).
‡Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin,

TX 78712. Current address: HyPerComp, Inc., Westlake Village, CA 91361 (lucasw@ices.utexas.
edu).

§Department of Mechanical Engineering, Jackson School of Geosciences and Institute for Com-
putational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712 (omar@
ices.utexas.edu).

1103



1104 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

Different approaches exist for managing nonuniform meshes. Hierarchical hybrid
grids [4] split the domain into unstructured macroelements which are then uniformly
refined; here adaptivity is confined to the coarse scale. Completely unstructured
AMR provides greater geometric flexibility and fine-scale adaptivity at the cost of
explicitly storing all neighborhood relations between mesh elements; see, e.g., [15,
22, 27]. Block-structured AMR methods, e.g., [5, 6, 11, 12, 18, 23], utilize unions
of possibly mapped regular grids, which can be encoded cheaply and permit reuse
of uniform-mesh code. They also incur some numerical complexity due to multiple
grids or patches of differing resolutions, especially for high-order discretizations. Tree-
based methods make use of recursive encoding schemes while allowing nonoverlapping
refinement; in this sense they combine efficiency and simplicity. Since the spatial
domain encoded by a quadtree [14] or an octree [24] is cube-shaped, various extensions
have been developed for representing more general geometries (see, e.g., [15, 21, 28,
29, 33]). One possible strategy is to connect multiple adaptive octrees into a forest of
octrees that can represent a wide variety of geometric shapes. The goal of this article is
to present efficient parallel algorithms for the construction and management of forests
of octrees that can scale to the O(105) CPU cores characterizing today’s petascale
systems. To our knowledge, these are the first AMR algorithms to achieve this goal.

Parallel AMR poses significant challenges both in encoding and storing a dis-
tributed mesh and in equipartitioning the workload among processes. The flexible-
geometry and general-purpose finite element libraries libMesh [20] and deal.II [3]
circumvent the mesh-encoding problem by replicating the global mesh on all processes,
which limits scalability to a few hundred processes at most. Parallel load-balancing for
unstructured and hybrid meshes is often delegated to special-purpose software such
as parMETIS [19] and Zoltan [13]. Depending on the computational approach chosen
(such as parallel graph partitioning), this can incur significant overhead. Tree-based
schemes naturally lead to the concept of space-filling curves, which can be exploited
for both parallel encoding and partitioning.

Much progress has been made in recent years developing scalable parallel algo-
rithms on single octrees. The octor code [37] stores the single octree using pointers
between parent and child nodes and has been scaled to 2,000 processes [1] and later
to over 32,000 [9] and 62,000 processes [8]. Octor has been used for earthquake mod-
eling [1] and online parallel visualization [38]. The Dendro code stores the leaves of
the single octree in a linear array and has been scaled to over 4,000 processes [35].
Adaptive finite-element implicit solvers for PDEs have been developed based on both
Dendro (up to 12,288 processes [30, 31]) and octor (up to 16,384 processes [7, 10]).

The forest-of-octree approach to AMR is not new in itself. It has, for example,
been used in deal.II for many years [3]. There, however, parallelism is restricted
due to replicated mesh storage on each process. The contribution of this article
is to present a set of scalable parallel algorithms that strictly adhere to distributed
encoding and storage of the forest and provide scalable mesh handling capabilities for a
general (not necessarily finite-element–based) numerical application. These high-level
capabilities include the creation, refinement, and coarsening of a forest, the operation
to ensure at most 2:1 size relations between neighboring octants (2:1 balance), a
parallel (weighted) partition, and creating a ghost layer and a globally unique node
numbering. Furthermore, we present a partition-independent parallel forest checksum.
To realize these capabilities we develop the following key concepts:

1. A flexible encoding scheme of the interoctree connectivity that allows arbi-
trary relative orientations of two-dimensional (2D) quadtrees and three-dimensional
(3D) octrees, and mixed periodic and nonperiodic identification of octree boundaries.



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1105

2. Exterior octants that exist in the coordinate system of an octree but out-
side of its root domain, and transformations of interior and exterior octants between
octrees that connect through a face, edge, or corner, are used to pass neighborhood
information across interoctree boundaries.

3. Continuation of the space-filling z-(Morton-)curve [26, 36] across all octrees
in order; this is used to efficiently determine the owner process of octree-octant pairs.

We adopt several important ideas introduced for single octrees [34], in particular
the storage of leaf octants in an array (linear octree), the notion of the insulation layer
of an octant, and the two-stage approach to 2:1 balance, in which a local balance is
executed before communicating the insulation layer and merging and rebalancing
the received octants, avoiding iterative communication. However, we do not use the
partitioning of local octrees into coarse blocks; in our work we draw the two-stage
division between the balance of complete local octrees, and balancing across both
interprocess and interoctree boundaries.

We have implemented the algorithms discussed in this article in the p4est soft-
ware library, which will be released soon as free and open source software. p4est is
built on C and MPI and has been used to model large-scale mantle convection [8, 32]
and seismic wave propagation [7, 39], and is the basis of a new generation ice sheet
modeling code. Work is underway enabling deal.II to use p4est as its parallel mesh
engine [2]. We have scaled p4est to the full size of both the NSF Ranger SUN/AMD
supercomputer (over 62,000 CPU cores) at the Texas Advanced Computing Center
and the NCCS Jaguar Cray XT5 supercomputer (over 220,000 CPU cores). We are
able to construct meshes containing up to 5.13×1011 octants and execute the 2:1 bal-
ance algorithm in less than 10 seconds per million octants per process; total meshing
times amount to less than one minute in all of our largest examples.

This article is organized as follows. In section 2 we introduce notation and describe
the encoding of the interoctree connectivity, the distributed storage and encoding
of the forest, and elementary octant operations and transformations. We conclude
section 2 with an algorithm that computes all possible process owners of an exterior
octant, demonstrating the general structure of our forest-of-octree algorithms. In
section 3 we describe high-level algorithms that are designed to interface with third-
party applications such as PDE solvers. These parallel algorithms make use of the
elementary local forest and octant operations described in section 2. In section 4 we
discuss performance and scalability results obtained in both synthetic and simulation-
driven environments. We draw conclusions in section 5.

2. A parallel forest of octrees. The term “octree” denotes a recursive tree
structure where each node is either a leaf or has eight children. The analogous con-
struction in two dimensions is named “quadtree,” where nodes have four children
instead of eight. Octrees and quadtrees can be associated with 3D and 2D cubic do-
mains, where tree nodes are called octants and quadrants, respectively, and the root
node corresponds to a cubic domain that is recursively subdivided according to the
tree structure. We use the term “forest” to describe a collection of such logical cubes
that are connected conformingly through faces, edges, or corners, each cube corre-
sponding to an independent tree. We use the word “parallel” to imply distributed
storage; i.e., each octant or quadrant belongs to precisely one process and is stored
only there. For simplicity, we refer below to both 2D and 3D setups as octrees and
octants, while sometimes providing pictures of quadtrees and quadrants for illustra-
tion.



1106 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

2.1. Overview. A forest of octrees can be understood as a two-tier decomposi-
tion of a geometric domain. On the first (macro-)tier we split the domain Ωd ⊂ R

3

into K conforming subvolumes, each mapped from a reference cube by a smooth
function φk,

(2.1) Ω̄d =
⋃
k

φk([0, 2
b]d), φk : [0, 2b]d → R

3, 0 ≤ k < K, d ∈ {2, 3}.

Specifically, we allow any manifold that can be covered by smooth images of a finite
collection of K reference octrees (chosen here with a maximum refinement level b and
length 2b) subject to the restriction that any macroface or macroedge shared between
two octrees is shared in full or not at all (edges exist only for d = 3). This approach is
more general than domains mappable by a single octree since any macroedge can be
shared by a number of octrees different from 4, and any macrocorner can be shared by
a number of octrees different from 2d; we also permit arbitrary periodic connectivities.
Examples for d = 2 include the 2D circle and embeddings of 2D surfaces into 3D space
such as the Möbius strip or Klein’s bottle. With d = 3 we can represent 3D volumes
such as the all-periodic unit cube, the torus, and solid and hollow spheres. In general,
output from 2D or 3D hexahedral mesh generators is suitable as macromesh.

It is an important feature of p4est that connectivity and neighborhood relations
are computed discretely (integer-based). No floating-point arithmetic is used, avoiding
topological errors due to roundoff. The transformations φk are used for visualization
only, and to encode the geometry for numerical applications external to p4est.

The second (micro-)tier denotes the recursive subdivision of each individual octree
where the number of octants per octree is essentially unlimited. On the microtier we
allow nonconforming (hanging) faces and edges. p4est allows unconstrained size rela-
tions between neighboring octants, and additionally provides a method to guarantee
exclusively 1:1 and 2:1 size relations (called 2:1 balance) which is required for many
numerical applications. Neighborhood size relations are equally respected both for
octants within the same octree and for octants that are members of different octrees
and connect through an octree macroface, macroedge, or macrocorner.

Octants within an octree can be assigned a natural ordering by a traversal across
all leaves. By the equivalence of tree nodes and octants this one-dimensional sequence
corresponds to a space-filling z-shaped curve in the geometric domain. We extend this
concept to a forest of octrees by connecting the space-filling curve between octrees,
thus generating a total ordering of all octants in the domain. A parallel partition is
created by dividing the curve into P segments with P being the number of parallel
processes. A 2:1 balanced forest and its space-filling curve and parallel partition are
shown in Figure 1.

The macrostructure of the forest is static and shared between all processes. The
number of octrees is thus limited by local memory (which allows up to a few million
octrees in our experiments). The microstructure, i.e., the division of each octree
into octants and the partition of these octants between processes, is dynamic and
distributed in parallel. The main objective of this article is to outline fast and scalable
algorithms that operate on this two-tier structure. With regard to common mesh-
management capabilities required by numerical applications, the following high-level
algorithms are presented.
New Create an equipartitioned, uniformly refined forest.
Refine Adaptively subdivide octants based on a refinement marker or callback func-

tion, once or recursively.



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1107

k0 k1

p0 p1 p1 p2

k0

k1

x0

y0

x1

y1

Fig. 1. One-to-one correspondence between a forest of octrees (left) and a geometric domain
partitioned into elements (right), shown for a 2D example with two octrees k0 and k1. The leaves of
the octrees bijectively correspond to elements that cover the domain with neither holes nor overlaps.
A left-to-right traversal of the leaves through all octrees creates a space-filling z-curve (black “zig-
zag” line) that imposes a total ordering of all octants in the domain. For each octree the z-curve
follows the orientation of its coordinate axes. In this example the forest is partitioned among three
processes p0, p1, and p2 by using the uniform partitioning rule (2.5). This partition divides the
space-filling curve and thus the geometric domain into three process segments of equal (±1) octant
count.

Coarsen Replace families of eight child octants by their common parent octant, once
or recursively.

Partition Redistribute the octants in parallel, according to a given target number
of octants for each process, or weights prescribed for all octants.

Balance Ensure at most 2:1 size relations between neighboring octants by local re-
finement where necessary.

Ghost Collect one layer of off-process octants touching the process boundaries from
the outside.

Nodes Create a globally unique numbering of the mesh nodes (i.e., the vertices at the
corners of octants, not to be confused with octree nodes), taking into account
the classification into “independent” and “hanging” nodes.

Checksum Compute a partition-independent integer “fingerprint” of a forest.
The New, Refine, and Coarsen algorithms are process-local and do not require com-
munication. The Partition algorithm consists of an Allgather operation on a small
number of bytes per process and point-to-point communications whose global volume
is proportional to the global number of octants. The Balance algorithm requires
collective and point-to-point communication between processes whose octants are ge-
ometrically close to each other. The communication volume for Balance, Ghost, and
Nodes roughly scales with the number of octants on the boundaries between processes.
Checksum requires only a Gather call of two unsigned integers. These high-level al-
gorithms are discussed in detail in section 3. In order to describe their internal
functioning we must first discuss a number of low-level algorithms that control the
encoding and transformation of octants both within and between octrees. These en-
coding schemes and elementary algorithms are described in the remainder of section 2.

2.2. Interoctree connectivity. The connectivity between octrees is defined by
topological relations within the macromesh of octrees. This connectivity can be con-
structed by hand, or by translating output from hexagonal mesh generators such as
CUBIT [25]. In p4est, octrees can share faces, edges, and corners, where neighboring
octrees can be arbitrarily rotated against each other. Connections can also be non-
local, which allows for implementing arbitrary periodicities. In fact, self-penetrating
connectivities are permitted. This generality is introduced for the purpose of accom-
modating a large class of possible computational domains.



1108 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

f0 f1

f2

f3

c0 c1

c2 c3

x

y

e1

e3

e4

e6

e10
f0

f3

f4
c2

c6

x

y

z

e0

e2

e5

e7

e8 e9

e11
f1f2

f5

c0
c1

c3

c4
c5

c7

Fig. 2. z-order numbering convention for 2D quadtrees (left) and 3D octrees (right). The
symbols indicate corners ci, edges ei ( 3D only), and faces fi. Quadtrees and octrees can be arbitrarily
embedded into 3D space. Octrees always have right-handed coordinate systems. Quadrants/octants
inherit the coordinate system from the quadtree/octree they belong to. Indices are 0-based.

Table 1

Edge lookup tables for three dimensions. The entries S(e, i) store the two faces fi adjacent
to edge e. The pairs T (e, f) store the two face corners ξi of the face f along edge e. Nonexisting
combinations of faces and edges are denoted by (∗, ∗). The entries U(e, i) store the two corners ci
touching edge e.

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4
3 4
2 5
3 5
0 4
1 4
0 5
1 5
0 2
1 2
0 3
1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(∗, ∗) (∗, ∗) (0, 1) (∗, ∗) (0, 1) (∗, ∗)
(∗, ∗) (∗, ∗) (∗, ∗) (0, 1) (2, 3) (∗, ∗)
(∗, ∗) (∗, ∗) (2, 3) (∗, ∗) (∗, ∗) (0, 1)
(∗, ∗) (∗, ∗) (∗, ∗) (2, 3) (∗, ∗) (2, 3)
(0, 1) (∗, ∗) (∗, ∗) (∗, ∗) (0, 2) (∗, ∗)
(∗, ∗) (0, 1) (∗, ∗) (∗, ∗) (1, 3) (∗, ∗)
(2, 3) (∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗) (0, 2)
(∗, ∗) (2, 3) (∗, ∗) (∗, ∗) (∗, ∗) (1, 3)
(0, 2) (∗, ∗) (0, 2) (∗, ∗) (∗, ∗) (∗, ∗)
(∗, ∗) (0, 2) (1, 3) (∗, ∗) (∗, ∗) (∗, ∗)
(1, 3) (∗, ∗) (∗, ∗) (0, 2) (∗, ∗) (∗, ∗)
(∗, ∗) (1, 3) (∗, ∗) (1, 3) (∗, ∗) (∗, ∗)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2 3
4 5
6 7
0 2
1 3
4 6
5 7
0 4
1 5
2 6
3 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The algorithms described below frequently refer to faces fi, edges ei, corners ci,
and face corners ξi. Each octree has 2d faces, 12 edges (3D only), and 2d corners;
each face has 2d−1 face corners. Our chosen numbering convention is 0-based and
illustrated in Figure 2. We fix the origin in the front lower left corner and use x
before y before z for faces, edges, and corners (also called z-order). This means that
3D corners have the binary representation (czcycx)2 ∈ {0, . . . , 7}; cf. [34]. The corners
of a face are enumerated in the same sequence as they occur in the corner numbering
of the octree. Table 1 shows how adjacent face and face corner numbers depend on
an edge, while Table 2 shows how corner numbers are associated with faces for both
two dimensions and three dimensions.

We encode 3D face connections by two arrays of dimension K×6. The array NO
identifies for octree k and face f the number of the neighboring octree k′ across that
face, k′ = NO(k, f). Similarly, the array NF stores the number of the connecting
face f ′ from the perspective of octree k′. Since face connections can be rotated in 4
different ways, we encode both the neighbor’s face number f ′ ∈ {0, . . . , 5} and the
relative orientation r ∈ {0, . . . , 3} of the faces in the array of face connections as
NF(k, f) = 6r + f ′ ∈ {0, . . . , 23}. If there is no neighbor across a face (as is the



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1109

Table 2

Corner lookup tables for two dimensions and three dimensions. The entry Vd(f, ξ) contains
the corner c for each face f and face corner ξ. Note that the even rows of V3 yield the first column
of U from Table 1, and the odd rows yield the second column.

V2 =

⎛
⎜⎜⎝
0 2
1 3
0 1
2 3

⎞
⎟⎟⎠ V3 =

⎛
⎜⎜⎜⎜⎜⎝

0 2 4 6
1 3 5 7
0 1 4 5
2 3 6 7
0 1 2 3
4 5 6 7

⎞
⎟⎟⎟⎟⎟⎠

case on a domain boundary), the originating octree and face numbers k and f are
inserted instead (this precludes only the pathological case of an octree that connects
periodically to itself through a face rotated against itself). For a periodic connection
to the same octree, the originating octree is used together with the connecting face
number and orientation. We determine the orientation r by the following procedure.

Definition 2.1. Suppose that a face is shared between two octrees. The octree
who assigns the lower face number to this face is denoted the “primary” octree, and
the other the “secondary” octree. From the perspective of the primary octree identify
the first corner of the face. The orientation r of the face connection is then defined by
the number of this face corner counted from the perspective of the secondary octree.

In the case of equal face numbers it is verified by enumeration that either per-
spective yields the same result. It also follows that octrees that are mapped into each
other by simple translation always find orientation r = 0 for their connecting face.
Note that our notion of orientation is meaningful for pairs of touching faces but not
for one face on its own.

Based on the encoding of the face connectivity by the orientation r, it is pos-
sible to construct the permutations between the two face corner enumerations with
respect to both neighbors. We propose using lookup tables as follows (see Figure 3
for illustrations).

Theorem 2.2. Given two associated faces f0 and f1, their relative orientation r
as in Definition 2.1, and a face corner number ξ0 ∈ {0, . . . , 3} as seen from f0, then
the face corner number ξ1 as seen from f1 is obtained by

(2.2) ξ1 = P(Q(R(f0, f1), r), ξ0) = P ′(Q(RT (f0, f1), r), ξ0),

where the matrices P, Q, and R are specified in Table 3, and P ′ is obtained from P
by inverting the permutation in each row.

Proof. The proof can be accomplished by checking the 6×6 combinations of faces
f , f ′ and the 4 possible orientations r, amounting to 144 situations that need to be
verified. The second expression follows from the first by a change in perspective. It can
also be derived by noticing that transposing R effectively exchanges the permutations
3 and 4 in matrix Q. From inspecting P we see that all permutations except for 3
and 4 are their own inverse, and 3 and 4 are inverses of each other, which completes
the proof.

The constant matrices P , Q, R are sufficient to describe all possible face connec-
tions between arbitrarily rotated octrees and can be interpreted as follows.

Remark 2.3. The matrix R selects one out of three possible situations, which
correspond to rows of Q. Situation R(f, f ′) = 0 involves 4 possible corner permuta-
tions, and situations 1 and 2 involve another 4 permutations. The situations 1 and 2
map into each other when the order of the faces is reversed. Altogether only 8 out of



1110 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

k′ k

ξ′
1 ξ1

ξ′
3 ξ3

f ′

1

x
y

z

x′
y′

z′

ξ′
0

ξ0

ξ′
2

ξ2

f0

(a) Aligned octree coordinate systems.

x
z′

y′

x′

k k′

ξ1 ξ′
0

ξ3 ξ′
1

f2

y

z

ξ0 ξ′
2

ξ2 ξ′
3

f ′

4

(b) Nonaligned octree coordinate systems.

Fig. 3. Orientation of a macroface connection (green). (a) Two octrees with aligned coordinate
axes. The number of the connecting face is 1 from the perspective of the left octree and 0 from the
perspective of the right octree. Since the right octree k sees the lower face number, we select k as
primary for the numbering of the face corners ξi. The first face corner ξ0 connects to ξ′0 in the
secondary octree k′, which leads to the face orientation r = 0. From Table 3 we determine the per-
mutation number Q(R(0, 1), 0) = 0, selecting the first row of P, which is the identity permutation.
This is consistent with matching face corners ξi = ξ′i. For a maximum level b = 3 the level-2 octant
outlined in red has coordinates (0, 4, 2) in octree k and (8, 4, 2) in octree k′. (b) Face connection
with nonaligned coordinate axes. The face numbers seen from the left and right octrees are 2 and 4,
respectively. Hence the left octree k is selected as primary. The first primary face corner ξ0 connects
to ξ′2 in the secondary octree k′, which yields face orientation r = 2. The permutation number is
Q(R(2, 4), 2) = 4, and it is verified from the picture that ξi = ξ′P(4,i)

. The coordinates of the red

octant are (4,−2, 2) within octree k and (2, 2, 0) within octree k′.

Table 3

The matrices P, Q, and R encode the permutations of face corners between octree face neigh-
bors in three dimensions. For two associated faces f, f ′ ∈ {0, . . . , 5}, to find the face corner ξ′
within face f ′ of a given corner, based on its number ξ ∈ {0, . . . , 3} within face f and the orienta-
tion r ∈ {0, . . . , 3} between the two faces, the result is ξ′ = P(Q(R(f, f ′), r), ξ).

R =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 0 0 1
2 0 0 1 1 0
2 0 0 1 1 0
0 2 2 0 0 1
0 2 2 0 0 1
2 0 0 2 2 0

⎞
⎟⎟⎟⎟⎟⎠

Q =

⎛
⎝
1 2 5 6
0 3 4 7
0 4 3 7

⎞
⎠ P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3
0 2 1 3
1 0 3 2
1 3 0 2
2 0 3 1
2 3 0 1
3 1 2 0
3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

the 24 possible permutations occur, namely, 0, 2, 7, 10, 13, 16, 21, 23, which are listed
in ascending order as rows of P .

For each edge e of an octree k we store all connecting octrees k′ and their respec-
tive connecting edges e′ ∈ {0, . . . , 11} in the set ET k,e. Different octrees connecting
through this edge can be oriented in two ways against each other. If from both of their
perspectives the two corners of the edge have the same sequence within the octree
corners (and thus faces), the edge orientation is set to s = 0; for the opposite sequence
it is set to s = 1. While any number of octrees can connect through an edge, only the
relative edge orientation between any two octrees matters for our purposes; thus we
can choose an arbitrary octree on this edge as a reference. Octrees mapped by simple
translation always find edge orientation 0 between them. Edge connections are stored
as (k′, 12s+ e′) ∈ ET k,e.

Corner connections are identified by an arbitrary number of pairs of an octree k′



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1111

together with its respective corner c′ that is connected, with no need to specify an
orientation. Thus, for a corner c we store (k′, c′) ∈ CT k,c for the participating octrees.

The connectivity in two dimensions is described analogously. The two arraysNO
andNF encoding the face neighborhood are of dimensionK×4. The face orientation r
can only be either 0 or 1, with face connectivity valuesNF(k, f) = 4r+f ′ ∈ {0, . . . , 7}.
The face orientation r corresponds to one of the two possible permutations of (0, 1).
There are no edges; as in three dimensions, corners are not oriented.

2.3. Encoding of the parallel forest. An octant is uniquely specified by
the number k of the octree it is associated with, the integer coordinates x, y, z ∈
{0, . . . , 2b − 1} of its front lower left corner with respect to the octree coordinate sys-
tem, and its depth of refinement (level �, 0 ≤ � ≤ b). We group octants in per-octree
arrays; thus it is not necessary to store the octree number k with the octant. In each
array we store only the leaves of the octree, which is sometimes called “linear” octree
storage. The octant coordinates are stored as integers of a fixed number b of bits,
where the highest (leftmost) bit represents the first vertical level of the octree (count-
ing the root as level zero), the second highest bit the second level of the octree, and
so on. Bits below the level of the octant are set to 0. The level is stored additionally
to distinguish between octants located at identical coordinates, but of different sizes.
The edge length of a level-� octant in integer coordinates is h = 2b−�, normalizing the
integer length of an octree to 2b. The faces, edges, corners, and face corners of an
octant are enumerated in the same sequence that is used for the containing octree;
see section 2.2.

Based on the information described above, all octants can be ordered linearly.
To construct a unique index we prepend the octree number in binary notation to the
fixed-length binary Morton index of the octant, thus sorting octants first by octree,
and then by their Morton index [26]. The Morton index is composed of the bitwise-
interleaved coordinates m and the level �, with m defined as

(2.3) mdi+2 = zi, mdi+1 = yi, mdi+0 = xi, i = b− 1, . . . , 0

(the z-coordinate is present only in three dimensions). Thus m has db bits. To
better understand the nature of m we regroup it as a base-8 number (base-4 in two
dimensions),

(2.4) m = (nb−1, . . . , n1, n0), ni ∈ {0, . . . , 2d − 1}.

In three dimensions, each octal digit ni consists of 3 bits which select the branch of
the octree along which to descend from level b − i − 1 to level b − i. Each of the 8
possibilities corresponds to a specific child of the parent octant (see Algorithm 1 for
a routine to obtain the child identification of a given octant). Since by (2.3) these 3
bits are in the order zyx, the children are numbered from 0 for the front lower left
child, to 1 for the front lower right child, to 2 for the back lower left, and so on, with
4, . . . , 7 being the four children on top of the children 0, . . . , 3. This concept holds
recursively, and thus (m, �) encodes the complete path descending from the root of the
octree to any given octant at depth �. To ascend the octree toward the root, a parent
octant can be constructed from any of its children by Algorithm 2. The mapping to
z-order is bijective; thus (2.3) and (2.4) are invertible. The procedure to compute the
coordinates (x, y, z) from a Morton index (m, �) is given in Algorithm 3. In summary,
a total ordering among forest octants is given by sorting all octree-octant pairs (ki, oi)
first by octree k and second by the Morton index of o.



1112 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

Algorithm 1 Child id (octant o)

1: i← 0 ; h← 2b−o.� {the octant o has member variables o.�, o.x, o.y, o.z}
2: i← i | ((o.x & h) ? 1 : 0) {bitwise OR and AND operators are denoted by | and &}
3: i← i | ((o.y & h) ? 2 : 0)
4: i← i | ((o.z & h) ? 4 : 0) {remove this line for d = 2}
5: return i

Algorithm 2 Parent (octant o)

1: h← 2b−o.�

2: q.�← o.�− 1 {legal for only o.� > 0}
3: q.x← o.x & ¬h {bitwise negation operator is denoted by ¬}
4: q.y← o.y & ¬h
5: q.z ← o.z & ¬h {remove this line for d = 2}
6: return q

Algorithm 3 Octant (int � ≥ 0, int m ∈ {0, . . . , 2d� − 1})
1: o.x← 0 ; o.y ← 0 ; o.z ← 0
2: o.�← � ; h← 2b−�

3: for i = 0, . . . , �− 1 do
4: o.x← o.x | (h(m & 2di)/2(d−1)i)
5: o.y ← o.y | (h(m & 2di+1)/2(d−1)i+1)
6: o.z ← o.z | (h(m & 2di+2)/2(d−1)i+2) {remove this line for d = 2}
7: end for
8: return o

Due to the nature of the z-order, 2D and 3D forests follow a similar logic. The
encoding in two dimensions can be derived by removing the z coordinate and lines in
the algorithm that use it (such as line 4 in Algorithm 1, line 5 in Algorithm 2, and
line 6 in Algorithm 3). In the 2D case, using 2b bits for the interleaved coordinates
corresponds to base-4 numbers. This principle enables us to realize both 2D and
3D functionality nonredundantly within the same computer code using compile-time
definitions (this would be much harder in right-hand-rule ordering, for example). Even
one-dimensional code is a subset obtained by setting d = 1 and removing lines that
refer to either y or z. In principle, there is no limit for dimensions d ≥ 4 except
available memory. Currently one octant is stored using 24 bytes.

For parallel computation the forest of octrees is partitioned; i.e., each octant is
assigned to exactly one process (its owner). In general no copies are stored on other
processes, so that octant storage is fully distributed. We use the total ordering defined
by the global index (k,m, �) to assign contiguous ranges of octants to the processes,
in ascending order, denoting the number of octants owned by process p by Np. Since
the octants of one octree may be divided between multiple processes, and one process
may own parts of more than one octree, we also identify the first level-b descendant op
of the first local octant on the first local octree kp on process p. The parallel partition
of the forest is then completely defined by sharing the triples (Np, kp, op) between all
processes. In p4est this global information amounts to 32 bytes per process. From
(Np) each process can compute the cumulative octant counts Gp =

∑p−1
p′=0 Np′ .

This partitioning scheme allows empty processes p identified by Np = 0 and
(kp, op) = (kp+1, op+1). If a uniform partition is desired, the target number of octants
Np can be derived from the total number of octants N and the number of processes



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1113

P by the same formula as in [37],

(2.5) N (uniform)
p =

⌊
N(p+ 1)

P

⌋
−
⌊
Np

P

⌋
.

2.4. Operations on octants. The parallel algorithms described in this article
are built on various elementary operations on octants. We distinguish two main types:
octree-local and interoctree operations. Octree-local operations take place within
the same octree coordinate system (see Figure 2) and are generally accomplished by
arithmetic operations on the x, y, and z coordinates of the octree. Examples are
Algorithms 1, 2, and 3. We add another octree-local algorithm that, given an octant
o, computes the two smallest possible octants that fit into the first and last corners
of o, respectively. These computed octants are called first and last descendants of o
since they are connected to o by a path down the octree to the maximum level � = b;
see Algorithm 4. Further examples for octree-local operations are the computations
of the neighbor of an octant across a given face, edge, or corner. These operations
modify 1, 2, or 3 octant coordinates, respectively, and are displayed as Algorithms 5,
6, and 7.

Algorithm 4 Descendants (octant o)

1: q1.�← b ; q2.�← b ; h← 2b−o.� {assign maximum level b to descendants}
2: q1.x← o.x ; q2.x← o.x+ (h− 1)
3: q1.y ← o.y ; q2.y← o.y + (h− 1)
4: q1.z ← o.z ; q2.z ← o.z + (h− 1) {remove this line for d = 2}
5: return (q1, q2)

Algorithm 5 Face neighbor (octant o, int f ∈ {0, . . . , 2d− 1})
1: q.�← o.� ; h← 2b−o.�

2: q.x← o.x+ ((f = 0) ? − h : (f = 1) ? h : 0)
3: q.y← o.y + ((f = 2) ? − h : (f = 3) ? h : 0)
4: q.z ← o.z + ((f = 4) ? − h : (f = 5) ? h : 0) {remove this line for d = 2}
5: return q

Algorithm 6 Edge neighbor (octant o, int e ∈ {0, . . . , 11})
1: a0 ← e div 4 {algorithm defined for d = 3 only; div denotes integer division}
2: a1 ← (e < 4) ? 1 : 0
3: a2 ← (e < 8) ? 2 : 1 {identify coordinate directions a0, a1, a2 of edge e}
4: q.�← o.� ; h← 2b−o.�

5: q.xa0 ← o.xa0 {writing x0, x1, x2 for x, y, z}
6: q.xa1 ← o.xa1 + (2(e & 1)− 1)h
7: q.xa2 ← o.xa2 + ((e & 2)− 1)h
8: return q

Exterior octants. To pass neighborhood information across octree boundaries,
it will prove convenient to allow for octants that exist outside of the root octree
domain [0, 2b]d. These “exterior” octants are identified by coordinates xi < 0 or
xi ≥ 2b. They are created naturally by seeking a neighbor of an octant that is
touching the octree boundary, for example by invoking Algorithm 5 on an octant
o with o.x = 0 and requesting the neighbor across face f = 0. Similarly, exterior
octants across an edge or corner can be created by Algorithms 6 or 7, respectively.



1114 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

Algorithm 7 Corner neighbor (octant o, int c ∈ {0, . . . , 2d − 1})
1: q.�← o.� ; h← 2b−o.�

2: q.x← o.x+ (2(c & 1) − 1)h
3: q.y← o.y + ((c & 2) − 1)h
4: q.z ← o.z + ((c & 4)/2 − 1)h {remove this line for d = 2}
5: return q

We accommodate the extended range of coordinates by allocating two additional
high bits for the integers x, y, and z. Thus we can fit two level-30 quadrant or
three level-19 octant coordinates into a 64-bit integer. Due to the two-complement
representation of integers in practically all current hardware, where the highest digit
denotes the negated appropriate power of two, bitwise operations as used, for example,
in Algorithm 1 yield the correct result even for negative coordinates.

Interoctree face transformations. Octants inherit the coordinate system of the
octree they belong to. When two octrees that share a common face do not have
identically aligned coordinate systems, this also holds for octants on both sides of the
shared face. Thus, Algorithm 5 is no longer sufficient to shift an octant through the
face boundary from one octree into the other. In this case the shift operation needs
to be followed by a coordinate transformation that correctly places the shifted octant
within the target octree (see Figure 3 for two illustrated cases). We execute the face
transformation in three steps. First, the two coordinate axes tangential to the face
and the normal axis are identified for the originating octree as xa0 , xa1 , and xa2 .
Second, these axes are matched with a separate ordering of axes in the target octree
xb0 , xb1 , and xb2 . Third, both tangential axes can be aligned in parallel or antiparallel
coordinate directions; for the normal axis four different transformations are possible.
These considerations lead to Algorithm 8. It makes use of the interoctree connectivity
(see section 2.2 and Table 3) and is considerably more complex than the octree-local
algorithms that we have encountered so far. Due to the z-order convention much code
can be shared between d = 2 and d = 3.

Algorithm 8 Transform face (int k ∈ {0, . . . ,K − 1}, int f , octant o)

1: k′ ← NO(k, f) {neighbor octree}
2: f ′ ← NF(k, f) mod 2d {mod denotes the remainder of integer division}
3: r ← NF(k, f) div 2d {orientation r; div denotes integer division}
4: a2 ← f div 2 ; b2 ← f ′ div 2 {a2 and b2 are origin and target normal axis}
5: s′ ← 1− [(f & 1)⊕ (f ′ & 1)] {s′ is an arithmetic switch; ⊕ denotes exclusive OR}
6: if d = 2 then
7: a0 ← 1− a2 ; b0 ← 1− b2 ; s0 ← r
8: else
9: a0 ← (f < 2) ? 1 : 0 ; a1 ← (f < 4) ? 2 : 1 {a0, a1, a2 are coordinate axes of f}

10: u←R(0, f)⊕R(0, f ′)⊕ (r = 0 | r = 3) {flag for tangential axis ordering}
11: bu ← (f ′ < 2) ? 1 : 0 ; b1−u ← (f ′ < 4) ? 2 : 1 {b0, b1, b2 are coordinate axes of f ′}
12: v ← (R(f, f ′) = 1)
13: sv ← r & 1 ; s1−v ← r & 2 {s0, s1 are antiparallel flags for axes 0 and 1}
14: end if
15: q.�← o.� ; g ← 2b − 2b−o.�

16: q.xb0 ← (s0 = 0) ? o.xa0 : g − o.xa0 {writing x0, x1, x2 for x, y, z}
17: q.xb1 ← (s1 = 0) ? o.xa1 : g − o.xa1 {remove this line for d = 2}
18: q.xb2 ← (2(f ′ & 1)− 1)2b + s′g + (1− 2s′)o.xa2

19: return q

Interoctree edge transformations. Analogously to interoctree face transformations,
interoctree edge transformations are required when an edge neighbor created by Al-



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1115

gorithm 6 crosses an octree boundary. In the algorithms Balance, Ghost, and Nodes

described in section 3 the edge transformation is executed for all edge connections
that are not already covered by a face connection. A priori information on connec-
tions of an octree k through an edge e is provided in the set ET k,e introduced in
section 2.2. This set generally contains three redundant connections: the pair (k, e)
itself and up to two connections that are already covered by the faces adjacent to this
edge. We compute the latter with the function Lookup edge faces. It queries the
matrices S and T introduced in Table 1 and returns the edge faces fi, the neighboring
octree k′i, face f ′

i , and orientation ri, and the face corner numbers ξij on either side
of the edge, j ∈ {0, 1}. The nonredundant edge connections E ∈ EC, augmented
with the relative edge orientations and alignment of coordinate axes, are computed
in Algorithm 9. Given E, we can transform an octant into the coordinate system of
the edge-connected octree. This operation is performed in Algorithm 10. It uses an
additional flag to decide whether the octant should be placed on the connecting edge
either inside or just outside of the connecting octree. Choosing the outside option
creates an exterior octant.

Algorithm 9 Edge connections (int k, int e)

1: (fi, k
′
i, f

′
i , ri, ξij)← Lookup edge faces (k, e) ; EC ← ∅ {algorithm for d = 3}

2: for (k′, w′) ∈ ET k,e do
3: e′ ← w′ mod 12 {decode edge number}
4: if e′ = e and k′ = k then
5: s← w′ div 12 ; break loop {decode reference edge orientation s}
6: end if
7: end for
8: for (k′, w′) ∈ ET k,e do
9: e′ ← w′ mod 12 ; skip when e′ = e and k′ = k ; s′ ← s⊕ (w′ div 12)

10: for i ∈ {0, 1} do
11: if k′ = k′i then
12: ξ′0 ← P(Q(R(fi, f ′

i), ri), ξi0) ; ξ′1 ← P(Q(R(fi, f ′
i), ri), ξi1) {access face corners}

13: if ξ′0 = T (e′, f ′
i)s′ and ξ′1 = T (e′, f ′

i)1−s′ then
14: Skip (k′, e′) due to face adjacency
15: end if
16: end if
17: end for
18: b0 ← e′ div 4 ; b1 ← (e′ < 4) ? 1 : 0 ; b2 ← (e′ < 8) ? 2 : 1 {edge coordinate axes}
19: E ← (k′, e′, s′, {bi}) ; EC ← EC ∪ E {add nonredundant edge connection E}
20: end for
21: return EC

Algorithm 10 Transform edge (int e, connection E, octant o, bool inside)

1: (k′, e′, s′, {bi})← E ; a0 ← e div 4 {algorithm for d = 3}
2: q.�← o.� ; g ← 2b − 2b−o.�

3: h− ← (inside) ? 0 : −2b−o.� ; h+ ← (inside) ? g : 2b

4: q.xb0 ← s′g + (1 − 2s′)o.xa0 {transform edge-parallel coordinate direction}
5: q.xb1 ← (e′ & 1 = 0) ? h− : h+

6: q.xb2 ← (e′ & 2 = 0) ? h− : h+ {set remaining two coordinates}
7: return q

There are two reasons for the separation of Edge connection (Algorithm 9) and
Transform edge (Algorithm 10). First, the edge connections EC for a given octree
connectivity may be created at program startup or statically as extended lookup ta-
bles, thus providing the option of avoiding the computation of macroedge connections
at the cost of increased memory usage. Second, a macroedge connection can be reused



1116 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

to transform an arbitrary number of octants, which we exploit in several algorithms
in section 3.

Interoctree corner transformations. In most cases an interoctree corner connection
coincides with edge and face connections involving this corner. Algorithm 11 elim-
inates these redundant connections by calling the functions Lookup corner faces,
which makes use of Table 1, and Lookup corner edges, which uses Table 2. The
latter function determines sets of edge transformations EC by invoking Algorithm 9
and returns a flag that specifies the position of the corner on the edge. This infor-
mation is used to eliminate redundancy among the connections C ∈ CC computed
by Algorithm 11. These corner connections are used in Algorithm 12 to realize the
transformation of an octant into a corner-connected octree. Similar to the edge trans-
formation, it accepts a flag to decide on inside or outside placement of the octant
in the target octree. The separation of the algorithms Corner connections and
Transform corner is due to the same reasons outlined above for edges: to allow for
precomputation and to avoid repeated calculations for multiple transformed octants.

Algorithm 11 Corner connections (int k, int c)

1: (fi, k′i, f
′
i , ri, ξi)← Lookup corner faces (k, c) ; CC ← ∅

2: for (k′, c′) ∈ CT k,c do
3: for i ∈ {0, . . . , d− 1} do
4: if k′ = k′i then
5: ξ′ ← (d = 2) ? ξi ⊕ ri : P(Q(R(fi, f

′
i), ri), ξi) {access face corner}

6: if c′ = Vd(f ′
i , ξ

′) then
7: Skip (k′, c′) due to face adjacency
8: end if
9: end if

10: end for
11: for i ∈ {0, 1, 2} do
12: (EC, s)← Lookup corner edges (k, c, i) {loop applies to d = 3 exclusively}
13: for E ∈ EC do
14: if k′ = E.k′ and c′ = U(E.e′, s⊕ E.s′) then
15: Skip (k′, c′) due to edge adjacency
16: end if
17: end for
18: end for
19: C ← (k′, c′) ; CC ← CC ∪ C {add nonredundant corner connection C}
20: end for
21: return CC

Algorithm 12 Transform corner (int c, connection C, octant o, bool inside)

1: (k′, c′)← C {decode corner connection}
2: q.�← o.� ; g ← 2b − 2b−o.�

3: h− ← (inside) ? 0 : −2b−o.� ; h+ ← (inside) ? g : 2b

4: for i = 0, . . . , d− 1 do
5: q.xi ← (c′ & 2i = 0) ? h− : h+ {writing x0, x1, x2 for x, y, z}
6: end for
7: return q

The encoding of the connectivity between octrees on the macrolevel and the trans-
formations between neighboring octrees across faces, edges, and corners described
above provide the essential tools to transcend from the concept of one octree and a
logically cubic domain to a forest of arbitrarily connected octrees and more general
computational geometries. Using these interoctree transformations allows us to aug-
ment the octants from any given octree by octants from neighboring octrees within



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1117

the same coordinate system, greatly facilitating the creation of the higher-level forest-
of-octrees parallel algorithms described in section 3.

2.5. Determining octant process ownership. A critical building block for
parallel mesh algorithms is to determine the owner process of a given mesh primitive.
In octree-based meshing the space-filling curve can be used for this purpose. When
the global index gi of an octant is given, its owner can be found in logP steps by a
binary search in the array of cumulative octant sums Gp. When the coordinates and
associated octree of an interior octant are given, its owner can be found by binary
searching the tuples (kp, op) instead. The problem is harder for exterior octants since
they can be overlapping with multiple edge- or corner-connected octrees. As an ex-
ample, an octant that lies diagonally outside of an octree edge can be understood as
intersecting any of several octrees that are connected through this edge and can thus
have multiple owners. Here we use appropriate interoctree transformation as devel-
oped in section 2.4 and loop over the relevant edge- or corner-connecting octrees. We
detail these operations in Find owners (Algorithm 13). Assuming that all transfor-
mations are executed on O(1) and the number of edge and corner connections per
octree is bounded, it requires runtime O(logP ).

Algorithm 13 Find owners (int k, octant o)

1: B ← ∅ {initialize return buffer}
2: if o is outside of octree k across a corner c then
3: CC ← Corner connections (k, c) {nonredundant connections}
4: for C ∈ CC do
5: o′ ← Transform corner (C, o, 1)
6: Binary search in (kp, op) for owner process p′ of (C.k′, o′); add p′ to B
7: end for
8: else if d = 3 and o is outside of octree k across an edge e then
9: EC ← Edge connections (k, e) {nonredundant connections}

10: for E ∈ EC do
11: o′ ← Transform edge (e, E, o, 1)
12: Binary search in (kp, op) for owner process p′ of (E.k′, o′); add p′ to B
13: end for
14: else if o is outside of octree k across a face f connected to k′ then
15: o′ ← Transform face (k, f , o)
16: Binary search in (kp, op) for owner process p′ of (k′, o′); add p′ to B
17: else
18: Binary search in (kp, op) for owner process p′ of (k, o); add p′ to B
19: end if
20: return B

3. Scalable parallel algorithms. In this section we provide details on high-
level p4est algorithms that are designed to provide complete mesh management ca-
pabilities for, e.g., a parallel adaptive finite element simulation. These were briefly
motivated in section 2: New, Refine, Coarsen, Balance, Partition, Ghost, and
Nodes. The first three are process-local, while the latter four require interaction be-
tween processes and are significantly more complex. The algorithms can be called
any number of times and in any order, with the exception that Ghost requires a
Balance’d forest, and Nodes requires a prior execution of Ghost. The latter three
Balance, Ghost, and Nodes are the only ones that require interactions between neigh-
boring octants. These interactions can take place within the same octree or across an
octree boundary and consequently depend on the transformations developed above in
section 2. We conclude this section with the description of a parallel forest Checksum.



1118 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

3.1. Forest creation. We create a forest from a given interoctree connectivity
and a given minimum number of desired octants per process. This number can be as
low as 0, which creates only root-level octants and leaves some of the processes empty
when there are more processes than octrees. That number can also be chosen higher,
leading to some uniform initial refinement. In our applications, most often we use 0 or
1 for this number and increase the number of octants adaptively via calling Refine;
see below. Algorithm 14 details the creation of the initial forest. It refines all octrees
uniformly according to the minimal number of desired octants. Filling processes with
coarser octants where permitted by the parallel partition would be equally possible
(in fact, we have used this successfully in earlier versions of the code). The bottom-
up construction of octrees based on point sets as proposed in [34] can be emulated
efficiently by New followed by iterations of Refine (adaptive subdivision based on
the number of points per octant) and Partition (load-balance when necessary). New
creates the forest inO(Np) time and allows us to infer the parallel partition (Np, kp, op)
without communication.

Algorithm 14 New (int min per process)

1: �← �log2 �max{P min per process/K, 1}	 /d	 {compute minimum required level}
2: n← 2d� ; N ← nK {octants per octree; total octants}
3: gfirst ←

⌊
Np
P

⌋
; glast ←

⌊
N(p+1)

P

⌋
− 1 {global numbers of first and last local octant}

4: if gfirst > glast then
5: Tlocal ← ∅ ; stop. {this process has no octants}
6: end if
7: kp ← 
gfirst/n� ; klast ← 
glast/n� ; Tlocal ← (kp, . . . , klast) {determine local octrees}
8: for k ∈ Tlocal do
9: mfirst ← (k = kp) ? gfirst − nk : 0 {determine octant range within octree}

10: mlast ← (k = klast) ? glast − nk : n− 1
11: Ok ← ∅
12: for m ∈ {mfirst, . . . , mlast} do
13: Ok ← Ok ∪ Octant (�,m) {construct octant and add it to array}
14: end for
15: end for

3.2. Adaptive refinement and coarsening. A core feature of existing single-
octree codes and p4est is the ability to dynamically refine and coarsen a mesh. The
p4est algorithms Refine and Coarsen described here are designed to be invoked
from third-party application codes. They provide two modes of operation: nonrecur-
sive and recursive. Nonrecursive Refine replaces an octant with its eight children
but does not consider newly created children for refinement. Nonrecursive Coarsen

replaces eight octant siblings by their parent but does not investigate the role of the
newly created parent as a sibling. Many applications prefer this mode in order to in-
terpolate a numerical field to the new mesh more easily. Recursive mode, on the other
hand, is capable of radically changing the forest within one call, which is sometimes
advantageous for creation of a static or initial mesh according to physical criteria.

Both Refine and Coarsen (see Figure 4 and Algorithm 15) traverse the leaf
octants Ok for each local octree and modify the octant structure on the fly, thus
invalidating Np, which can be recomputed by a call to Allgather when needed.
Refine uses a list moved with the point of traversal to store octants until extra room
is created in the array. Coarsen uses a sliding window that encloses the growing
empty range in the array. During recursive coarsening the beginning of this window
may move backward, while the end always moves forward. Their runtime is O(Np).



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1119

o

q o

w

s s+ l

w + l + 2d

Fig. 4. Left: schematic operation of Refine. If the octant o is refined then it is popped from
the front of the list and its children are prepended, the first of which is now named o. Optionally
this is done recursively. If eventually o is not to be refined then the octant q is appended to the list
and o is removed and stored where q was stored previously, and the separator (red) and list pointers
are moved one step forward. Right: operation of Coarsen. Coarsening creates an empty range of
growing length l. The sliding window (blue) starting at w contains 2d octants which are tested for
being a valid octant family and being specified for coarsening. If this is true the octant o is replaced
by the parent of the family and the empty range is grown by 2d− 1. For recursive coarsening w and
s may move backward depending on the child number of o (see Algorithm 15).

Algorithm 15 Coarsen (bool recursive, callback Do coarsen)
1: for k ∈ Tlocal do
2: n← #Ok {number of octants in local octree}
3: w ← 0 ; C ← 2d {start and length of sliding window}
4: s← 1 ; l← 0 {start and length of empty range in array}
5: while w + C + l ≤ n do
6: c← n {set default c > w for comparison below}
7: if Is Family (w, s, l) and Do coarsen (k, w, s, l) then
8: Ok[w]← Parent (Ok[w]) ; c← Child id (Ok [w]) {replace first child with parent}
9: s← w + 1 ; l← l+ C − 1 {remove the remaining coarsened octants}

10: end if
11: if c ≤ w and recursive then
12: w ← w − c {move window backward}
13: else
14: w ← w + 1 {advance window}
15: if w = s and s+ l < n then
16: Ok[s]← Ok[s+ l] ; s← w + 1 {move one octant to start of empty range}
17: end if
18: end if
19: end while
20: Ok[s, . . . , n− l − 1]← Ok[s+ l, . . . , n− 1] {move octants to start of empty range}
21: #Ok ← n− l {shrink octant array}
22: end for

Both Refine and Coarsen do not change the parallel partition (kp, op), which is
an important invariant from an application perspective. This leaves the possibility
that a family of octants is prevented from coarsening when it is split between multiple
processes. This case can be addressed by an incremental repartitioning [30], which
has the same invariants as Partition and can in fact be included in that algorithm.

3.3. Parallel partition and load-balance. Parallel partitioning generally
refers to a redistribution of mesh primitives among processes without changing the
global mesh topology (i.e., the global number of primitives or their neighborhood
relations). The objective is most often to achieve load-balance (i.e., to equidistribute
the computational work uniformly among processes), which is necessary to ensure
parallel scalability of an application.

We provide such an operation via the Partition algorithm. It relies entirely
on the z-ordering of the forest, which implies that the relative order of octants with
respect to processes stays the same: for two octree-octant pairs (k1, o1) ≤ (k2, o2),
this implies that the first pair is assigned to a lower process than the second, or the



1120 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

same process, both before and after the execution of Partition. On the one hand,
this is a restriction in comparison to graph-based partitioning schemes, where mesh
primitives can be arbitrarily reordered. On the other hand, this additional structure
allows for a highly efficient parallel partitioning scheme which works extremely well
in practice (see the performance results in section 4).

While an equipartition by local octant counts is often sufficient for satisfactory
load-balance, some applications associate varying amounts of computational work
with the octants. An example are hp-adaptive finite element discretizations, where
each octant is interpreted as an element with a variable degree of approximation
and thus a variable number of mathematical unknowns to store and compute on.
This observation motivates a partition that distributes the work uniformly—not the
number of octants—leading to local octant counts that vary among processes. We
provide this capability by allowing for a user-specified weight function that returns
a nonnegative integer weight for each octant and creating a partition that is evenly
distributed by weight.

We realize the weighted partition in a two-step process. First, we compute the
target octant counts for each process based on the weights. Second, we determine the
new octree boundaries between processes and send the octants to their new owner
process. We call the latter algorithm Partition given since it is given a globally
shared array (Np) of target octant counts per process p. For the common case of
distributing the number of octants uniformly, this array can be computed according
to (2.5) without communication. Partition given is more complicated for a forest
than a single octree since the nonempty octrees can change on each process; otherwise
it is similar to existing single-octree algorithms and thus omitted here.

To create a partition where the octants may have different weights we proceed
as follows. Let Wp be the cumulative weight across all processes lower than and not
including p. This can be computed after communicating the process-local weight sums
and makes WP the global weight which needs to be divided evenly among processes.
We split WP into P ranges that are equal up to the remainder of integer division
(this is not a limitation in practice since we use 64-bit integers for the weights).
Each boundary between two equiweight ranges identifies one “cut” process that will
hold octants of only the higher-weight range. Each process p can determine the cut
processors (plow, . . . , phigh) that intersect its current range of octants as

(3.1) Sp =

{
p′

∣∣∣ Wp <

⌊
p′WP

P

⌋
≤ Wp+1

}
, plow = min

p′
Sp, phigh = max

p′
Sp,

which implies either Sp = ∅ or 0 < plow ≤ phigh ≤ P . This formula guarantees that
the cuts computed on different processes are contiguous and do not overlap. Each
process then examines the local cuts p′ ∈ {plow, . . . , phigh}, determines for each cut
the octant whose weight matches the end of a range, and sends its global octant index
to both p′ − 1 and p′. Partition is listed in Algorithm 16.

3.4. 2:1 balance of neighbor size relations. Many adaptive-mesh numerical
applications are built on the assumption that neighboring mesh elements are either of
the same size or at most half or twice as big. Refine and Coarsen generally destroy
this invariant, which necessitates a separate 2:1 Balance algorithm to reestablish it.
Our implementation combines the insulation layer and noniterative communication
proposed in [34] with the concept of exterior octants and interoctree transformations
as introduced earlier in this article. We implement full face, edge, and corner balance;
face-only and edge-only versions can be derived as a special case.



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1121

Algorithm 16 Partition (callback Do weight)

1: W [0]← 0 ; W [p+ 1]← 0 ; m← 0 {sum local weights; count local octants}
2: for k ∈ Tlocal do
3: for o ∈ Ok do
4: w[m]← Do weight (k, o) ; W [p+ 1]←W [p+ 1] + w[m] ; m← m+ 1 {local sum}
5: end for
6: end for
7: Allgather (W [1, . . . , P ]) {communicate weight sums shifted by 1}
8: for p′ ∈ {1, . . . , P} do
9: W [p′]←W [p′] +W [p′ − 1] {compute global cumulative weight sums}

10: end for
11: for i ∈ {0, . . . ,m − 1} do
12: w[i]← w[i] +W [p] {compute global cumulative weight for local octants}
13: end for
14: Determine cuts plow, phigh as in (3.1)
15: for p′ ∈ {plow, . . . , phigh} do
16: if p′ < P then
17: Binary search lowest i in array w such that w[i] ≥ 
p′WP /P � {guarantees 0 ≤ i < lp}
18: Send global index Gp + i+ 1 to process p′ {index of first octant that will be on p′}
19: end if
20: Send global index Gp + i+ 1 to process p′ − 1; if p′ = P instead send GP

21: end for
22: Receive ilow unless 
pWP /P � = 0 and ilow ← 0 {sender process is inferred from (3.1)}
23: Receive ihigh unless 
(p + 1)WP /P � = 0 and ihigh ← 0
24: Compute target local octant count N [p]← ihigh − ilow
25: Allgather (N) {communicate target octant counts}
26: Partition given (N) {execute parallel partition with given octant counts}

Our Balance process (see Algorithm 17) consists of prebalance, identification and
communication of insulation octants, and postbalance. The prebalance step referred
to as Balance octree executes 2:1 balance independently for each locally stored oc-
tree. Arbitrary single-octree algorithms can be used here; we choose a local-octree
version of Algorithm 8 in [34]. Having established balanced local octrees it remains
to correct imbalance across interprocess and interoctree boundaries. To this end we
traverse all octants on these boundaries and construct their extended insulation lay-
ers. The insulation layer of an octant is given by its 3d neighborhood; for the forest
we need to include exterior octants that reach outside of the root octree. The insula-
tion octants are transformed into their potential neighbor-octree coordinate systems
and the range of their process ownership is examined; a boundary octant is sent to
all possible owner processes covered by its insulation layer. The latter operation is
achieved by Balance schedule.

Once the insulation octants are sent, the receiving processes determine the
octants that fall into all foreign octants’ insulation layers and send those back when
they are small enough to case a subdivision. This is handled by Balance response

(Algorithm 18). We use the additional functions Effective edge octant and
Effective corner octant to replace a response octant with the largest octant
closest to the boundary that achieves an equivalent subdivision; this reduces overlap
in the postbalance step. The communication pattern in this schedule-response cycle
is asymmetric; hence we perform a global encoding of receiver ranges using an
Allgather operation on a small data set (in our case 50 integers per process). This
encoding may be avoided by a coarse-blocked partition at the cost of suboptimal
load-balance [34]; we found no need for this additional complication.

All received octants are integrated into the local octree storage which intro-
duces exterior octants and causes overlap due to multiple edge or corner connec-



1122 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

Algorithm 17 Balance

1: for k ∈ Tlocal do
2: Balance octree (k) {2:1-balance local octree k}
3: for o ∈ Ok do
4: for s ∈ Io do
5: if s is outside of octree k across a corner c then
6: CC ← Corner connections (k, c) {nonredundant connections}
7: for C ∈ CC do
8: o′ ← Transform corner (C, o, 0) {original octant lies outside of k′}
9: s′ ← Transform corner (C, s, 1) {insulation octant lies inside of k′}

10: Balance schedule (k, C.k′, o′, s′)
11: end for
12: else if d = 3 and s is outside of octree k across an edge e then
13: EC ← Edge connections (k, e) {nonredundant connections}
14: for E ∈ EC do
15: o′ ← Transform edge (e, E, o, 0) {original octant lies outside of k′}
16: s′ ← Transform edge (e, E, s, 1) {insulation octant lies inside of k′}
17: Balance schedule (k, E.k′, o′, s′)
18: end for
19: else if s is outside of octree k across a face f connected to k′ then
20: o′ ← Transform face (k, f , o) {original octant lies outside of k′}
21: s′ ← Transform face (k, f , s) {insulation octant lies inside of k′}
22: Balance schedule (k, k′, o′, s′)
23: else
24: Balance schedule (k, k, o, s) {insulation octant within same octree}
25: end if
26: end for
27: end for
28: end for
29: Determine communication pattern; sort and send scheduled insulation octants
30: for processes p′ sending insulation layer to p do
31: Receive insulation octree-octant pairs from p′ into array A
32: Balance response (p′, A) ; send response octree-octant pairs
33: end for
34: for processes p′ sending response to p do
35: Receive response octree-octant pairs from p′
36: end for
37: for k ∈ Tlocal do
38: Merge received insulation and response octants into matching octree k
39: Balance octree extended (k) {received octants may lie outside of the root octree}
40: end for

tions. The postbalance needs to take this into account; we denote this operation by
Balance octree extended. As a final step it culls all overlapping coarse octants and
those outside of the octree or process boundary to yield a nonoverlapping and globally
balanced forest. For the sake of brevity we omit several optimizations implemented
in p4est; for example, the case when a process does not receive any octants and
postbalance is omitted entirely. The cost of schedule-response computation and com-
munication scales with the size of the parallel and intertree boundary surfaces and is
dominated by the pre- and postbalance cost on the volume, O(Np logNp).

3.5. Creating the ghost layer. For certain applications using a forest of oc-
trees, such as building a finite element mesh (see section 3.6), it is useful to know which
foreign-process octants neighbor the local ones. The implementation in p4est is based
on Find owners (Algorithm 13, which handles all interoctree transformations) and de-
scribed in Algorithm 19. We prerequire a 2:1 neighborhood size relation for Ghost;
hence it is sufficient to communicate each process-boundary octant to the owners of
all its potential half-size neighbors. We construct these by variants of Algorithms 5,



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1123

Algorithm 18 Balance response (int p′, array A)

1: for (k, o) ∈ A do
2: k0 ← First local descendant (k) ; k1 ← Last local descendant (k)
3: for s ∈ Io, s inside of octree k do
4: (s0, s1)← Descendants (s) {find first and last smallest octants inside s}
5: if s1 < k0 or k1 < s then
6: Skip s since it lies outside of the octants on this octree and process
7: end if
8: Binary search for first octant q0 ∈ Ok with q0 ≥ s {do not use s0 here}
9: Binary search for last octant q1 ∈ Ok with q1 ≤ s1

10: if o is outside of octree k across a corner c then
11: q∗ ← Effective corner octant (s, q0, q1, c)
12: CC ← Corner connections (k, c) {nonredundant connections}
13: for C ∈ CC do
14: q′ ← Transform corner (C, q∗, 0)
15: Add (C.k′, q′) to send buffer for process p′ {q′ lies outside of octree C.k′}
16: end for
17: else
18: for q ∈ {q0, . . . , q1} ⊂ Ok do
19: if d = 3 and o is outside of octree k across an edge e then
20: q∗ ← Effective edge octant (s, q, e)
21: EC ← Edge connections (k, e) {nonredundant connections}
22: for E ∈ EC do
23: q′ ← Transform edge (e, E, q∗, 0)
24: Add (E.k′, q′) to send buffer for process p′ {q′ lies outside of octree E.k′}
25: end for
26: else if o is outside of octree k across a face f connected to k′ then
27: q′ ← Transform face (k, f , q)
28: Add (k′, q′) to send buffer for process p′ {q′ lies outside of octree k′}
29: else
30: Add (k, q) to send buffer for process p′ {q′ lies in the same octree k}
31: end if
32: end for
33: end if
34: end for
35: end for
36: Remove duplicates from send buffer to process p′

6, and 7. The ordered traversal of local boundary octants automatically arranges the
received octree-octant pairs in the correct sorted sequence which allows for fast binary
searches for ghost octants. Ghost is a useful major interface algorithm that provides
a third-party application with the complete parallel neighborhood information. This
reduces the communication pattern in the application to simple point-to-point trans-
fers of numerical information. Should more than one layer of ghost octants be desired,
they can be obtained with relative ease by extending Algorithm 19 for this purpose.

3.6. Globally unique node numbering. While Ghost is a useful interface
for applications that number their numerical unknowns internally, we provide the
algorithm Nodes for applications that associate unknowns with octant vertices exclu-
sively, such as trilinear finite element codes or visualization packages. For 2:1 balanced
adaptive meshes this is complicated by the existence of hanging nodes, which occur
on double-size neighbor faces or edges. Only nonhanging nodes are independent and
associated with unknowns (see Figure 5). Each independent node is assigned to one
owner process. The nodes are numbered globally in sequence of their owner processes.
When an independent node is on an octree boundary, it needs to be canonicalized
by transforming it into the coordinate system of the lowest participating octree. The
node is then subjected to the same z-order as the octants in this tree, and the own-



1124 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

Algorithm 19 Ghost

1: for k ∈ Tlocal do
2: for o ∈ Ok do
3: FN ← half-size possible face neighbors of o
4: EN ← half-size possible edge neighbors of o {remove this line for d = 2}
5: CN ← half-size possible corner neighbors of o
6: for o′ ∈ FN ∪ EN ∪ CN do
7: OP ← Find owners (k, o′) {transforms between octrees if necessary}
8: for p′ ∈ OP, p′ �= p do
9: Add (k, o) to send buffer for process p′

10: end for
11: end for
12: end for
13: end for
14: Send ghost octree-octant pairs
15: Receive ghost octree-octant pairs into sections of array G ordered by sending process
16: return G

k0 k1

x0

y0

x1

y1

o0, p0

o1, p0

o2, p1

o3, p1

o4, p2

0 1

2 3 4

5

6

7

8

9

a

0 1 2 3 4 p0

5 6 7 p1

8 9 p2

Fig. 5. Node numbering for a 2D example mesh on two octrees k0 and k1. Left: schematic
view of the forest consisting of five octants o0, . . . , o4 partitioned across three processes p0, p1,
p2 with octant counts (2, 2, 1). The boxed numbers indicate the globally unique numbers for the
independent nodes 0, . . . , 9. There is one hanging node a. The numbering sequence of octants and
nodes follows the z-order with respect to the octree coordinate axes xi, yi. Nodes are canonicalized;
i.e., when shared between multiple octrees they are assigned to the lowest-numbered octree (k0 in this
situation). Right: sharing information for independent nodes. One row is drawn for each process
containing the owned nodes including their global numbers and the shared nodes. The dependence
of shared nodes on their owner processes is indicated by vertical arrows. Due to the hanging node
a, node 1 is shared by p1 and node 3 by p2.

ership of the containing octant determines the owner process of the node.
Nodes is described in Algorithm 20. After identifying hanging node status and

determining the owner process of all local and boundary nodes, the Lp local inde-
pendent nodes are numbered. The globally unique numbering is then determined by
communicating the array Lp and adding the cumulative sum

∑p−1
p′ Lp′ to the local

node numbers. In the process of sending owned local node numbers to all sharing pro-
cesses we also attach the list of all sharers, which is necessary for the scatter/gather
operations in a numerical application; see Figure 5. Due to the binary searches in
both the local octant and ghost arrays the runtime of Nodes is O(Np logNp).

3.7. Parallel forest checksum. It is often helpful to compute a short forest
identifier that is unique with high probability, for example, for regression testing.
Hash functions or checksums can be used for this purpose. However, these often re-
quire a complete serial pass through the data, which precludes efficient parallelization.
An algorithm that does not suffer from this limitation is the Adler-32 checksum [17].
It includes the function adler32 combine, which computes the checksum of two com-
bined blocks of data from the individual checksums of the two data blocks and the data



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1125

Algorithm 20 Nodes (ghost array G)
1: for k ∈ Tlocal do
2: for o ∈ Ok, c̃← Child id (o) do
3: for c ∈ {0, . . . , 2d − 1} do
4: if c is center of parent face f and double-size face neighbor ∈ Olocal ∪G then
5: N(k, o, c)← face hanging

6: for ξ ∈ {0, . . . , 3}, c′ ← V3(f, ξ), c′ /∈ {c, c̃} do
7: N(k, o, c′)← edge hanging {remove this loop for d = 2}
8: end for
9: end if

10: if c is center of parent edge e and any double-size edge neighbor ∈ Olocal ∪G then
11: N(k, o, c)← edge hanging {remove this if-condition for d = 2}
12: end if
13: end for
14: Find independent nodes that hanging nodes depend on
15: end for
16: end for
17: Canonicalize and sort all Ilocal independent nodes; determine their owner processes
18: Number L[p] owned local independent nodes contiguously {L[p] ≤ Ip}
19: Allgather (L) {communicate number of owned nodes on all processes}
20: Determine communication pattern {same encoding as used in Balance, see section 3.4}
21: Send nonowned independent nodes to their owners {p is a sharer of nonowned nodes}
22: Receive nodes and identify senders as sharers for each owned independent node
23: For individual queried nodes send local node number and list of sharers to all sharers

length of the second in O(1) operations. We exploit this capability by first construct-
ing the local checksums in parallel on each process, passing the integer coordinates
x, y, z and the level � of all local octants in order to the adler32 function. Then we
execute one Gather operation of local checksums and data lengths and combine the
local checksums efficiently on process 0. An Allgather call could be used instead if
so desired. This parallel checksum is entirely integer-based and thus does not suffer
from roundoff errors. Moreover, it is independent of the parallel partition.

4. Numerical results. In this section we illustrate the variety of meshes that
can be created with p4est and demonstrate large-scale parallel scalability. We include
synthetic examples, where domain and refinement rules are chosen for instructive
purposes, and meshes created from geophysical simulations. For the latter, adaptive
mesh refinement is essential to resolve the multiscale features of the physical system,
while high parallel efficiency is needed due to the large number of unknowns occurring
in such simulations. We conduct weak and strong scaling studies and examine the
quality of the parallel partition in terms of parallel neighbor faces and processes.
Our results indicate that p4est performs well in terms of both absolute runtime and
overhead incurred due to parallelism.

4.1. Synthetic examples. We provide illustrations of both 2D and 3D forests
in Figure 6. In both cases, the initial refinement is created by the algorithm New

followed by a recursive invocation of Refine. Then Balance and Partition are
executed to ensure 2:1 neighbor size relations and a load-balanced parallel partition.
These examples demonstrate how periodicity is realized and show that octrees can
connect to each other in non-Cartesian configurations.

Weak scalability. We use the six-octree forest configuration shown on the right
of Figure 6 to study “weak” scalability (i.e., the problem size is proportional to the
number of processes) for a fractal-type recursive refinement. Using the observation
that an increase in the refinement level yields 8 times as many octants, we multiply the
process count by 8 for each increment in level. These computations are performed on



1126 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

Fig. 6. Examples of forest-of-octree configurations where color encodes the process number.
Left: 2D forest of five octrees that realize the periodic Möbius strip, here shown after initial calls to
New and Refine. Middle: the same forest after Balance and Partition. Right: 3D forest composed
of six cubes whose orientations are rotated against each other, with five octrees connecting through
the horizontal central axis, after calls to New, Refine, Balance, and Partition.

the Jaguar Cray XT5 supercomputer, which has 16 GB of memory per 12-core node.
We display the measured runtimes of the main p4est algorithms in Figure 7. The
diagram on the left-hand side shows runtime percentages and gives rise to the following
observation: The runtime of New, Refine, and Partition is negligible (Coarsen is not
used here but is as fast as Refine), and Balance and Nodes consume over 90% of the
total runtime. The diagram on the right-hand side of Figure 7 displays the absolute
runtimes of the two most expensive algorithms Balance and Nodes normalized by one
million octants per process. The runtimes rise mildly from roughly 6 seconds for 12
processes to between 8 and 9 seconds for 220,320 processes. Thus the parallel efficiency
is 65% for Balance and 72% for Nodes for an 18,360-fold increase in process count.

Scalability with the number of trees. We assess the performance impact of large
numbers of octrees by assembling a cubic domain from multiple trees that are then
Refine’d and Balance’d in turn. To obtain the results displayed in Figure 8, we com-
pare timings on the Ranger Sun/AMD supercomputer (which has 32GB of memory
on each 16-core node) for a fixed overall number of octants. We find that the influence
of the number of octrees on the runtime is rather weak and that they reach up to
several million octants. Moreover, instead of using one octree for a given subdomain,
multiple octrees with fewer octants each can even be beneficial due to improved cache
performance. In Figure 9 we display 2D and 3D example connectivities with tens of
thousands of octrees and demonstrate good scalability of Balance up to 4,096 cores
and several hundred million octants.

4.2. Parallel adaptive geophysical simulations. We discuss two examples
motivated by geophysical phenomena to further illustrate the performance of p4est.

The first geophysical application that we describe is the simulation of seismic
waves propagating through the earth. The numerical portion of the code (called
mangll [39]) is based on a discontinuous Galerkin discretization which passes infor-
mation exclusively through octant faces. Therefore, we use a face-only variant of
Ghost (Algorithm 19) to interface to mangll. To cover the solid sphere with a mesh
we combine 13 octrees into a forest as described in Figure 10.

Strong scalability. We create the globally wavelength-adapted spherical mesh by
iterative rounds of nonrecursive Refine, Partition, and Balance (see Figure 11). We
start with 13 root octants (one for each octree) and eventually reach a final octant



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1127

0

10

20

30

40

50

60

70

80

90

100

12 60 432 3444 27540 220320

P
er

ce
n
ta

g
e

o
f
ru

n
ti
m

e

Number of CPU cores

Partition Balance Ghost Nodes

0

2

4

6

8

10

12 60 432 3444 27540 220320

S
ec

o
n
d
s

p
er

(m
il
li
o
n

el
em

en
ts

/
co

re
)

Number of CPU cores

Balance Nodes

Fig. 7. “Weak” scaling results up to 220,320 processes on Jaguar. The refinement is defined
by choosing the same six-cube 3D connectivity as used on the right-hand side of Figure 6, and
recursively subdividing octants with child identifiers 0, 3, 5, and 6 while not exceeding four levels
of size difference in the forest. This leads to a fractal mesh structure. To scale from 12 to 220,320
processes the maximum refinement level is incremented by one while the number of processes is
multiplied by 8. Left: runtime is dominated by Balance and Nodes while Partition and Ghost

together take up less than 10% ( New and Refine are negligible and not shown). Right: performance
assessed by normalizing the time spent in the Balance and Nodes algorithms by the number of octants
per process which is held constant at approximately 2.3 million (ideal scaling would result in bars of
constant height). The largest mesh created contains over 5.13 × 1011 octants and is Balance’d in
21 seconds.

2D CPU cores
j 1 64 4,096
0 0.180 0.284 1.15
2 0.158 0.261 0.28
5 0.371 0.167 0.28
8 0.616 0.19

11 1.24

3D CPU cores
j 1 4,096
0 0.94 4.86
1 1.69 4.63
2 2.60 4.56
3 4.51 4.07
4 3.55
5 3.69
6 5.64
7 10.8

Fig. 8. Scalability with respect to large numbers of trees on Ranger. For each column we create
a uniform mesh of a certain level J (identified by the last filled entry). The composition of this mesh
differs for each row j: it is built of 2jd trees with 2(J−j)d octants each. Every octant is then refined
up to 4 levels in a fractal pattern shown in the left-hand picture. We list the run times in seconds
of a subsequent Balance call. The spread on 4,096 cores between 1 tree and over 4 million trees
in 2D ( 192× 106 quadrants) is 6.5, and that between 1 tree and 2 million trees in 3D ( 1.34× 109

octants) is 3.

number that depends on the earthquake frequency (e.g., 8.6×109 for 1 Hz). Since each
refinement increases the octant count by at most a factor of eight, it takes multiple
cycles to reach at least one octant per process for the larger parallel runs. Compared
to one recursive call of Balance, this process is likely more expensive but also more
conservative in maintaining a load-balanced partition between cycles. Due to the
multiple rounds and many empty processes, this is an aggressive test of the p4est

algorithms. “Strong” scalability for problems with three different frequencies is good
over a wide range of process counts.

Partition quality. We assess partition quality by measuring the number of inter-
process neighbor faces and process neighbor counts for an earthquake of frequency



1128 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

1

10

100

16 32 64 128 256 512 1024 2048 4096

S
ec

o
n
d
s

Number of CPU cores

2D connectivity (29,035 trees)
3D connectivity (51,823 trees)

Ideal scaling

Fig. 9. Complex 2D and 3D connectivities. The left picture shows a zoom around the front
tip of an airfoil with boundary-layer adaptation; this connectivity consists of 29,035 quadtrees. The
connectivity in the middle consists of 51,823 octrees. The diagram on the right shows “strong”
scaling of Balance on Ranger, resulting in 342 million quadrants for two dimensions and 264
million octants for three dimensions, respectively.

0.14 Hz. The results are shown in Table 4. The small ratio between maximum and
average counts indicates a well-balanced parallel partition. The number of neighbor
processes is essentially independent of the process counts. All of these metrics become
better instead of worse for increasing process counts, which lets us conclude that the
forest of octrees is an effective and reliable approach to large-scale partitioning.

A second geophysical application is implemented through the mantle convection
code Rhea; see Figure 12. It solves the Stokes equations either instantaneously or on a
dynamically evolving mesh. Earth’s mantle is a hollow sphere which we divide into six
spherical caps of four octrees each, creating a 24-octree forest. Rhea is based on a tri-
linear finite element discretization which requires face, edge, and corner connectivity
and uses parallel algebraic multigrid, which requires a global node numbering. Con-
sequently we interface Rhea to p4est via Nodes (Algorithm 20). We have successfully
scaled Rhea/p4est to 122,880 processes of Jaguar.

5. Conclusions. In this article we present new geometric and parallel algorithms
that enable dynamic adaptive mesh refinement and coarsening (AMR) on forest-of-
octree meshes in both two dimensions and three dimensions. We have encapsulated
these algorithms in the p4est software library, which is designed to extend the benefits
of scalable single-octree codes to more flexible geometries.

We introduce three key concepts as the basis of our algorithms. The first is an en-
coding of the connectivity relations between octrees that allows flexible configurations
of connected octrees, including 2D manifolds embedded in three dimensions (such as
the Möbius strip and manifolds of arbitrary genus) and geometries with mixed peri-
odic and nonperiodic boundary connectivity, such as solid and hollow spheres. The
second concept is exterior octants that exist in the coordinate system of an octree
but outside of its root domain, and transformations of both interior and exterior oc-
tants between octrees that are connected across faces, edges, or corners in arbitrary
relative orientations. Third, we create a total ordering of octants by connecting the
space-filling z-curves that exist separately in all octrees in the sequence of the octree
numbering, which enables fast load-balancing and determination of process ownership.

We provide both synthetic and simulation-driven examples and assess weak and
strong parallel scalability of our algorithms. All p4est routines scale well to the full
size of a Cray XT5 supercomputer with over 220,000 CPU cores. Our results indicate
that the transformations between octrees affect neither the quality of the parallel par-



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1129

Fig. 10. Left: Cut view through a spherical mesh that is adaptively refined around the source
location of an earthquake. The refinement inside the small region enclosing the source is designed
to match the local octant size to the wavelengths that are expected during an earthquake of frequency
0.05 Hz. The color encodes the shear modulus in the earth which is zero in the outer core (blue).
The forest consists of a center cube and six spherical caps around it to create the inner core (green)
and six more spherical caps to create outer core and mantle. The deformation of the mesh is
chosen such that the spherical boundary between outer core and mantle is mapped exactly by a
surface between level-3 octants. Right: Snapshot from an earthquake simulation where the mesh
is dynamically tracking the wave fronts. Both pictures show pronounced nonuniform refinement.
(Simulation performed using p4est via mangll [39].)

Table 4

Parallel neighbor face and process counts for a fixed-size earthquake simulation at 0.14 Hz. The
mesh contains 21 million octants. From low to high process counts the surface-to-volume ratio of
process partitions shrinks, which explains the reduction of neighbor faces per process with a factor
of 22/3. The average number of process face neighbors stays remarkably constant at 11.5 (the
theoretical optimum for a uniform mesh would be 6), which indicates good partition quality. For
both neighbor faces and processes the uniformity of the partition gets better with increasing process
counts, indicated by the shrinking maximum-to-average ratio.

#Processes
#Neighbor faces #Neighbor processes
avg max ratio avg max ratio

8160 1460 4858 3.32 11.3 37 3.21
16320 936 2659 2.84 11.4 29 2.52
32640 589 1445 2.45 11.4 29 2.52
65280 373 834 2.34 11.5 24 2.09

130560 237 490 2.07 11.5 25 2.17
224220 165 324 1.96 11.5 26 2.25

tition nor the performance of the code. We maintain small scale-independent numbers
of neighbors per process while scaling to 224,220 processes. We execute the 2:1 bal-
ance operation on over 5.13×1011 octants on 220,320 processes in less than 10 seconds
per million octants per process, or 21 seconds total. This capability for scalable AMR
on general geometries that can scale to contemporary petascale supercomputers is
allowing us to address previously intractable global mantle dynamics problems and
should prove to be equally beneficial for a large class of multiscale problems governed
by PDEs.

Nomenclature.
CT k,c Neighboring octrees at corner c of octree k
CC Computed nonredundant interoctree corner connections C ∈ CC
ET k,e Neighboring octrees at edge e of octree k
EC Computed nonredundant interoctree edge connections E ∈ EC



1130 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

1

10

100

10 100 1000 10000 100000

S
p
ee

d
u
p

fo
r

m
es

h
g
en

er
a
ti
o
n

Number of CPU cores

Ideal speedup
f = 0.2 Hz Ne = 69.5 × 10

6

f = 0.5 Hz Ne = 1.08 × 10
9

f = 1.0 Hz Ne = 8.61 × 10
9

#Refine #octants
0 13
1 55
2 433
3 3289
4 25465
5 200185
6 1587193
7 12640249
8 100892665
9 605554585

10 2857338721
11 8609009569

Fig. 11. Fixed-size (“strong”) scaling on Jaguar for the mesh generation process of an earth-
quake simulation where the mesh is refined throughout the globe to match the local wave speeds.
Left: Speedup for three different problem sizes induced by earthquake frequencies 0.2 Hz, 0.5 Hz, and
1 Hz (the octant number grows with the third power of the frequency). Right: The mesh generation
process for the largest run at 1 Hz creates 8.6 × 109 octants. The common starting point for all
frequencies is a macro mesh consisting of 13 root octants arranged as described in Figure 10 that
are then Refine’d, Partition’ed, and Balance’d iteratively. The process involves 11 calls to Refine

and Partition and 10 calls to Balance and yields a mesh that does not depend on the number of
processes. While for the 1 Hz meshing example the speedup is largest for 65,536 processes, we run
this example successfully on up to 220,320 processes, where only cycles 6 and onward have at least
one octant per process; this demonstrates why it is necessary to allow empty processes in p4est. For
220,320 processes the complete mesh generation still takes only 32 seconds.

Io Insulation layer of octant o
P Number of processes
p Index of local process (rank), p ∈ {0, . . . , P − 1}
Np Number of local octants on process p counting across all local octrees
Gp Global number of first octant on process p
Lp Global number of first independent node on process p
T All octrees
kp First nonempty octree on process p
op First level-b descendant op of first local octant on process p
klast Last nonempty octree on process p
Tlocal = (kp, . . . , klast) Nonempty process-local octrees
Ok Process-local octants in octree k
Olocal All process-local octants ∪kOk

Acknowledgments. The authors would like to thank Tobin Isaac for additional
debugging and for writing the “brick” connectivity used in Figure 8. We enjoyed
rewarding discussions with Rahul Sampath, Georg Stadler, and Tiankai Tu. We also
thank Georg Stadler for generating the plots used in Figure 12. We appreciate the
feedback provided by Wolfgang Bangerth and Timo Heister while interfacing deal.II

to p4est. The 2D and 3D connectivities used in Figure 9 are extracted from deal.II

and were originally created by Mike Anderson and Benjamin Kirk, respectively. The
authors thank the Texas Advanced Computing Center (TACC) for providing us with
access to the Ranger supercomputer under TeraGrid award MCA04N026, and the
National Center for Computational Science (NCCS) for early-user access to the Jaguar
Cray XT5 supercomputer.



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1131

Fig. 12. Exploded views of a mantle convection simulation. We split earth’s mantle into six
spherical caps of 2 × 2 octrees each (five of these caps are shown above). This creates a total of
24 octrees of an approximately uniform aspect ratio. Perturbations in the initial condition grow
over time into plumes of hot material (red) which rise to the top of the mantle. The mesh is
adapted frequently to track moving regions of high thermal gradients, which leads to sharply localized
refinement. From left to right we show snapshots at 395, 1000, and 1800 time steps. (Simulation
performed using p4est via Rhea [7]. Published under licence in Journal of Physics: Conference
Series by IOP Publishing Ltd.)

REFERENCES

[1] V. Akçelik, J. Bielak, G. Biros, I. Epanomeritakis, A. Fernandez, O. Ghattas, E. J.

Kim, J. Lopez, D. R. O’Hallaron, T. Tu, and J. Urbanic, High resolution forward
and inverse earthquake modeling on terascale computers, in SC ’03: Proceedings of the
ACM/IEEE International Conference for High Performance Computing, Networking, Stor-
age, and Analysis, ACM, New York, 2003.

[2] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data struc-
tures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Soft-
ware, to appear.

[3] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II—a general-purpose object-oriented
finite element library, ACM Trans. Math. Software, 33 (2007), article 24.

[4] B. K. Bergen, F. Hülsemann, and U. Rüde, Is 1.7×1010 unknowns the largest finite element
system that can be solved today?, in SC ’05: Proceedings of the ACM/IEEE International
Conference for High Performance Computing, Networking, Storage, and Analysis, ACM,
New York, 2005.

[5] M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential
equations, J. Comput. Phys., 53 (1984), pp. 484–512.

[6] G. L. Bryan, T. Abel, and M. L. Norman, Achieving extreme resolution in numerical cos-
mology using adaptive mesh refinement: Resolving primordial star formation, in SC ’01:
Proceedings of the ACM/IEEE International Conference for High Performance Computing,
Networking, Storage, and Analysis, ACM, New York, 2001.

[7] C. Burstedde, M. Burtscher, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox, ALPS:
A framework for parallel adaptive PDE solution, J. Phys. Conf. Ser., 180 (2009), 012009.

[8] C. Burstedde, O. Ghattas, M. Gurnis, E. Tan, T. Tu, G. Stadler, L. C. Wilcox, and

S. Zhong, Scalable adaptive mantle convection simulation on petascale supercomputers,
in SC ’08: Proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis, ACM, New York, 2008.

[9] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox, Towards adaptive mesh
PDE simulations on petascale computers, in Proceedings of Teragrid ’08, Las Vegas, NV,
2008.

[10] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox, Parallel scalable adjoint-
based adaptive solution for variable-viscosity Stokes flows, Comput. Methods Appl. Mech.
Engrg., 198 (2009), pp. 1691–1700.

[11] A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, G. Henry, P. MacNeice, K. Olson,

P. Ricker, R. Rosner, F. X. Timmes, H. M. Tufo, J. W. Truran, and M. Zingale,
High-performance reactive fluid flow simulations using adaptive mesh refinement on thou-
sands of processors, in SC ’00: Proceedings of the ACM/IEEE International Conference
for High Performance Computing, Networking, Storage, and Analysis, ACM, New York,
2000, pp. 56–56.



1132 C. BURSTEDDE, L. C. WILCOX, AND O. GHATTAS

[12] P. Colella, J. Bell, N. Keen, T. J. Ligocki, M. Lijewski, and B. Van Straalen, Perfor-
mance and scaling of locally-structured grid methods for partial differential equations, J.
Phys. Conf. Ser., 78 (2007), pp. 1–13.

[13] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco, J. Faik,

J. E. Flaherty, and L. G. Gervasio, New challenges in dynamic load balancing, Appl.
Numer. Math., 52 (2005), pp. 133–152.

[14] R. A. Finkel and J. L. Bentley, Quad trees A data structure for retrieval on composite keys,
Acta Inform., 4 (1974), pp. 1–9.

[15] J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H.

Ziantz, Adaptive local refinement with octree load balancing for the parallel solution of
three-dimensional conservation laws, J. Parallel and Distributed Computing, 47 (1997),
pp. 139–152.

[16] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, Cam-
bridge, UK, 1995.

[17] J.-L. Gailly and M. Adler, A massively spiffy yet delicately unobtrusive compression library,
http://zlib.net/.

[18] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel, and J. Shalf, The
Cactus framework and toolkit: Design and applications, in Vector and Parallel Processing—
VECPAR ’2002, 5th International Conference, Springer, New York, 2003.

[19] G. Karypis and V. Kumar, A parallel algorithm for multilevel graph partitioning and sparse
matrix ordering, J. Parallel and Distributed Computing, 48 (1998), pp. 71–95.

[20] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, libMesh: A C++ library for
parallel adaptive mesh refinement/coarsening simulations, Engineering with Computers,
22 (2006), pp. 237–254.

[21] A. Laszloffy, J. Long, and A. K. Patra, Simple data management, scheduling and solution
strategies for managing the irregularities in parallel adaptive hp finite element simulations,
Parallel Computing, 26 (2000), pp. 1765–1788.

[22] O. S. Lawlor, S. Chakravorty, T. L. Wilmarth, N. Choudhury, I. Dooley, G. Zheng,

and L. V. Kalé, ParFUM: A parallel framework for unstructured meshes for scalable
dynamic physics applications, Engineering with Computers, 22 (2006), pp. 215–235.

[23] J. Luitjens, B. Worthen, M. Berzins, and T. C. Henderson, Scalable parallel AMR for
the Uintah multiphysics code, in Petascale Computing Algorithms and Applications, D. A.
Bader, ed., Chapman and Hall/CRC, Boca Raton, FL, 2007.

[24] D. Meagher, Geometric modeling using octree encoding, Computer Graphics and Image Pro-
cessing, 19 (1982), pp. 129–147.

[25] R. J. Meyers, T. J. Tautges, and P. M. Tuchinsky, The hex-tet hex-dominant meshing
algorithm as implemented in CUBIT, in Proceedings of the 7th International Meshing
Roundtable, Sandia National Laboratory, Albuquerque, NM, 1998, pp. 151–158.

[26] G. M. Morton, A Computer Oriented Geodetic Data Base; and a New Technique in File
Sequencing, Technical report, IBM Ltd., Armonk, NY, 1966.

[27] C. D. Norton, J. Z. Lou, and T. A. Cwik, Status and directions for the pyramid paral-
lel unstructured amr library, in Proceedings of the 15th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2001, p. 120.

[28] M. Paszyński, D. Pardo, C. Torres-Verd́ın, L. Demkowicz, and V. Calo, A parallel
direct solver for the self-adaptive hp-finite element method, J. Parallel and Distributed
Computing, 70 (2010), pp. 270–281.

[29] S. Popinet, Gerris: A tree-based adaptive solver for the incompressible Euler equations in
complex geometries, J. Comput. Phys., 190 (2003), pp. 572–600.

[30] R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk, and G. Biros, Dendro: Parallel
algorithms for multigrid and AMR methods on 2:1 balanced octrees, in SC ’08: Proceedings
of the ACM/IEEE International Conference for High Performance Computing, Networking,
Storage, and Analysis, ACM, New York, 2008.

[31] R. S. Sampath and G. Biros, A parallel geometric multigrid method for finite elements on
octree meshes, SIAM J. Sci. Comput., 32 (2010), pp. 1361–1392.

[32] G. Stadler, M. Gurnis, C. Burstedde, L. C. Wilcox, L. Alisic, and O. Ghattas, The
dynamics of plate tectonics and mantle flow: From local to global scales, Science, 329
(2010), pp. 1033–1038.

[33] J. R. Stewart and H. C. Edwards, A framework approach for developing parallel adaptive
multiphysics applications, Finite Elem. Anal. Des., 40 (2004), pp. 1599–1617.

[34] H. Sundar, R. S. Sampath, and G. Biros, Bottom-up construction and 2:1 balance refinement
of linear octrees in parallel, SIAM J. Sci. Comput., 30 (2008), pp. 2675–2708.



p4est: PARALLEL AMR ON FORESTS OF OCTREES 1133

[35] H. Sundar, R. S. Sampath, S. S. Adavani, C. Davatzikos, and G. Biros, Low-constant paral-
lel algorithms for finite element simulations using linear octrees, in SC ’07: Proceedings of
the ACM/IEEE International Conference for High Performance Computing, Networking,
Storage, and Analysis, ACM, New York, 2007.

[36] H. Tropf and H. Herzog, Multidimensional range search in dynamically balanced trees, Ange-
wandte Informatik, 2 (1981), pp. 71–77.

[37] T. Tu, D. R. O’Hallaron, and O. Ghattas, Scalable parallel octree meshing for terascale
applications, in SC ’05: Proceedings of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage, and Analysis, ACM, New York, 2005.

[38] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L. Ma, and D. R.

O’Hallaron, From mesh generation to scientific visualization: An end-to-end approach
to parallel supercomputing, in Proceedings of SC2006, Tampa, FL, 2006.

[39] L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas, A high-order discontinuous
Galerkin method for wave propagation through coupled elastic-acoustic media, J. Comput.
Phys., 229 (2010), pp. 9373–9396.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


