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Abstract. The saturation assumption is widely used in computational
science and engineering, usually without any rigorous theoretical justi-
fication and even despite of counterexamples for some coarse meshes
known in the mathematical literature. On the other hand, there is
overwhelming numerical evidence at least in an asymptotic regime for
the validity of the saturation. In the generalized form, the assumption
states, for any 0 < ε ≤ 1, that

|||u− Û |||2 ≤ (1− ε/C)|||u− U |||2 + ε osc2(f,N )(SA)

for the exact solution u and the first-order conforming finite element

solution U (resp. Û) of the Poisson model problem with respect to a

regular triangulation T (resp. T̂ ) and its uniform refinement T̂ within
the class T of admissible triangulations. The point is that the patch-
oriented oscillations osc(f,N ) vanish for constant right-hand sides f ≡ 1
and may be of higher order for smooth f , while the strong reduction fac-
tor (1− ε/C) < 1 involves some universal constant C which exclusively
depends on the set of admissible triangulations and so on the initial
triangulation only. This paper proves the inequality (SA) for the en-
ergy norms of the errors for any admissible triangulation T in T up
to computable pathological situations characterized by failing the weak
saturation test (WS). This computational test (WS) for some triangula-

tion T states that the solutions U and Û do not coincide for the constant
right-hand side f ≡ 1. The set of possible counterexamples is character-
ized as T with no interior node or exactly one interior node which is the

vertex of all triangles and T̂ is a particular uniform bisec3 refinement.
In particular, the strong saturation assumption holds for all triangula-
tions with more than one degree of freedom. The weak saturation test
(WS) is only required for zero or one degree of freedom and gives a def-
inite outcome with O(1) operations. The only counterexamples known
so far are regular n-polygons. The paper also discusses a generalization
to linear elliptic second-order PDEs with small convection to prove that
saturation is somehow generic and fails only in very particular situations
characterised by (WS).
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1. Introduction

1.1. Motivation. It is well known that the criss-cross triangulation T0 of
the unit square Ω is a counterexample to the saturation assumption if the
refined mesh T̂ is refined everywhere by the newest vertex bisection (NVB)
with refinement edges along the boundary ∂Ω. The respective discrete so-
lutions U = Û for the Poisson model problem

−div(A∇u) = f in Ω and u = 0 on ∂Ω(1.1)

coincide for the constant right-hand side f ≡ 1 and A = 12×2 for the Laplace
operator. This is often regarded as a pre-asymptotic artifact and contrasted
with striking numerical evidence for the saturation assumption on finer trian-
gulations. This paper provides a rigorous proof of this conjecture and char-
acterises the very small set of counterexamples. For mesh-refinement tech-
niques with an interior node property, the saturation assumption has been
reasonably justified in [DN02], and is used in [AO00, BS93, Ver96, FLOP10].
This paper justifies the saturation assumption of [FLOP10, p.293] where it
is warned that this assumption may fail to hold in general. A proof of the
saturation assumption in the context of eigenvalue problems is included in
[CGMM14] for sufficiently small mesh-sizes only.

The saturation assumption is established in [DN02] for a different situ-
ation with an increase of polynomial degrees from first to second order in
the finite element spaces but on the same mesh. This increase of the fi-
nite element space allows for the same number of degrees of freedom as the
mesh-refinements of this paper and hence appears competitive from a prac-
tical point of view. Despite the fact that [DN02] observe that red refinement
leads to saturation in one example, they conclude that quadratics do indeed
encode finer information than refined linears in [DN02, Remark 3.2] in view
of the counterexample of the criss-cross triangulation of the unit square for
bisec3 refinement. The main results I and II of this paper, however, prove
this statement in the negative and point out that piecewise quadratics possi-
bly encode finer information on the oscillations than refined piecewise linear
conforming finite element schemes; but the two improved solutions enjoy a
similar saturation property up to an extremely limited number of geometries
exclusively for the very first mesh with at most one degree of freedom.

The saturation property has to be considered in comparison to the error
estimator reduction in the convergence analysis of adaptive finite element
methods [CKNS08, Ste08]. In explicit residual-based error estimators, the
mesh-size enters as a weight and hence reduces under refinement. This
implies a reduction property of such error estimators and eventually leads
to linear convergence of some total error which is a convex combination of
the error estimator and the error. In contrast to this, the saturation property
describes the reduction (SA) of the error terms without involving any error
estimator contribution, but with immediate important applications in the
context of hierarchical error estimators. The proofs are rather independent,
e.g., the saturation property (SA) cannot be proved by simply reducing the
mesh-size.

Let T be a shape-regular triangulation of Ω into triangles with the set
of nodes N and the set of edges E . Let P1(T ) denote the piecewise linear
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Figure 1. Refinement rules red, green, blue-left, blue-right,
bisec3 and bisec5. The reference edge, the bottom edge, is
always refined. The new reference edges for the sub-triangles
are indicated with a second line.

polynomials with respect to T and let the finite element space V (T ) :=
P1(T ) ∩ H1

0 (Ω) consist of all piecewise linear functions which are globally
continuous and vanish along the boundary ∂Ω.

Throughout this paper, let A ∈ R2×2 denote a symmetric positive definite
constant diffusion matrix and let |||·||| := ‖A1/2∇·‖L2(Ω) be the induced energy

norm in V ≡ H1
0 (Ω). The discrete problem seeks a piecewise linear function

uT ∈ V (T ) such thatˆ
Ω

(A∇uT ) · ∇vT dx =

ˆ
Ω
fvT dx for all vT ∈ V (T ).(1.2)

Given an initial regular triangulation T0 of Ω into triangles with at least
one interior vertex and the set of all admissible refinements T by successive
application of the refinement rules from Figure 1 (see Definition 2.3 for more
details) the main result concerns two notions of saturation for a triangulation

T and its refinement T̂ where each edge is bisected and each triangle T ∈ T̂
is obtained by red or bisec3 refinement as illustrated in Figure 1; written
T̂ ∈ unif(T ).

1.2. Strong saturation. Strong saturation for T ∈ T and some uniform
refinement T̂ ∈ unif(T ) means that, for any 0 < ε ≤ 1, there exists %(ε) :=
1− ε/C(T0) < 1, with a universal constant C(T0) which exclusively depends
on T0, such that: Given any right-hand side f ∈ L2(Ω), the exact solution u

of (1.1) and the discrete solution U := uT ∈ V (T ) (resp. Û := uT̂ ∈ V (T̂ ))

of the discrete problem (1.2) with respect to T (resp. T̂ ) satisfy

|||u− Û |||2 ≤ %(ε)|||u− U |||2 + ε osc2(f,N )(SA)

for the patch-oriented oscillations

osc2(f,N ) :=
∑

z∈N (Ω)

diam(Ωz)
2‖f −

ffl
Ωz
f dx‖2L2(Ωz)(1.3)

with the integral mean
ffl

Ωz
f dx of f over the extended nodal patch Ωz; more

details on the oscillations follow in Section 3.

1.3. Weak saturation. Weak saturation for T and T̂ ∈ unif(T ) means
that for the constant right-hand side f ≡ 1, the discrete solutions U ∈ V (T )

and Û ∈ V (T̂ ) are different,

U 6= Û , and so |||u− Û ||| < |||u− U |||.(WS)

The strong saturation property (SA) is a frequent assumption that a
mesh-refinement procedure will eventually lead to q-linear convergence of
the approximate finite element solution to the exact solution.
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1.4. Main results.

Main Result I. For some global constant C(T0) which exclusively depends

on T0 and given any 0 < ε ≤ 1, for any T ∈ T and T̂ ∈ unif(T ), (WS)
implies (SA) with %(ε) = 1− ε/C(T0).

It appears interesting that the proof combines hard analysis (i.e., direct
estimation with explicit constants) and soft analysis (i.e. functional analysis
with compactness principles and unknown constants). The hard analysis
concerns first the situation where the triangulation has some edge with a
positive distance from the boundary ∂Ω. This leads to a constant C(T0)
which depends only on a lower bound of the minimum angle min]T0 in
T0 (and hence in T). The remaining situations are determined by a finite
number of configurations like T0 and possibly a few others. For each of those
pairs T and T̂ , a compactness and equivalence of norm argument provides
the assertion. The constants in the soft analysis depend very much on T
and T̂ and of course on T0. The maximum of all those constants in the finite
number of possible geometries in the second scenario concludes the proof.

Weak saturation is almost always true and fails only for one very par-
ticular situation with dimV (T ) = 1 and one particular bisec3 refinement
pattern.

Main Result II. Weak saturation can only fail for T and T̂ ∈ unif(T )

if T has exactly one interior node z and T̂ is obtained by bisec3 for each
triangle T ∈ T (z) = T such that the refinement edge of T is opposite to the
vertex z on the boundary ∂Ω.

Notice that the exceptional case is with dimV (T ) = 1 and bisec3 refine-
ment where all refinement edges are opposite to the free node. This case can
be easily checked without difficulty for the geometry at hand. The known
exceptional cases are regular polygons from [BC08] which include the criss-
cross unit square. It is left as an open question whether there exist other
counterexamples for A = 12×2.

1.5. Outline. The remaining parts of this paper are organised as follows.
Section 2 studies a metric on the set of edges in a regular triangulation and
thereby quantifies a uniform bound for the distance of some interior edge
to a compactly interior edge. Section 3 establishes the strong saturation
for all triangulations that contain one edge with positive distance to the
boundary. Section 4 proves that weak saturation implies strong saturation.
A characterisation of triangulations that allow for weak saturation follows in
Section 5. Section 6 discusses the extension to general elliptic linear second-
order PDEs with small convection. It is surprising that the weak saturation
test applies to the main part (1.1)–(1.2) only where the coefficients of the
lower-order terms have no influence.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces
and their norms is employed. The L2 projection onto piecewise polynomi-
als of degree k ∈ N0 is denoted by Πk. The energy norm is denoted by
|||·||| := ‖A1/2∇·‖L2(Ω). The formula a . b represents an inequality a ≤ Cb
for some mesh-independent, positive generic constant C; a ≈ b abbreviates
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a . b . a. The measure |·| is context-sensitive and refers to the number of
elements of some finite set (e.g. the number |T | of triangles in a triangula-
tion T ) or the length |E| of an edge E or the area |T | of some domain T and
not just the modulus of a real number or the Euclidean length of a vector.

2. Edge-Connectivity

This section studies a metric on the set of interior edges for admissible
triangulations to prove that the length of some polygonal path as in Fig-
ure 2 that links an arbitrary interior edge F to some edge F ′ which lies
compactly in the domain through a finite chain of interior edges allows for
some global bound of the number of edges in this chain. The technical chal-
lenge of this section consists in the large class of admissible triangulations
for rather general refinements as depicted in Figure 1. Details are stated as
Theorem 2.1 below, right after all the necessary notation is set up. It turns
out that the aforementioned global bound and the shape-regularity deter-
mine the constant C(T0) indicated in the introduction as the main result of
this section.

Definition 2.1 (nodes and edges). Given a regular triangulation T , denote
the set of edges by E and the set of nodes by N . Let N (Ω) and E(Ω) denote
the sets of interior nodes and interior edges. For an interior edge E =
∂T+∩T− ∈ E(Ω) shared by two triangles T+ and T−, the edge-patch is defined
as ωE := int(T+ ∪ T−). Given a triangle T ∈ T , denote its set of edges by
E(T ) and its set of nodes by N (T ). For any edge E = conv{z1, z2} ∈ E, the
set of endpoints reads N (E) = {z1, z2}. Define the set of compactly interior
edges as

Ec(Ω) := {E ∈ E(Ω) | E ∩ ∂Ω = ∅}
and notice that E and ∂Ω are compact sets and so E ∩ ∂Ω = ∅ means that
E ⊂⊂ Ω lies compactly in Ω with dist(E, ∂Ω) > 0. The set of interior edges
whose two endpoints belong to the boundary ∂Ω reads

Eb(Ω) := {E ∈ E(Ω) | N (E) ⊂ N (∂Ω)}.

The set Ea(Ω) of interior edges that belong to at least one triangle with an
interior node is

Ea(Ω) := {E ∈ E(Ω) | ∃T ∈ T with N (T ) ∩N (Ω) 6= ∅ and E ∈ E(T )}.

Denote by E0 (resp. E0(Ω)) the set of edges (resp. interior edges) of the
coarse initial triangulation T0. For an interior edge E = ∂T+ ∩ T− ∈ E0(Ω)

shared by two triangles T+, T− ∈ T0, the edge-patch reads ω
(0)
E := int(T+ ∪

T−).

Definition 2.2 (metric δ). Assume that E(Ω) 6= ∅ and define a metric δ on
the set E(Ω) of interior edges, for F, F ′ ∈ E(Ω) by

δ(F, F ′) := min

{
J ∈ N0

∣∣∣∣ ∃F1, . . . , FJ+1 ∈ E(Ω) with F1 = F, FJ+1 = F ′

and ∀ j = 1, . . . , J, Fj ∩ Fj+1 6= ∅

}
.

Furthermore, let

δ(F, Ec(Ω)) := min{δ(F, F ′) | F ′ ∈ Ec(Ω)}.
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F
F ′

Figure 2. An edge F and a compactly interior edge F ′

(thick) and a possible connecting path (dashed).

PJ+1 PJ+2

PJ

Figure 3. Coarse triangle K ∈ T0 and refinement with-
out any compactly interior edge Ec(int(K)) = ∅ and
|Eb(int(K))| = 6. Further refinements of this kind towards
PJ+2 prove that |E(int(K))| can be arbitrarily large while
Ec(int(K)) = ∅.

Example 2.1 (distances can be large). The example triangulation of Figure 2
shows δ(F, Ec(Ω)) = 7. Further refinements towards the lower left corner of
this rectangular domain indicate that the number of triangles in T may
not be bounded by a universal constant which depends only on T0. At
the same time, the edge-path which connects interior edges F and F ′ can
be extremely large (add more and more of the criss-cross squares in the
middle for a modified T0). Despite the warnings of this example, the number
maxF∈Ea(Ω) δ(F, Ec(Ω)) ≤ C1(T0) is bounded in terms of T0 for a broad class
of admissible triangulations defined below in Definition 2.3.

Example 2.2 (no uniform bound for edges in Eb(Ω)). Figure 3 displays one
critical triangle of a family of triangulations for which maxF∈E(Ω) δ(F, Ec(Ω))
is unbounded. Indeed, if the edge shared by nodes PJ+1 and PJ+2 and the
edge shared by nodes PJ+2 and PJ in Figure 3 belong to the boundary ∂Ω,
then arbitrarily many edges Eb(Ω) may be added through refinement without
changing the underlying finite element space.

Definition 2.3 (admissible triangulations). Let T0 be a regular triangula-
tion. For each T ∈ T0, one chooses one of its edges E(T ) as a reference edge
from the set of edges E0. The set T := T(T0) of admissible triangulations
contains all regular triangulations T that are refined from T0 with the refine-
ment rules of Figure 1, where the new reference edges for the sub-triangles
are indicated by a second line.

Theorem 2.1. There exists some constant C1(T0) < ∞ such that any ad-
missible triangulation T ∈ T with the set Ec(Ω) 6= ∅ of compactly interior
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(a) (b) (c) (d)

Figure 4. All possible coarsest refinements of K with one
interior node (up to the reflection of Figure D across the
diagonal line).

edges satisfies

max
F∈Ea(Ω)

δ(F, Ec(Ω)) ≤ C1(T0).

The proof of Theorem 2.1 combines topological arguments (connecting
edge-paths) with local geometrical facts (refinement rules for one initial tri-
angle). The latter are summarized in the following lemma.

Lemma 2.1. Let K ∈ T0 be a triangle of the initial triangulation T0 and let
T ∈ T denote an admissible triangulation with nodes N and edges E.

(i) If N (int(K)) 6= ∅, then E(K)∩E = ∅. In other words, none of the edges
of K belongs to E.

(ii) Ec(int(K)) = ∅ if and only if |N (int(K))| ≤ 1.
(iii) If Ec(int(K)) 6= ∅ and P ∈ N (int(K)), then Ec(int(K)) ∩ E(P ) 6= ∅.
(iv) If N (int(K)) 6= ∅ and E = (F1 ∪ F2) ∈ E(K) ⊆ E0 is bisected into

F1, F2 ∈ E \ E0, then there exists some y ∈ N (int(K)) such that

conv{y,mid(E)} ∈ E(int(K)).

Proof. A careful discussion of the refinement rules reveals that any triangu-
lation of K with at least one interior node is some refinement of one of the
triangulations of Figure 4. This proves (i).

Due to Definition 2.3 any further refinements of triangulations from Fig-
ure 4 with exactly one interior node has to bisect a triangle of T (N (int(K))).
Direct investigation of these possible bisections in the triangulations of Fig-
ure 4 prove (ii).

Suppose that all edges that contain the interior node P ∈ int(K) are not
compactly interior edges in K. Then, their respective endpoints belong to
the boundary ∂K of the triangle K. All possibilities for this situation are
displayed in Figure 4 and imply that N (int(K)) contains exactly the vertex
P . Then, Ec(int(K)) = ∅. The contraposition implies (iii).

Direct investigations first verify (iv) for the triangulations of Figure 4 and
second for their refinements. �

Proof of Theorem 2.1. Suppose that Ec(Ω) 6= ∅. Any F ∈ Ea(Ω) ∩ Eb(Ω) is
connected to some edge in Ea(Ω)\Eb(Ω) by an edge-path of length smaller or
equal to 1. Therefore, without loss of generality, suppose that F ∈ Ea(Ω) \
(Eb(Ω) ∪ Ec(Ω)). Hence, F = conv{P,Q} for P ∈ N (Ω) and Q ∈ N (∂Ω).

In the first step of the proof suppose that P ∈ N (int(K)) for someK ∈ T0.
Suppose that Ec(int(K)) 6= ∅ and, thus, by Lemma 2.1.iii, P is connected to
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some interior node N (Ω). This together with Lemma 2.1.iii implies that P
belongs to some edge in Ec(Ω), δ(F, Ec(Ω)) = 1 ≤ 3 + 2|E0(Ω)|. Otherwise,
Ec(int(K)) = ∅ and all neighbouring nodes of P in T belong to the boundary
∂Ω of the domain Ω. Lemma 2.1.ii implies that P is the only interior node
of K, thus K is a refinement of the triangulations in Figure 4. Since all
neighbouring nodes of P in T belong to the boundary, Ω = int(K). This
contradicts Ec(Ω) 6= ∅.

In the second step of the proof suppose that P does not belong to exactly
one K ∈ T0. Hence, P belongs to a common edge E1 ∈ E0(Ω) of two coarse
triangles. Since there exists F ′ ∈ Ec(Ω), the edge-wise connectivity of Ω
implies the existence of a finite set E1, . . . , EJ ∈ E0(Ω), 1 ≤ J ≤ |E0(Ω)|, of
interior edges in the coarse triangulation T0 such that E1 is as above with P
lays on E1 and E1, . . . , EJ ∈ E0(Ω) is a polygon with N (Ej)∩N (Ej+1) 6= ∅
for j = 1, . . . J and the topological closure of ω

(0)
EJ

contains F ′. Without

loss of generality let J be a minimal choice such that F ′ does not belong

to the topological closure of ω
(0)
E1
∪ · · · ∪ ω(0)

EJ−1
(understood as the empty

set if J = 1). Moreover, suppose that Ej = conv{Pj , Pj+1} for all j =
1, . . . , J for piecewise distinct nodes P1, . . . , PJ+1 ∈ N0. In this situation,
one designs some edge-path from F = conv{P,Q} to Ec(Ω) as follows. The
edge E1 = conv{P1, P2} ∈ E0(Ω) \ E(Ω) is refined and, hence, there exist

pairwise distinct F
(1)
1 , . . . , F

(k1)
1 ∈ E(Ω) with k1 ∈ N and F

(j)
1 ∩F

(j−1)
1 6= ∅ for

all j = 2, . . . , k1 and conv{P, P2} = F
(1)
1 ∪ · · · ∪F (k1)

1 . Suppose P ∈ N (F
(1)
1 )

and P2 ∈ N (F
(k1)
1 ) such that (F, F

(1)
1 , . . . , F

(k1)
1 ) is an edge-path in T from

Q to P2. For any j = 2, . . . , J , let

Ej = F
(1)
j ∪ · · · ∪ F (kj)

j = conv{Pj , Pj+1}

for distinct F
(1)
j , . . . , F

(kj)
j in E(Ω) such that (F

(1)
j , . . . , F

(kj)
j ) defines an

edge-path from Pj to Pj+1 along Ej in the fine triangulation T . This com-
poses to an edge-path from Q to PJ+1 in T .

Suppose that F ′ ⊆ EJ . In case J = 1, P is connected to F ′ and therefore
δ(F, Ec(Ω)) = 1 ≤ 3 + 2|E0(Ω)|. Otherwise J ≥ 2 and k1 ∈ {0, 1}. Since

J is minimal, k2, . . . , kJ−1 ∈ {1, 2} and F
min(kJ ,2)
J ∈ Ec(Ω) implies that the

edge-path

(F, F
(k1)
1 , F

(1)
2 , F

(k2)
2 , F

(1)
3 , . . . , F

(kJ−1)
J−1 , F

(1)
J , F

min(kJ ,2)
J )

connects F to Ec(Ω) in T . This and J ≤ |E0(Ω)| prove

δ(F, Ec(Ω)) =

J−1∑
`=1

k` + min(kJ , 2)− 1 ≤ 2J − 1 ≤ 3 + 2|E0(Ω)|.

In the remaining case F ′ is contained in ω
(0)
EJ

but F ′ 6⊆ EJ . Since J

is minimal, k1 ∈ {0, 1} and k2, . . . , kJ−1 ∈ {1, 2} and so the edge-path

(F, F
(1)
1 , . . . , F

(kJ−1)
J−1 ) connects Q with PJ = N (EJ−1) ∩ N (EJ) and has

length smaller than or equal to 2J . Recall that F ′ ∈ Ec(Ω) belongs to some
K = conv{PJ , PJ+1, PJ+2} ∈ T0 with edge EJ = conv{PJ , PJ+1} and oppo-
site vertex PJ+2 ∈ N0. The conclusion of the proof consists in the design of

some edge-path F
(1)
J , . . . , F

(kJ )
J in T which connects PJ and F

(kJ )
J ∈ Ec(Ω)
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with kJ ≤ 4. Indeed, this implies that the edge-path (F, F
(1)
1 , . . . , F

(kJ )
J )

connects F and Ec(Ω) and proves

δ(F, Ec(Ω)) ≤ 2J + kJ − 1 ≤ 3 + 2J ≤ 3 + 2|E0(Ω)|.

Three cases have to be considered to design such an edge-path F
(1)
J , . . . , F

(kJ )
J

with kJ ≤ 4.
(a) In the first case assume that F ′ ∈ Ec(int(K)). Hence, N (int(K)) 6= ∅

and Lemma 2.1.i implies that all edges of K are at least bisected. Since
F ′ 6⊆ EJ , EJ is at most bisected once. Thus, Lemma 2.1.iv leads to an

edge-path of length kJ = 2 with F
(2)
J = conv{y,mid(EJ)} ∈ Ec(Ω), for some

y ∈ N (int(K)).
(b) In the second case assume F ′ ⊆ ∂K \ EJ . If F ′ ⊆ conv{PJ , PJ+2},

one finds an edge-path from PJ to Ec(Ω) of length kJ ≤ 2. It remains the
case that F ′ ⊆ conv{PJ+1, PJ+2}. Since EJ is at most bisected once, an
edge-path of length kJ ≤ 4 connects PJ with Ec(Ω).

(c) In the remaining case suppose F ′ ∈ Ec(Ω) \ Ec(int(K)) and so there
is an edge E ∈ E(K) of K with F ′ ∩ E 6= ∅. Moreover, F ′ has at least one
vertex on the boundary ∂K of K and, hence, E is an interior edge E ∈ E(Ω).
If E = EJ or E = conv{PJ , PJ+2}, this leads to a path of length kJ ≤ 2. If
E = conv{PJ+1, PJ+2}, the fact that EJ is at most bisected once, leads to
an edge-path of length kJ ≤ 4. �

3. Discrete Efficiency

This section introduces the discrete efficiency of the explicit edge-residual
based a posteriori error estimator η in the context of (1.1)–(1.2). For any
interior edge E ∈ E(Ω), there exist two adjacent triangles T+, T− ∈ T such
that E = ∂T+∩∂T− and ωE := int(T+∪T−). Let νE denote the fixed normal
vector of E that points from T+ to T−. Given any (possibly vector-valued)
function v, define the jump of v across E by [v]E := v|T+ − v|T− with the
traces v|T+ and v|T− on E with length |E|.

Define η := η(E(Ω)) :=
√
η2(E(Ω)) by

η2(E) := |E|‖[A∇U ]E · νE‖2L2(E) for any E ∈ E(Ω) and

η2(F) :=
∑
E∈F

η2(E) for any subset F ⊆ E(Ω).

A refined analysis of the results from [CV99, Rod94] shows that the error
estimator η is reliable and efficient up to oscillations. The definition of the
oscillations relies on the following extended nodal patches of [CB02].

Definition 3.1 (extended nodal patch). Let (ϕz | z ∈ N ) denote the nodal
basis of P1(T ) ∩H1(Ω) with ϕz(z) = 1 and ϕz(y) = 0 for all y ∈ N \ {z}.
Assume that there is a map ζ : N → N (Ω) which assigns to each vertex
z ∈ N an interior vertex ζ(z) ∈ N (Ω) where ζ(z) = z for all z ∈ N (Ω).
Define the functions

ψz :=
∑
y∈N
y=ζ(z)

ϕz for any z ∈ N (Ω).
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The functions (ψz | z ∈ N (Ω)) define a partition of unity. For each interior
vertex z ∈ N (Ω), the extended nodal patch reads

Ωz := {x ∈ Ω | 0 < ψz(x)}.
Throughout this paper we assume that Ωz is connected for any z ∈ N (Ω).

For the extended nodal patch Ωz and the integral mean
ffl

Ωz
fdx of the

right-hand side f ∈ L2(Ω) of (1.1), the oscillations read

osc2(f,Ωz) := |Ωz|‖f −
ffl

Ωz
fdx‖2L2(Ωz) and

osc2(f,N ) :=
∑

z∈N (Ω)

osc2(f,Ωz) with osc(f,N ) :=
√

osc2(f,N ).

Theorem 3.1. There exists some constant Crel ≈ 1 which depends on the
initial triangulation T0 and the coefficient matrix A such that any right-
hand side f ∈ L2(Ω) and any T ∈ T with exact solution u ∈ V to (1.1) and
discrete solution U ∈ V (T ) to (1.2) satisfy

|||u− U |||2 ≤ Crel(η
2 + osc2(f,N )).

Proof. Let e := u− U . It is proven in [CB02, Thm. 2.1] that there exists a
quasi-interpolation Ie ∈ V (T ) (which is essentially that of [Car99]) with

|||e− Ie||| . |||e||| and

ˆ
Ω
f(e− Ie) dx . |||e||| osc(f,N ).

This, the discrete problem and the integration by parts together with the
techniques of [Ver96] lead to

|||e|||2 =

ˆ
Ω
f(e− Ie) dx−

∑
E∈E(Ω)

ˆ
E

(e− Ie)[A∇U ]E · νE ds

.
(

osc(f,N ) + η
)
|||e|||.

This concludes the proof. �

The further analysis of the discrete efficiency employs the following lemma
on the oscillations.

Lemma 3.1 (oscillations). Suppose T is a regular triangulation of the
bounded Lipschitz domain Ω′ into J triangles with Creg := maxT∈T |Ω′|/|T |.
Assume that any triangle T ∈ T contains at least one interior vertex N (T )∩
N (Ω′) 6= ∅. Then any function f ∈ L2(Ω′) satisfies

|Ω′|‖f −
ffl

Ω′f dx‖
2
L2(Ω′) ≤

8 + J3C2
reg

4

∑
E∈E(Ω′)

|ωE |‖f −
ffl
ωE
f dx‖2L2(ωE)

≤
8 + J3C2

reg

4

∑
z∈N (Ω′)

|Ω′z|‖f −
ffl

Ω′z
f dx‖2L2(Ω′z).

Proof. First consider the special case of a piecewise constant function f ∈
P0(T ). Let T = {T1, . . . , TJ} and denote fj := f |Tj λj := |Tj |/|Ω′|. Then

f̄ :=
ffl

Ω′f dx =

J∑
j=1

λjfj and

J∑
j=1

λj = 1.
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It follows that

‖f − f̄‖2L2(Ω′) =
J∑
j=1

(fj − f̄)2|Tj |

and

fj − f̄ = (1− λj)fj −
J∑
k=1
k 6=j

λkfk =

J∑
k=1
k 6=j

λk(fj − fk).

Hence,

‖f − f̄‖2L2(Ω′) = |Ω′|
J∑
j=1

λj

( J∑
k=1
k 6=j

λk(fj − fk)
)2

The Cauchy inequality in RJ−1 implies for any j ∈ {1, . . . , J} that J∑
k=1
k 6=j

λk(fj − fk)


2

≤
( J∑
k=1
k 6=j

λk

)( J∑
k=1
k 6=j

λk(fj − fk)2

)

≤ (1− λj)
J∑
k=1
k 6=j

(fj − fk)2.

The combination of the previous two displayed inequalities results in

(3.1)

‖f − f̄‖2L2(Ω′) ≤ |Ω
′|

J∑
j=1

J∑
k=1
k 6=j

λj(1− λj)(fj − fk)2

≤ |Ω′|
J∑
j=1

J∑
k=1
k 6=j

(fj − fk)2
/

4.

On the other hand, for any E ∈ E(Ω′) with ωE = T+ ∪ T−, f+ := f |T+ ,
f− := f |T− , and fE :=

ffl
ωE
f dx it holds that

‖f − fE‖2L2(ωE) =
(
|f+ − fE |2|T+|+ |f− − fE |2|T−|

)
.

Elementary algebraic manipulations with |T+|+ |T−| = |ωE | prove

f+ − fE =
|T−|
|ωE |

(f+ − f−) and f− − fE =
|T+|
|ωE |

(f− − f+).

Hence,

|ωE |‖f − fE‖2L2(ωE) = |ωE |−1|f+ − f−|2
(
|T+||T−|2 + |T+|2|T−|

)
= |T+||T−||f+ − f−|2.

(3.2)

Given any j, k ∈ {1, . . . , J} with j 6= k, there exists some 2 ≤ ` ≤ J with
pairwise distinct triangles Tj =: T(1), T(2), . . . , T(`−1), T(`) := Tk and edges
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z z z z z

ffl
T

Φzdx = − 1
6

ffl
T

Φzdx = 0
ffl
T

Φzdx = − 1
6

ffl
T

Φzdx = 0
ffl
T

Φzdx = − 1
12

Figure 5. Sub-triangulations for a triangle T ⊆ ωz in the
proof of Theorem 3.2 with values of

ffl
T Φzdx ≤ 0.

E(1), . . . , E(`−1) with T(m+1) ∪ T(m) = ωE(m)
for all m = 1, . . . , ` − 1. Then

the Cauchy inequality and (3.2) imply

|fk − fj |2 =

∣∣∣∣∣
`−1∑
m=1

(f |T(m−1)
− f |T(m)

)

∣∣∣∣∣
2

≤ |Ω′|−2

( `−1∑
m=1

λ−1
(m)λ

−1
(m+1)

)( `−1∑
m=1

|T(m+1)||T(m)|(f |T(m−1)
− f |T(m)

)2

)

≤ |Ω′|−2(J − 1)C2
reg

( `−1∑
m=1

|ωE(m)
|‖f −

ffl
ωE(m)

f dx‖2ωE(m)

)
.

This and (3.1) prove the assertion with constant (J − 1)2JC2
reg/4.

In the case of a general function f ∈ L2(Ω′), let f̄ :=
ffl

Ω′f dx and f̄0 :=ffl
Ω′Π0f dx, Π0f ∈ P0(T ). Orthogonality leads to

‖f − f̄‖2L2(Ω′) = ‖f −Π0f‖2L2(Ω′) + ‖Π0f − f̄0‖2L2(Ω′) + ‖f̄ − f̄0‖2L2(Ω′).

For the last term on the right hand side, Hölder’s inequality shows

‖f̄ − f̄0‖2L2(Ω′) ≤ ‖f −Π0f‖2L2(Ω′).

This together with

|Ω′|‖f −Π0f‖2L2(Ω′) ≤
∑

E∈E(Ω′)

|ωE |‖f −
ffl
ωE
f dx‖2L2(ωE)

and the above estimate for piecewise constant functions proves the assertion
with constant (8+(J−1)2JC2

reg)/4. The proof of the second stated inequality
is immediate. �

A key ingredient for the proof of the strong saturation is some fine-grid
function Φz.

Definition 3.2. Let ϕz ∈ V (T ) denote the nodal basis function associated
with the node z ∈ N (Ω). Define the set of edges that contain z by E(z) :=
{E ∈ E(Ω) | z ∈ E}. Let ψE := ϕmid(E) be the linear shape function of the

refined triangulation T̂ ∈ unif(T ) associated with the midpoint of the edge
E ∈ E(Ω), and introduce

Φz := ϕz −
∑

E∈E(z)

ψE ∈ H1
0 (ωz) ⊆ V (T̂ ).
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Theorem 3.2. For any compactly interior edge E = conv{a, b} ∈ Ec(Ω)
with the vertices a, b ∈ N (Ω), at least one vertex z ∈ N (E) = {a, b} satisfies 

ωz

Φz dx ≈ 1 ≈ |||Φz||| and

 
F

Φz ds = 0 for all F ∈ E(Ω).

Proof. The proof employs the technique of [CGMM14, Theorem 3.1]. The
second assertion, namely

ffl
F Φz ds = 0 for all F ∈ E(Ω), follows directly from

the definition of Φz for any z ∈ N (E). For the proof of the first assertion,
all possible configurations together with the values of

ffl
T Φzdx for some T ∈

T (z) := {K ∈ T | z ∈ K} are depicted in Figure 5. All values of
´
T Φz dx are

nonpositive and so
ffl
ωz

Φz dx ≈ 1 or
ffl
ωz

Φz dx = 0. The exceptional situationffl
ωz

Φz dx = 0 implies the refinement pattern with bisec3 and refinement

edges opposite of z in all triangles T ∈ T (z). This pattern is possible for at
most one vertex a or b. In other words

ffl
ωa

Φadx = 0 implies
ffl
ωb

Φbdx 6= 0.

This proves the assertion for at least one z ∈ {a, b}. The scaling |||Φz||| ≈ 1
follows from the shape-regularity and an inverse estimate. �

Some hard analysis in the remaining parts of this section proves (SA) for
a large class of triangulations TH .

Definition 3.3. TH := {T ∈ T | Ec(Ω) 6= ∅}

Theorem 3.3 (discrete efficiency). There exists some constant Cdeff ≈ 1
which depends on the initial triangulation T0 and on the coefficient matrix A
such that any T ∈ TH and T̂ ∈ unif(T ) and any right-hand side f ∈ L2(Ω)

with discrete solutions U ∈ V (T ) and Û ∈ V (T ) to the Poisson model
problem f + divA∇u = 0 in Ω satisfy

η2 ≤ Cdeff

(
|||Û − U |||2 + osc2(f,N )

)
.(3.3)

Proof. Note that, for any E ∈ E(Ω)\Ea(Ω), the error estimator contribution
vanishes, η2(E) = 0.

In the first step of the proof let E = E1 ∈ Ea(Ω). Theorem 2.1 implies
that there exists a compactly interior edge E′ ∈ Ec(Ω) and a connected path
of interior edges E1, . . . , EJ with J ≤ C1(T0) ≈ 1 such that E ⊆ ωE1 and
E′ ⊆ ωEJ

. Denote the endpoints of those edges by P1, . . . , PJ+1 such that
Ej = conv{Pj , Pj+1} for all j = 1, . . . J and note that the union of nodal
patches

ΩE :=
J+1⋃
j=1

ωPj

is a connected open set.
The second step consists in the proof of

η(E) . ‖A1/2∇(Û − U)‖L2(ΩE) + diam(ΩE)‖f − fΩE
‖L2(ΩE).(3.4)

Since [A∇U ]E ·νE is constant along the edge E of length |E| with some sign
± as indicated below, it follows that

±η(E) = |E|[A∇U ]E · νE .
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The edge-basis function ψE from Definition 3.2 satisfies |E| = 2
´
E ψE ds.

Hence,

±η(E)/2 =

ˆ
E
ψE [A∇U ]E · νE ds.

Theorem 3.2 implies the existence of some node z ∈ N (E′) such that´
E Φzds = 0 and

ffl
ωz

Φz dx 6= 0. With α :=
´
ωE
ψE dx

/ ´
ωz

Φz dx ≈ 1

(from shape-regularity) this implies

±η(E)/2 =

ˆ
E

(ψE + αΦz) [A∇U ]E · νE ds.

Note that the function vT̂ := ψE + αΦz ∈ V (T̂ ) satisfies
´
F vT̂ ds = 0 on all

other edges F ∈ E\{E}. Therefore, the piecewise Gauss divergence theorem
leads to

±η(E)/2 =

ˆ
ΩE

∇vT̂ ·A∇Udx

(In fact all the edge contributions and all other volume contributions vanish.)
Consider the split

±η(E)/2 =

ˆ
ΩE

∇vT̂ ·A∇(U − Û)dx+

ˆ
ΩE

∇vT̂ ·A∇Ûdx.(3.5)

Recall |||Φz||| ≈ 1 from Theorem 3.2 and compute |||ψE ||| ≈ 1 to see that
|α| ≈ 1 proves |||vT̂ ||| . 1. This and the Cauchy-Schwarz inequality implyˆ

ΩE

∇vT̂ ·A∇(U − Û)dx . ‖A1/2∇(U − Û)‖L2(ΩE)(3.6)

for the first term on the right-hand side of (3.5). Since vT̂ is supported on

ΩE , the second term in (3.5) readsˆ
ΩE

∇vT̂ ·A∇Ûdx =

ˆ
Ω
∇vT̂ ·A∇Ûdx =

ˆ
Ω
fvT̂ dx.

The choice of α shows
ffl

ΩE
vT̂ dx = 0. Hence fΩE

=
ffl

ΩE
fdx satisfiesˆ

ΩE

∇vT̂ ·A∇Ûdx =

ˆ
ΩE

(f − fΩE
)vT̂ dx.

The Friedrichs inequality and the aforementioned bounds show

‖vT̂ ‖L2(ΩE) . diam(ΩE)‖A1/2∇vT̂ ‖L2(ΩE) . diam(ΩE).

The previous two displayed formulas and the Cauchy-Schwarz inequality
imply ˆ

ΩE

∇vT̂ ·A∇Ûdx . diam(ΩE)‖f − fΩE
‖L2(ΩE).(3.7)

The combination of (3.5)–(3.7) conclude the proof of (3.4).
Step three is the conclusion of the proof of Theorem 3.3. Since J . 1 is

uniformly bounded, Lemma 3.1 (applied to ΩE) and (3.4) result in

η2(E) . ‖A1/2∇(U − Û)‖2L2(ΩE) +
∑

z∈N (ΩE)

osc2(f,Ωz).(3.8)
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The design of ΩE as the union of a finite number ≤ C(T0) of nodal patches
and the shape-regularity of T ∈ T imply the finite overlap

max
x∈Ω

∣∣{E ∈ E(Ω) | x ∈ ΩE}
∣∣ . 1

independent of T ∈ TH , which concludes the assertion (3.3). �

Theorem 3.4 (saturation property). There exists some constant CH ∈
(1,∞) which only depends on the interior angles of T0 and the coefficient
matrix A such that for all T ∈ TH and for all f ∈ L2(Ω) with exact solution

u ∈ V and discrete solutions U , Û with respect to T and T̂ ∈ unif(T ), any
0 < ε ≤ 1 satisfies

|||u− Û |||2 ≤ (1− ε/CH(T0)) |||u− U |||2 + ε osc2(f,N ).(3.9)

Proof. Theorem 3.3 and the reliability of η imply that

|||u− U |||2 ≤ Crel(η
2 + osc2(f,N )) ≤ Crel(Cdeff + 1)(|||Û − U |||2 + osc2(f,N )).

This and the Galerkin-orthogonality

|||Û − U |||2 = |||u− U |||2 − |||u− Û |||2

guarantee that CH(T0) := Crel(Cdeff + 1) satisfies

|||u− U |||2/CH(T0) ≤ |||u− U |||2 − |||u− Û |||2 + osc2(f,N ).

This proves the assertion for ε = 1. Multiply this inequality with 0 < ε ≤ 1
and add to the inequality |||u−Û |||2 ≤ |||u−U |||2 (from Galerkin orthogonality)
times (1− ε) to obtain

|||u− Û |||2 ≤ (1− ε/CH(T0))|||u− U |||2 + ε osc2(f,N ). �

Remark 3.1 (adaptive mesh-refinement). Theorem 3.4 can be applied to
adaptive mesh refinement as well, c.f. [CGMM14] for the Laplace eigenvalue
problem. The adaptive refinement is based on the bulk criterion [Dör96] on
nodal patches. For chosen bulk parameter 0 < θ ≤ 1, letM⊂ N (Ω) be the
minimal subset, such that

θη2 ≤
∑
z∈M

η2(E(z)).

Once a node is selected for refinement, all edges E(z) are refined by the

red-green-blue refinement algorithm resulting in a locally refined T̂ . Hence,
once a triangle is refined at least one interior edge is bisected and therefore
T̂ ∈ T. Note that all nodes in the set of marked nodes M ⊆ N (Ω) satisfy
Theorem 3.2. Hence, the arguments of Theorem 3.3 apply to all edges E(z)
for z ∈M and so yield the discrete efficiency

η2 ≤ θ−1
∑
z∈M

η2(E(z)) ≤ Cdeff

(
|||Û − U |||2 + osc2(f,N )

)
.

This proves the saturation property (3.9) for adaptively refined meshes.
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4. Weak Saturation implies Strong Saturation

The proof that weak saturation implies strong saturation (Main Result I)
involves arguments from hard and soft analysis for the sets of triangulations

TH = {T ∈ T | Ec(Ω) 6= ∅} and TS := T \ TH .
In view of Theorem 3.4, the assertion has to be verified only for TS . Note
that the set TS defines a finite set of finite element spaces

|{V (T ) | T ∈ TS}| <∞
while TS may be infinite (cf. Example 2.2).

Theorem 4.1. Suppose that T ∈ TS and T̂ ∈ unif(T ) satisfy WS. Then
there exists some constant CS(V (T )) such that, for all f ∈ L2(Ω), the exact

solution u and the discrete solutions U and Û satisfy

|||u− Û |||2 ≤ (1− ε/CS(V (T ))) |||u− U |||2 + ε osc2(f,N ).

The proof is based on a compactness argument.

Lemma 4.1. Given T ∈ TS with (WS) there exists some 0 < CS(V (T )) <
∞ such that any f1 ∈ P1(bisec5 (T )) and exact (resp. discrete) solutions u

(resp. U and Û with respect to T and T̂ ∈ unif(T )) satisfy

|||u− U |||2 ≤ CS(V (T ))
(
|||Û − U |||2 + osc2(f1,N )

)
.

Proof. For any T ∈ TS , Theorem 3.1 implies

|||u− U |||2 ≤ Crel

 ∑
E∈E(Ω)

η2(E) + osc2(f,N )

 .

Let T̂ ∈ unif(T ) and define the following semi-norms

ϑ1(f1) :=

√ ∑
E∈E(Ω)

η2(E) and ϑ2(f1) :=

√
|||Û − U |||2 + osc2(f1,N )

for all f1 in the space P1(bisec5 (T )) and exact (resp. discrete) solutions u

(resp. U and Û). If ϑ2(f1) = 0, then osc(f1,N ) = 0 implies that f1 equals
a global constant. This and the weak saturation imply f1 ≡ 0. Hence,
equivalence of semi-norms ϑ1 . ϑ2 and the reliability lead to a constant

C1(V (T ), V (T̂ )) such that

|||u− U |||2 ≤ C1(V (T ), V (T̂ ))(|||Û − U |||2 + osc2(f1,N )).

It is correct that there is more than one realisation of T̂ ∈ unif(T ), but each

of these leads to some constant C1(V (T )), V (T̂ )). This proves the lemma

with CS(V (T )) = maxT̂ ∈unif(T )C1(V (T ), V (T̂ )). �

Proof of Theorem 4.1. Given T ∈ TS and f ∈ L2(Ω), let f1 ∈ P1(bisec5 (T ))
denote its L2 projection onto piecewise affine (but possibly discontinuous)
functions with respect to bisec5 (T ). Denote the solution to problem (1.1)

with right-hand side f1 as u(f1) and note that U and Û also solve (1.2) with
right-hand side f1. With v := u− u(f1), the triangle inequality reads

|||u− U ||| ≤ |||v|||+ |||u(f1)− U |||.
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Define the first-order oscillations of f by

osc1(f, T ) =

√∑
T∈T
|T | ‖f −Π1f‖2L2(T )

.

A piecewise Poincaré inequality shows for the constant CP that

|||v|||2 =

ˆ
Ω

(f −Π1f)(v −Π1v) dx ≤ CP osc1(f, T )|||v|||.

Since osc1(f, T ) + osc(f1,N ) . osc(f,N ), Lemma 4.1 proves leads to some
constant CS(V (T )) with

|||u− U |||2 ≤ CS(V (T ))(|||Û − U |||2 + osc2(f,N )).

This and the Galerkin orthogonality |||Û−U |||2 = |||u−U |||2−|||u− Û |||2 prove,
for any 0 < ε ≤ 1, that

|||u− Û |||2 ≤ CS(V (T ))− ε
CS(V (T ))

|||u− U |||2 + ε osc2(f,N ). �

Proof of Main Result I. Although the set TS may be infinite as indicated in
Example 2.2, the set {V (T ) | T ∈ TS} is finite, whence

max
T ∈TS

CS(V (T )) <∞

and Theorem 4.1 implies for any 0 < ε ≤ 1 that

|||u− Û |||2 ≤
(

1− ε
/(

max
T ∈TS

CS(V (T ))
))
|||u− U |||2 + ε osc2(f,N ).

Thus, Theorem 3.4 proves, for any T ∈ T and

C2(T0) := max

{
CH(T0), max

T ∈TS

CS(V (T ))

}
the strong saturation (SA) with ρ(ε) := 1− ε/C2(T0). �

Remark 4.1. The constant CH(T0) depends only on the smallest angle γ
in T, while the constant CS(V (T )) for T ∈ TS depends on V (T ) and so
implicitly on T0. Since the entries in the global stiffness matrix depend on
the geometric data in a continuous way, small perturbations in the positions
of the vertices of T will preserve the weak saturation property.

5. A Characterisation of Domains with the Weak Saturation
Property

This section is devoted to the proof of the Main Result II based on the
subsequent two lemmas.

Lemma 5.1. Let T be a regular triangulation of a bounded polygonal Lip-
schitz domain Ω with exactly one interior vertex z. Then the solution U to
(1.2) with f ≡ 1 satisfies U(z) > 0.

Proof. Let ϕz denote the local basis function associated with z. Since there
is only one degree of freedom, the solution to (1.2) reads U = U(z)ϕz. The
one-dimensional discrete linear system of equations reads

U(z)

ˆ
Ω

(A∇ϕz) · ∇ϕz dx =

ˆ
Ω
fϕz dx.
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Since f > 0 is constant and A is positive definite, U(z) is positive. �

Lemma 5.2. Suppose that Ec(Ω) = ∅ and there exists an interior edge
E ∈ Eb(Ω) (with both end points on the boundary ∂Ω). Then either red or
bisec3 uniform refinement leads to weak saturation (WS).

Proof. Consider an edge E ∈ Eb(Ω) with end points z1, z2 ∈ N on the
boundary ∂Ω that is refined. Since E is an interior edge, there are two
adjacent triangles T+ = conv{z+, z1, z2} and T− = conv{z−, z1, z2}.

In the case that z+, z− ∈ N (∂Ω), it holds U |ωE ≡ 0. Lemma 5.1 shows

that U 6= Û .
In the case that some z ∈ {z+, z−} ∩ N (Ω) is an interior vertex, then

all edges E = conv{y, z} with one vertex z have the second end-point y ∈
N (∂Ω) on the boundary, because Ec(Ω) = ∅. Therefore the local problem
on ωz with only one degree of freedom decouples from the global system
and Lemma 5.1 implies U(z) > 0. Therefore U |ωE ≥ 0. Since U is zero at
the endpoints z1, z2, U vanishes along E and since U is non-negative in Ω it
follows [∇U ]E · νE ≤ 0 along E. Note that the jump [∇U ]E is a multiple of
the normal νE . The matrix A is positive definite and thus [A∇U ]E · νE ≤ 0.
Let ϕE denote the hat-function of the refined triangulation associated with
the midpoint of E. Suppose for contradiction that U ≡ Û . Then

0 <

ˆ
Ω
fϕE dx =

ˆ
ωE

(A∇U) · ∇ϕE dx = |E|([A∇U ]E · νE)/2.

This implies f 6≡ 1 which is a contradiction. �

Proof of Main Result II. Theorem 3.3 proves the strong saturation (SA) for
any T ∈ TH , that is if there exists a compactly interior edge Ec(Ω) 6= ∅. In
case that any interior edge has one endpoint on the boundary ∂Ω and there
exists one interior edge E ∈ E(Ω) with both endpoints on the boundary
N (E) ⊆ N (∂Ω), Lemma 5.2 proves weak saturation (WS). The remaining
configuration is that each interior edge has exactly one endpoint on the
boundary, which implies that the domain Ω equals the nodal patch ωz of
the only interior node z. If at least one T ∈ T is not refined using bisec3 or
if not all refinement edges in T are opposite to z, the discrete test function
Φz from Definition 3.2 satisfies 

ωz

Φz dx ≈ 1 and

 
F

Φz ds = 0 for all F ∈ E(Ω).

Hence, the discrete efficiency technique of Theorem 3.3 leads to strong sat-
uration. The only remaining case is that all triangles T ∈ T are refined by
bisec3 with refinement edges opposite to z. �

The Main Result II reduces possible counterexamples of (WS) to config-
urations with 1 degree of freedom and bisec3 refinement with all refinement
edges opposite to the one interior node. The following result illustrates that
under certain angle conditions even in this situation (WS) is valid.

Theorem 5.1. Suppose that there exists exactly one interior vertex which
is contained by all interior edges and that there exists an interior edge E ∈
E(Ω) with one interior end point z ∈ N (Ω) and one end point Pj ∈ N (∂Ω)
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Figure 6. Angles in an edge patch.

on the boundary ∂Ω such that the angles depicted in Figure 6 satisfy cotβ+
cotβ′ ≤ 0. Then (WS) holds.

Proof. Suppose that U ≡ Û . Then the local basis function ϕE that is 1 at
mid(E) and 0 at all other nodes of the refined triangulation satisfies

0 <

ˆ
Ω
fϕE dx =

ˆ
ωE

(A∇U) · ∇ϕE dx = |E|([A∇U ]E · νE)/2.(5.1)

Note that all nodes of ωE ∩N except z are boundary nodes. Hence,

|E|([A∇U ]E · νE)/2 = U(z)|E|([A∇ϕz]E · νE)/2.

The value of ∇ϕz · νE with respect to the angles of the two triangles as
depicted in Figure 6 reads

|E|([∇ϕz]E · νE) = cotβ + cotβ′.

Since the jump [∇ϕz]E is a multiple of the normal νE and the matrix A is
positive definite, the case cotβ+ cotβ′ ≤ 0 leads to a contradiction of (5.1)
to f ≡ 1. �

Remark 5.1. Theorem 5.2 shows error reduction for triangulations with non-
convex corners. Note that the criss-cross counter-example for error reduction
does not fulfill the condition of Theorem 5.1 for error reduction.

Remark 5.2. In particular, Main Result I & II imply that the following
saturation test can be employed to decide whether the strong saturation
property is valid.

compute discrete solutions U and Û with respect to T and T̂ ∈ unif(T )
and f ≡ 1
if U = Û then no saturation else (SA) for all f ∈ L2(Ω) end if

This test is very simple because it is only performed for f ≡ 1 and has to
be only performed for configurations with one degree of freedom.

6. Linear Second-Order Elliptic Problems

This section extends the results of the foregoing sections to elliptic linear
second-order equations with constant coefficients, namely with a symmetric
positive definite A ∈ R2×2, b ∈ R2, and γ ∈ R. Given f ∈ L2(Ω), the general
second-order linear PDE assumes the form

Lu := −div(A∇u) + b · ∇u+ γu = f.
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Its weak formulation seeks u ∈ V := H1
0 (Ω) such that, for all v ∈ V ,

B(u, v) :=

ˆ
Ω

((A∇u) · ∇v + vb · ∇u+ γuv) dx =

ˆ
Ω
fv dx.(6.1)

Assume that the constant coefficients b and γ are such that the bilinear
form B is V -elliptic, i.e., there exists some constant cell ≈ 1 such that, for
all v ∈ V ,

cell(‖v‖2L2(Ω) + ‖∇v‖2L2(Ω)) ≤ B(v, v) =: ‖v‖2B.(6.2)

(For constant coefficient b,
´

Ω vb · ∇v dx =
´

Ω b · ∇|v|
2/2 dx = 0. Hence,

it suffices to consider γ > −CF (Ω) for the Friedrichs constant CF (Ω) ≤
diam(Ω)/π.) Under the above ellipticity condition, ‖·‖B := B(·, ·)1/2 defines
the energy norm. The finite element method computes a unique uT ∈ V (T )
such that, for all vT ∈ V (T ),

B(uT , vT ) =

ˆ
Ω
fvT dx.(6.3)

The following generalization of the Main Result I states that ellipticity
plus small skew-symmetry implies saturation. The saturation test from Re-
mark 5.2 and the notion of weak saturation still concern the reduced problem
−div(A∇u) = f , whereas strong saturation for problem (6.1) states that
for any 0 < ε ≤ 1 there exists %(ε) := 1− ε/C(T0) < 1 such that

‖u− Û‖2B ≤ %(ε)‖u− U‖2B + ε osc(f − b · ∇U − γU,N )(SA’)

holds with a universal constant C(T0) which exclusively depends on T0 and
the coefficients A, b, γ.

Theorem 6.1 (weak saturation implies strong saturation). Assume B is
elliptic with (6.2) and the convection parameter b satisfies |b| < Cell. Then
there exists a global constant C(T0) which depends only on T0 such that for

any T ∈ T and T̂ ∈ unif(T ), (WS) implies (SA’) with %(ε) = 1− ε/C(T0).

The proof will be given throughout the remaining parts of this section.

Lemma 6.1. For any T ∈ T with T̂ ∈ unif(T ), the exact and discrete

solutions u, U, Û to (6.1) and (6.3) with right-hand side f ∈ L2(Ω) satisfy

‖u− U‖B . η + osc(f − b · ∇U − γU,N ).(6.4)

If, in addition T ∈ TH , it holds that

‖u− U‖B . ‖Û − U‖B + osc(f − b · ∇U − γU,N ).

Proof. Note that U solves (1.2) with right-hand side f −b ·∇U −γU instead
of f . The reliability of the error estimator from Theorem 3.1 translates
directly into

‖u− U‖2B . η2 + osc2(f − b · ∇U − γU,N )

for the oscillations osc(·,N ) of Section 3. For any T ∈ TH , the discrete
efficiency techniques from Theorem 3.3 imply

η . ‖Û − U‖B + osc(f − b · ∇Û − γÛ ,N ).
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The triangle inequality reveals

osc(f − b · ∇Û − γÛ ,N ) ≤ osc(f − b · ∇U − γU,N )

+ osc(b · ∇(U − Û)− γ(U − Û),N ).

The combination with the reliability (6.4) leads to the second stated esti-
mate. �

For the finite set {V (T ) | T ∈ TS}, the following analogue of Lemma 4.1
follows from a compactness argument.

Lemma 6.2. For any T ∈ TS with weak saturation (WS), there exists some
constant CS(V (T )) such that any f1 ∈ P1(bisec5 (T )) with exact and discrete

solutions u, U, Û to (6.1) and (6.3) with right-hand side f1 satisfies

‖u− U‖B ≤ CS(V (T ))
(
‖Û − U‖B + osc(f1 − b · ∇Û − γÛ ,N )

)
.

Proof. For all f1 in the space P1(bisec5 (T )), define the semi-norms

ϑ1(f1) :=

√ ∑
E∈E(Ω)

η2(E) and

ϑ2(f1) :=

√
‖Û − U‖2B + osc2(f1 − b · ∇U − γU,N ).

If ϑ2(f1) = 0, then Û ≡ U and osc(f1 − b · ∇U − γU,N ) = 0 imply that

f1 − b · ∇U − γU ∈ P0(Ω) is constant. Hence, U = Û solves (1.2) with

constant right-hand side and the weak saturation implies U = Û ≡ 0 and
f1 ∈ P0(Ω) vanishes. Equivalence of semi-norms in the finite-dimensional
space P1(bisec5 (T )) and the reliability (6.4) lead to a constant CS(V (T ))
such that ϑ1 ≤ CS(V (T ))ϑ2. This is the assertion. �

Proof of Theorem 6.1. Equation (6.4) and Lemma 6.2 plus the arguments
from the proof of Main Result I imply that there exists a constant C ≈ 1
such that any T and T̂ ∈ unif(T ) with (WS) satisfy

‖u− U‖B . ‖Û − U‖B + osc(f − b · ∇U − γU,N ).

Since the bilinear form B is not symmetric, it holds

‖Û − U‖2B = ‖u− U‖2B − ‖u− Û‖2B + 2

ˆ
Ω

(Û − U)b · ∇(u− Û) dx.

The Cauchy and Young inequalities imply

2

ˆ
Ω

(Û − U)b · ∇(u− Û) dx ≤ C−1
ell |b|

(
‖u− Û‖2B + ‖Û − U‖2B

)
.(6.5)

Provided |b| < Cell, these terms can be absorbed. This results in

‖Û − U‖2B . ‖u− U‖2B − ‖u− Û‖2B.(6.6)

The techniques from the proof of Theorem 3.4 conclude the proof of Theo-
rem 6.1. �
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Remark 6.1. For a general parameter b and γ ∈ R such that L is injective,
the estimate (6.6) follows for sufficiently small mesh-size. The proof is a
combination of (6.5) and the higher-order convergence of the error in the
L2 norm, which is also employed in [SW96]. This leads to saturation in an
asymptotic regime.

References

[AO00] Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in fi-
nite element analysis, Pure and Applied Mathematics (New York), Wiley-
Interscience [John Wiley & Sons], New York, 2000.
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