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Abstract. The Navier-Lamé equation for linear elasticity has
evoked the design of various non-standard finite element meth-
ods (FEM) in order to overcome the locking phenomenon. Re-
cent developments of Arnold and Winther in 2002 involve a stable
mixed method which strongly fulfils the symmetry constraint. Sub-
sequently, two H(div) non-conforming symmetric mixed methods
arose. This paper comments on the implementation of all those
mixed FEM and provides a numerical comparison of the differ-
ent symmetric mixed schemes for linear elasticity. The computa-
tional survey also includes the low-order elements of weak symme-
try (PEERS), the non-conforming Kouhia and Stenberg (KS) ele-
ments plus the conforming displacement Pk-FEM for k = 1, 2, 3, 4.
Numerical experiments confirm the theoretical convergence rates
for sufficiently smooth solutions and illustrate the superiority of
the symmetric MFEM amongst the methods of second or third
order.

1. Introduction

The numerical solution of the Navier-Lamé equation with mixed
weak formulations allows a robust approximation even if the crucial
Lamé parameter passes to the incompressible limit when the Poisson
ratio approaches 1/2, see [BF91, Chapter IV §3]. In low-order displace-
ment formulations, the well-known locking effect causes a priori error
estimates to deteriorate. While there are many known stable mixed
finite element methods (MFEM), the additional symmetry constraint
implied for the stress tensor proved to be difficult to impose in numer-
ical schemes. This has resulted in the introduction of discretisations
with no or reduced symmetry incorporated in the discrete stress space
[ABD84, Ste88, CDFH00]. The first MFEM which were designed
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especially to fulfil the stress symmetry without the need of a sub-grid
are due to Arnold and Winther [AAW08, AFW09, AW02, AW03a,
AW03b]. As discussed in [AW03b], the continuity property imposed
on the stress field in the conforming MFEM substantially increases
complexity of the finite elements. Since (complete) continuity is not
required in the mixed formulation of linear elasticity, non-conforming
MFEM can be an efficient and easier to implement alternative to con-
forming elements. Table 1 displays the MFEM compared in this pa-
per. While the conforming lowest-order MFEM of Arnold and Winther
AW30 and AW24 have 30 and 24 degrees of freedom and are based on
a polynomial basis of degree 3, the non-conforming AW21 and AW15
MFEM are based on a quadratic polynomial basis with 21 and 15 de-
grees of freedom, as depicted in the first row of Table 1. The recently
introduced S15 and S27 MFEM due to Schöberl and Sinwel [SS07] are
based on linear and quadratic polynomials and have 15 and 27 degrees
of freedom.

This paper is devoted to the computational competition of several
FEM displayed in Table 2 for the Navier-Lamé equation of linear elas-
ticity. Our interest hereby lies on the numerical examination of the
rather novel MFEM of Arnold and Winther [AW02, AW03b, CGRT08]
and the elements introduced by Schöberl and Sinwel [SS07]. For some
of these elements we discuss the implementation topics that have not
been presented yet. Of particular interest is the numerical competi-
tion of the many newly available mixed finite elements of order one
up to three with traditional displacement-oriented FEM of the same
orders. Since P4 is locking free [BS92] in contrast to Pk, k = 1, 2, 3, it is
included in the survey as well as the low-order MFEM of weak symme-
try [ABD84] (PEERS) and the non-conforming KS-FEM [KS95]. We
note that there are some recent elements which we could not include
in this survey such as [GG11a, GG11b]. Moreover, while there are sev-
eral MFEM with weak symmetry constraints that might also have been
worth to consider in our comparison, see e.g. [AFW07, Guz10, CGG10],
our focus lies on symmetric methods. The reason for including PEERS
and KS-FEM is the great popularity of these methods in the engineer-
ing community. We also mention that, although out of the scope of this
paper, higher-order PEERS are available which probably would show
a more favourable performance than the lowest-order version used in
the examples.

While robustness, locking and computational complexity usually play
a pivotal role, singularities in the solution or high regularity may domi-
nate the choice for the method and the mesh-design. The first academic
numerical example on the unit square is designed such that the linear
P1 finite element shows locking. The experiments with several Pois-
son ratios ν close to 1/2 confirm the theoretical locking-free property
of the symmetric MFEM. The theoretical findings of [BS92], that Pk,
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name convergence result

AW21 ‖σ − σh‖L2(Ω) ≤ Ch‖u‖H2(Ω)

AW15 ‖σ − σh‖L2(Ω) ≤ Ch‖u‖H2(Ω)

AW30 ‖σ − σh‖L2(Ω) ≤ Chm‖σ‖Hm(Ω) for 1 ≤ m ≤ 3

AW24 ‖σ − σh‖L2(Ω) ≤ Chm‖σ‖Hm(Ω) for 1 ≤ m ≤ 2

S15 ‖σ − σh‖L2(Ω) ≤ Chm−1‖u‖Hm(Ω) for 1 ≤ m ≤ 2

S27 ‖σ − σh‖L2(Ω) ≤ Chm−1‖u‖Hm(Ω) for 1 ≤ m ≤ 3

KS ‖σ − σh‖L2(Ω) ≤ Ch‖σ‖H1(Ω)

PEERS ‖σ − σh‖L2(Ω) ≤ Ch‖σ‖H1(Ω)

Pk ‖σ − σh‖L2(Ω) ≤ C(λ)hk‖u‖Hk+1(Ω) for k = 1, 2, 3

P4 ‖σ − σh‖L2(Ω) ≤ Ch4‖u‖H5(Ω)

Table 2. Theoretical convergence rates of different
mixed FEM, the non-conforming KS-FEM and the con-
forming Pk-FEM. The constant C is independent of ma-
terial parameters (except for Pk, k = 1, 2, 3) and inde-
pendent of the (sufficiently small) mesh size h.

k = 1, 2, 3, show locking while P4 is locking free, are empirically ver-
ified. For this smooth example the higher-order schemes show faster
convergence rates and higher accuracy. However, this example is not
representative from a practical point of view. Experiments for the
Cook’s membrane and the example with rigid circular inclusion show
that singular solutions or curved boundaries can reduce the convergence
rates of the methods. For the Cook’s membrane problem even the low-
order schemes lead to suboptimal convergence rates. This motivates
the use of local mesh refinement which is investigated more closely for
some L-shaped domain. The experiments show that graded meshes in
contrast to uniform meshes lead to optimal convergence rates. How-
ever, the right choice of the grading parameter is not known in practise
because it depends on the material parameters. The experiments show
that a too small grading parameter results in suboptimal convergence
rates while a too large value can lead to errors of different order of
magnitude in accuracy. Therefore adaptive mesh refinement strategies
for the symmetric MFEM have to be investigated which is postponed
to forthcoming work.

The problem we are concerned with in this paper is assumed on some
plane elastic body Ω ⊂ R2 with boundary ∂Ω = Γ = ΓD ∩ ΓN which
consists of some closed part ΓD of positive length for displacement
boundary conditions uD and its complement ΓN = Γ \ ΓD subject to
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surface loads g with exterior unit normal ν. Given a volume force
f ∈ L2(Ω;R2) and a traction g ∈ L2(ΓN ;R2), we seek the displacement
field u ∈ V := L2(Ω;R2) and the stress tensor σ ∈ Σ := H(div,Ω;S)
which satisfy

− div σ = f and σ = Cε(u) in Ω,

u = uD on ΓD and σν = g on ΓN .
(1.1)

Here and throughout this paper, ε(v) := symDv is the linearised Green
strain tensor and C is the symmetric fourth-order bounded and pos-
itive definite isotropic elasticity tensor. In computations, we seek an
approximation (σh, uh) ∈ Σh × Vh in possible discrete spaces Σh and
Vh discussed in detail in the next section. The standard notation for
Lebesgue spaces L2(Ω) and Sobolev spaces H1(Ω) is used throughout
the paper. Additionally, in the context of the examined Lamé problem
described above, S := R2×2

sym denotes the space of symmetric matrices.
The paper is organised as follows: Section 2 outlines the design and

implementation of the two non-conforming Arnold-Winther MFEM
[AW03b] as a continuation of the examinations in [CGRT08] for the
conforming MFEM of [AW02]. Since the formulation of the MFEM by
Schöberl and Sinwel [SS07] is similar to the former MFEM, we suggest
a new design of the base functions. The computational competition in
Section 3 compares the four Arnold-Winther and two Schöberl-Sinwel
symmetric MFEM to the weakly symmetric PEERS MFEM and the
KS and Pk, k = 1, 2, 3, 4, displacement FEM. Section 4 outlines some
conclusions.

2. Mixed Non-Conforming Finite Element Formulation

This section summarises the design of the non-conforming mixed fi-
nite element AW21 and the simplified AW15 finite element of [AW03b].
We detail the derivation of the coefficient matrices which determine the
discrete basis functions and comment on the discretisation of the (local)
operator matrices.

We assume some regular triangulation T ⊂ Ω ⊂ R2 with the set of
edges E and the set of nodesN , i.e., it holds for any triangles T1, T2 ∈ T

T1 ∩ T2 ∈ T ∪ E ∪ N ∪ {∅}.

Unit outer normal and tangent vectors with respect to an edge E ∈ E
are then defined to be νE and τE, respectively.
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In addition to the spaces defined above, the spaces

Σ0 :=
{
σ ∈H(div,Ω;S)

∣∣∫
ΓN

ψ · (σν) ds = 0 for all ψ ∈ D(ΓN ;R2)
}
,

Σg :=
{
σ ∈H(div,Ω;S)

∣∣∫
ΓN

ψ · (σν) ds =

∫
ΓN

ψ · g ds for all ψ ∈ D(ΓN ;R2)
}

involve the traction boundary conditions where D is the space of test
functions.

The weak formulation of (1.1) reads: Given data uD ∈ H1(Ω;R2), f ∈
L2(Ω;R2), g ∈ L2(ΓN ;R2), seek the solution (σ, u) ∈ Σg × V with∫

Ω

σ : C−1τ dx+

∫
Ω

u · div τ dx

=

∫
ΓD

uD · (τνΩ) ds for all τ ∈ Σ0,∫
Ω

v · div σ dx = −
∫

Ω

f · v dx for all v ∈ V .

(2.1)

2.1. MFEM design (AW21). According to [AW03b], the discrete
spaces for stress and displacement for the non-conforming mixed finite
element denoted AW21 in Table 1 are defined on a triangle T ∈ T ⊂ Ω
by

ΣT := {σ ∈ P2(T,S) | νE · (σνE) ∈ P1(E) for each E ∈ ∂T} ,
VT := P1(T,R2).

(2.2)

For each triangle T ∈ T and the barycentric coordinates λ1, λ2, λ3

on T a basis (ϕ1, . . . , ϕ6) of P2(T ;R) reads

ϕ1 = λ1, ϕ2 = λ2, ϕ3 = λ3,

ϕ4 = λ1λ2, ϕ5 = λ2λ3, ϕ6 = λ1λ3.

The 18 coefficients a1, . . . , a6, b1, . . . , b6, c1, . . . , c6 ∈ R of an arbitrary
stress field σT ∈ P2(T ;S) read

(2.3) σT :=
6∑

k=1

ϕk

(
ak ck
ck bk

)
.

The 15 degrees of freedom ξ1, . . . , ξ15 of σT ∈ ΣT are specified according
to (2.2) by the following.
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(a) The values of the moments of degree 0 and 1 of the two normal
components of σ on each edge E1, E2, E3 of T (12 degrees of free-
dom), namely, for j = 1, 2, 3,

|Ej|−1

∫
Ej

σνEj
ds =

(
ξ4(j−1)+1

ξ4(j−1)+2

)
,

|Ej|−2

∫
Ej

((x−mid(Ej))τEj
)σνEj

ds =

(
ξ4(j−1)+3

ξ4(j−1)+4

)
.

(b) The values of the three components of the integral mean of σ on
T (3 degrees of freedom), i.e.,

|T |−1

∫
T

σ dx =

(
ξ13 ξ15

ξ15 ξ14

)
.

The coefficients of the basis functions in (2.3) for some triangle T ∈ T
and σT ∈ ΣT are specified by the linear relation

(2.4) C
(
a1, b1, c1, . . . , a6, b6, c6

)T
=
(
ξ1, . . . , ξ18

)T
with the 18× 18 matrix C. By the definition (a)–(b) of the degrees of
freedom and the constraints with regard to the considered stress space
(2.2)

C :=
1

60

 R S

20Ĩ 5Ĩ
0 60K

 .

The evaluation of the integrals in (a) for the P2 basis yields the entries
in the first row and involves the degrees of freedom ξ1, . . . , ξ12 given by

R :=


30N (1) 30N (1) 0
−5M (1) 5M (1) 0

0 30N (2) 30N (2)

0 −5M (2) 5M (2)

30N (3) 0 30N (3)

5M (3) 0 −5M (3)

 , S :=


10N (1) 0 0

0 0 0
0 10N (2) 0
0 0 0
0 0 10N (3)

0 0 0


with the normals matrix

N (j) :=

(
νEj

(1) 0 νEj
(2)

0 νEj
(2) νEj

(1)

)
∈ R2×3

for the kth component νEj
(k) of the global unit normal νEj

along the
jth edge Ej of a triangle T . We define the element-dependent normals
matrix M which is identical to N with the difference that, instead of
unique global normal vectors, it contains the outer unit normals along
the edges of the elements. The conditions (b) for degrees of freedom
ξ13, . . . , ξ15 are encoded in the second row of C with 3 × 3 identity
matrices I3×3 and

Ĩ :=
(
I3×3 I3×3 I3×3

)
∈ R3×9.
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Since any stress field σT ∈ ΣT has to satisfy νEj
· (σνEj

) ∈ P1(Ej) on
the edges E1, E2, E3 of T , the remaining degrees of freedom ξ16, . . . , ξ18

vanish and the respective conditions are included in C by

K(j) :=
(
(νEj

(1))2, (νEj
(2))2, 2νEj

(1)νEj
(2)
)
∈ R3

with

K :=

K(1) 0 0
0 K(2) 0
0 0 K(3)

 ∈ R3×9.

2.2. Local stiffness matrix (AW21). The fourth-order material ten-
sor C and its inverse C−1 read

C :=

2µ+ λ λ 0
λ 2µ+ λ 0
0 0 µ

 , C−1 :=


λ+2µ

4µ(λ+µ)
−λ

4µ(λ+µ)
0

−λ
4µ(λ+µ)

λ+2µ
4µ(λ+µ)

0

0 0 1
µ

 .

On each triangle T ∈ T the local stiffness matrix, resulting from (2.1),

STIMA(T ) :=

(
A B
BT 0

)
∈ R21×21

sym

requires the computation of

Ajk :=

∫
T

σj : C−1σk dx for j, k = 1, . . . , 15;(2.5a)

Bjk :=

∫
T

div σj · vk dx for j = 1, . . . , 15; k = 1, . . . , 6.(2.5b)

Any basis function σ1, . . . , σ15 of ΣT resulting from the coefficient eval-
uation in (2.4) can be represented as

σj =

(
αj γj
γj βj

)
and

αjβj
γj

 :=


∑6

k=1 a
(k)
j ϕk∑6

k=1 b
(k)
j ϕk∑6

k=1 c
(k)
j ϕk

 .

The entry Ajk of the local stiffness matrix is given for the base functions
σj and σk by

Ajk =

∫
T

σj : C−1σk dx =

∫
T

(αj, βj, γj)C−1(αk, βk, γk)
T dx

= C−1
1,1

∫
T

(αjαk + βjβk) dx+ C−1
1,2

∫
T

(αjβk + βjαk) dx

+ C−1
3,3

∫
T

γjγk dx.

The integrals occurring in the Ajk can be integrated exactly on any
T ∈ T ∫

T

αjβk dx =
6∑

m=1

6∑
n=1

a(j)
m b(k)

n

∫
T

ϕmϕn dx = |T |a(j)TMb(k)
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with the mass matrix

M :=
1

180


30 15 15 6 3 6
15 30 15 6 6 3
15 15 30 3 6 6
6 6 3 2 1 1
3 6 6 1 2 1
6 3 6 1 1 2

 .

For the evaluation of the second part of the stiffness matrix (2.5b)
we recall the conditions imposed on elements of ΣT and note that the
divergence of any base function σj yields the form

div σj =

(
d

(j)
1 ϕ1 + d

(j)
3 ϕ2 + d

(j)
5 ϕ3

d
(j)
2 ϕ1 + d

(j)
4 ϕ2 + d

(j)
6 ϕ3

)

for some coefficients d
(j)
k . From this we derive the coefficient matrix

D := (d(1), . . . , d(18)) given by

D :=

L1 L2 L3 L2 0 L3

L1 L2 L3 L1 L3 0
L1 L2 L3 0 L2 L1

X

with the derivative matrices L1, L2, L3,

Lk :=

(
Dxλk 0 Dyλk

0 Dyλk Dxλk

)
and

X =
(
x(1), . . . , x(15)

)
∈ R18×15,

x(j) =
(
a

(j)
1 , b

(j)
1 , c

(j)
1 , . . . , a

(j)
6 , b

(j)
6 , c

(j)
6

)T
∈ R18.

The second part of the stiffness matrix (2.5b) reads

B :=
|T |
12


2 1 1 0 0 0
1 2 1 0 0 0
1 1 2 0 0 0
0 0 0 2 1 1
0 0 0 1 2 1
0 0 0 1 1 2




1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

D.

Remark 2.1. Neumann boundary condition are essential conditions
in the mixed formulation (2.1) and have to be imposed on the dis-
crete stresses. Opposite to the treatment with Lagrange multipliers in
[CGRT08], the current implementation eliminates respective boundary
degrees of freedom by condensation.
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2.3. MFEM design (AW15). In addition to the element described
above, a simplified non-conforming element was derived in [AW03b]
which only includes the reduced velocity space VT := RM(T ) of dis-
continuous piecewise rigid body motions, see AW15 in Table 1. More
specifically, a function in RM(T ) has a representation (a, b)T+c(−y, x)T

for some coefficients a, b, c ∈ R. The reduced local stress space Σ̂T is
given by

Σ̂T := {τ ∈ ΣT | div τ ∈ RM(T )} .

When compared to the non-conforming element of Section 2.1, the de-
grees of freedom corresponding to the first two moments of the normal
derivatives on the edges are still used while the integral mean values on
the element were dropped. Moreover, the constraint on the divergence
of the stress fields now is more restricted by means of the space RM(T ).

In order to obtain the unknown coefficients a1, b1, c1, . . . , a6, b6, c6 of

the basis functions for a discrete σT ∈ Σ̂T on a triangle T , we solve a
linear system

(2.6) C (a1, b1, c1, . . . , a6, b6, c6)T =
(
ξ1, . . . , ξ18

)T
.

The constraints of Σ̂T lead to the coefficient matrix

C :=
1

60

R S

0 60Q̃
0 60K

 ∈ R18×18

which encodes 12 base functions in terms of the aforementioned P2

basis. The first row represents the degrees of freedom resulting from the
first two moments of the normal derivatives on the edges of a triangle
with matrices R, S ∈ R12×9 from Section 2.1. The constraints of the
space RM are encoded in the second row of C by means of the matrix

Q(j) := diam(T )

Dxv
(j) 0 Dyv

(j)

0 Dyw
(j) Dxw

(j)

Dxw
(j) Dyv

(j) Dyw
(j) +Dxv

(j)


with

v(1)...(3) := ((λ1 − λ2), λ3,−λ3) ,

w(1)...(3) := (−λ2, λ2, (λ1 − λ3)) ,

Q̃ :=
(
Q(1), Q(2), Q(3)

)
∈ R3×9.

Note that the matrix Q̃ is scaled in relation to the size of the triangle in
order to avoid ill-conditioning of the coefficient matrix. The remaining
vanishing quadratic degrees of freedom are encoded in the matrix K ∈
R3×9 from Section 2.1.
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2.4. Local stiffness matrix (AW15). The evaluation of the local
stiffness matrix follows the derivation in Section 2.2. While A is evalu-
ated as before, by definition of the base functions and the constraints
on the stress space, the divergence of some σj has the form

div σj =

(
dj1 − d

j
3ϕ3

dj2 + dj3ϕ2

)
for some coefficients d

(j)
k ∈ R. The coefficient matrixD := (d(1), . . . , d(15))

reads

D :=

F1 F2 F3 F2 0 F3

G1 G2 G3 G2 0 G3

0 0 0 G1 −G2 G3 −G3

X

with

Fk :=
(
Dxλk 0 Dyλk

)
,

Gk :=
(
0 Dyλk Dxλk

)
and

X =
(
x(1), . . . , x(12)

)
∈ R18×12,

x(j) =
(
a

(j)
1 , b

(j)
1 , c

(j)
1 , . . . , a

(j)
6 , b

(j)
6 , c

(j)
6

)T
∈ R18.

The second part of the stiffness matrix simplifies to

B :=
|T |
3

 3 0 −1
0 3 1
−1 1 1

D.

2.5. Other symmetric MFEM. In addition to providing details about
the implementation of the non-conforming Arnold-Winther elements
in the previous section, we also aim to compare it to other symmet-
ric MFEM developed recently. A detailed account on the conforming
Arnold-Winther element [AW02] was given in [CGRT08] and we only
summarise the main properties for the sake of completeness. Another
set of symmetric element is due to [SS07]. Instead of using the explicit
base functions listed in the reference, our implementation follows the
lines of the Arnold-Winther element implementation. It thus is instruc-
tive to provide some details about the required modifications for the
design of the shape functions.

2.5.1. Conforming Arnold-Winther elements. The conforming elements
of Arnold and Winther for the mixed formulation are based on poly-
nomials of degree 3 for the symmetric stresses and of degree 1 for the
displacement, see AW30 and AW24 in Table 1. In order to obtain
continuity of the stress field in normal direction along the boundary of
elements, it was shown in [AW02] that vertex degrees of freedom can-
not be circumvented. The non-conforming elements AW21 and AW15
described above on the one hand lack normal-stress continuity due to
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missing vertex degrees of freedom which, on the other hand, enables
to employ a lower polynomial degree for the stress space. For the
conforming AW30 element, a reduced AW24 element was described as
well. Since the design of the AW24 element is similar to the one of the
AW30 element [CGRT08] and to the ones presented above, we omit
the details. Experimental results for the two lowest order conform-
ing Arnold-Winther elements as depicted in Table 1 are presented in
Section 3.

2.5.2. Schöberl-Sinwel TD-NNS elements. In [SS07], a class of mixed fi-
nite elements were presented which employ subspaces of H(curl,Ω;R2)
for the displacement and of H(div div,Ω;S) for the stress. Accord-
ing to the continuity requirements, the method is coined Tangential-
Displacement-Normal-Normal-Stress (TD-NNS) formulation of elastic-
ity. In this paper, for the sake of simpler notation, we call these ele-
ments S15 and S27 of polynomial degree 1 and 2 and overall number
of degrees of freedom 15 and 27 as depicted in Table 1 for comparison
with Arnold-Winther elements. The homogeneous spaces of order k
are defined by

Σh,k := {σ ∈ L2
sym(Ω) | σ|T ∈ Pk(T ;S), νE · (σνE) = 0 on ΓN

∀E ∈ ∂T : νE · (σνE) ∈ Pmax(1,k−1)(E) ∩ C0(Ω)},
Vh,k := {v ∈ L2(Ω)2 | v|T ∈ Pk(T ;R2), v · τE ∈ C0(Ω), v · τE = 0 on ΓD}.

Note that Vh,k is the second family of Nédélec edge elements. The
homogeneous problem is given by: Find (σ, u) ∈ Σh,k × Vh,k such that

a(σ, ρ) + b(ρ, u) = 0 ∀ρ ∈ Σh,k

b(σ, v) = −(f, v) ∀v ∈ Vh,k.

with the bilinear forms

a(σ, ρ) :=

∫
Ω

σ : C−1ρ dx,

b(ρ, v) := 〈divρ, v〉 =
∑
T∈T

∫
T

div ρ · v dx−
∫
∂T

(τ · (ρν))(v · τ) ds.

Opposite to the basis functions derived in [SS07], we prefer an approach
similar to the design of the Arnold-Winther mixed FEM presented
above and in [CGRT08]. In what follows, we discuss the design of the
S27 element of order 2. The design of the order 1 element S15 is a mere
reduction of the shown approach.

As in Section 2.3, some stress field σT ∈ Pk(T ;S) and some displace-
ment field uT ∈ Pk(T ;R2) on some triangle T have the form

σT :=

Nk∑
j=1

ϕj

(
ak ck
ck bk

)
and uT :=

Nk∑
j=1

ϕj

(
dk
ek

)
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with (3 + 2)Nk coefficients overall, according to degree k of the poly-
nomial space. The 15+12 degrees of freedom for the S27 element are
defined by (a)–(d).

(a) The values of the moments of degree 0 and 1 of the two normal-
normal components of σ on each edge E1, E2, E3 of T (6 degrees of
freedom), namely, for j = 1, 2, 3,

|Ej|−1

∫
Ej

(σνEj
) · νEj

ds = ξ2(j−1)+1,

|Ej|−2

∫
Ej

((x−mid(Ej))τEj
)(σνEj

) · νEj
ds = ξ2(j−1)+2.

(b) The values of the three components of the integral mean of σ on
T tested with a basis {ϕj} of P1(T ;S) (9 degrees of freedom)

|T |−1

∫
T

σ : ϕj dx = ξj+6 for j = 1, . . . , 9.

For instance a basis of P1(T ;S) is given by
{(

λk 0
0 0

)
,
(

0 0
0 λk

)
, 1

2

(
0 λk
λk 0

)}
,

k = 1, 2, 3.
(c) The values of the moments of degrees 0, 1 and 2 of the tangen-

tial components of u on each edge E1, E2, E3 of T (9 degrees of
freedom), namely, for j = 1, 2, 3,

|Ej|−1

∫
Ej

u · τEj
ds = ξ3(j−1)+16,

|Ej|−2

∫
Ej

((x−mid(Ej))τEj
)u · τEj

ds = ξ3(j−1)+17,

|Ej|−3

∫
Ej

((x−mid(Ej))τEj
)2u · τEj

ds = ξ3(j−1)+18.

(d) The values of the integral mean on the element tested with a basis
{qj} of the space P0(T ;R2) ⊕ xP0(T ) such as {( 1

0 ) , ( 0
1 ) ,
(
λ2
λ3

)
} (3

degrees of freedom)

|T |−1

∫
T

u · qj dx = ξj+24 for j = 1, 2, 3.

With the notation from Section 2.1 the coefficient matrix for the
stress space ΣT := Σh,2|T reads

CΣT
:=

1

60

R S
IR IS
0 60K

 ∈ R18×18.

It is formed according to the moments and constraints described in (a)
and (b). The evaluation of the integrals in (a) for the P2 basis yields
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the entries in the first row and involves the degrees of freedom ξ1, . . . , ξ6

given by

R :=


30N (1) 30N (1) 0
−5M (1) 5M (1) 0

0 30N (2) 30N (2)

0 −5M (2) 5M (2)

30N (3) 0 30N (3)

5M (3) 0 −5M (3)

 , S :=


10N (1) 0 0

0 0 0
0 10N (2) 0
0 0 0
0 0 10N (3)

0 0 0


with the normal-normal vectors

N (j) :=
((
νEj

(1)
)2
,
(
νEj

(2)
)2
, 2νEj

(1)νEj
(2)
)
∈ R3

for the kth component νEj
(k) of the globally unique normal νEj

along
the jth edge Ej of a triangle T . As mentioned before in Section 2.1, the
matrix M contains the normal-normal entries with element-dependent
outer unit normals. The conditions (b) for degrees of freedom ξ7, . . . , ξ15

are encoded in the second row of CΣT
with 3 × 3 identity matrices I

and

IR :=

10I 5I 5I
5I 10I 5I
5I 5I 10I

 and IS :=

2I 1I 2I
2I 2I 1I
1I 2I 2I

 ∈ R9×9.

The constraints νEj
· (σνEj

) ∈ P1(Ej) are encoded in the matrix K ∈
R3×9 from Section 2.1. Note that the coefficient matrix CΣT

is somehow
similar to the one for the non-conforming Arnold-Winther elements.

The coefficient matrix

CVT :=
1

120

(
R̃ S̃

ĨR ĨS

)
∈ R12×12

corresponds to the displacement degrees of freedom described in (c) and
(d). The evaluation of the integrals in (c) for the P2 basis yields the
entries in the first row and involves the degrees of freedom ξ16, . . . , ξ24

given by

R̃ :=



60N (1) 60N (1) 0
−10M (1) 10M (1) 0

5N (1) 5N (1) 0
0 60N (2) 60N (2)

0 −10M (2) 10M (2)

0 5N (2) 5N (2)

60N (3) 0 60N (3)

10M (3) 0 −10M (3)

5N (3) 0 5N (3)


, S̃ :=



20N (1) 0 0
0 0 0

N (1) 0 0
0 20N (2) 0
0 0 0
0 N (2) 0
0 0 20N (3)

0 0 0
0 0 N (3)


with the global transpose tangents

N (j) :=
(
−νEj

(2), νEj
(1)
)
∈ R2
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and the element-dependent equivalent M . The conditions (d) for de-
grees of freedom ξ25, . . . , ξ27 are encoded in the second row of CVT and

ĨR :=

40 0 40 0 40 0
0 40 0 40 0 40
10 10 20 10 10 20

 ,

ĨS :=

10 0 10 0 10 0
0 10 0 10 0 10
4 2 4 4 2 4

 ∈ R3×6.

3. Numerical experiments

This section presents the computational competition of the standard
continuous Pk, k = 1, . . . , 4, displacement finite elements, the weakly
symmetric mixed finite element PEERS [ABD84], the non-conforming
displacement finite element KS [KS95] and the symmetric mixed meth-
ods AW30, AW24, AW21, AW15, S15 and S27 described above. We
begin with an academic example which represents an ideal benchmark
for the locking phenomenon. Next more realistic benchmark problems
such as the Cook’s membrane problem and the example of a rigid cir-
cular inclusion in an infinite plate are considered. Finally, the rotated
L-shaped domain with singular solution motivates the need of local
mesh refinement.

All methods will be compared with respect to the stress tensor error
in the energy norm |||σ||| := ‖C−1/2(σ)‖L2(Ω). The implementation of
the AW30 MFEM is presented in [CGRT08] and due to the close rela-
tionship, a few modifications lead to an implementation of the AW24
MFEM. The implementation of PEERS is described in [CDFH00],
where the continuity constraints are enforced using Lagrange multi-
pliers. In order to compare the results of PEERS to all other methods,
the error is plotted with respect to the theoretically necessary degrees
of freedom and not to the size of the discrete system involving a high
number of degrees of freedom for the Lagrange multipliers. For the
KS non-conforming finite element, the first component is chosen to be
non-conforming and the second component is chosen to be continuous.
Note that in [BS92] it is proven that Pk shows locking for k = 1, 2, 3
and is locking free for k = 4, which is also confirmed by the following
numerical examples.

Throughout this section, let N denote the number of degrees of free-
dom, i.e., the number of unknowns of the algebraic systems to be solved.

3.1. Academic example. As a first academic example consider the
model problem (1.1) on the unit square Ω = (0, 1)×(0, 1) with homoge-
neous Dirichlet boundary conditions. The elasticity modulus is set to
E = 105 and the Poisson ratio is chosen out of ν ∈ {0.3, 0.49, 0.4999}.
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Figure 3.1. Energy error |||σ − σh||| for the academic
example with Poisson ratio ν = 0.3, 0.49, 0.4999.
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Figure 3.2. Survey of the energy error |||σ−σh||| for the
academic example with Poisson ratio ν = 0.499.
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The right hand side is defined as

fx(x, y) = −2µπ3 cos(πy) sin(πy)(2 cos(2πx)− 1),

fy(x, y) = 2µπ3 cos(πx) sin(πx)(2 cos(2πy)− 1),

and depends only on the Lamé parameter µ and not on the critical
Lamé parameter λ. The corresponding displacement solution is given
as

ux(x, y) = π cos(πy) sin2(πx) sin(πy),

uy(x, y) = −π cos(πx) sin(πx) sin2(πy).

Notice that for the displacement solution it holds div(u) ≡ 0. The
experiments of Figure 3.1 verify the theoretical findings of [AW03b]
and [SS07]. Since the convergence graphs for ν = 0.3, ν = 0.49 and
ν = 0.4999 are very close or even cover each other, these results demon-
strate empirically the locking-free property of the methods, i.e., the
robustness for ν tending to 1/2. Moreover, for this convex example
with smooth solution, uniform refinement leads to optimal order of
convergence. Figure 3.2 shows that P1, P2 and P3 lead to suboptimal
convergence rates for coarser meshes because of the locking effect. How-
ever since locking is a pre-asymptotic phenomenon, the graphs show
optimal convergence rates for larger number of degrees of freedom. It
can be observed that all other first order methods lead to smaller errors
with optimal convergence without pre-asymptotic ranges and thus no
locking phenomena. Among those, the AW15 MFEM shows the small-
est errors. Note that the KS non-conforming FEM and the S15 and
PEERS MFEM lead to significantly larger errors than the AW21 or
AW15 MFEM. The locking of the P2 element leads to the fact that the
AW24 and S27 MFEM, which are of the same order of convergence,
show similarly better results. The AW30 MFEM leads to smaller er-
rors than the P3 FEM. Since the fourth-order P4 FEM is locking free, it
shows faster convergence rates and smaller errors than the third-order
AW30 MFEM.

3.2. Cook’s membrane problem. The Cook’s membrane benchmark
problem considers the model problem (1.1) with Ω depicted in Fig-
ure 3.3. The domain describes a tapered panel which is clamped on
the left side and subject to a surface load in vertical direction on the
right side. The interior load is zero, f ≡ 0. For (x, y) ∈ ΓN , the surface
load is given by g(x, y) = (0, 1) if x = 48 and g(x, y) = 0 elsewhere.
Since the plate is clamped, uD ≡ 0 on ΓD. This benchmark problem is
a standard test for bending dominated response. In the experiments,
the elasticity modulus is E = 105 and the Poisson ratio ν = 0.499. Fig-
ure 3.4 shows the displacement solution magnified by a factor of 2 · 103

and the modulus of the deviatoric part |dev(σ)| pictured as grey scales
for the AW15 element. The unknown solution is singular because of
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membrane.
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Figure 3.4. Solution of
the Cook’s membrane bench-
mark.
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Figure 3.5. Energy errors |||σ−σh||| for the Cook’s mem-
brane problem with Poisson ratio ν = 0.499.

the chosen mixed boundary conditions. Therefore, the error is approx-
imated by the difference between the discrete solution and a fine grid
approximation. The fine grid approximation is computed on a uni-
form refinement of the grid for the last level. For the Pk, k = 1, . . . , 4,
FEM, the fine grid solution is computed additionally with one order
higher polynomials. Figure 3.5 shows the convergence history for uni-
form refined meshes. The first observation is that the convergence rate
is suboptimal for all FEM due to the regularity constraints. Remark
that it is unclear how to use graded meshes to improve the convergence
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Figure 3.6. Domain circu-
lar inclusion.
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Figure 3.7. Solution of the
circular inclusion benchmark.

rates. Hence, adaptive refinement strategies have to be investigated.
For this benchmark example it turns out to be a crucial point for the
KS FEM, that the first component is non-conforming. Choosing the
second component to be non-conforming and hence the first continuous,
results in singular discrete algebraic systems. This could be avoided
by bisection the upper right triangle such that not all nodes of the
resulting triangles lay on the Neumann boundary. The locking-effect
is visible only for the linear P1 FEM because of the dominating reg-
ularity constraints. The P4 FEM shows the best results. The P3 or
P2 FEM lead to similar errors as the MFEM or the KS FEM. Among
the MFEM and the KS FEM, the AW15 shows the best results while
PEERS and on the finest grid also KS show the largest error.

3.3. Circular inclusion. As a third example, consider a rigid circular
inclusion in an infinite plate for the domain Ω as shown in Figure 3.6.
The exact solution [KS95] to the model problem (1.1) in polar coordi-
nates (r, φ) reads

ur =
1

8µr

(
(κ− 1)r2 + 2γa2 +

(
2r2 − 2(κ+ 1)a2

κ
+

2a4

κr2

)
cos(2φ)

)
,

uφ = − 1

8µr

(
2r2 − 2(κ− 1)a2

κ
− 2a4

κr2

)
sin(2φ),

where κ = 3−4ν, γ = 2ν−1, a = 1/4 and µ is the Lamé parameter de-
termined by E = 105 and the Poisson ratio ν = 0.499. Figure 3.7 shows
the displacement solution magnified by a factor of 5·104 and the modu-
lus of the deviatoric part |dev(σ)| as grey scales for the AW21 element.
The numerical comparison in Figure 3.8 shows optimal convergence
rates for the first-order methods while suboptimal convergence rates
for the higher-order schemes. This is caused by the linear approxima-
tion of the boundary at the circular inclusion which is not sufficiently
accurate for the higher-order methods. Therefore, for problems with
curved boundary, parametric elements have to be used in order to get
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Figure 3.8. Energy errors |||σ− σh||| for the circular in-
clusion example with Poisson ratio ν = 0.499.
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Figure 3.10. Solution of
the L-shaped benchmark.

optimal convergence rates. Note that the implementation of parametric
elements for the MFEM is somewhat more involved than the presented
simplified implementation. The experiments illustrate that P1 and P2

show locking while for P3 and P4 the constraint of the boundary ap-
proximation dominates the error. For the first-order stable methods,
the AW15 finite element exhibits the best results. The overall smallest
error shows the AW24 MFEM.



SYMMETRIC MIXED FEM FOR ELASTICITY 21

102 103 104 105 106

10 4

10 3

N

|||
h|||

 

 

1

1/2

1
1/4

uniform
 = 0.1
 = 0.2
 = 0.3
 = 0.4
 = 0.5
 = 0.6
 = 0.7
 = 0.75
 = 0.8
 = 0.9
 = 0.95
 = 0.99

Figure 3.11. Energy errors |||σ−σh||| for different grad-
ing parameters δ for the low-order AW15 MFEM for the
L-shaped example with Poisson ratio ν = 0.499.

102 103 104 105 106

10 8

10 6

10 4

10 2

N

|||
h|||

 

 

1

2

1
1/3

uniform
 = 0.1
 = 0.3
 = 0.5
 = 0.55
 = 0.6
 = 0.65
 = 0.7
 = 0.75
 = 0.8
 = 0.85
 = 0.9
 = 0.95
 = 0.99

Figure 3.12. Energy errors |||σ−σh||| for different grad-
ing parameters δ for the high-order AW30 MFEM for the
L-shaped example with Poisson ratio ν = 0.499.
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Figure 3.13. Graded meshes for δ = 0.6, 0.7, 0.8, 0.9
(top left to bottom right) for global mesh-size 1/4.
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Figure 3.14. Survey of the energy errors |||σ − σh||| for
the L-shaped example with Poisson ratio ν = 0.499 on
graded meshes.
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3.4. L-shaped benchmark. The last example considers the model
problem (1.1) where Ω is a rotated L-shaped domain as depicted in
Figure 3.9. The exact singular solution in radial components is given
by

ur(r, φ) =
rα

2µ
(−(α + 1) cos((α + 1)φ) + (C2 − α− 1)C1 cos((α− 1)φ)) ,

uφ(r, φ) =
rα

2µ
((α + 1) sin((α + 1)φ) + (C2 + α− 1)C1 sin((α− 1)φ)) ,

in the polar coordinate system (r, φ) with −π < φ ≤ π. The con-
stants read C1 := − cos((α + 1)ω)/ cos((α − 1)ω) and C2 := 2(λ +
2µ)/(λ + µ), where α ≈ 0.544483736782 is the positive solution of
α sin(2ω) + sin(2ωα) = 0 for ω = 3π/4 and with Lamé parameter λ,
µ. Here, the volume force is zero, f ≡ 0, and the Dirichlet bound-
ary conditions are computed according to the exact solution. As in
the previous examples, the elastic modulus is set to E = 105 and the
Poisson ratio to ν = 0.499. Figure 3.10 shows the displacement solu-
tion magnified by a factor of 5 · 103 and the modulus of the deviatoric
part |dev(σ)| as grey scales for the S15 element. In this example, the
re-entrant corner leads to singular solutions which results in slower con-
vergence for uniform meshes as shown in Figures 3.11 and 3.12 for the
AW15 and AW30 MFEM. Therefore, local mesh refinement is needed
for optimal convergence rates. It is known that β-graded meshes can
lead to better convergence rates but suffer from small angles. There-
fore, the algorithm GRADMESH of [CGRT08] in combination with
the red-green-blue refinement strategy [Car04] is used to create meshes
which are more refined towards the re-entrant corner while preserving
the mesh quality. Figures 3.11 and 3.12 show the results of some ex-
periments to determine the best grading parameter 0 < δ < 1 for the
first-order AW15 and the third-order AW30 MFEM. For the first-order
methods, a grading parameter δ = 0.7 is already sufficient while for the
higher-order schemes only a larger value of δ = 0.9 leads to optimal
convergence rates. It is observed that higher grading parameters lead to
larger energy errors while lower values lead to suboptimal convergence
rates. Since the right choice of the grading parameter is not known
a priori, other local mesh refinement strategies such as adaptive finite
element methods have to be investigated. Note that the large grading
parameter δ = 0.9 for the high-order methods leads to strong refine-
ment towards the origin, c.f. Figure 3.13. The numerical experiments
of Figure 3.14 show that the locking effect reduces the convergence
rates for Pk, k = 1, 2, 3, and that P4 is locking-free. Among the first-
order methods, the AW15 finite element shows the best results with
significantly smaller errors than for PEERS. It is remarkable that the
AW30 and the AW24 MFEM exhibits some superconvergence rates of
O(N−2). This is in agreement of the conjecture in [CGRT08]. Hence,
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the errors of the AW30 and the AW24 MFEM are similar as for the
one order higher P4 FEM.

4. Conclusions

i.) The numerical experiments verify the theoretical convergence rates
and robustness for ν → 1/2 for the symmetric mixed finite element
methods AW30, AW24, AW21, AW15, S15 and S27 as well as for
PEERS and the KS-nonconforming and the P4-conforming FEM.

ii.) We presented a short and simple way for implementing the rather
complicated mixed schemes AW21, AW15, S15 and S27.

iii.) The numerical examples confirm that P4 is robust, while Pk, k =
1, 2, 3, shows locking.

iv.) Among the first-order methods P1, PEERS, KS, AW21, AW15 and
S15, the AW15 MFEM shows the best results overall.

v.) Among the second-order methods P2, AW24 and S27, the AW24
MFEM shows the best results overall. Note that for the first two
examples the S27 MFEM shows similar results but larger errors for
the last two.

vi.) Among the third-order methods P3 and AW30, the locking-free
AW30 MFEM shows the better results.

vii.) The comparison of conforming FEM and the MFEM under con-
sideration shows that only the robust version P4 is competitive
and performs best. However, the comparison of the fourth-order
scheme with some third-order method clearly shows superiority of
the higher-order scheme provided the exact solution is sufficiently
smooth.

viii.) The experiments for the L-shaped domain illustrate that uniform
refinement results in suboptimal convergence rates while graded
meshes recover optimal rates. The experiments show that some
too small grading parameters lead to suboptimal convergence rates
while higher values result in errors of several orders of magnitude
in accuracy. Since the optimal grading parameter is, in general,
not known a priori, adaptive refinement strategies have to be in-
vestigated.

ix.) The experiments for the L-shaped domain leads to the conjecture
that for f ≡ 0 the AW30 and AW24 exhibit some superconvergence
phenomenon of order O(N−2). This is in agreement with the con-
jecture of [CGRT08]. These results of the AW30 and AW24 MFEM
can compete with those of the one order higher P4 displacements
solution. Surprisingly, the S15 and S27 MFEM do not show such
properties.
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