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1 Introduction

This paper deals with the approximation of multivariate periodic functions. The approxi-
mant is constructed out of sampled function values along rank-1 lattices with M points and
generating vector z ∈ Zd given by

Λ(z,M) :=

{
j

M
z mod 1 : j = 0, . . . ,M − 1

}
. (1.1)

Since the 1950ies rank-1-lattices are widely used for the efficient numerical integration of d-
variate periodic functions via lattice rules, see [19, 24, 30, 5] and the references therein. Later
investigations showed that they are also suited for high-dimensional approximation problems,
cf. [32, 20, 21, 22, 17]. In this paper we consider the rate of convergence in the number of
lattice points M of the worst-case error with respect to periodic Sobolev spaces with bounded
mixed derivatives in L2. These classes are given by

Hαmix(Td) =
{
f ∈ L2(Td) : ‖f |Hαmix(Td)‖2 :=

∑
‖m‖∞≤α

‖Dmf‖22 <∞
}
, (1.2)

where α ∈ N denotes the mixed smoothness of the space. One of the main results of this
paper is the fact that for an arbitrary d-dimensional rank-s lattice with M nodes, 1 ≤ s ≤ d,
the worst-case error with respect to M can not get below cα,dM

−α/2. Compared to the so-far
best known sampling rates of N−α(logN)(d−1)(α+1/2), obtained on sparse grids [28, 36, 3]
with N points, the above mentioned “half rate” is far from being optimal. However, we
show that this “half rate” (with additional logarithmic factors) is present in any dimension
d ≥ 2 which makes it significantly better than sampling on the full tensor grid for d > 2
yielding the rate N−α/d. Additionally, the group structure of the rank-1 lattice nodes allows
for an efficient computation of the approximants using a single one-dimensional fast Fourier
transform, cf. [23, 1]. This is one of the main reasons why sampling along lattice nodes
attracted much interest recently, although the general idea is not new and dates back to the
1980s, see [32, 11].

We consider several approximation settings in this paper. At first, we measure the error
in Lq with 2 ≤ q ≤ ∞. In addition, we consider worst-case errors measured in isotropic
Sobolev spaces Hγ(Td) (defined as Hγ(Td) := H0,γ(Td) in (1.3) below) which includes the
energy-norm H1(Td) relevant for Galerkin approximation schemes. Multivariate functions
are taken from fractional (α ∈ R) Sobolev spaces Hαmix(Td) of mixed smoothness and even
more general hybrid type Sobolev spaces Hα,β(Td), introduced by Griebel and Knapek [9].
In fact, Yserentant [37] proved that eigenfunctions of the positive spectrum of the electronic
Schrödinger operators have a mixed type regularity. Even more, their regularity can be
described as a combination of mixed and isotropic (hybrid) smoothness

Hα,β(Td) =
{
f ∈ L2(Td) : ‖f |Hα,β(Td)‖2 :=

∑
‖m‖∞≤α

∑
‖n‖1≤β

‖Dm+nf‖22 <∞
}
. (1.3)

The norms in (1.2) and (1.3) can be rephrased as weighted `2-sums of Fourier coefficients
which is also the natural way to extend the spaces Hα,β(Td) to fractional parameters, see (2.1)
below. Additionally to the mentioned concepts of smoothness we consider in an little outlook
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for smoothness vector vectors α ∈ Nd0 Sobolev spaces with anisotropic mixed smoothness

Hαmix(Td) =
{
f ∈ L2(Td) : ‖f |Hαmix(Td)‖2 :=

∑
mi≤αi
i=1,...,d

‖Dmf‖22 <∞
}
. (1.4)

In order to quantitatively assess the quality of the proposed approximation we introduce
specifically tailored minimal worst-case errors with respect to the number M of used samples
and the function class Hα,β(Td) with min{α, α+ β} > 1/2 which ensures the embedding into
C(Td). To this end, we define the following sampling numbers for rank-1 lattice nodes

glatt1
M (Hα,β(Td), Y ) := inf

z∈Zd
SampΛ(z,M)(Hα,β(Td), Y ) , M ∈ N, (1.5)

as well as general (non-linear) sampling numbers

gM (Hα,β(Td), Y ) := inf
G

SampG(Hα,β(Td), Y ) , M ∈ N, (1.6)

for arbitrary sets of sampling nodes G := {x1, ...,xM} ⊂ Td, where we put

SampG(Hα,β(Td), Y ) := inf
A:CM→Y

sup
‖f |Hα,β(Td)‖≤1

∥∥∥f −A(f(xi)
)M
i=1

∥∥∥
Y

(1.7)

and Y ∈ {Lq(Td),Hγ(Td),Hγmix(Td) : 2 ≤ q ≤ ∞}. Here we allow either linear or non-linear

reconstruction operatorsA : CM → Y . One of the first upper bounds for glatt1
M (Hαmix(Td), L2(Td))

has been obtained by Temlyakov in [32] for the Korobov lattice, which represents a rank-1
lattice with a generating vector a = (1, a, a2, . . . , ad−1) for some integer a. He obtained the
estimate

SampΛ(a,M)(Hαmix(Td), L2(Td)) .M−α/2(logM)(d−1)(α/2+1/2). (1.8)

There are further results that imply upper bounds for glatt1
M (Hαmix(Td), L2(Td)) in [20]. Com-

paring the main error rates denoted by the number of lattice points M therein, it behaves
like M−(α−λ)/2 for any λ > 0. In [22] the rank-1 lattice sampling error measured in L∞(Td)
is considered. Here the authors obtain the main rate M−(α−1/2−λ)/2 for every λ > 0. In [16]
the technique used by Temlyakov [32] is expanded to model spaces Hα,β(Td) with β < 0 and
α+ β > 1/2. Here the authors obtain the upper bound

glatt1
M (Hα,β(Td), L2(Td)) .M−(α+β)/2

without any further logarithmic dependence. As a benchmark for results on glatt1
M (Hα,β(Td), Y )

we use results on linear sampling numbers

glin
M (Hα,β(Td), Y ) := inf

G:={x1,...,xM}⊂Td
inf

L:CM→Y
linear

sup
‖f |Hα,β(Td)‖≤1

∥∥f − L(f(xi)
)M
i=1

∥∥
Y
.

In special cases the asymptotic behavior of these numbers is well studied up to some prominent
logarithmic gaps (cf. 3rd column in Table 1.1, 1.2 and 1.3). For an overview we refer to [3] and
the references therein. Additionally, let us mention the work of Temlyakov [35, 34], Griebel
et al. [2, 8, 9], Dinh [6, 7, 3] , Sickel [26, 27, 28, 29, 3], Ullrich [28, 36, 29, 3] which are very
close to the setting studied in the present paper. Upper bounds for gM (Hα,β(Td),Hβ(Td))
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are obtained using algorithms based on (energy-norm based) sparse grid constructions with
sampling points taken for instance from

G(m) :=
{( `1

2j1
, . . . ,

`d
2jd

)
: 0 ≤ `s ≤ 2js − 1, s = 1, . . . , d, ‖j‖1 = m

}
.

In the present paper we extend methods from [15, 17] to obtain sharp bounds (up to
logarithmic factors) for glatt1

M (Hα,β(Td), Hγ(Td)), which show in particular that even non-
linear reconstruction maps can not get below cα,β,γ,dM

−(α+β−γ)/2. The upper bounds are
mainly based on the concept of reconstructing rank-1 lattices [13, Ch. 3] constructed via
the component–by–component (CBC) strategy [31] therein. Similar strategies have already
proved useful for numerical integration, see [31, 4, 5]. The basic idea can be shortly described
as build a generating vector z component-wise by iteratively increasing the dimension of the
index set for that a reproduction property should hold. In a wider sense CBC strategies were
also applied to minimize L∞(Td) and L2(Td) rank-1 lattice sampling approximation errors in
[22, 20].
Contribution and main results. The first main contribution of the present paper is the
lower bound

M−(α+β−γ)/2 . glatt1
M (Hα,β(Td), Y ) for Y ∈ {L2(T) = H0(Td),Hγ(Td),Hγmix(Td)}

and min{α, α + β} > γ ≥ 0. In the cases Y ∈ {L2(Td),Hγmix(Td),Hγ(Td)} and α + β >
max{γ, 1/2} with β ≤ 0 and γ ≥ 0, the upper bounds on the rank-1 lattice sampling rates
are identical to the lower bounds up to logarithmic factors, cf. Sections 4, 5. Compared to
sparse grids, the following chain of inequalities holds true

gM (Hα,β(Td), Y ) .M−(α+β−γ) log(d−1)cM �M−(α+β−γ)/2 . glatt1
M (Hα,β(Td), Y ),

Y glatt1
M (Hαmix(Td), Y ) glin

M (Hαmix(Td), Y )

L2(Td) .M−
α
2 (logM)

d−2
2
α+ d−1

2 .M−α(logM)(d−1)(α+ 1
2

)

(Theorem 4.4) [3, Theorem 6.10], sparse grid

Lq(Td) .M−
α−( 12−

1
q )

2 (logM)
d−2
2

(α−( 1
2
− 1
q

))+ d−1
2 �M−(α−( 1

2
− 1
q

))
(logM)

(d−1)(α−( 1
2
− 1
q

))

(Proposition 4.7) [3, Theorem 6.10], sparse grid

L∞(Td) .M−
α− 1

2
2 (logM)

d−2
2

(α− 1
2

)+ d−1
2 �M−α+ 1

2 (logM)(d−1)α

(Proposition 4.9) [3, Theorem 6.10], sparse grid

Hγ(Td) .M−
α−γ
2 (logM)

d−2
2

(α−γ)+ d−1
2 �M−(α−γ)

(Proposition 4.6) [3, Theorem 6.7], energy sparse grid

Hγmix(Td) .M−
α−γ
2 (logM)

d−2
2

(α−γ)+ d−1
2 �M−(α−γ)(logM)(d−1)(α−γ)

(Theorem 4.4) [3, Theorem 6.10], sparse grid

Table 1.1: Upper bounds of sampling numbers in the setting Hαmix(Td) → Y for different
sampling methods. Smoothness parameters are chosen from α > max{γ, 1

2}, γ > 0,

and 2 < q <∞. The upper bounds on glatt1
M are realized by the CBC rank-1 lattice.
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Y glatt1
M (Hα,β(Td), Y ) glin

M (Hα,β(Td), Y )

L2(Td) .M−
α+β
2 �M−(α+β)

[16, Theorem 4.7] [3, Theorem 6.10]

Lq(Td) .M−
α−( 12−

1
q )+β

2 (logM)
d−2
2

(α−( 1
2
− 1
q

)+β) .M
−(α−( 1

2
− 1
q

)+β)

(Proposition 4.7) [3*]

L∞(Td) .M−
α+β− 1

2
2 .M−(α+β)+ 1

2

(Proposition 4.9) [3*]

Hγ(Td) .M−
α+β−γ

2 (logM)
d−2
2

(α+β−γ) �M−(α+β−γ)

(Proposition 4.6) [3, Theorem 6.7]

Hγmix(Td) .M−
α+β−γ

2 (logM)
d−2
2

(α+β−γ) �M−(α+β−γ)

(Theorem 4.4) [3*]

Table 1.2: Upper bounds for sampling numbers for different sampling methods. Smoothness
parameters are chosen from β < 0, α + β > max{γ, 1

2}, γ > 0, and 2 < q < ∞.
Best known bounds based on energy sparse grid sampling. References marked
with ∗ means that the result is not stated there explicitly but follows with the
same method therein.

where c ≥ 0 is some constant that depends on α, β, γ. That means for these target Hilbert
spaces we show that each linear or even non-linear algorithm using function evaluations along
rank-1 lattices of size M can not beat the half main rate compared to linear sparse grid sam-
pling approximation. The columns in Table 1.1 and 1.2 are headlined with glatt1

M (Hα,β(Td), Y )
and present the upper bounds on the sampling rates in various settings for sampling along re-
constructing rank-1 lattices. Table 1.1 deals with the model space Hαmix(Td), whereas in Table
1.2 model spaces Hα,β(Td) with negative isotropic smoothness parameter β are considered.

The corresponding L2(Td) error estimate in the first table improves on the result obtained
by Temlyakov in [32] by a logarithmic factor (logM)

α
2 . In contrast to the rank-1 lattices

constructed by the CBC strategy, the considerations by Temlyakov are based on rank-1 lattices
of Korobov type. For our method the crucial property of the used rank-1 lattice sampling
scheme is the reconstruction property (2.5). In order to construct such rank-1 lattices, one
may use the CBC strategy [13, Tab. 3.1]. Additionally, in case d = 2 the Fibonacci lattice
fulfills such a property. In both of these cases we obtain the improved estimates as shown in
Table 1.3. From the point of error estimates the case d = 2 represents an interesting special
case. We have sharp bounds and no logarithmic dependencies here, except in the case where
we measure the error in a space with mixed regularity. In the outlook on function spaces
Hαmix(Td) with anisotropic mixed smoothness we consider smoothness vectors α ∈ Rd with
first µ smallest smoothness directions, i.e.

1

2
< α1 = . . . = αµ < αµ+1 ≤ . . . ≤ αd.

Here we show for the L∞ approximation error the bound

glatt1
M (Hαmix(Td), L∞(Td)) .M−(α1− 1

2
)/2(logM)

µ−1
2

(α1+ 1
2

).

5



Y glatt1
M (Hαmix(T2), Y ) glin

M (Hαmix(T2), Y )

L2(T2) �M−
α
2 .M−α(logM)α+ 1

2

(Theorem 5.3) [3, Theorem 6.10], sparse grid

L∞(T2) .M−
α− 1

2
2 �M−α+ 1

2 (logM)α

(Proposition 5.6) [3, Theorem 6.10], sparse grid

Hγ(T2) �M−
α−γ
2 �M−(α−γ)

(Theorem 5.3) [3, Theorem 6.7], energy sparse grid

Hγmix(T2) .M−
α−γ
2 (logM)

1
2 �M−(α−γ)(logM)α−γ

(Remark 5.4) [3, Theorem 6.10], sparse grid

Table 1.3: Upper bounds for sampling rates for different sampling methods. Smoothness
parameters are chosen from α > 1

2 , α > γ > 0. The upper bounds for glatt1
M are

realized either by the Fibonacci or CBC-generated lattice.

That means the exponent of the logarithm depends only on µ < d instead of d. Similar
effects are also known for general linear approximation and sparse grid sampling, cf. [7, 33].
Notation. As usual, N denotes the natural numbers, N0 the non-negative integers, Z the
integers and R the real numbers. With T we denote the torus represented by the interval
[0, 1). The letter d is always reserved for the dimension in Z, R, N, and T. For 0 < p ≤ ∞
and x ∈ Rd we denote ‖x‖p = (

∑d
i=1 |xi|p)1/p with the usual modification for p = ∞. The

norm of an element x ∈ X is denoted by ‖x|X‖. If X and Y are two Banach spaces, the norm
of an operator A : X → Y will be denoted by ‖A|X → Y ‖. The symbol X ↪→ Y indicates
that there is a continuous embedding from X into Y . The relation an . bn means that there
is a constant c > 0 independent of the context relevant parameters such that an ≤ c bn for all
n belonging to a certain subset of N, often N itself. We write an � bn if an . bn and bn . an
holds.

2 Definitions and prerequisites

Using the well known fact that decay properties of Fourier coefficients of a periodic function
f can be rephrased in smoothness properties of f motivates to define the weighted Hilbert
spaces

Hα,β(Td) :=

f ∈ L2(Td) : ‖f |Hα,β(Td)‖2 :=
∑
k∈Zd

|f̂k|2(1 + ‖k‖22)β
d∏
s=1

(1 + |ks|2)α <∞

 ,

(2.1)

where α, β ∈ R, min{α, α+ β} > 0. It is easy to show that for integer α, β ∈ N0 these spaces
coincide with the spaces defined in (1.3). Furthermore in case α = 0 and β ≥ 0 these spaces
coincide with isotropic Sobolev spaces, therefore we use the definition Hβ(Td) := H0,β(Td).
For α ≥ 0 and β = 0 the spaces Hα,0(Td) coincide with Hαmix(Td), i.e. the Sobolev spaces
of dominating mixed smoothness, and we use the definition Hαmix(Td) := Hα,0(Td). Since we
want to deal with sampling, we are interested in continuous functions.
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Lemma 2.1. Let α, β ∈ R with min{α, α+ β} > 1
2 . Then

Hα,β(Td) ↪→ C(Td).

Proof. We refer to [3, Theorem 2.9].

The Fourier partial sum of a function f ∈ L1(Td) with respect to the frequency index set
I ⊂ Zd, |I| <∞, is defined by

SIf :=
∑
k∈I

f̂ke2πik·◦,

where

f̂k :=

∫
Td
f(x)e−2πik·xdx (2.2)

are the usual Fourier coefficients of f .
We approximate the Fourier coefficients f̂k, k ∈ I, based on sampling values taken at the

nodes of a rank-1 lattice

Λ(z,M) :=

{
j

M
z mod 1 : j = 0, . . . ,M − 1

}
⊂ Td,

where z ∈ Zd is the generating vector and M ∈ N is the lattice size. In particular, we apply
the quasi-Monte Carlo rule defined by the rank-1 lattice Λ(z,M) on the integrand in (2.2),
i.e.,

f̂
Λ(z,M)
k :=

1

M

M−1∑
j=0

f
( j
M
z
)

e−2πi j
M
k·z.

Accordingly, we define the rank-1 lattice sampling operator S
Λ(z,M)
I by

S
Λ(z,M)
I f :=

∑
k∈I

f̂
Λ(z,M)
k e2πik·◦. (2.3)

We call a rank-1 lattice Λ(z,M) reconstructing rank-1 lattice for the frequency index set

I ⊂ Zd, |I| < ∞, if the sampling operator S
Λ(z,M)
I reproduces all trigonometric polynomials

with frequencies supported on I, i.e., S
Λ(z,M)
I p = p holds for all trigonometric polynomials

p ∈ ΠI := span{e2πik·◦ : k ∈ I}. (2.4)

The condition

k1 · z 6≡ k2 · z (mod M) for all k1,k2 ∈ I, k1 6= k2, (2.5)

has to be fulfilled in order to guarantee that Λ(z,M) is a reconstructing rank-1 lattice for
the frequency index set I. One can show, that the condition in (2.5) is not only sufficient but
also necessary. In the following sections, we frequently use the so-called difference set D(I)
of a frequency index set I ⊂ Zd, |I| <∞,

D(I) :=
{
k ∈ Zd : k = h1 − h2, h1,h2 ∈ I

}
.
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Figure 2.1: H2,0
4 and J2,0.5

20

This definition allows for the reformulation of (2.5) in terms of the difference set D(I), i.e.,

k · z 6≡ 0 (mod M) for all k ∈ D(I) \ {0}. (2.6)

Furthermore, we define the dual lattice

Λ(z,M)⊥ := {h ∈ Zd : h · z ≡ 0 (mod M)}

of the rank-1 lattice Λ(z,M). We use this definition in order to characterize the reconstruction
property of a rank-1 lattice Λ(z,M) for a frequency index set I. A rank-1 lattice Λ(z,M) is
a reconstructing rank-1 lattice for the frequency index set I, 1 ≤ |I| <∞, iff

Λ(z,M)⊥ ∩ D(I) = {0} (2.7)

holds. This means the conditions (2.5), (2.6) and (2.7) are equivalent, see also [14]. In order
to approximate functions f ∈ Hα,β(Td) using trigonometric polynomials, we have to carefully
choose the spaces ΠI (cf. (2.4)) of these trigonometric polynomials. Clearly, the spaces ΠI are
described by the corresponding frequency index set I. For technical reasons, we use so-called
generalized dyadic hyperbolic crosses,

I = Hd,T
R :=

⋃
j∈Jd,TR

Qj , (2.8)

cf. Figure 2.1, where R ≥ 1 denotes the refinement, T ∈ [0, 1) is an additional parameter,

Jd,TR := {j ∈ Nd0 : ‖j‖1 − T‖j‖∞ ≤ (1− T )R+ d− 1},

and Qj :=×d
s=1Qjs are sets of tensorized dyadic intervals

Qj :=

{
{−1, 0, 1} for j = 0,

([−2j ,−2j−1 − 1] ∪ [2j−1 + 1, 2j ]) ∩ Z for j > 0,
(2.9)

cf. [18].
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Lemma 2.2. Let the dimension d ∈ N, the parameter T ∈ [0, 1), and the refinement R ≥ 1,

be given. Then, we estimate the cardinality of the index set Hd,T
R by

|Hd,T
R | �

{
2RRd−1 for T = 0,

2R for 0 < T < 1.

Proof. The assertion for the upper bound follows directly from [9, Lemma 4.2]. For a proof
including the lower bound we refer to [3, Lemma 6.6].

Having fixed the index set I = Hd,T
R an important question is the existence of a reproducing

lattice for it. If there is such a lattice, out of how many points does it consist? Can we
explicitly construct it? The following lemma answers these questions.

Lemma 2.3. Let the parameters T ∈ [0, 1), R ≥ 1, and the dimension d ∈ N, d ≥ 2, be

given. Then, there exists a reconstructing rank-1 lattice Λ(z,M) for Hd,T
R which fulfills

22R−2 ≤M .

{
22R for T > 0,

22RRd−2 for T = 0.

Moreover, each reconstructing rank-1 lattice Λ(z,M) for Hd,T
R fulfills the lower bound.

Proof. For T = 0, a detailed proof of the bounds can be found in [12]. In the case T ∈ (0, 1),
one proves the lower bound using the same way as used for T = 0. The corresponding upper
bound follows directly from [14, Cor. 1] and Hd,T

R ⊂ [−|Hd,T
R |, |H

d,T
R |]d and |Hd,T

R | . 2R.

A lattice fulfilling these properties can be explicitly constructed using a component-by-
component (CBC) optimization strategy for the generating vector z. For more details on
that algorithm we refer to [13, Ch. 3].

3 Lower bounds and non-optimality

In this chapter we study lower bounds for the rank-1 lattice sampling numbers
glatt1
M (Hα,β(Td),Hγ(Td)) and glatt1

M (Hα,β(Td),Hγmix(Td)). At first we show, that each rank-
1 lattice Λ(z,M), z ∈ Zd, d ≥ 2, and M ∈ N, has at least one aliasing pair of frequency
indices k1,k2 within the two-dimensional axis cross

Xd√
M

:= {h ∈ Z2 × {0} × . . .× {0}︸ ︷︷ ︸
d−2 times

: ‖h‖1 = ‖h‖∞ ≤
√
M}.

For illustration, we depict X3
8 in Figure 3.1a. We can even show a more general result.

Lemma 3.1. Let X := {xj ∈ Td : j = 0, . . . ,M − 1}, d ≥ 2, be a sampling set of cardinality
|X | = M . In addition, we assume that

M−1∑
j=0

e2πik·xj ∈ {0,M} for all k ∈ P d√
M

:= {−
⌊√

M
⌋
, . . . ,

⌊√
M
⌋
}2 × {0} × . . .× {0}︸ ︷︷ ︸

d−2 times

. (3.1)

Then there exist at least two distinct indices k1,k2 ∈ Xd√
M

within the axis cross Xd√
M

such

that e2πik1·xj = e2πik2·xj for all j = 0, . . . ,M − 1.
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Proof. First, we assume

M−1∑
j=0

e2πih·xj = 0 for all h ∈ P d√
M
\ {0}, (3.2)

cf. Figure 3.1b for an illustration of the index set. Consequently, for all h1,h2 ∈ P̃ d√
M

:=

{0, . . . ,
⌊√

M
⌋
}2 × {0} × . . .× {0}︸ ︷︷ ︸

d−2 times

we achieve h2 − h1 ∈ P d√
M

and

M−1∑
j=0

e2πi(h2−h1)·xj =

{
M for h2 − h1 = 0

0 otherwise.

In matrix vector notation this means

A∗A = MI,

where the matrix A =
(

e2πih·xj
)
j=0,...,M−1,h∈P̃ d√

M

∈ CM×(b
√
Mc+1)

2

must have full column

rank. However, this is not possible due to the inequality M <
(⌊√

M
⌋

+ 1
)2

. Thus, the

assumption given in (3.2) does not hold in any case.
Accordingly, we consider the case where

∑M−1
j=0 e2πih′·xj = M for at least one h′ ∈ P d√

M
\{0}.

Consequently, we observe e2πih′·xj = 1 for all j = 0, . . . ,M−1. Then, for the frequency indices
k1 = (h′1, 0 . . . , 0)> ∈ Xd√

M
and k2 = (0,−h′2, 0 . . . , 0)> ∈ Xd√

M
, the equalities e2πik1·xj =

e2πik2·xj , j = 0, . . . ,M − 1, hold.

−8

0

8 −8

0

8−4

0

4

(a) X3
8

−8

0

8 −8

0

8−4

0

4

(b) P 2
8 \ {0}

Figure 3.1: Axis cross and subset of the difference set of the corresponding axis cross.

As a consequence of the last considerations, we know that for each d-dimensional rank-1
lattice of size M , d ≥ 2, there is at least one pair k1,k2 ∈ Xd

b
√
Mc = Xd√

M
of frequencies

within the two-dimensional axis cross of size
√
M fulfilling

k1 · z ≡ k2 · z (mod M).
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We call such a pair aliasing pair. As a consequence, we estimate the error of rank-1 lattice
sampling operators from below as follows.

Theorem 3.2. Let the smoothness parameters α, β, γ ∈ R, α+ β > γ ≥ 0. Then, we obtain

glatt1
M (Hα,β(Td),Hγ(Td)) ≥ 2−(α+β−γ+1)/2M−(α+β−γ)/2 (3.3)

and

glatt1
M (Hα,β(Td),Hγmix(Td)) ≥ 2−(α+β−γ+1)/2M−(α+β−γ)/2. (3.4)

for all M ∈ N.

Proof. For a given rank-1 lattice Λ(z,M), we construct the fooling function g̃(x) := e2πik1·x−
e2πik2·x, where k1,k2 ∈ Xd√

M
are aliasing frequency indices with respect to Λ(z,M), i.e.,

k1 ·z ≡ k2 ·z (mod M). These aliasing frequency indices exist due to Lemma 3.1. Using the
notation

ωd,α,β(k)2 :=
[ d∏
s=1

(1 + |ks|2)
]α

(1 + ‖k‖22)β,

the normalization of g̃ in Hα,β(T) is given by

g(x) :=
e2πik1·x − e2πik2·x√

ωd,α,β(k1)2 + ωd,α,β(k2)2
.

According to Lemma 3.1, the fooling function g is zero at all sampling nodes xj ∈ Λ(z,M)
and we obtain

‖g|Hγ(Td)‖ =

√
ωd,0,γ(k1)2 + ωd,0,γ(k2)2√
ωd,α,β(k1)2 + ωd,α,β(k2)2

. (3.5)

W.l.o.g. we assume ‖k1‖∞ ≥ ‖k2‖∞, i.e., ωd,0,γ(k1) ≥ ωd,0,γ(k2) and ωd,α,β(k1) ≥ ωd,α,β(k2).
We achieve

‖g|Hγ(Td)‖ ≥

√
ωd,0,γ(k1)2√

2ωd,α,β(k1)2
=

1√
2ωd,α,β−γ(k1)

. (3.6)

For k ∈ Xd√
M

with |k1| = ‖k‖∞ and M ∈ N we have

ωd,α,β−γ(k) = (1 + |k1|2)(α+β−γ)/2

≤ (1 +M)(α+β−γ)/2 ≤ (2M)(α+β−γ)/2.

Inserting this into (3.6) yields

‖g|Hγ(Td)‖ ≥ 2−(α+β−γ+1)/2M−(α+β−γ)/2

11



Now (3.3) follows by a standard argument. Let A : CM 7→ Hγ(Td) be an arbitrary algorithm

applied to

(
f(0), f

(
1
M z
)
, . . . , f

(
M−1
M z

))
= 0. We estimate as follows

2−(α+β−γ+1)/2M−(α+β−γ)/2 ≤‖g|Hγ(T)‖ ≤ 1

2
(‖g −A(0)|Hγ(T)‖+ ‖ − g −A(0)|Hγ(T))‖

≤max{‖g −A(0)|Hγ(T)‖, ‖ − g −A(0)|Hγ(T)‖}.

Since A can not be distinguishging from the zero function we obtain

SampΛ(z,M)(Hαmix(Td), Hγ(Td)) ≥ 2−(α+β−γ+1)/2M−(α+β−γ)/2.

Finally the infimum over all rank-1 lattices with M points yields

glatt1
M (Hαmix(Td), Hγ(Td)) ≥ 2−(α+β−γ+1)/2M−(α+β−γ)/2.

The assertion in (3.4) can be proven analogously.

Remark 3.3. We stress on the fact that even each d-dimensional rank-s lattice of size M ,
where d ≥ 2 and s ∈ N, s ≤ d, fulfills the requirements of Lemma 3.1, cf. [30, Lemma 2.7].
Consequently, there exists at least one aliasing pair k1,k2 ∈ Xd√

M
within the two-dimensional

axis cross of size
√
M . This means we obtain the statements of Theorem 3.2 using the identical

proof strategy.

4 Improved upper bounds for d > 2

In this section we study upper bounds for glatt1
M . To do this, we consider approximation error

estimates for S
Λ(z,M)

Hd,T
R

f . To obtain these estimates the cardinality of the dual lattice Λ(z,M)⊥

intersected with rectangular boxes Ω plays an important role.

Lemma 4.1. Let Λ(z,M) be a rank-1 lattice generated by z ∈ Zd with M points. Assume

that the dual lattice Λ(z,M)⊥ is located outside the hyperbolic cross Hd,0
R , i.e.,

Λ(z,M)⊥ ∩Hd,0
R = {0}. (4.1)

Then we have

|Λ(z,M)⊥ ∩ Ω| ≤ 4

{
vol Ω
2R

: vol Ω ≥ 2R,

1 : vol Ω < 2R,
(4.2)

where Ω is an arbitrary rectangle with side-lenghts ≥ 1.

Proof. For two arbitrary distinct dual lattice points k1,k2 ∈ Λ(z,M)⊥, k1 6= k2, we obtain
k = k1 − k2 ∈ Λ(z,M)⊥ \ {0}. As a consequence of (2.8) and (4.1)

d∏
s=1

max{|ks|, 1} ≥ 2d−12R

holds.

12



Step 1. We prove the second case in (4.2) by contradiction. For any rectangle Ω := [a1, a1 +
b1] × . . . × [ad, ad + bd] with side lengths bs ≥ 1, s = 1, . . . , d, and vol Ω =

∏d
s=1 bs < 2d−12R

we assume |Λ(z,M)⊥ ∩ Ω| ≥ 2 and k1,k2 ∈ Ω ∩ Λ(z,M)⊥, k1 6= k2. Consequently, there is
a d-dimensional cuboid K ⊂ Ω of side lengths ≥ 1 which contains the minimal cuboid with
edges k1 and k2. The volume of K is at least

∏d
s=1 max{|ks|, 1} ≥ 2d−12R, and hence larger

than the volume of Ω, which is in contradiction to the relation K ⊂ Ω. Accordingly, there
can not be more than one element within Λ(z,M)⊥ ∩ Ω.

Step 2. We prove the first case and assume that Ω has volume larger than Ω ≥ 2d−12R.
We construct a disjoint covering/packing of Ω consisting of half side opened cuboids B with
sidelength `1, . . . , `d such that `s ≤ bs, s = 1, . . . , d, and volB = 2d−22R, cf. Figure 4.1 for
illustration. We need at most 2d vol Ω

2d−22R
of the cuboids B in order to cover the set Ω. Due

to Step 1, each B contains at most one element from Λ(z,M)⊥. Accordingly, the number of
elements in Λ(z,M)⊥ ∩ Ω is bounded from above by 4vol Ω

2R
.

`1

`2B

b1

b2
Ω

Figure 4.1: The counting argument in Lemma 4.1.

Lemma 4.2. Let the smoothness parameters α, β ∈ R, β ≤ 0, α + β > 1/2, the refinement
R ≥ 1, and the parameter T := −β/α be given. In addition, we assume that the rank-1

lattice Λ(z,M) is a reconstructing rank-1 lattice for the hyperbolic cross Hd,0
R . We define

θ2
α,β(k, z,M) :=

∑
h∈Λ(z,M)⊥

h6=0

(1 + ‖k + h‖22)−β
d∏
s=1

(1 + |ks + hs|2)−α. (4.3)

Then the estimate

θ2
α,β(k, z,M) .

{
2−2(α+β)R : T > 0,

2−2αRRd−1 : T = β = 0

holds for all k ∈ Hd,0
R .

Proof. For k ∈ Zd and j ∈ Nd0 we define the indicator function

ϕj(k) :=

{
0 : k 6∈ Qj ,
1 : k ∈ Qj ,
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where Qj is defined in (2.9). We fix k ∈ Hd,0
R and decompose the sum in (4.3) and obtain

θ2
α,β(k, z,M) =

∑
h∈Λ(z,M)⊥

h6=0

∑
j∈Nd0

ϕj(k + h)(1 + ‖k + h‖22)−β
d∏
s=1

(1 + |ks + hs|2)−α.

Since Λ(z,M) is a reconstructing rank-1 lattice for Hd,0
R , we know from (2.7) that

D(Hd,0
R ) ∩

(
Λ(z,M)⊥ \ {0}

)
= ∅ .

This yields
k1 + h1 6= k2 + h2

for all k1,k2 ∈ Hd,0
R , k1 6= k2, and h1,h2 ∈ Λ(z,M)⊥ since otherwise 0 6= k1−k2 = h2−h1 ∈

Λ(z,M)⊥ which is in contradiction to (2.7). In particular, we have that k + h /∈ Hd,0
R for all

k ∈ Hd,0
R and h ∈ Λ(z,M)⊥ \ {0}. Accordingly, we modify the summation index set for j

and we estimate the summands

θ2
α,β(k, z,M) .

∑
j∈Nd0\J

d,0
R

2−2(α‖j‖1+β‖j‖∞)
∑

h∈Λ(z,M)⊥

h6=0

ϕj(k + h).

We apply Lemma 4.1 and get

θ2
α,β(k, z,M) . 2−R

∑
j∈Nd0\J

d,0
R

2−((2α−1)‖j‖1+β‖j‖∞).

Taking Lemma 4.3 into account, the assertion follows.

Lemma 4.3. Let the smoothness parameters α, β ∈ R, β ≤ 0, α+β > 1/2, and the refinement
R ≥ 1 be given. Then, we estimate

∑
j∈Nd0\J

d,T
R

2−((2α−1)‖j‖1+2β‖j‖∞) .

{
2−(2α−1+2β)R for T ≤ −β

α and β < 0,

2−(2α−1)RRd−1 for T = β = 0.

Proof. In the proof of [18, Theorem 4] one finds the following estimate

∑
j∈Nd0\J

d,T
R

2−t‖j‖1+s‖j‖∞ .

{
2(s−t)R for T < s

t ,

Rd−12(s−t+(Tt−s) d−1
d−T )R for T ≥ s

t

for s < t and t ≥ 0. Accordingly, we apply this result setting s := −2β and t := 2α− 1. We
require β ≤ 0 and obtain the necessity α + β > 1/2 from the conditions s < t and t ≥ 0.
Moreover, we set the parameter T := −β/α. This yields

T =
s

t+ 1

{
= 0 for 0 = s = β,

< s
t for 0 < s = −2β.

Consequently, we achieve the assertion.
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Theorem 4.4. Let the smoothness parameters α > 1
2 , β ≤ 0, γ ≥ 0 with α+β > max{γ, 1

2},
the dimension d ∈ N, d ≥ 2, and the refinement R ≥ 1, be given. In addition, we assume that
Λ(z,M) is a reconstructing rank-1 lattice for Hd,0

R . We estimate the error of the sampling

operator Id− SΛ(z,M)

Hd,0
R

by

M−(α+β−γ)/2 . ‖Id− SΛ(z,M)

Hd,0
R

|Hα,β(Td)→ Hγmix(Td)‖ . 2−(α+β−γ)R

{
R(d−1)/2 : β = 0,

1 : β < 0.

If Λ(z,M) is constructed by the CBC strategy [13, Tab. 3.1] we continue

.M−(α+β−γ)/2(logM)
d−2
2

(α+β−γ)

{
(logM)(d−1)/2 : β = 0,

1 : β < 0.

Proof. The lower bound was discussed in Theorem 3.2. We apply the triangle inequality and
split up the error of the sampling operator into the error of the best approximation and the
aliasing error. The error of the projection operator S

Hd,0
R

can be easily estimated using

‖f − S
Hd,0
R
f |Hγmix(Td)‖ =

( ∑
k/∈Hd,0

R

(1 + ‖k‖22)γ |f̂k|2
) 1

2

≤ sup
k/∈Hd,0

R

( 1

(1 + ‖k‖22)β
∏d
s=1(1 + |ks|2)α−γ

) 1
2

(4.4)

( ∑
k/∈Hd,0

R

(1 + ‖k‖22)β
[ d∏
s=1

(1 + |ks|2)α
]
|f̂k|2

) 1
2
.

It is easy to check that (4.4) becomes maximal at the peaks of the hyperbolic cross. Therefore
we obtain

‖f − S
Hd,0
R
f |Hγmix(Td)‖ . 2−(α+β−γ)R‖f |Hα,β(Td)‖.

The aliasing error fulfills

‖S
Hd,0
R
f − SΛ(z,M)

Hd,0
R

f |Hγmix(Td)‖2 =
∑

k∈Hd,0
R

[ d∏
s=1

(1 + |ks|2)γ
]∣∣∣ ∑
h∈Λ(z,M)⊥

h6=0

f̂k+h

∣∣∣2 (4.5)
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Applying Hölder’s inequality twice yields

‖S
Hd,0
R
f − SΛ(z,M)

Hd,0
R

f |Hγmix(Td)‖2

≤
∑

k∈Hd,0
R

[ d∏
s=1

(1 + |ks|2)γ
]( ∑

h∈Λ(z,M)⊥

h6=0

(1 + ‖k + h‖22)−β
d∏
s=1

(1 + |ks + hs|2)−α

︸ ︷︷ ︸
=:θ2α,β(k,z,M), cf. (4.3)

)
.

( ∑
h∈Λ(z,M)⊥

h6=0

(1 + ‖k + h‖22)β
[ d∏
s=1

(1 + |ks + hs|2)α
]
|f̂k+h|2

)

≤ sup
k∈Hd,0

R

[ d∏
s=1

(1 + |ks|2)γ
]
θ2
α,β(k, z,M)

( ∑
k∈Hd,0

R

∑
h∈Λ(z,M)⊥

h 6=0

(1 + ‖k + h‖22)β
[ d∏
s=1

(1 + |ks + hs|2)α
]
|f̂k+h|2

)

≤ sup
h∈Hd,0

R

[ d∏
s=1

(1 + |hs|2)γ
]

sup
k∈Hd,0

R

θ2
α,β(k, z,M)‖f |Hα,β(Td)‖2 (4.6)

since Λ(z,M) is a reconstructing rank-1 lattice for Hd,0
R and, consequently, the sets {k+h ∈

Zd : h ∈ Λ(z,M)⊥}, k ∈ Hd,0
R , do not intersect. We apply Lemma 4.2 and take the upper

bound

sup
k∈Hd,0

R

d∏
s=1

(1 + |ks|2)γ . sup
j∈Jd,0R

22γ‖j‖1 . 22γR

into account. We achieve

‖S
Hd,0
R
f − SΛ(z,M)

Hd,0
R

f |Hγmix(Td)‖ . ‖f |Hα,β(Td)‖2−
α+β−γ

2
R

{
R
d−1
2 : β = 0,

1 : β < 0.

Remark 4.5. The basic improvement in the error analysis compared to [16] is provided by
applying Lemma 4.1 in (4.6). Here, the information about the cardinality of the dual lattice
intersected with rectangular boxes yields sharp main rates coinciding with the lower bounds
given in Theorem 3.2. From that viewpoint this technique improves also the asymptotical
main rates obtained in [20] for the L2(Td) approximation error. In case β < 0 and γ = 0 the
result above behaves not optimal compared to the result obtained in [16] where a Korobov
type lattice is used. The authors there obtain no logarithmic dependence in M . The main
reason for that issue is the probably technical limitation in Lemma 4.1 discussed in Remark
6.2 that does not allow us to use energy-type hyperbolic crosses as index sets, here.

Due to the embedding Hγmix(Td) ↪→ Hγ(Td) we obtain the following proposition.
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Proposition 4.6. Let the smoothness parameters α > 1
2 , β ≤ 0, γ ≥ 0 with α + β >

max{γ, 1
2}, the dimension d ∈ N, d ≥ 2, and the refinement R ≥ 1, be given. In addition,

we assume that Λ(z,M) is a reconstructing rank-1 lattice for Hd,0
R constructed by the CBC

strategy [13, Tab. 3.1]. We estimate the error of the sampling operator Id− SΛ(z,M)

Hd,0
R

by

M−(α+β−γ)/2 . ‖Id− SΛ(z,M)

Hd,0
R

|Hα,β(Td)→ Hγ(Td)‖ . 2−(α+β−γ)R

{
R(d−1)/2 : β = 0,

1 : β < 0

.M−(α+β−γ)/2(logM)(d−2)(α+β−γ)/2

{
(logM)(d−1)/2 : β = 0,

1 : β < 0.

For 2 < q <∞ the embedding

H
1
2
− 1
q (Td) ↪→ Lq(Td)

(see [25], 2.4.1) extends the last theorem to target spaces Lq(Td).

Proposition 4.7. Let the smoothness parameters α > 1
2 and β ≤ 0 with α + β > 1

2 ,
2 < q <∞. Let the dimension d ∈ N, d ≥ 2, and the refinement R ≥ 1, be given. In addition,
we assume that Λ(z,M) is a reconstructing rank-1 lattice for Hd,0

R constructed by the CBC

strategy [13, Tab. 3.1]. We estimate the error of the sampling operator Id− SΛ(z,M)

Hd,0
R

by

‖Id− SΛ(z,M)

Hd,0
R

|Hα,β(Td)→ Lq(Td)‖ . 2
−(α+β−( 1

2
− 1
q

))R

{
R(d−1)/2 : β = 0,

1 : β < 0

.M
−(α+β−( 1

2
− 1
q

))/2
(logM)

d−2
2

(α+β−( 1
2
− 1
q

))

{
(logM)(d−1)/2 : β = 0,

1 : β < 0.

In addition to Lq(Td), 2 < q < ∞, we study the case q = ∞. For technical reasons we
estimate the sampling error with respect to the d-dimensional Wiener algebra

A(Td) := {f ∈ L1(Td) :
∑
k∈Zd

|f̂k| <∞}

and subsequently we use the embedding A(Td) ↪→ C(Td) ↪→ L∞(Td).

Theorem 4.8. Let the smoothness parameters α > 1
2 and β ≤ 0 with α + β > 1

2 , the
dimension d ∈ N, d ≥ 2, and the refinement R ∈ R, R ≥ 1, be given. In addition, we assume
that Λ(z,M) is a reconstructing rank-1 lattice for Hd,T

R with T := −β
α constructed by the

CBC strategy [13, Tab. 3.1]. We estimate the error of the sampling operator Id− SΛ(z,M)

Hd,T
R

by

‖Id− SΛ(z,M)

Hd,T
R

|Hα,β(Td)→ A(Td)‖ . 2−(α+β− 1
2

)R

{
R
d−1
2 : β = 0,

1 : β < 0

.M−(α+β− 1
2

)/2

{
(logM)

d−2
2

(α− 1
2

)+ d−1
2 : β = 0,

1 : β < 0.
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Proof. Again we use triangle inequality and split up the error of the sampling operator into
the error of the truncation error and the aliasing error. The truncation error fulfills

‖f − S
Hd,T
R
f |A(Td)‖ . ‖f |Hα,β(Td)‖2−(α+β− 1

2
)R

{
R
d−1
2 : β = 0,

1 : β < 0.
(4.7)

For completeness we give a short proof. Applying the orthogonal projection property of
S
Hd,T
R
f we obtain

‖f − S
Hd,T
R
f |A(Td)‖ =

∑
k/∈Hd,T

R

|f̂k|

≤
( ∑
k/∈Hd,T

R

(1 + ‖k‖22)−β
d∏
s=1

(1 + |ks|2)−α
) 1

2
( ∑
k/∈Hd,T

R

(1 + ‖k‖22)β
[ d∏
s=1

(1 + |ks|2)α
]
|f̂k|2

) 1
2
.

Decomposing the first sum into dyadic blocks yields

‖f − S
Hd,T
R
f |A(Td)‖ ≤

( ∑
j /∈Jd,TR

∑
k∈Qj

(1 + ‖k‖22)−β
d∏
s=1

(1 + |ks|2)−α
) 1

2 ‖f |Hα,β(Td)‖ (4.8)

.
( ∑
j /∈Jd,TR

2−2α‖j‖1−2β‖j‖∞
∑
k∈Qj

1
) 1

2 ‖f |Hα,β(Td)‖

=
( ∑
j /∈Jd,TR

2−(2α−1)‖j‖1−2β‖j‖∞
) 1

2 ‖f |Hα,β(Td)‖.

Applying Lemma 4.3 we obtain (4.7). The aliasing error behaves as follows

‖S
Hd,T
R
f − SΛ(z,M)

Hd,T
R

f |A(Td)‖ =
∑

k∈Hd,T
R

∣∣∣ ∑
h∈Λ(z,M)⊥

h6=0

f̂k+h

∣∣∣.
Applying Hoelder’s inequality twice yields

‖S
Hd,T
R
f − SΛ(z,M)

Hd,T
R

f |A(Td)‖

≤
( ∑
k∈Hd,T

R

∑
h∈Λ(z,M)⊥

h6=0

(1 + ‖k + h‖22)−β
d∏
s=1

(1 + |ks + hs|2)−α
) 1

2

( ∑
k∈Hd,T

R

∑
h∈Λ(z,M)⊥

h 6=0

(1 + ‖k + h‖22)β
d∏
s=1

(1 + |ks + hs|2)α|f̂k+h|2
) 1

2
.

Since Λ(z,M) is a reconstructing rank-1 lattice for Hd,T
R and, consequently, the sets {k+h ∈
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Zd : h ∈ Λ(z,M)⊥}, k ∈ Hd,T
R , do not intersect, we obtain

‖S
Hd,T
R
f − SΛ(z,M)

Hd,T
R

f |A(Td)‖

≤
( ∑
k/∈Hd,T

R

(1 + ‖k‖22)−β
d∏
s=1

(1 + |ks|2)−α
) 1

2
( ∑
k/∈Hd,T

R

(1 + ‖k‖22)β
d∏
s=1

(1 + |ks|2)α|f̂k|2
) 1

2

≤
( ∑
k/∈Hd,T

R

(1 + ‖k‖22)−β
d∏
s=1

(1 + |ks|2)−α
) 1

2 ‖f |Hα,β(Td)‖.

Now we are in the same situation as in (4.8). Therefore we achieve

‖S
Hd,T
R
f − SΛ(z,M)

Hd,T
R

f |A(Td)‖ . ‖f |Hα,β(Td)‖2−(α+β− 1
2

)R

{
R
d−1
2 : β = 0,

1 : β < 0.

We see that the aliasing error has the same order as the truncation error.

Proposition 4.9. Let the smoothness parameter α > 1
2 and β ≤ 0 with α + β > 1

2 , the
dimension d ∈ N, d ≥ 2, and the refinement R ≥ 1, be given. In addition, we assume that
Λ(z,M) is a reconstructing rank-1 lattice for Hd,T

R with T := −β
α constructed by the CBC

strategy [13, Tab. 3.1]. We estimate the error of the sampling operator Id− SΛ(z,M)

Hd,T
R

by

‖Id− SΛ(z,M)

Hd,T
R

|Hα,β(Td)→ L∞(Td)‖ . 2−(α+β− 1
2

)R

{
R
d−1
2 : β = 0,

1 : β < 0

.M−(α+β− 1
2

)/2

{
(logM)

d−2
2

(α− 1
2

)+ d−1
2 : β = 0,

1 : β < 0.

Remark 4.10. In case β < 0 the technique used in the proof of Theorem 4.8 and Proposition
4.9 allows it to benefit from smaller index sets Hd,T

R with T > 0, so called energy-type
hyperbolic crosses. Therefore, we obtain no logarithmic dependencies in the error rate.

5 The two-dimensional case

In this chapter we restrict our considerations to two-dimensional approximation problems,
i.e., the dimension d = 2 is fixed. We collect some basic facts from above on this special case.

Lemma 5.1. Let R ≥ 0, and T ∈ [0, 1) be given. Each reconstructing rank-1 lattice Λ(z,M)
for the frequency index set H2,T

R ⊂ Z2 fulfills

• M ≥ 22bRc,

• Λ(z,M) is a reconstructing rank-1 lattice for the tensor product grid
Ĝ2
R := (−2bRc−1, 2bRc−1]2 ∩ Z2.

Moreover, there exist reconstructing rank-1 lattices Λ(z,M) for the frequency index sets H2,T
R

that fulfills M = (1 + 3 · 2dRe−1)2dRe ≤ 22R+3.
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Proof. The proof follows from [15, Theorem 3.5 and Lemma 3.7] and the embeddings H2,T
R ⊂

H2,0
R for T ≥ 0, which is direct consequence of the definition.

We interpret the last lemma. The reconstruction property of reconstructing rank-1 lattices
Λ(z,M) for two-dimensional hyperbolic crosses H2,T

R ⊂ (−2R, 2R]2 ∩ Z2 implies automati-
cally that the rank-1 lattices Λ(z,M) are reconstructing rank-1 lattices for only mildly lower
expanded full grids (−2bRc−1, 2bRc−1]2 ∩ Z2. Accordingly, in the sense of sampling numbers
it seems appropriate to use a rank-1 lattice sampling in combination with tensor product
grids as frequency index sets in order to even approximate functions of dominating mixed

smoothness in dimensions d = 2. Thus, we consider the sampling operator S
Λ(z,M)

Ĝ2
R

, cf. (2.3).

Lemma 5.2. Let a ∈ R, 0 < a < 1 and L ∈ N be given. Then we estimate∑
j∈N2

0
‖j‖∞≥L

a‖j‖1 ≤ 2− aL

(1− a)2
aL ≤ Ca · aL.

Proof. We evaluate the geometric series and get

∑
j∈N2

0
‖j‖∞≥L

a‖j‖1 =
L−1∑
j1=0

aj1
∞∑

j2=L

aj2 +
L−1∑
j2=0

aj2
∞∑

j1=L

aj1 +
∞∑

j1=L

aj1
∞∑

j2=L

aj2

=

(
1− aL

1− a
+

1− aL

1− a
+

aL

1− a

)
aL

1− a
.

Theorem 5.3. Let the smoothness parameter α > 1
2 , γ ≥ 0 with α > γ and the refinement

R ≥ 0, be given. In addition, we assume that Λ(z,M) is a reconstructing rank-1 lattice for

ĜR with M � 22R. We estimate the error of the sampling operator Id− SΛ(z,M)

ĜR
by

‖Id− SΛ(z,M)

ĜR
|Hαmix(T2)→ Hγ(T2)‖ �M−(α−γ)/2.

Proof. The lower bound goes back to Theorem 3.2. The proof of the upper bound is similar
to the proof of Theorem 4.4. The main difference is that we use the full grid ĜR instead of
H2,0
R here. This yields for the projection

‖Id− SĜR |H
α
mix(T2)→ Hγ(T2)‖ .M−(α−γ)/2.

The estimation for the aliasing error ‖SĜRf −S
Λ(z,M)

ĜR
f |Hγ(T2)‖ is also very similar to (4.4).

We follow the proof line by line with the mentioned modification and come to the estimation

‖SĜRf − S
Λ(z,M)

ĜR
f |Hγ(T2)‖

≤ sup
k∈ĜR

(
(1 + ‖k‖22)γ

∑
j∈Nd0

∑
h∈Λ(z,M)⊥

h6=0

ϕj(k + h)
d∏
i=1

(1 + |ki + hi|2)−α
) 1

2 ‖f |Hαmix(T2)‖.
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Due to the reproduction property for ĜR the sum over j breaks down to

‖SĜRf − S
Λ(z,M)

ĜR
f |Hγ(T2)‖

. sup
k∈ĜR

(
(1 + ‖k‖22)γ

∑
‖j‖∞>bRc

2−2α‖j‖1
∑

h∈Λ(z,M)⊥

h6=0

ϕj(k + h)
) 1

2 ‖f |Hαmix(T2)‖.

Next, we recognize
sup
k∈ĜR

(1 + ‖k‖22)
γ
2 . 2γR. (5.1)

Using Hd,0
R−2 ⊂ ĜR, we obtain Λ(z,M)⊥ ∩Hd,0

R−2 = {0}. We apply Lemma 4.1 and employ
R− 1 ≤ bRc ≤ ‖j‖∞ ≤ ‖j‖1 to see

‖SĜRf − S
Λ(z,M)

ĜR
f |Hγ(T2)‖

. 2γR
( 4

2R

∑
‖j‖∞>bRc

2−(2α−1)‖j‖1
) 1

2 ‖f |Hαmix(T2)‖.

Applying Lemma 5.2 yields

‖SĜRf − S
Λ(z,M)

ĜR
f |Hγ(T2)‖ . 2−(α−γ)R‖f |Hαmix(T2)‖

.M−(α−γ)/2‖f |Hαmix(T2)‖.

Remark 5.4. This method does not work for Hγmix(T2) as target space. Here the estimation
of the mixed weight, similar to (5.1) implies a worse main rate for the asymptotic behavior

of ‖SĜRf −S
Λ(z,M)

ĜR
f |Hγmix(T2)‖. Here we have to use H2,0

R as index set for our trigonometric

polynomials and therefore Theorem 4.4 is the best we have in this situation.

Theorem 5.5. Let the smoothness parameter α > 1
2 and the refinement R ≥ 0, be given. In

addition, we assume that Λ(z,M) is a reconstructing rank-1 lattice for ĜR with M � 22R.

We estimate the error of the sampling operator Id− SΛ(z,M)

ĜR
by

‖Id− SΛ(z,M)

ĜR
|Hαmix(T2)→ A(T2)‖ .M−(α− 1

2
)/2.

Proof. The result is a consequence of replacing H2,0
R by ĜR in the proof of Theorem 4.8.
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Proposition 5.6. Let the smoothness parameter α > 1
2 and the refinement R ≥ 0, be given.

In addition, we assume that Λ(z,M) is a reconstructing rank-1 lattice for ĜR with M � 22R.

We estimate the error of the sampling operator Id− SΛ(z,M)

ĜR
by

‖Id− SΛ(z,M)

ĜR
|Hαmix(T2)→ L∞(T2)‖ .M−(α− 1

2
)/2.

Now we come to the second very special property of the 2-dimensional situation. Here we
know closed formulas for lattices that are reconstructing for H2,0

R (and ĜR). The well studied
Fibonacci lattice Fn = Λ(z, bn), where z = (1, bn−1) and M = bn gives a universal recon-
structing rank-1 lattice for index sets considered in this chapter. The Fibonacci numbers bn
are defined iteratively by

b0 = b1 = 1, bn = bn−1 + bn−2, n ≥ 2.

Since the size of the Fibonacci lattice depends on M = bn, we go the other way around. For a
fixed refinement n ∈ N we choose a suitable rectangle Bn for which the reproduction property
(2.7) is fulfilled. Let us start with the box

Bn :=
[
−
⌊
C
√
bn

⌋
,
⌊
C
√
bn

⌋]2
∩ Z2,

where C > 0 is a suitable constant. Obviously, the difference set of such a box fulfills

D(Bn) =
[
−2
⌊
C
√
bn

⌋
, 2
⌊
C
√
bn

⌋]2
∩ Z2.

It is known (see Lemma IV.2.1 in [34]), that there is a δ > 0 such that for all frequencies of
the dual lattice F⊥n of Fn

2∏
s=1

max{1, |hs|} ≥ δbn

holds. For that reason we find a C > 0 (depending only on δ) such that the property

D(Bn) ∩ F⊥n = {0}

is fulfilled for all n ∈ N (see Figure 5.1), which guarantees the reproduction property for the
index set Bn. Additionally we have |Bn| � bn. Therefore, the Fibonacci lattice fulfills the
properties mentioned in Lemma 5.1.

6 Further comments

The following remark is hypothetical since it is an open question whether a lattice with the
so-called “hyperbolic cross property” exists in d > 2.

Remark 6.1. Let Λ(z,M) be a lattice such that Λ(z,M)⊥ ∩ Hd,0
2R = {0} with M � 22R

holds. We call this property “hyperbolic cross property”. Then

‖f − SΛ(z,M)

Hd,0
R

f |Hγ(Td)‖ . 2−(α−γ)RR
d−1
2 ‖f |Hαmix(Td)‖ (6.1)

�M−
α−γ
2 (logM)

d−1
2 . (6.2)
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Bn

D(Bn)

Figure 5.1: Relations between Bn,D(Bn) and a hyperbolic cross of size δbn.

Proof. Computing the truncation error is straight-forward. For the aliasing error we get

‖S
Hd,0
R
f − SΛ(z,M)

Hd,0
R

f |Hγ(Td)‖

≤ sup
k∈Hd,0

R

(
(1 + ‖k‖22)γ

∑
j /∈Jd,0R

∑
h∈Λ(z,M)⊥\{0}

ϕj(k + h)

d∏
s=1

(1 + |ks + hs|2)−α
) 1

2 ‖f |Hαmix(Td)‖.

Now we use the fact that the difference set D(Hd,0
R ) is contained in Hd,0

c+2R and therefore,

Λ(z,M) is reproducing for Hd,0
R (the dual lattice is located outside of the difference set).

With the usual calculation we get then

‖S
Hd,0
R
f − SΛ(z,M)

Hd,0
R

f |Hγ(Td)‖

. sup
k∈Hd,0

R

(1 + ‖k‖22)
γ
2

( ∑
R<‖j‖1<2R

2−2α‖j‖1 +
∑

‖j‖1>2R

2−2α‖j‖1 2‖j‖1

22R

) 1
2

.2−
α−γ
2
RR

d−1
2 ‖f |Hαmix(Td)‖

�M−
α−γ
2 (logM)

d−1
2 ‖f |Hαmix(Td)‖.

Unfortunately, if d > 2 such a lattice is not known. We see that even in this “ideal” case we

do not get rid of the (logM)
d−1
2 . If d = 2 we get rid of both logs, see Section 5. One reason

is that the Fibonacci lattice has a “hyperbolic cross property” (cf. Remark 6.1). The other
reason is that due to the “half rate” we can truncate from a larger set than the hyperbolic
cross. In that sense d = 2 is a very specific case.

Remark 6.2. Additionally to the considerations in Proposition 4.6 it seems natural to treat
the cases γ > β > 0. One would expect from the theory of sparse grids that a modification
of the hyperbolic cross index sets Hd,0

R to energy-norm based hyperbolic crosses Hd,T
R with
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T = γ−β
α or a little perturbation of it would help to reduce logarithmic dependence on M .

Unfortunately, we are currently not able to improve or even get equivalent results for that.
One reason is that we have no improved results fitting Hd,T

R in Lemma 4.1. The other reason
is that in case γ > 0 we have not yet found a way to exploit smoothness that come from
the target space such that one can use smaller index sets than Hd,0

R in the error sum. Our
standard estimation yields a worse main rate for that.

7 Results for anisotropic mixed smoothness

In this section we give an outlook on function spaces Hαmix(T) where α is a vector with first
µ smallest smoothness directions; i.e.,

1

2
< α1 = . . . = αµ < αµ+1 ≤ . . . ≤ αd.

Definition 7.1. Let α ∈ Rd with positive entries. We define the Sobolev spaces with
anisotropic mixed smoothness α as

Hαmix(Td) :=

f ∈ L2(Td) : ‖f |Hαmix(Td)‖2 :=
∑
k∈Zd

|f̂k|2
d∏
s=1

(1 + |ks|2)αs <∞

 .

Again, we want to study approximation by sampling along rank-1 lattices. Therefore we
introduce new index sets, so-called anisotropic hyperbolic crosses Hd,α

R defined by

Hd,α
R :=

⋃
j∈Jd,αR

Qj

where

Jd,αR :=
{
j ∈ Nd0 :

1

α1
α · j ≤ R

}
.

Lemma 7.2. Let α ∈ Rd with 0 < α1 = . . . = αµ < αµ+1 ≤ . . . ≤ αd. Then

|Hd,α
R | �

∑
j∈Jd,αR

2‖j‖1 � 2RRµ−1.

Proof. For the upper bound we refer to [33, Chapt. 1., Lem. D]. For the lower bound we
consider the subset

Jd,αR,µ := {j ∈ Jd,αR : jµ+1 = . . . = jd = 0} ⊂ Jd,αR

and obtain with the help of Lemma 2.2∑
j∈Jd,αR

2‖j‖1 ≥
∑
j∈Jd,αR,µ

2‖j‖1 �
∑

j∈Jµ,0R+c

2‖j‖1 & 2RRµ−1.
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Lemma 7.3. Let the refinement R ≥ 1, and the dimension d ∈ N with d ≥ 2, be given. Then
there exists a reconstructing rank-1 lattice Λ(z,M) for Hd,α

R which fulfills

2RRµ−1 � |Hd,α
R | ≤M . 22RRµ−1.

Proof. First, we show the embedding of the difference set D(Hd,α
R ) ⊂ Hd,α

2R+‖α‖1 . Let k,k′ ∈
Hd,α
R . Then there exist indices j, j′ ∈ Jd,αR such that k ∈ Qj and k′ ∈ Qj′ . The difference

k − k′ ∈ D(Hd,α
R ) and k − k′ ∈ Qj̃ for an index j̃ ∈ Nd0. Next, we show α · j̃ ≤ 2R + ‖α‖1.

The differences ks − k′s of one component of k and k′ fulfill

ks − k′s ∈ [−2js − 2j
′
s , 2js + 2j

′
s ] ⊂ [−2max(js,j′s)+1, 2max(js,j′s)+1] =

max(js,j′s)+1⋃
t=0

Qt

and we obtain j̃s ≤ max(js, j
′
s) + 1 ≤ js + j′s + 1. This yields α · j̃ ≤ α · j +α · j′ + ‖α‖1 ≤

2R+‖α‖1 and consequently the embedding D(Hd,α
R ) ⊂ Hd,α

2R+‖α‖1 holds. Finally, the assertion

is a consequence of Lemma 7.2 and [13, Corollary 3.4].

Remark 7.4. The proof of Lemma 7.3 referred here is based on an abstract result suitable
for much more general index sets than Hd,α

R . Similar to Lemma 2.3 there should be also a

direct computation for counting the cardinality of the difference set D(Hd,α
R ). We leave the

details to the interested reader.

Lemma 7.5. Let α,γ ∈ Rd with 1
2 < α1 = γ1 = . . . = αµ = γµ < αµ+1 ≤ . . . ≤ αd with

αµ < γs < αs for s = µ+ 1, . . . , d. Then it holds∑
j∈Nd0\J

d,γ
R

2−(2α−1)·j . 2−(2α1−1)RRµ−1.

Proof. We start decomposing the sum. For technical reasons we introduce the notation

P d,γR :=
{
j ∈ Nd0 :

γs
γ1
js ≤ R, s = 1, . . . , d

}
.

Since Jd,γR ⊂ P d,γR we obtain∑
j∈Nd0\J

d,γ
R

2−(2α−1)·j =
∑
j /∈Jd,γR
j∈P d,γR

2−(2α−1)·j +
∑

j∈Nd0\P
d,γ
R

2−(2α−1)·j . (7.1)
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We estimate the first summand in (7.1)

∑
j /∈Jd,γR
j∈P d,γR

2−(2α−1)·j =

γ1R
γd∑
jd=0

2−(2αd−1)jd · . . . ·

γ1R
γµ+1∑
jµ+1=0

2−(2αµ+1−1)jµ+1

·

γ1R
γµ∑
jµ=0

2−(2αµ−1)jµ · . . . ·

γ1R
γ2∑
j2=0

2−(2α2−1)j2

R∑
j1=

γ1R−
∑d
s=2 γsjs

γ1

2−(2α1−1)j2

.

γ1R
γd∑
jd=0

2−(2αd−1)jd · . . . ·

γ1R
γµ+1∑
jµ+1=0

2−(2αµ+1−1)jµ+1

·

γ1R
γµ∑
jµ=0

2−(2αµ−1)jµ · . . . ·

γ1R
γ2∑
j2=0

2−(2α2−1)j22
−(2α1−1)

γ1R−
∑d
s=2 γsjs
γ1 .

Interchanging the order of multiplication yields

∑
j /∈Jd,γR
j∈P d,γR

2−(2α−1)·j . 2−(2α1−1)R
∞∑
jd=0

2
−[(2αd−1)−(2γd−

γd
α1

)]jd · . . . ·
∞∑

jµ+1=0

2
−[(2αµ+1−1)−(2γµ+1−

γµ+1
α1

)]jµ+1

·

R
γµ−ε∑
jµ=0

1 · . . . ·

R
γ2−ε∑
j2=0

1 . 2−(2α1−1)RRµ−1. (7.2)

The second summand in (7.1) can be trivially estimated by . 2−(2α1−1)R.

Theorem 7.6. Let α,γ ∈ Rd such that

1

2
< α1 = γ1 = . . . = αµ = γµ < αµ+1 ≤ . . . ≤ αd

and
α1 < γs < αs, s = µ+ 1, . . . , d,

and the refinement R ≥ 1, be given. In addition, we assume that Λ(z,M) is a reconstructing

rank-1 lattice for Hd,γ
R constructed by the CBC strategy [13, Tab. 3.1]. We estimate the error

of the sampling operator Id− SΛ(z,M)

Hd,γ
R

by

‖Id− SΛ(z,M)

Hd,γ
R

|Hαmix(Td)→ L∞(Td)‖ . 2−(α1− 1
2

)RR
µ−1
2

.M−(α1− 1
2

)/2(logM)
µ−1
2

(α1+ 1
2

).
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Proof. We use the embedding A(Td) ↪→ L∞(Td) and follow the estimation of Theorem 4.8
where we replace the weight

∏d
s=1(1 + |ks|2)α by

∏d
s=1(1 + |ks|2)αs . We obtain

‖f − SΛ(z,M)

Hd,γ
R

f |L∞(Td)‖ .

 ∑
j∈Nd0\J

d,γ
R

2−(2α−1)·j


1
2

‖f |Hαmix(Td)‖.

Applying Lemma 7.5 yields

‖f − SΛ(z,M)

Hd,γ
R

f |L∞(Td)‖ . 2−(α1− 1
2

)RR
µ−1
2 ‖f |Hαmix(Td)‖.

Now the bound for the number of points in Lemma 7.3 implies

‖f − SΛ(z,M)

Hd,γ
R

f |L∞(Td)‖ .M−(α1− 1
2

)/2(logM)
µ−1
2

(α1+ 1
2

)‖f |Hαmix(Td)‖.

That proves the claim.

Remark 7.7. Comparing the last result with the results obtained in Proposition 4.9 we
recognize that there is only the exponent µ− 1 instead of d− 1 in the logarithm of the error
term with µ < d. Especially in the case µ = 1 the logarithm completely vanishes. Similar
effects were also observed for sparse grids and general linear approximation, cf. [7, 33].
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8 Numerical results

In this section, we numerically investigate the sampling rates for different types of rank-1
lattices Λ(z,M) when sampling the scaled periodized (tensor product) kink function

g(x) :=
d∏
t=1

(
53/415

4
√

3
max

{
1

5
−
(
xt −

1

2

)2

, 0

})
, x := (x1, . . . , xd)

> ∈ Td, (8.1)

similar to [10]. We remark that g ∈ H3/2−ε
mix (Td), ε > 0, and ‖g|L2(Td)‖ = 1.

8.1 Hyperbolic cross index sets

First, we build reconstructing rank-1 lattices for the hyperbolic cross index sets Hd,0
R in

the cases d = 2, 3, 4 with various refinements R ∈ N0 using the CBC strategy [13, Tab.

3.1]. Then, we apply the sampling operators S
Λ(z,M)

Hd,0
R

on the kink function g. The resulting

sampling errors ‖g − SΛ(z,M)

Hd,0
R

g|L2(Td)‖ are shown in Figure 8.1 and denoted by “CBC hc”.

The corresponding theoretical upper bounds for the sampling rates from Table 1.1, which

are (almost) M−
1
2
· 3
2 (logM)

d−2
2
· 3
2

+ d−1
2 , are also depicted. Additionally in the two-dimensional

case, we consider the Fibonacci lattices from Section 5 as well as special Korobov lattices

Λ((1, d3 · 2R−2e)>, d(1 + 3 · 2R−2) · 2R−1e)

from [15]. The corresponding sampling errors are denoted by “Fibonacci hc” and “Korobov
hc” in Figure 8.1. We observe that in all considered cases, the sampling errors decay at least
as fast as the theoretical upper bound implies. In Figure 8.2, we investigate the logarithmic

factors in more detail. Assuming that the sampling error ‖g−SΛ(z,M)

Hd,0
R

g|L2(Td)‖ nearly decays

like M−
1
2
· 3
2 (logM)

d−2
2
· 3
2

+ d−1
2 , we consider its scaled version

‖g − SΛ(z,M)

Hd,0
R

g|L2(Td)‖/[M−
1
2
· 3
2 (logM)

d−2
2
· 3
2

+ d−1
2 ].

Obviously, if the scaled error decays exactly like the given rate, then the plot should be
(approximately) a horizontal line. In the plot in Figure 8.2a for the two-dimensional case,

this is almost the case for all three types of lattices. The scaled errors ‖g−SΛ(z,M)

Hd,0
R

g|L2(Td)‖ ·

M1.5/2 · (logM)−1/2 seem to decay slightly but the errors in Figure 8.2b, that are scaled
without the logarithmic factor, grow slightly. We interpret this observation as an indication
that there is some logarithmic dependence in the error rate. Moreover, for the reconstructing
rank-1 lattices built using the CBC strategy [13, Tab. 3.1], the scaled errors in the cases d = 3
and d = 4 behave similarly as in the two-dimensional case, see Figure 8.2.
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Figure 8.1: L2(Td) sampling error and number of sampling points for the approximation of
the kink function g from (8.1).
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Figure 8.2: Scaled L2(Td) sampling error and number of sampling points for the approxima-

tion of the kink function g from (8.1), where err := ‖g − SΛ(z,M)
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8.2 `∞-ball index sets

Next, we use the lattices from Section 8.1 in the two-dimensional case, but instead of
hyperbolic cross index sets H2,0

R , we are going to use the `∞-ball index sets I2
N :={

−
⌈
N−2

2

⌉
, . . . ,

⌈
N−1

2

⌉}2
, N ∈ N. For each of the rank-1 lattices Λ(z,M) generated in Sec-

tion 8.1, we determine the largest refinement N ∈ N such that the reconstruction property

(2.5) is still fulfilled for the `∞-ball I2
N . Then, we apply each sampling operator S

Λ(z,M)

I2N
on

the kink function g from (8.1). The resulting sampling errors are depicted in Figure 8.3,
where the errors for the CBC, Fibonacci and Korobov rank-1 lattices are denoted by “CBC
`∞-ball”, “Fibonacci `∞-ball” and “Korobov `∞-ball”, respectively. We observe that the
L2(Td) sampling errors decay approximately as the rate M−

3
4 as expected. In more detail,

this behaviour may be seen in the scaled error plot in Figure 8.4.
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Figure 8.3: L2(T2) sampling error and number of sampling points for the approximation of
the kink function g from (8.1).
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