AN ADAPTIVE HOMOTOPY APPROACH FOR
NON-SELFADJOINT EIGENVALUE PROBLEMS
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ABSTRACT. This paper presents adaptive algorithms for eigen-
value problems associated with non-selfadjoint partial differential
operators. The basis for the developed algorithms is a homotopy
method which departs from a well-understood selfadjoint problem.
Apart from the adaptive grid refinement, the progress of the ho-
motopy as well as the solution of the iterative method are adapted
to balance the contributions of the different error sources. The
first algorithm balances the homotopy, discretization and approx-
imation errors with respect to a fixed stepsize 7 in the homotopy.
The second algorithm combines the adaptive stepsize control for
the homotopy with an adaptation in space that ensures an error
below a fixed tolerance €. The outcome of the analysis leads to the
third algorithm which allows the complete adaptivity in space, ho-
motopy stepsize as well as the iterative algebraic eigenvalue solver.
All three algorithms are compared in numerical examples.

1. INTRODUCTION

Non-selfadjoint eigenvalue problems associated with partial differen-
tial operators arise in a large number of applications, such as acoustic
field computations [3], structural analysis of buildings or vehicles [23],
electric and magnetic field computation [9]. Today, in almost all ap-
plications the space is discretized first (typically with a very fine grid)
which leads to a large scale linear or nonlinear matrix eigenvalue prob-
lem. To solve these algebraic eigenvalue problems, classical eigenvalue
methods [7, 20, 32, 42] are used.

A priori error estimates for eigenvalues and eigenvectors of elliptic
operators and compact operators were developed, e.g., in [5, 6, 13,
27, 31, 43, 47, 50]. All these approaches, although optimal, contain
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mesh size restrictions, which cannot be verified or quantified, neither a
priori nor a posteriori. Verifiable a priori error estimates for symmetric
eigenvalue problems were presented in [4, 28, 29].

In order to avoid unnecessarily fine grids, there have been tremen-
dous research activities to design adaptive eigenvalue methods that
adapt the grid to the behavior of the eigenfunctions in recent years. In
particular, for selfadjoint elliptic problems the progress in the analysis
and computational methods has been substantial. A first approach on
a posteriori error analysis for symmetric second order elliptic eigen-
value problems can be found in [49]. A combination of a posteriori and
a priori analysis was used in [30] to prove reliable and efficient a pos-
teriori estimates for H? regular problems. For non-smooth solutions
a posteriori error estimators were given in [15, 38, 41]. Recent results
include [12, 17, 19, 21, 45].

A first a posteriori error analysis for non-selfadjoint elliptic eigen-
value problems was presented in [25]. The difficulty with non-selfadjoint
PDE eigenvalue problems is multifold, eigenvalues may be complex, or
may have different algebraic and geometric multiplicity. The latter
property is a particular difficulty for the discretization methods be-
cause in the finite dimensional approximation this property may be
destroyed. The computed eigenvalues and eigenfunctions may have
large errors due to the ill-conditioning of the problem although the ap-
proximation error is small. Even when the discretization retains the
multiplicities of the eigenvalues, the algebraic eigensolvers have diffi-
culties with the ill-conditioning of multiple eigenvalues. At this stage
the adaptive solution of general non-selfadjoint eigenvalue problems
remains a real challenge.

This paper studies the restricted class of convection-diffusion eigen-
value problems, where for the pure diffusion problem the discussed
adaptive methods work nicely. To design an adaptive algorithm for
the convection-diffusion problem a homotopy method is used. Homo-
topy methods are well established for nonsymmetric matrix eigenvalue
problems [33, 34, 35, 37]. Here, the homotopy approach is used not
only on the matrix level but on the level of the differential operator
as well. The combination of the adaptive homotopy with mesh adap-
tivity and iterative matrix eigenvalue solvers involves three different
types of errors. These are the discretization error n that arises when
the infinite dimensional variational problems is considered in a finite
dimensional subspace [18, 25|, the homotopy error v that arises because
the diffusion problem is slowly transferred to the convection-diffusion
problem [10] and the approzimation error u that arises from the it-
erative matrix eigensolver in finite precision arithmetic [7, 24, 42, 46].
Since the goal is to design methods that are both accurate and efficient,
this paper presents algorithms that are able to provide adaptivity in
all three directions by a suitable balancing of all three errors.
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As model problem consider the following convection-diffusion eigen-
value problem: Determine a non-trivial eigenpair (A, u) € Cx H} (€2; C)N
H? (% C) with ||u|t2@c) = 1 such that

(1.1) —Au+f-Vu=Auin and  u=0 on 0N

for some bounded Lipschitz domain Q C R? and a constant coefficient
vector 3 € R?.

Its weak formulation reads: For two complexr Hilbert spaces V :=
H{ (% C) with norm ||| == ||y and H := L*(Q;C) with norm
|-l L2020y determine a non-trivial eigenpair (A, u) € CxV with b(u,u) =
1 such that

(1.2) a(u,v) + c(u,v) = Xb(u,v) forall vevV,

where (.) denotes complex conjugation and, for all u,v € V,

a(u,v) = /Q VuVode, c(u,v) = /Q 5(8-Vu) dz,  blu,v) = /Q T .

Since the constant 8 € R? is divergence free, the Gauss divergence
theorem shows that

/(B'VU)dez—/v(ﬁ-VU) dr forall veV.
0

Q

Hence, Re(a(v,v) + c(v,v)) = Re(a(v,v)) = |Jv||*>. This implies that
the bilinear form a(-,-) + ¢(+,-) is elliptic, with ellipticity constant 1
(independent of ) and continuous in V' with a bound that depends
on |B]. The bilinear form b(-,-) is continuous, symmetric and positive
definite, and hence induces a norm ||| := b(-,-)"/2 on H. For this
model problem |- = a(:, )2 and ||| = ||| 200y

For the analysis it is necessary to consider also the dual eigenvalue

problem: Determine a non-trivial dual eigenpair (\*,u*) € C x V' with
b(u*,u*) =1 and

(1.3) a(w,u*) + c(w,u*) = Mb(w,u*) for all weV.
Note that the primal and dual eigenvalues are connected via A = A*.

For a finite dimensional subspace V;, C V' the discretized primal and
dual problems read: Determine non-trivial primal and dual eigenpairs

(Ae,ug) € Cx Vp and (N, u}) € C x Vp such that
(1.4)  a(ug,ve) + c(ug,ve) = Nb(ug,ve) for all vy € Vj,
(1.5)  alwg,u}) + c(we,u)) = Nb(wg,u}) for all wy € V.

In view of the difficulties for non-selfadjoint problems discussed be-
fore, suppose for the remaining part of this paper that the eigenvalue
of interest A is simple and well-separated from the rest of the spectrum.

To distinguish continuous, discrete and approximated eigenvalues,
some further notation is introduced. In the following A(¢) will denote
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the continuous eigenvalue of interest at homotopy step ¢, \s(t) the cor-
responding eigenvalue of the discrete problem, while S\K(t) denotes its
approximation computed by an iterative eigenvalue solver in finite pre-
cision arithmetic. The corresponding eigenfunctions are denoted in a
similar fashion, i.e., u(t), ug(t), @, (t). In order to distinguish the eigen-
function wu(t) from the corresponding coefficient vector with respect
to a given finite element basis, for this eigenvector u,(t) bold letters
will be used. For all these eigenvalues and eigenfunctions or eigenvec-
tors * denotes the solution of the corresponding dual problem, i.e., for
the algebraic eigenvalue problem uj(t) denotes the corresponding left
eigenvector.

The notation x < y abbreviates the inequality x < Cy with a con-
stant C independent of the mesh size.

This paper is organized as follows: Section 2 reviews the adaptive
finite element method (AFEM) and Section 3 discusses the homotopy
method. The homotopy error is presented in Section 4. In Section 5 a
complete a posteriori error estimator for all three different error sources
is presented. In Section 6 several different adaptive homotopy algo-
rithms are developed. Numerical examples compare the performance
of the different algorithms in Section 7.

2. ADAPTIVE FINITE ELEMENT METHODS

In this section we review the basic concept of the adaptive finite ele-
ment method (AFEM). Starting from an initial coarse triangulation 7o,
the AFEM generates a sequence of nested triangulations 7y, 71, ... T;
with corresponding nested spaces

Wwewvic...CV,CV.
A typical AFEM loop consists of the four steps

Solve — Estimate — Mark — Refine.

Solve. The primal and dual generalized algebraic eigenvalue problems
(21) (Ag + Cg)llg = )\ngllg and u?(Ag + Cg) = )\?U?Bg

are solved with an algebraic eigensolver. Here the coefficient matrices
are the symmetric positive definite stiffness matrix A,, the nonsym-
metric convection matrix Cy and the symmetric positive definite mass
matrix By. The right and left eigenvectors u, = [uy,] and uj = [uj,]
represent the eigenfunctions

dim(V7) dim(V¢)
z : * *
Uy = Uy Pk and Up = ug’kwk
k=1 k=1

with respect to the basis (1, ..., @dimv,)) of Ve
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Estimate. The eigenvalue error is estimated a posteriori with a stan-
dard residual type error estimator using the residuals for both, the
primal and dual, eigenfunctions. The proof of reliability, i.e., that the
estimator is an upper bound of the eigenvalue error, can be found in
[18, 25], where it is shown, that

(2.2) A=l S Y (0F (D) + (D).
TeT,

Here the primal 7, and dual 7; refinement indicators for a triangle
T € T, are defined as

(1) = h7l|B-Vue = AewellFaery + D hall[Vue-npllza),
Ec&(T)

WAT) = RI-6-VE - Nl + S hplVE]nsla,
Eegg(T)

where &(T) denotes the set of all edges for an element T' € Ty, hp
is the length of the edge E, hr is the diameter of the triangle T', ng
denotes an unit normal for the edge E, and [-] denotes the jump across
some edge E defined as [-] := :|r, — |7 for two neighboring triangles
T, eTywith E=T, NT_.

Note that the constant in the a posteriori error estimate (2.2) de-
pends on the eigenvalue condition number 1/b(u, u*) [18].

Mark. Based on the refinement indicators, the set of elements M, C
Te that are refined is specified in the algorithm Mark. Let M, be the
set of minimal cardinality for which the bulk criterion [14],

0> (R(T) +n(1) < > (R (T) + (1))

TeT, TeM,

is satisfied for a given bulk parameter 0 < # < 1. This minimal set
M, may be computed by a greedy algorithm. Sorting all the values
(nH(T) + n;*(T))rer, in ascending order allows to add elements with
largest values successively to the set M, until the bulk criterion is
fulfilled.

Refine. Given a triangulation 7, on the level ¢, let &, denote its set
of edges and let E(T') denote the reference edge for a given triangle 7.
Note that the reference edge E(T') will be the same edge of T in all
triangulations 7, which include 7. However, once T in 7, is refined,
the reference edges will be specified for the different sub-triangles as
indicated in Figure 1. To preserve the qu/ality of the mesh, a closure
algorithm computes the smallest subset M, of & which includes all
edges of elements in M, and reference edges E(7T) such that

{B(T):TeTi with &(T)nM,+0}C M.
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news news / \
2 1 2
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new, new;

FIGURE 1. Bisec3, green and blue refinement. The new
reference edge is marked through a second line in parallel
opposite the new vertices new;, news or news.

In other words, once an edge E of an element T is marked for refine-
ment, the reference edge E(T) of T is marked as well. The mesh-
refinement method Refine then consists of the following five different
refinements. Elements with no marked edge are not refined, elements
with one marked edge are refined green, elements with two marked
edges are refined blue, and elements with three marked edges are re-
fined bisec? as depicted in Figure 1.

For further details on adaptive finite element methods for several
problems see [1, 8, 11, 49].

3. HoMOTOPY METHODS

In this section we will discuss homotopy methods and extend them from
the matrix eigenvalue problem to the operator problem. Homotopy
methods in the context of nonsymmetric matrix eigenvalue problems
are discussed in [33, 34, 35, 37]. In [36] an extension to the eigenvalue
problem for selfadjoint partial differential operators is presented.

From the eigenvalues and eigenvectors of some known matrix A, the
eigenvalues and eigenvectors of

Ht) = (1— f(t)Ao + fF(DA, for 0<t<1,

for a given function f : [0,1] — [0,1] with f(0) =0, f(1) =1, can be
computed by following their paths from 0 to 1. In the following we will
only discuss the case f(t) = ¢, but in practice, the function f should
grow faster towards t = 1 to improve the convergence of the homotopy
method.

The homotopy concept can be easily extended to the convection-
diffusion operator eigenvalue problem. Starting from the spectrum of
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some known operator, e.g., from Lou := —Au, one may use a con-
tinuation method to obtain the eigenpairs for the convection-diffusion
operator Liu := —Au + - Vu.

Throughout the paper the following homotopy equation is considered
for the model problem (1.1)

(3.1) H(t)=(1—t)Ly+tLy for 0<t<1.

Since for t = 0 we have
H<0) = ‘COa

the eigenpairs of H(0) are the eigenpairs for the Laplace eigenvalue
problem. The continuation method uses a ‘time’-stepping procedure
with nodes to =0 < t; < ... <ty =1 to compute the eigenvalues and
eigenvectors of

—Au+t;f-Vu=u in €.
When the homotopy reaches its final value 1, the eigenpairs of H(1) =
L1, are the eigenpairs of the desired problem,

—Au+f-Vu=Au in Q.

For each step t; the corresponding weak finite dimensional primal and
dual problems

alug, ve) + t; c(ug, ve) = Neb(ug,vy)  for all v, €'V,
a(wg, u}) + tic(we, up) = Nsb(wy, up) for all w, € V,
lead to the generalized primal and dual matrix eigenvalue problems
(3.2) (Ag+t;Couy = A\ Bpuy,
(3.3) wy(Ag+t,Cy) = ANu;By,
corresponding to the discrete homotopy equation
Heo(t) = (1 —t) A+ t(Ae + Co) = A+ tCh.

For simple and well-separated eigenvalues that do not bifurcate dur-
ing the homotopy process, as considered here, it is known [26] that
every eigenvalue \y(t) of the generalized eigenvalue problems (3.2) and
(3.3) is an analytic function in ¢. Choosing appropriate homotopy step-
sizes, the eigenvalues can therefore be continued on an analytic path
towards the eigenvalues of (A, + Cy, By) [34, 37]. The evolution of an
eigenpair as a function of t is called an eigenpath and is denoted by
(Ae(t),ue(t)) and (Aj(t),uj;(t)), respectively.

4. HomoTory ERROR

In this section we analyze the homotopy error which in another con-
text is called modeling error [10]. As we solve at the beginning of the
homotopy process first a selfadjoint problem, we need to understand
how the real eigenvalues of the symmetric problem move to the (poten-
tially complex conjugate) eigenvalues of the nonsymmetric problem.
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Lemma 4.1. For the model problem (1.1), the difference between the
ezact eigenvalues A(t) of the homotopy H(t) in (3.1) and \(1) can be
estimated via

AL = AD] S v(t) = (1= [ Blee (lu@)l] + Il @) for 0<t<1.
The constant in the inequality tends to 1/(2b(u(1),u*(1))) ast — 1.

Proof. For the homotopy parameter 0 < ¢ < 1, the primal and dual
weak eigenvalue problems have the form

a(u(t),v) + te(u(t),v) = A(t)b(u(t),v) forall veV,
a(w,u*(t)) + te(w,u*(t)) = M (t)b(w,u*(t)) forall weV.

Algebraic manipulations yield

Then the Holder inequality implies that

c(u(t), v (1)) = c(u*(t),u(1)) < (8- Vu@)|[[lw* W+ 18- Vur@)l[u(1)]
< |Bloo (lu@Il + llw @) -

Since b(u(t),u*(t)) tends to b(u(l),u*(1)) and b(u(l) — u(t), u*(1) —
u*(t)) tends to zero as t — 1, the constant in the eigenvalue error
estimate tends to 1/(2b(u(1),u*(1))). O

5. A POSTERIORI ERROR ESTIMATOR

In this section we discuss the a posteriori estimation of the eigen-
value error during the homotopy process. For the design of adaptive
algorithms, it is of particular interest to bound the difference between
the eigenvalue of the original problem at homotopy step ¢ = 1 and
the iterative approximation for a homotopy step ¢ < 1. Since the ex-
act solution is unknown, this is only based on the computed inexact
approximations of right and left eigenvectors and the approximated
eigenvalue of H,(t).



ADAPTIVE HOMOTOPY APPROACH FOR NON-SELFADJOINT EVP 9

Using the a posteriori error bound for the discretization error from
[18, 25], we obtain that for any 0 <t <1,

llu(t)—ue (I + () — uz (DI + [AE) = Ae(t)]

S O() ue(t), up (1) =Y (P Nelt), uelt); T) + 02 e(t), uf (£): T)) -
TeT,

Here and throughout this paper,

1 (Ne(t), we(t); T) := || B-Vug(t) — Ae(t)ue(t) 122
+ Y hall[Vue®)]-nglia .

Ecé& (T)

2 (Ae(1), wg (); T) = hipl|=B- Vg (t) — Ae(t)uj (|72
+ > hellVeg)]-nelle)-

Ee&(T)

Following [24, 40, 42], for the algebraic errors we have the estimate

llue (8) = ae (O + Nl (8) = G @I + [Aelt) = Ae(t)]

S pENe(t), @e(t), wp(t)) == <||I'e||B[1> N (Herle> |

a5, 7[5,

with the algebraic residuals
ry (= (Ag =+ Cg)llg — )\ngllg, I‘z = u}(Ag + Og) — )\?U?Bg,

and ||u||y = \/u;Mu,. The constants for the algebraic error esti-
mators in general depend on the condition number of the considered
eigenvalue and the gap in the spectrum, both of which are rather hard
to assess in general. However, in the case that the eigenvalue of inter-
est is well-conditioned and well-separated from the remaining part of
the spectrum, as considered here, the algebraic residuals present a very
good measure for the error in the algebraic solver.

Lemma 5.1. Suppose that |M(t) — N(t)| < 1. Then, for a fived
0 <t < 1, the perturbation of the a posteriori error estimator for
the discretization error satisfies

[(Ae(t), ue(t), iy (1)) — n(Ae(t), @e(t), 5 (0))1* < 1*(Ae(t), e(t), a5 (1))
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Proof. The triangle inequality leads to

In(Ae(t), we(t), uj (£)) — n(Ne(t), Te(t), @5 (2))
<Y IRV (ue(t) — die(t)) — Ne(t)ue(t) + Ae(8) (B30

TeT,

+ > hil[[V(uet) = w(®))ns 72

Ee€é&,

£ 0 BBV (i) — TD) — A0 (E) + AT O )

TeT,

+ Y hell[V (i (0) — @ @0)]-neliam

Eec&
The local discrete inverse inequality [11] for v, € V; reads
W ID*vel [y S IV vellZa ).

Let wg := T, UT_ denote the edge patch for two neighboring triangles
Ty € Ty such that E =T, NT_. This and the trace inequality [11] for
veV

WlZ2m) S PE 0l gy + el VOl
together with another application of the triangle inequality yield
[(Ne(#), e (t), wi (£)) = n(Ne(t), Te(t), @5 (1))
S D BalN()ue(t) = Xe(®)ae(t) [ Fa i) + REIN (0)uf (t) = N (£)@ ()12

T€eT,

4 3 2161 (V) — Vit + Vi (0) — VGO
TeT,

+ D IVuelt) = Vet + VUi () = VA (0)]172(0)-
Ee&,

The finite overlap of the edge patches wg and the Poincaré inequality
[11] lead to

[(Ne(8), we(t), up (8)) — n(Aelt), @e(t), @5 (2))[
S luet) = @) + g (t) — @z ()]
[ Ae(tyue(t) = Ae(O)ae()[1 + 1N (8 () — N (1) (2)]|?
S Nue(t) = @) + llug (8) — @z (I + [Aelt) — Ae(t)*.
The assumption |A(t) — A(t)| < 1 completes the proof. O

Lemma 5.2. For the model problem (1.1), the difference between the
iterative eigenvalue A\g(t) in the homotopy H.(t) and the continuous
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ez"genvqlue A(1) of the original problem (1.1) can be estimated a poste-
L) = Me(O)] S vOelt), @(t), @7 (1) + n° (Ne(t), @(t), @ (¢))
S ORAGRAG)
in terms of
v(e(t), @e(t), @ (1)) = (1= 1)[Bloo (e + Nz 6)l)
+ (L= D)lBlo (n(8), e(t), T (1) + el (1), T (1))
Proof. The triangle inequality gives
L) = ()] < ML) = M)+ [AE) = Ae()] + [Aet) = Ae(t)].
The first term is estimated via Lemma 4.1 as
A = A < (1 =1)|Blee (Tu@)ll + [lw™ @)
< (1 =0)1Bl (e + llaz @)l)
+ (1= )[Bloo (Nult) — we®)l + lue(t) — ()
+ (1= )[Bloo (lu(t) — wg (O + luz (£) — az(B)]]) -
The a posteriori error bound and Lemma 5.1 lead to
() = we®)ll S nhe(t), @e(t), @7 (1)) + p(he(t), @(t), @
lur(t) = wi (D) S ne(t), we(t), @5 () + p(he(t), T(t), @
The algebraic error estimates
flue(t) = (Ol S nhe(t), @lt), @;(1)),

[l (0) — @ (N < 1(Ae(t), @e(t), @ (1))
then complete the estimate of the first term. The second term is esti-
mated with Lemma 5.1 as

IA@) = A S 1P (Nelt), e(t), 5 (1) + ? (Nel), e(t), @3 (2))

and the third term again with the algebraic error estimate
Aelt) = Ae(t)] S 1P (Ae(t), (), 5 (1)) m
6. ALGORITHMS

This section combines the homotopy method with the adaptive finite
element method and balances the homotopy error, the discretization
error and the approximation error. An important factor in the pre-
sented algorithms is the stepsize control for the homotopy steps. A
very small 7 assures that the homotopy method follows the eigenpath
of the desired eigenvalue and eigenvector on the expense of large com-
putational costs. If 7 is too large, then the method may not capture
a crossing or joining of eigenvalues and jump to a different eigenpath.
Therefore, the goal is to choose 7 in an optimal way, such that it will
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minimize the computational effort and keep track of the eigenpath. To
achieve this, adaptive stepsize control techniques that are well estab-
lished in the numerical solution of ordinary differential equations [22]
may be employed, e.g., predictor-corrector procedures as they are com-
monly used [34]. However, the combination of the homotopy approach
with the adaptive finite element method requires a modification of the
adaptive stepsize control techniques. Future work will also have to
include methods that detect multiple eigenvalues, bifurcation in the
paths, ill-conditioning, or the treatments of jumps in the eigenpaths.

At this stage, under the given assumptions, the following simple
stepsize control can be applied. If the number of required refinement
steps for the homotopy parameters ¢; and t; + 7 differs significantly,
then the homotopy step for t; + 7 is rejected and t; + g7 for some
0 < g < 1is used. If the number of refinements is small, then the
stepsize 7 is preserved or even increased by choosing 7 = ¢~ '7. This
simple idea allows to describe the dependence of the stepsize not only
on the solution but also on the mesh adaptation process.

In the following, to gain understanding about balancing of the dif-
ferent errors, we present three different adaptive algorithms for the
homotopy driven eigenvalue problem. In Algorithm 1, a fixed stepsize
7 for the homotopy is considered in order to analyze the influence of
the homotopy error v on the mesh adaptation process. Algorithm 2
considers an adaptive stepsize control for the homotopy, based on the
number of refinements required to balance the discretization error n
and the desired accuracy €. Algorithm 3 then finally combines the two
concepts from Algorithms 1 and 2. In order to illustrate the differences
between the three algorithms their main ideas are depicted in Figure 2.

In all three algorithms, p denotes the accuracy for the matrix eigen-
solver, 0 < w < 1 the parameter in the relative accuracy condition for
the algebraic approximation error, 0 < § < 1 the parameter balancing

Estimate & Solve
Input: 7, ¢, p, w, u,0*
1: [(A+C), B] = Create AEVP(T, t)
2: [p, @, 0*] = Solve AEVP(A + C, B, p, u, u¥)
3: Compute n
4: p=12n
: while ¢ > wn do
p=3
[, 0, 0*] = Solve AEVP(A+ C, B, p, u, u*)
Compute 7
9: end while
10: Compute v
Output: n, v, pu, A\, u, 0"

5
6:
7.
8
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T T T

Algorithm 1 Algorithm 2 Algorithm 3

FIGURE 2. Schematic view of three homotopy-based algorithms.

the discretization and homotopy error estimators and 0 < 6 < 1 the
marking parameter for the bulk marking strategy. In Algorithms 2
and 3, v denotes the maximal number of refinement steps in each ho-
motopy step and 7 is the starting stepsize for the homotopy, while in
Algorithm 1 it is the fixed stepsize.
The basic mesh adaptation method is given by the procedures Estimate

& Solve, Mark and Refine as described in Section 2. In each refine-
ment step, the generalized algebraic eigenvalue problem (AEVP) for
((A+tC),B) for a given mesh 7 and parameter ¢ is solved and the
corresponding error estimators 7, v and p are computed in the function
Estimate & Solve (see above). The approximation of the eigenpair
is considered to be accurate if the estimate for the complete algebraic
approximation error p, (both for the left and right eigenvectors), is
smaller then the discretization error n, up to some fixed constant w
(see line 5). This is achieved by a geometric decrease of the tolerance p
for the iterative solver starting from p = 27 (lines 4-6). The algebraic
eigenvalue problem is solved using the ARPACK [32] implementation of
the implicitly restarted Arnoldi method for nonsymmetric eigenvalue
problems. The size of the constructed Krylov subspaces is chosen to
be as small as possible, see [40], and the approximations of the right
and left eigenvectors from the previous iteration are taken as starting
values for the new Arnoldi step. Note that here the final accuracy e
of the solution is not required at every step, only the relation between
the discretization error and the algebraic approximation error is used
to stop the procedure.

6.1. Algorithm 1. The first algorithm introduces a homotopy method
with fixed stepsize 7. For the initial homotopy parameter t5 = 0,
the corresponding Laplace eigenvalue problem is solved on the initial
mesh 7y(to), where the algebraic eigenvalue problem is solved up to
tolerance p(tp), and the corresponding discretization and homotopy
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error estimators 1o(t), vo(tg) are determined (line 3-6). This initial
step is the same for all three algorithms.

In order to balance the discretization error, the homotopy error,
and the desired accuracy e, the adaptive mesh refinement method is
used (lines 9-15). The mesh adaptation process is repeated as long
as the discretization error dominates over the homotopy error mul-
tiplied by a balancing factor ¢ or is larger than the desired accu-
racy € (line 9). Throughout the adaptive loop, sequences of meshes
T;(tx), error estimators n;(ty),v;(tx), 1t;(tx) and eigentriple approxi-
mations (\;(t;),0;(t), wj(t)) are assembled. To avoid unnecessary
computational work, the algebraic eigenvalue problem is solved only
up to the accuracy p(tx), which depends on the discretization error
nj(tr) [40] (see line 15 and the Estimate & Solve function for de-
tails). When the condition in line 9 does not hold, a new homotopy
parameter t;,1 = tx+7 is chosen and the new adaptation process starts
with a previously obtained approximation taken as initial guess (line
13). Here P;;_; denotes the prolongation matrix from the last coarse
mesh 7;_1(t;) to the refined mesh 7;(¢;) (line 12-13). Note that the
final mesh derived for the former homotopy parameter is taken as the
initial mesh for the new computations (line 3). After a fixed number of

Algorithm 1

Input: ¢, = 0,7, To(to), p, €, w, d, Uo(to), U;(to)
1:4=0, k=0
2: while ¢, <1 do
32 To(te) = Te(te—1)

4 p(ty) =p

50 [Uo(te), ug(te)] = [Qe(tr—1), 07 (te-1)]

6: [n0(tk), vo(tk), o (tk), 05 (tk)] = Estimate & Solve(To(tk), tk, p(tk), w, To(ty), Ay (tk))
7. p(tk) = nolte)

8 7=0

9:  while n;(t;) > max(dv;(t),c) do

10: j=J7+1

11: M(ty,) = Mark(n;(ty),0)
12: 7;(tk) = Refine(ﬁ,l(tk),./\/lj(tk))

13: [a;(t), 05 ()] = [Py j—1ty-1(tk), Pjj—107_ (tx)]

14: (05 (tk), v (t), U5 (tk), 0f (tk)] = Estimate&Solve(T;(ty), tr, p(tk), w, U;(tx), 0} (tx))
15: p(te) = n;(tx)

16:  end while

17 =0+

18: tk+1:tk+7,k:/{?—|—1
19: end while

Output: A(1),a(1),a*(1)
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homotopy steps, t; reaches its final value 1 and the algorithm returns
the approximated eigenvalue and eigenvector.

The final number of refinement levels reached up to the parameter ¢
is denoted by ¢, while j is a refinement index for the current parameter
tr. This distinction is made to separate a sequence of meshes for a
single homotopy step from the final sequence obtained for the whole
algorithm. It has particular importance for the next two algorithms.

Although controlling the homotopy error is beneficial, however, an
arbitrary fixed choice of the homotopy stepsize, in general, will not
work, especially for more complicated problems. In the nonsymmetric
case the eigenvalues move according to their condition number [44]. TlI-
conditioned eigenvalues may move very fast as a function of £. The lack
of an analogue of the min-max theorem [20] for nonsymmetric problems
makes the localization of an eigenvalue very hard. In particular, it may
be difficult to guarantee fast convergence of the iterative eigensolver to
the eigenvalue of interest for the next homotopy parameter t; + 7 even
with the correct starting eigenvalue for a certain parameter ¢, if the
stepsize 7 is chosen too large. On the other hand, choosing 7 very small
leads to a large number of homotopy steps, and since for each step the
whole adaptive mesh refinement loop has to be performed, this may
lead to large computational effort.

6.2. Algorithm 2. In Algorithm 2 an adaptive stepsize control for
the homotopy is introduced. Starting with an initial stepsize 7, the
first approximation is computed to assure that the discretization error
n;(tx) is smaller than the fixed, desired accuracy ¢ (line 9). No depen-
dence on the homotopy error is considered here. Additionally, for each
homotopy parameter only a fixed number of refinement steps ~ inside
the adaptive loop is allowed (line 10). If the adaptive loop needs more
refinement steps than ~y, then the eigenvalue problems for parameters
t, and t 4+ 7 differ too much and the stepsize 7 should be decreased
to ensure good approximations in the eigenvalue continuation. In that
case, the algorithm rejects the current homotopy step (lines 11-13),
sets up a new stepsize 7 = ¢7 (line 12), for some 0 < g < 1, and starts
the adaptation loop for the new homotopy parameter t; + 7. If the
number of refinements is smaller than ~, then the algorithm attempts
to increase the stepsize to ¢~'7 (line 25). Otherwise 7 is preserved
in the next homotopy step. At this point, the previously introduced
distinction between global and local refinement indices ¢ and j is used
to carry out the rejection step, while keeping the right mesh hierar-
chy. Meshes obtained for the rejected homotopy parameter will not be
considered in the final sequence of meshes.

Note that here the initial mesh for the new homotopy parameter is
taken as the last but one mesh obtained for the previous homotopy
step (lines 3 and 23). If the stepsizes were chosen optimally and the
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Algorithm 2

IHPUt: tO = 07 7,4, %(tO)v P, e, W, 7, ﬁO(tO)7 ﬁa(t())
1: =0, k=0
2: while ¢, <1 do
3 Toltk) = To—1(tr-1)

4 p(ty) =p

5 [Uo(tk), ug(te)] = [Qp—1(fe—1), W_y (f—1)]
6: [mo(tk), vo(tr), 0o(tr), 5 (tr)] = Estimate & Solve(To(tx),tr, p(tr),w, Go(tr), g (tr))
7 p(tk) = no(tk)

8 7=0

9:  while n;(t;) > ¢ do

10: if j > v then

11: k=k—1

12: T =qT

13: 7=0

14: break

15: end if

16: j=7+1

17: M;(ty) = Mark(n;(tx),0)
18: 7;(tr) = Refine(T;_1(tx), M;(ts))

19: [, (), 0j(te)] = [Py—10j-1(tk), Pjj—1af_y (tr)]
00 [ng(t), s (1), By (1a), W ()] = EstimateaSolve(Ty (te), thn plti ), , s (t4), W5 (1))
21: p(te) = n;(tx)

22:  end while

23 U=(+4+7—-1

24: if j < then

25: T=q 7

26: end if

27: tk+1:min(tk—0—7,1), k=k—+1
28: end while

Output: (1), 0,(1),a*(1)

consecutive problems do not differ too much, then the previous mesh
should be a good starting mesh for the next step. In this way the
continuation of meshes is also guaranteed. At the beginning it is rea-
sonable to allow 7 to be large and let the algorithm adapt the stepsize
by itself. It is obvious, however, that if the total error is dominated by
the homotopy error v,(tx), then driving the discretization error 7,(ty)
in each homotopy step below € may lead to large computational effort.
Currently, no analysis of the optimal choice of v is known, that will
lead to the minimal number of refinement steps.

6.3. Algorithm 3. The third algorithm combines both ideas of con-
trolling the homotopy error and using adaptive stepsize control. In
this way the homotopy method accepts only the approximations which
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Algorithm 3

IHPUt: to = 07 7,4, 76(750)7 P&, W, 57 s ﬁO(t0)> ﬁg(tO)
1:4=0,k=0
2: while t, <1 & t,_1 <1do
30 To(te) = To—1(tk-1)

4 p(ty) =p

5 [Uo(tk), ug(te)] = [Qp—1(fe—1), W_y (f—1)]
6: [mo(tk), vo(tr), 0o(tr), 5 (tr)] = Estimate & Solve(To(tx),tr, p(tr),w, Go(tr), g (tr))
7 p(tk) = no(tk)

8 7=0

9:  while n;(ty) > max(dv;(tx),e) do

10: if j > v then

11: k=k—1

12: T =qT

13: 7=0

14: break

15: end if

16: j=7+1

17: M;(ty) = Mark(n;(tx),0)
18: 7;(tr) = Refine(T;_1(tx), M;(ts))

19: [, (), 0j(te)] = [Py—10j-1(tk), Pjj—1af_y (tr)]
00 [ng(t), s (1), By (1a), W ()] = EstimateaSolve(Ty (te), thn plti ), , s (t4), W5 (1))
21: p(te) = n;(tx)

22:  end while

23 U=(+4+7—-1

24: if j < then

25: T=q 7

26: end if

27: tk+1:min(tk—0—7,1),k:k+1
28: end while

Output: (1), 0,(1),a*(1)

are of a desired accuracy and whose computational cost is reasonable.
Simultaneously adaptation in space, in the homotopy and for the iter-
ative solver is applied. During the mesh adaptation the discretization
error 7);(tx) is adapted to be smaller than the homotopy error v;(t;) as
in Algorithm 1. Again the approximation error p;(t;) is adjusted by
the Estimate & Solve function, to avoid computing a solution that is
too accurate in comparison to the discretization error n;(t;). The adap-
tation of the homotopy parameter t is based on the maximal number
of refinement levels v as in Algorithm 2.
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7. NUMERICAL EXPERIMENTS

This section presents some numerical results obtained with the three
adaptive homotopy Algorithms 1-3 presented in Section 6. As a model
problem we consider

—Au+p-Vu=Iu in € and u=0 on 0f)

with 2 being either the unit square or the L-shaped domain and A
being the eigenvalue with smallest real part, which is known to be
simple and well-separated [16] for all 0 < ¢ < 1. Thus it will not
bifurcate and the evolution of the eigenvalue follows an analytic path.
In order to calculate the eigenvalue errors we computed some reference
values obtained by Aitken extrapolation on uniform meshes [2].

In order to avoid unnecessary computational work in the algebraic
eigensolver ARPACK [32], in all experiments the number & of Arnoldi
vectors equals 3 and the maximal number MXITER of Arnoldi restarts is
set to 1 [32]. The experiments were run on a AMD Phenom II X6 2,8
GHz processor with 8GB RAM using the programming environment
MaTLAB R2010a [39].

The homotopy starts with the simple symmetric eigenvalue problem
with known smallest eigenvalue A(tq) = 272 for the unit square and
known approximation A(tp) &~ 9.6397238440219 [48] for the L-shaped
domain.

To recall the motivation of the homotopy method, it is important to
note that for general non-selfadjoint problems, there is no guarantee
that we achieve convergence to an eigenvalue of interest if standard
methods are used. Experiments show that with a small number of
Arnoldi vectors (i.e., a low dimensional Krylov subspace,) and a ran-
dom starting vector ARPACK does not find any good approximation to
an eigenvalue for ¢ = 1 even for very fine meshes. Thus, stable adaptive
mesh refinement is not possible with a low cost variation of the Arnoldi
method in contrast to the situation for selfadjoint problems in [40].

On the other hand, the following numerical experiments show that,
starting from the symmetric problem and following the eigenpath lead
to accurate approximations of the desired eigenvalue of the original
non-selfadjoint problem. In other words, we can view our algorithms
as means to provide a starting vector for the non-selfadjoint problem
which is sufficiently close to the eigenvector of interest. Therefore, most
of the computational work is expected to occur in the last homotopy
step t = 1 which is confirmed by the numerical experiments.

Note, however, that for large convection parameters 3 the eigenvalue
problem is very ill-conditioned such that the homotopy stepsize tends
to zero and the Algorithms 2 and 3 fail to converge. In the following, for
our experiments we restrict ourselves to some reasonable parameters
[. In any case, it is necessary to use a lower bound for the stepsize.
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t ne(t) ve(t) fe(t) error estimator
0.0 || 18.7972 | 267.9989 | 0.0025677 286.7986
0.1 || 21.9037 | 250.3131 | 0.0003188 272.2171
0.2 || 17.6390 | 224.2302 | 0.0042579 241.8735
0.3 || 14.7243 | 204.8199 | 0.0066615 219.5508
0.4 | 12.0933 | 185.7716 | 0.0054502 197.8704
0.5 10.1746 | 167.8197 | 0.0560768 178.0503
0.6 | 7.8788 | 142.9867 | 0.0189887 150.8845
0.7 ] 11.0907 | 121.0055 | 0.0577501 132.1540
0.8 | 8.4339 | 85.4466 | 0.0206147 93.9012
0.9 || 3.4934 | 44.0072 | 0.0025632 47.5031
1.0 || 0.0854 | 0.0000 | 0.0008344 0.0862
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TABLE 1. The discretization 7,(t), the homotopy v,(t),
and the iteration p,(t) error estimator for all homotopy
steps t in Algorithm 1 for Example 1.

t A(t) | PA2HOLADOF | CPU time
0.0 20.31171 | 0.83037 | 65 0.04
0.1 21.19837 | 0.82296 | 65 0.05
0.2 | 23.76193 | 0.80155 | 114 0.09
0.3 | 28.68327 | 0.76045 | 222 0.13
0.4 | 3557882 | 0.70286 | 436 0.17
0.5 | 44.58901 | 0.62762 | 838 0.24
0.6 | 55.71845 | 0.53467 | 1607 0.35
0.7 | 68.87482 | 0.42479 | 1607 0.41
0.8 | 83.83805 | 0.29983 | 3075 0.66
0.9 | 100.83461 | 0.15788 | 10370 |  1.86
1.0 || 119.74434 | 0.00004 | 587509 | 127.34

TABLE 2. The eigenvalue approximation /N\g(t), the rel-

ative eigenvalue error W, the number of degrees

of freedom (#DOF), and the CPU time for all homotopy
steps t in Algorithm 1 applied to Example 1.

Example 1. For this example let © be the (convex) unit square ) =
(0,1) x (0,1). We choose the convection parameter 8 = (20,0)7, the
starting point of the homotopy t, = 0, the marking parameter 6 = 0.3,
the balancing parameter of the discretization and approximation error
estimators w = 0.1, the stepsize update parameter ¢ = 1/2, the number
of refinement steps v = 2, the overall accuracy ¢ = 107!, the initial
tolerance for the iterative solver p = 1 and the balancing parameter of
the homotopy and discretization error estimators 6 = 0.1. A reference
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t ne(t) ve(t) fe(t) error estimator
0.00 || 0.0725 | 183.1140 | 0.0000000 183.1865
0.25 || 0.0649 | 156.7655 | 0.0000002 156.8303
0.50 || 0.0740 | 136.5043 | 0.0000012 136.5783
0.75 || 0.0640 | 88.4754 | 0.0000598 88.5395
1.00 || 0.0783 | 0.0000 | 0.0004680 0.0788

20

TABLE 3. The discretization 7,(t), the homotopy v,(t),
and the iteration p(t) error estimator for all homotopy

steps t in Algorithm 2 applied to Example 1.

t M(t) | PO | #DOF | CPU time
0.00 | 19.74139 | 0.83513 | 18420 | 2.62
0.25 | 25.98903 | 0.78295 | 48506 | 20.51
0.50 | 44.73837 | 0.62637 | 124817 | 40.28
0.75 | 75.98888 | 0.36538 | 366519 | 112.36
1.00 || 119.74216 | 0.00002 | 641569 | 278.09

TABLE 4. The eigenvalue approximation 5\4(25), the rel-

ative eigenvalue error W, the number of degrees

of freedom (#DOF), and the CPU time for all homotopy

steps t in Algorithm 2 applied to Example 1.

t ne(t) ve(t) pe(t) error estimator
0.0000 || 18.7972 | 267.9987 | 0.0025668 286.7984
0.2500 || 21.9560 | 224.1103 | 0.0070254 246.0733
0.5000 || 12.7398 | 173.0761 | 0.1539409 185.9698
0.7500 || 6.2305 | 99.7848 | 0.0008341 106.0161
0.8750 || 5.1172 | 54.7893 | 0.0003906 99.9069
0.9375 | 1.8715 | 27.6650 | 0.0001211 29.5367
0.9688 || 1.1430 | 14.0956 | 0.0271601 15.2658
0.9844 || 0.6630 | 7.0425 |0.0141278 7.7196
0.9922 || 0.2189 | 3.4744 |0.0006248 3.6940
1.0000 || 0.0745 | 0.0000 | 0.0020618 0.0765

TABLE 5. The discretization n,(t), the homotopy v,(t),
and the iteration p,(t) error estimator for all homotopy
steps t concerning Algorithm 3 applied to Example 1.

value for the eigenvalue with the smallest real part is given by
A~ 119.7392.

In general, one can observe that all three algorithms lead to a finite
sequence of homotopy steps and to an adequate approximation of the
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t A(t) | PO #DOF | CPU time
0.0000 || 20.31171 | 0.83037 | 65 0.04
0.2500 | 25.86284 | 0.78401 | 112 0.25
0.5000 || 44.52525 | 0.62815 | 661 0.45

0.7500 || 75.97150 | 0.36553 3613 0.88

0.8750 || 96.37374 | 0.19514 6538 5.20

0.9375 || 107.66847 | 0.10081 | 21936 22.60
0.9688 || 113.63394 | 0.05099 | 40027 53.26
0.9844 || 116.67842 | 0.02556 | 71610 194.81
0.9922 || 118.19399 | 0.01290 | 226196 | 358.30
1.0000 || 119.76367 | 0.00020 | 685571 | 587.75

TABLE 6. The eigenvalue approximation :\g(t), the rel-

ative error W(‘Z%Aﬁ(t)‘, the number of degrees of freedom

(#DOF), and the CPU time for all homotopy steps ¢ in
Algorithm 3 for Example 1.

eigenvalue of interest at the last step ¢ = 1. Notice that for all algo-
rithms, more or less, most of the computational work is done at the last
step and therefore for the final problem. This can be seen in Tables
2, 4 and 6 when comparing the CPU time after the last step to the
previous one. Note that here we only present the data for the best ap-
proximation of each homotopy step and not those for the intermediate
approximations.

In Algorithm 1 the fixed homotopy stepsize 7 = 0.1 is chosen. Tables
1 and 2 for Algorithm 1 show that a small homotopy stepsize leads to
a sequence where the second last homotopy step ¢ = 0.9 does involve
a small discrete problem, i.e., #DOF = 10370. Therefore, most of the
refinement is done only in the last homotopy step ¢ = 1, when the final
accuracy is reached. Thus, the computational overhead introduced
by the homotopy is minor for the right choice of homotopy stepsize
7. Since the best choice for 7 is not known, it is necessary, and in
practice reasonable, to introduce some extra computational overhead
by using adaptive stepsize control. One may notice that the value
obtained in the second last homotopy step has a large relative error and
only the final approximation is good. This effect leads to a nonlinear
convergence rate and results in larger eigenvalue errors for t < 1 and
accurate values only for ¢t = 1.

Algorithm 2 uses an adaptive homotopy stepsize control. As initial
stepsize 7 = 1 is chosen. Tables 3 and 4 show that the first homotopy
step is rejected and a smaller stepsize 7 is taken. In this example Algo-
rithm 2 chooses fewer homotopy steps than the other two algorithms.
Due to the fixed control of the discretization error by e, the number
of degrees of freedom (DOFSs) is already high for the simple symmetric
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problem. This means that for ¢ < 1 the error with respect to the DOF's
is much larger than for the other algorithms. On the other hand, for
the last step t = 1 the result is very accurate.

To overcome the drawback of a fixed stepsize in Algorithm 1 and a
fixed discretization error control in Algorithm 2, both techniques are
combined in Algorithm 3. In Tables 5 and 6 we observe that the homo-
topy stepsize is decreased very much towards the end of the homotopy
process. This effect is due to the fact, that the algorithm increases the
number of DOF strongly only for ¢ close to 1. This observation can
be interpreted as that the algorithm computes a sufficiently accurate
initial approximation to an eigenvector for ¢ = 1. Note that most of
the computational costs arise for t close to 1 during the last three ho-
motopy steps. Since Algorithm 3 is a combination of the other two
algorithms the error for approximations with homotopy steps ¢t < 1 is
much smaller than for Algorithm 2 but similar to that of Algorithm 1.
In contrast to Algorithm 1 the homotopy stepsize is adapted, fewer ho-
motopy steps are needed and the steps are more concentrated towards
t=1.

For more complicated problems, going beyond this simple model ex-
ample, it is expected that the adaptive stepsize control will lead to
faster computation than the method with a fixed stepsize. The ho-
motopy procedure in Algorithm 1 only introduces little computational
overhead, with the possible drawback of a small (unknown) fixed step-
size while Algorithm 2 does adapt the stepsize automatically, but for
the cost of larger computational overhead. In fact, Table 4 shows that
the overhead is less than 1/2 of the overall CPU time, which is worth-
while. On the other hand Algorithm 3 needs even more computational
time but combines the two advantages of Algorithm 1 and 2. Obvi-
ously, Algorithm 2 and 3 need more time than Algorithm 1, since they
reject some steps during their automatic stepsize control. Nevertheless,
this moderate increase of the computational cost seems to be reason-
able for more difficult situations, where no convergence to the desired
eigenvalues can be guaranteed without path following techniques.

The final approximate primal and dual eigenfunctions for Algorithm 3,
together with the corresponding meshes, are depicted in Figure 3. The
final meshes for the other algorithms look quite similar. Notice that,
due to the adaptive refinement procedure for triangles, the symmetry
of the mesh cannot strictly be preserved. In this example, primal and
dual solutions of the problem have almost independent supports living
on the opposite boundaries of the domain due to the strong convec-
tion in x direction. Therefore, all final meshes look quite “symmetric”.
Note that the meshes are more refined towards the strong boundary
layers of both the primal and the dual solution. This observation shows
that, in general, it is necessary to adapt the mesh for both the primal
and dual eigenfunctions.
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FIGURE 3. Primal (top left) and dual (top right) eigen-
function approximations for the final mesh (bottom) with
6663 nodes for Algorithm 3 applied to Example 1 with
e = 10.
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Example 2. As in the first example, let Q2 be the (convex) unit square
Q' =(0,1) x (0,1). We choose the parameters the same as in Example
1, except that the homotopy stepsize update parameter ¢ has been set
to 1/3 instead of 1/2. Here we demonstrate how a different choice of
q influences the homotopy process for algorithms 2 and 3. Figures 4
and 5 compare the results obtained for Examples 1 and 2. Comparing
the results with those of Example 1 shows that the choice ¢ = 1/3
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leads to similar relative eigenvalue errors for ¢ < 1 but smaller relative
eigenvalue error for the final homotopy step t = 1. For Algorithm 2,
the choice of ¢ = 1/3 leads to 10 homotopy steps compared to 5 steps in
Example 1. Although this is an increase by a factor of two, the overall
computational costs increase only slightly. This can be explained by
the fact that in each homotopy step there are fewer refinements and
overall fewer rejections of homotopy steps than in Example 1. For
Algorithm 3 the choice of ¢ = 1/3 leads to one additional homotopy
step and the computational costs moderately decrease.

Example 3. For this example let 2 be the (non-convex) L-shaped do-
main 2 = (—1,1) x (=1, 1)\ ([0, 1] x [-1,0]). We choose the convection
parameter 3 = (10,0)7, the starting point of the homotopy t, = 0, the
marking parameter § = 0.3, the balancing parameter of the discretiza-
tion and approximation error estimators w = 0.1, the stepsize update
parameter ¢ = 1/2; the number of refinement steps v = 2, the overall
accuracy € = 1071, the initial tolerance for the iterative solver p = 1
and the balancing parameter of the homotopy and discretization error
estimators 0 = 0.1. A reference value for the eigenvalue with smallest
real part is given by

A~ 34.6397.

Again for Algorithm 1 a fixed stepsize 7 = 0.1 is chosen. The results
look similar to those of the Examples 1 and 2. The eigenvalue errors
for the homotopy steps ¢t < 1 are rather large and only the values for
t = 1 are accurate. Also most of the CPU time is used on the last level.

Algorithm 2 starts with a stepsize 7 = 1 which is reduced by the
adaptive procedure to 7 = 0.25 and afterwards not changed any more.
Therefore, Algorithm 2 needs in total only 5 homotopy steps and not
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11 as Algorithm 1. Since the discretization error estimator at each
homotopy step is forced to be smaller than the fixed tolerance ¢, the
number of degrees of freedom is large already for the first homotopy
step. Here, in contrast to the previous examples, the approximation for
the last step t = 1 is less accurate than for the other two algorithms.

The results for Algorithm 3 show the nature of both other algorithms.
The stepsize is chosen adaptively without loss of accuracy compared
to the eigenvalue error of Algorithm 1. Moreover, it needs only one
more homotopy step than Algorithm 2 and the meshes for the step
t < 1 are much coarser than those of Algorithm 2. Again most of
the time is spent to compute the final approximation on the last and
second last level. It is also interesting to see that the second last
approximation of the eigenvalue obtained in Algorithm 3 is much better
than the corresponding one for Algorithm 2, despite using four times
fewer DOF's.

It is remarkable that for this more complicated example the fastest
algorithm, with respect to computational time, is Algorithm 3, see
Figure 6. Therefore, this experiment strongly underlines the advan-
tages of adaptivity in all three directions, namely the homotopy, the
discretization and the approximation.

Figure 7 shows adaptively refined meshes for Algorithm 3 in Exam-
ple 3. Note that due to the re-entrant corner the meshes show stronger
refinement towards the origin. Since the solution for the selfadjoint
problem is known to have a strong singularity at the origin, it is not
clear whether this extra refinement results from the homotopy pro-
cess or from the refinement on the last homotopy step ¢ = 1. Indeed,
looking at the approximated final primal and dual solutions does not
suggest extra refinement, since they have function values close to zero
at the origin, but this may be misleading. The fact that the convection
acts only along the x axis is clearly visible in the shape of the discrete
primal and dual solutions. Note that the primal and dual solution are
not mirror images as in the previous examples, but again show strong
boundary layers on opposite boundary edges.
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